

Evolutionary phenotype-genome analysis of cranial suture closure in mammals

Borja Esteve-Altava^{1*}, Fabio Barteri¹, Xavier Farré¹, Gerard Muntané^{1,2}, Juan Francisco Pastor³, Arcadi Navarro^{1,4,5,6}

1. Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain.

2. Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, Biomedical Network Research Center on Mental Health (CIBERSAM), 43206 Reus, Spain.

3. Museum of Anatomy, Department of Human Anatomy, University of Valladolid, 47002 Valladolid, Spain.

4. Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain

5. CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain.

6. Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Wellington 30, 08005, Barcelona, Spain.

*** corresponding author:** Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain.

1 **ABSTRACT**

2

3 Cranial sutures are growth and stress diffusion sites that connect the bones protecting the brain. The
4 closure of cranial suture is a key feature of mammalian late development and evolution, which can
5 also lead to head malformations when it occurs prematurely (craniosynostosis). To unveil the
6 phenotypic and genetic causes of suture closure in evolution, we examined 48 mammalian species
7 searching for (i) causal links between suture patency, brain size, and diet using phylogenetic path
8 analysis; and (ii) instances of genome-phenome convergence amino acid substitutions. Here we
9 show that brain size and the anteroposterior order of ossification of the skull are the two main
10 causes of sutures patency in evolution. We also identified three novel candidate genes for suture
11 closure in evolution (*HRNR*, *KIAA1549*, and *TTN*), which have never been reported in clinical
12 studies of craniosynostosis. Our results suggest that different genetic pathways underlie cranial
13 suture closure in evolution and disease.

14

15 **Keywords:** Evolution; Anatomy; Brain Size; Craniosynostosis; Phylogenetic Path Analysis;
16 Convergent amino acid substitution

17

18

19 **INTRODUCTION**

20 Cranial sutures separate the bones of the skull and function as sites of bone growth and stress
21 diffusion (Herring, 2008; Opperman, 2000). They are necessary to develop a healthy, functioning
22 head in mammals. Interestingly, while many sutures remain open through life, some cranial sutures
23 will naturally close by turning into bone. The closure of suture is a key feature of the mammalian
24 skull late development (**Figure 1**), growth, functioning, and evolution (Cray et al., 2014; Oh et al.,
25 2017; Roston & Roth, 2019). However, a premature closure of sutures (craniosynostosis) can also
26 lead to head malformations in newborns (Cohen & MacLean, 2000).

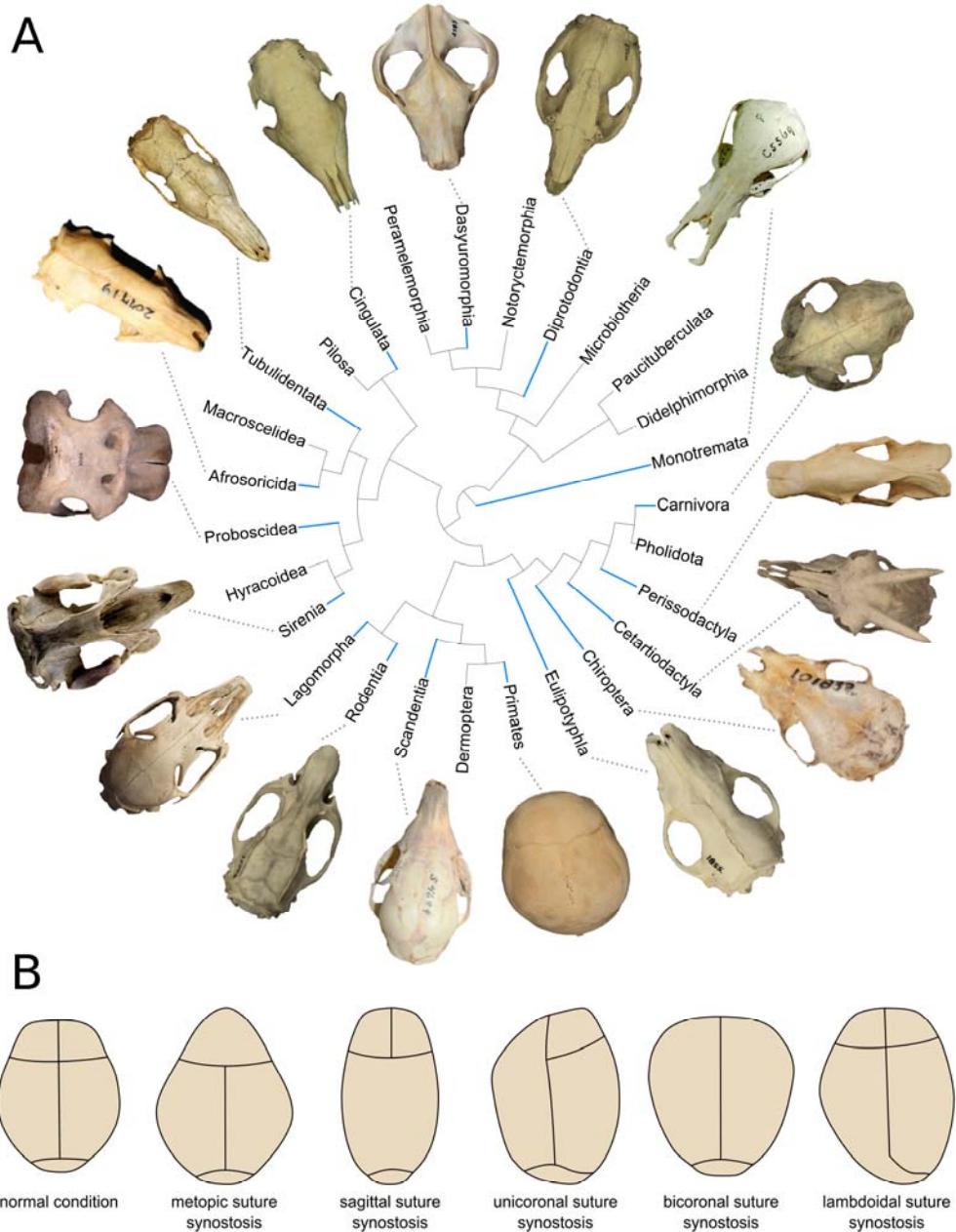
27

28 In mammals, cranial sutures closure evolves in coordination with the rest of the body. In fact, suture
29 closure is positively correlated with skull size and body size (Bärmann & Sánchez-Villagra, 2012;
30 Wilson & Sánchez-Villagra, 2009). Cranial sutures and the brain are also tightly integrated by
31 physical contiguity and shared signaling pathways during development (Lieberman, 2010;
32 Richtsmeier & Flaherty, 2013). Thus, changes of brain size could affect suture closure in evolution.
33 Likewise, diet can cause suture closure as a secondary effect of the mechanical loads generated
34 during feeding (Rafferty & Herring, 1999; Sun et al., 2004; Rafferty et al., 2019; Byron et al.,
35 2004). Biomechanical studies show that compression on a suture creates an environment that favors
36 suture closure (e.g., enhances osteogenesis, narrows suture space, immobilizes bones), whereas
37 tension favors suture patency (Herring, 2008). Therefore, we could expect suture closure to be a by-
38 product of the evolution of these traits, particularly brain size and diet. To our knowledge, there are
39 no studies on the impact of these phenotypic traits to suture closure in evolution.

40

41 Anatomical constraints can also bias which sutures close and which remain open (Moss, 1975;
42 Lieberman, 2011; Esteve-Altava & Rasskin-Gutman, 2014; Rasskin-Gutman & Esteve-Altava,
43 2018). Theoretical models predict that the whole arrangement of sutures in the skull—as a
44 network—acts itself as an anatomical constraint that influences which sutures will close and which

45 ones will remain open (Esteve-Altava et al., 2017), for example, by directing the signaling pathways
46 that promote osteogenesis through mechanosensors (Khonsari et al., 2013; Katsianou et al., 2016).
47 Additionally, the timing of ossification of skull bones, from face to vault (Koyabu et al., 2014), and
48 of suture closure, from vault to face (Rager et al., 2014), have also the potential to explain biases in
49 suture closure, since one suture closure may influence the closure of a neighboring suture.


50

51 The genetic causes of suture closure in evolution remain largely unknown. Most of our knowledge
52 comes from medical studies of genetic syndromes causing premature suture closure in humans
53 (Lattanzi et al., 2017; Morriss-Kay & Wilkie, 2005; Poot, 2019; Twigg & Wilkie, 2015; Wilkie et
54 al., 2017) and animal models (Cornille et al., 2019; Grova et al., 2012). These studies have revealed
55 a complex network of genes involving many signaling pathways (e.g., *BMP/TGF-β*, *FGF*, and
56 *WNT*). However, about 80% of craniosynostosis cases are nonsyndromic: they typically affect only
57 one suture and are not associated with other body malformations (Dempsey et al., 2019; Garza &
58 Khosla, 2012). There is little information on the genetic causes of nonsyndromic craniosynostosis
59 (Sewda et al., 2019). Evolutionary genomics offers a powerful tool to explore the genetic causes of
60 natural variation (Alföldi & Lindblad-Toh, 2013; de Magalhães & Wang, 2019; Smith et al., 2020),
61 as shown by studies on skull shape evolution (Roosenboom et al., 2018) and marine adaptations
62 (Foote et al., 2015; Zhou et al., 2015). Evolutionary studies have shown that some of the genes
63 regulating suture closure (e.g., *BMP3*, *MSX2*, *RUNX2*) have evolved under positive selection in
64 humans and other primates (Green et al., 2010; Magherini et al., 2015; Twigg et al., 2015; Wu et al.,
65 2010, 2012), which suggests that the same processes favoring suture closure at evolutionary scale
66 could be causing craniosynostosis conditions. Similarities of potential genetic factors and
67 phenotypes between skull evolution and craniosynostosis (e.g., fewer bones, same sutures
68 frequently affected, related shape changes) could indicate that analogous mechanisms underlie
69 suture closure in evolution and disease (Esteve-Altava et al., 2017; Richtsmeier, 2018; Richtsmeier
70 et al., 2006).

71

72 Here we assessed the evolutionary factors determining the closure of the metopic, coronal, and
73 sagittal suture in mammals. To this end, we analyzed the cranial anatomy of 48 species of
74 mammals, for which their reference genomes were aligned at UCSC (100-way) and for which there
75 was information on their diet and brain mass in the literature. First, we tested 12 alternative
76 evolutionary hypotheses of how brain size, diet, and developmental constraints may determine
77 suture closure in evolution. Then, we looked for convergent amino acid substitutions in multiple-
78 sequence alignments of proteins, comparing species with sutures closed or open. Our hypotheses
79 are that (1) brain size, diet hardness, and constraints, together, determine suture patency and closure
80 in evolution; (2) species with a given suture closed will share mutations in the same key genes that
81 will be absent in closely related species with the same suture open; (3) these genes will be enriched
82 in biological functions relevant to cranial suture formation and maintenance, brain growth, and
83 biomechanical performance; and (4) they will overlap with genes previously associated to
84 craniosynostosis in clinical studies.

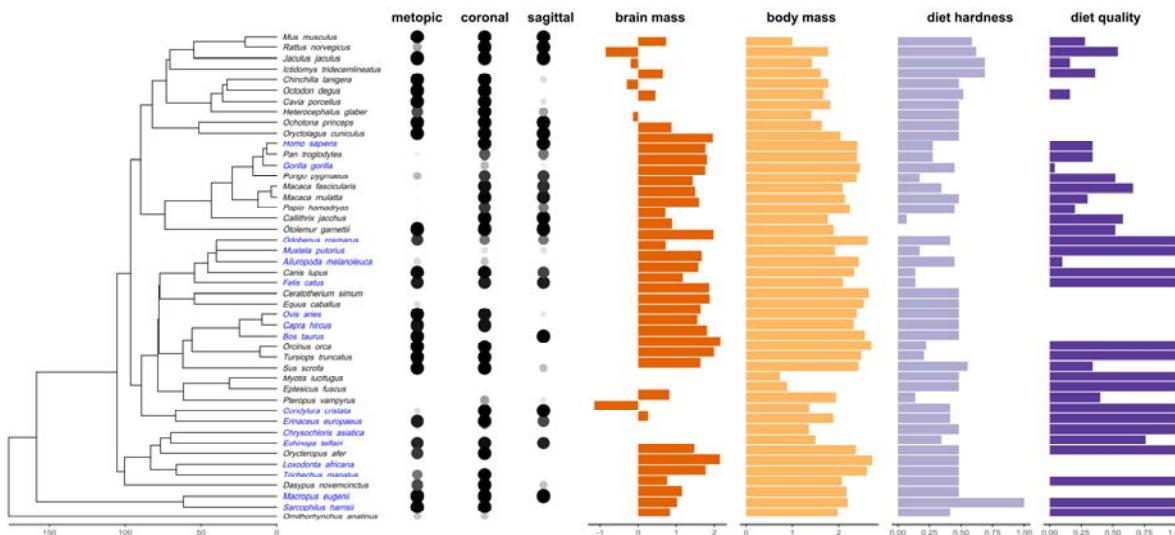
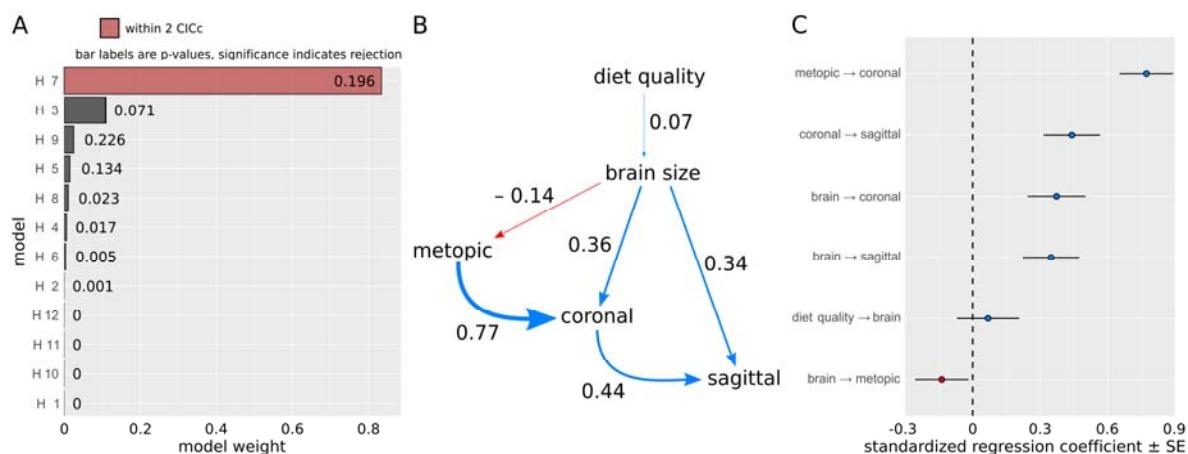

85

Figure 1. Cranial suture closure in evolution and disease. (A) Mammalian orders studied (blue lines), with representative skulls in dorsal view showing the differences in patency for the metopic, coronal, and sagittal sutures. Some mammals close their cranial sutures after birth, and we see them closed in adults, while others keep their sutures open through life or until an old age. (B) Outlines showing the consequences in the shape of the skull by a premature suture closure in humans, a condition called craniosynostosis.

87 **RESULTS**


88 The patency of the metopic, coronal, and sagittal sutures varied in the sample set of mammals
89 analyzed, with some taxonomic groups showing a consistent pattern of closure for some sutures
90 (**Figure 2**). We used the frequency of suture patency (i.e., specimens with the suture open/total
91 specimens) to infer the causal links between suture closure and other phenotypic traits of interest in
92 a phylogenetic path analysis. The high degree of conservation of suture patency within species
93 enabled us to categorize sutures phenotype, as either open or closed, and to carry out a search for
94 convergent amino acid substitutions in the protein-coding genes.

95 **Figure 2. Variation in suture patency and potentially related traits in mammals.** In blue,
species used for the pair-wise convergent amino acid subststation analysis. Note that different pairs
of species were used for each suture and that only suture patency below/above the threshold of
0.25/0.75 were considered. Dot size and gray scale of suture patency ranges between 0 to 1,
corresponding to 0% to 100% of specimens with the suture open in our sample. Brain and body
mass shown as log-transformation of weight in grams. Diet hardness and quality are normalized.
See **Supplementary File 1** for the exact values of each variable.

96 **Suture patency and life-history traits evolution**

97 The best supported model for the patency of the metopic, coronal, and sagittal sutures in evolution
98 agrees with the hypothesis of an anteroposterior direction in sutures' closure following the timing of
99 skull ossification and with the influence of brain size after correcting for body size ($CICc = 56.9$, $p-$
100 $value = 0.196$, $w = 0.829$). (N/A: $CICc$ is a modified version of $AICc$ for path analysis, significant
101 p-values, < 0.05 , mean that the model is rejected, see *Methods*). **Figure 3** summarizes the results of
102 the phylogenetic path analysis. The best model includes mid-to-high effects of one suture on
103 another in an anteroposterior direction and low-to-mid effects of brain size on sutures. Larger brains
104 (after correcting for body size) tend to favor the maintenance of the coronal and sagittal sutures
105 open, and to a lesser extent, the closure of the metopic. In contrast, diet quality has a negligible
106 positive effect on brain size. Regardless of the support of each model ($\Delta CICc$), only those
107 hypotheses that included a causal relation between sutures and brain size were supported by
108 evidence ($p-value > 0.05$). See **Supplementary File 1** for details.

Figure 3. Summary of the phylogenetic path analysis. (A) Comparison of statistics for each model. There is only one best supported causal model (i.e., within 2 $CICc$ and $p-value > 0.05$). (B) The best model shows a causal relation for cranial sutures patency following an anteroposterior direction, with larger brain sizes causing the sutures coronal and sagittal to remain open and the metopic suture to close at an evolutionary scale. An arrow indicates the direction of the causal

relation, its width corresponds to the standardized regression coefficient (i.e., how much the causal variable affects the effect variable), and its color represents a positive (blue) or a negative (red) effect. **(C)** Amount of change (with standard error) produced by causal variables on effect variables for the best supported model.

109

110 **Convergent amino acid substitutions in species with cranial sutures closed**

111 We compared the amino acid sequences of 10,922 genes in pairs of closely related species that vary
112 in their suture patency (open *versus* closed). We recovered an aggregate of 6,158 putatively
113 convergent amino acid substitutions (CAAS) in 3,250 unique genes. These genes were mutated in at
114 least one suture, meaning that they were identified in three pair-wise comparisons of closely related
115 species with different suture patency. The number of unique genes found is significantly lower than
116 expected at random (1,000-bootstrap: $\alpha_{0.05} = 5,759.8$; see *Methods* for more details). We recovered a
117 total of 28 candidate genes that overlap in the three sutures (i.e., identified in nine pair-wise
118 comparisons), which were used to perform set enrichment analyses. This is a significant overlap
119 between the genes identified for each suture compared to that expected if the three sets were
120 independent (*Fold Enrichment* = 15, p-value = 5.04E-25). Out of the 28 candidates, three genes
121 were also internally validated in the whole sample of mammals: Hornenin (*HRNR*), *KIAA1549*, and
122 Titin (*TTN*). We focused our discussion on these three gene and their potential role in suture
123 closure. See **Supplementary File 1** for the complete list of CAAS.

124

125 **Functional and pathological enrichment**

126 Only one GO functional enrichment was found for the list of 28 candidate genes shared between the
127 three sutures: a molecular function related to lipid transport (GO:0005319, ER = 20.97, FDR =
128 0.013). For comparison, we also performed functional enrichment analyses for genes identified in at
129 least two sutures (i.e., found in six pair-wise comparisons). This shows that other well supported
130 GO enrichments for these genes include, for example, biological adhesion (GO:0022610, ER =

131 2.39, FDR = 0.005) and components of the extracellular matrix (GO:0031012, ER = 2.47, FDR =
132 0.006). See more details in **Supplementary File 1**. Overall, these results provide little support to
133 our initial working hypothesis that candidate genes would be enriched in functions commonly
134 associated with suture biology.

135

136 Moreover, neither of the 28 candidate genes overlaps with craniosynostosis genes as ascertained
137 from the study of human disease. None of the candidate genes is present in the lists of genes from
138 the literature (set 1), from upregulated in nonsyndromic craniosynostosis osteoblast cultures (set 2),
139 or from GWAS of nonsyndromic metopic and sagittal cases (set 3). As a reference, we also
140 estimated the overlap between these three gene sets. One-sided Fisher's exact tests show that only
141 one overlap for the list of literature genes and the list of GWAS (set 1 vs set 2: Odds Ratio = 1.616,
142 FDR = 0.106; set 1 vs set 3: Odds Ratio = 93.29, FDR = 2.05E-30; set 2 vs set 3: Odds Ratio =
143 1.08, FDR = 0.807). In contrast to candidate genes, genes associated to human craniosynostosis are
144 enriched in biological functions more related to suture biology (see **Supplementary File 1**). This
145 result rejects our starting hypothesis that candidate genes, with mutations linked to suture closure in
146 evolution, would overlap with genes associated to craniosynostosis.

147

148 **DISCUSSION**

149 Our results suggest that cranial suture closure in evolution is regulated by two developmental
150 processes: the order of ossification of skull bones and the growth of the brain relative to body size.
151 In contrast, we found no support for diet hardness (as a proxy for chewing biomechanics) as a cause
152 for differences in suture patency among species. From a genetic point of view, we identified 28
153 candidate genes for suture closure in evolution, out of which three show the strongest support:
154 *HRNR*, *KIAA1549*, and *TTN*. These genes have never been causally linked to craniofacial
155 development, suture biology, or craniosynostosis. However, they are expressed in tissues adjacent
156 to cranial sutures, such as the brain and skeletal muscles, which affect suture biology.

157

158 **Brain size and ossification timing determine suture patency in evolution**

159 Brain growth is tightly integrated with cranial suture maintenance and closure in normal
160 development and in pathological conditions (Richtsmeier, 2018; Richtsmeier et al., 2006;
161 Richtsmeier & Flaherty, 2013). The traditional idea is that suture closure is a passive consequence
162 of the growth of the brain (Moss & Young, 1960; Moss, 1975), with dura mater triggering a
163 signaling cascade that promotes osteoblast activity and regulates cell proliferation and apoptosis
164 (Opperman, 2000; Spector et al., 2002). Our results support a direct influence of brain size on suture
165 patency in mammals, acquired by an increased brain growth relative to body size. However, each
166 suture responds differently to brain size. Larger brains cause the coronal and sagittal sutures to
167 remain open, while they cause the closure of the metopic suture. Why sutures respond in a different
168 way to brain size is unclear, but it could be a consequence of how the growing brain interacts
169 differently with each of the enclosing bones and sutures (Barbeito-Andrés et al., 2020).

170

171 Our evolutionary analysis shows that the patency of a suture depends also on the patency of other
172 sutures, following the most common anteroposterior order of ossification of the skull in mammals
173 (Koyabu et al., 2011, 2014). This result agrees with recent theoretical findings proposing that the

174 organization of the skull, as a network of bones connected by sutures, can bias suture closure
175 (Esteve-Altava et al., 2017; Esteve-Altava & Rasskin-Gutman, 2015). For example, by directing
176 mechano-transduction and morphogenetic signals (Khonsari et al., 2013; Katsianou et al., 2016). If
177 that is true, this means that sutures are not only passive subjects of their underlying functional
178 matrices (Moss, 1975), instead they can constrain each other's closure. However, the exact relation
179 between the timing of ossification and suture closure during development is still unclear and may
180 depend on other species-specific anatomical constraints. In humans, for example, the later closure
181 of the metopic suture compared to our extinct relatives and other primates is thought to be an
182 adaptive response to pelvic constraints on the birth canal (Falk et al., 2012).

183

184 **Mechanical stress and suture closure**

185 Biomechanical studies on vertebrate skulls as disparate as lizards and mammals have shown that
186 cranial sutures relieve strain locally in response to mechanical loads, for example, from chewing
187 (Herring & Teng, 2000; Moazen et al., 2009; Rafferty & Herring, 1999). However, using diet
188 hardness as a proxy, we found no support for an effect of mechanical stress on sutures patency or
189 closure in mammals. This is either because there is no evolutionary relation between them or
190 because diet hardness is not a good proxy for the mechanical stress supported by the skull. If diet
191 hardness is not a good proxy, the most accurate alternative would be to carry out biomechanical
192 studies on every species and measure each suture response individually, for example, using Finite
193 Elements Analysis (Bright, 2012). This would be a feasible albeit challenging empirical work.

194

195 **New candidate genes for suture closure in mammals**

196 Following a comparative analysis of protein-coding regions, we identified 28 candidate genes that
197 may have a potential role in determining cranial suture closure in mammalian evolution. Out of this
198 list, three genes—*HRNR*, *KIAA1549*, and *TTN*—are the most likely candidates, because they also
199 show convergent mutations across the whole sample of mammals. These three genes have never

200 been associated with neither normal nor pathological craniofacial development. Thus, we can only
201 speculate about their relation to suture closure based on indirect evidence, such as the tissues where
202 they are expressed, their biological function, and their relations to other proteins.

203

204 *HRNR* encodes for a profilaggrin-like protein that functions as an ion binder for calcium and other
205 metals in different tissues (mostly the skin, but also in the brain), organizing the cell envelope and
206 extracellular keratinization. Although *HRNR* was tentatively reported as a risk factor for
207 craniosynostosis in a study of twins (Rymer, 2015), this result has not been validated (*personal*
208 *communication*). *HRNR* is not known to play a role in cranial development, but other proteins
209 related to keratinization have been reported to participate in developing calvarial bone and sutures
210 (Atsawaswan et al., 2013). A total of 59 different mutations were found along the entire protein of
211 *HRNR*, none of which targets a functionally active region for calcium binding. However, *HRNR*-
212 coding region is enriched in methylation sites that undergo modifications during human
213 development from newborn to adult (Salpea et al., 2012), the time when cranial sutures close. We
214 identified 58 convergent substitutions for *HRNR* in our evolutionary study (the most of all candidate
215 genes), which could be interacting with methylation sites that determine cranial phenotypes during
216 postnatal development.

217

218 *KIAA1549* encodes for a protein component of the cellular membrane that is highly expressed in the
219 brain. Eleven different mutations were found for *KIAA1549*, none within the transmembrane region.
220 *KIAA1549* has never been associated to craniofacial morphology or premature suture closure, but
221 through a fusion with the B-Raf proto-oncogene (*BRAF*) it has been associated to developing
222 pilocytic astrocytoma, a benign brain tumor (Yamashita et al., 2019). Interestingly, *de novo*
223 mutations in *BRAF* has been recently discovered in patients with isolated sagittal synostosis
224 (Armand et al., 2019; Davis et al., 2019). Whether *KIAA1549* can affect suture development
225 through its effect on *BRAF* is not known.

226

227 *TTN* encodes for the largest human protein, a common type of filament present in cardiac and
228 skeletal muscles that is essential for muscle contraction. Thirty-two mutations were found for *TTN*,
229 none within its active sites. Although *TTN* has not specifically been associated with craniofacial
230 development or dysmorphologies, we know that head muscles activity is necessary for the correct
231 formation and maintenance of cranial sutures (Byron et al., 2004; Herring & Teng, 2000; Moss &
232 Young, 1960). For example, osteoblast in the sutures respond to muscle tension by increasing the
233 formation of bone (Herring, 2008), which is something also observed in craniosynostosis (Al-
234 Rekabi et al., 2017). We can only speculate on whether small changes in *TTN* proteins modulate
235 head muscles contraction during cranial development, and by doing so, can alter cranial sutures
236 maintenance and closure.

237

238 The 28 candidate genes for cranial suture closure in evolution are not enriched in biological
239 functions and cellular components often associated with skeletal development (e.g., osteogenesis,
240 growth factor binding, cell proliferation), which are those dysregulated in pathological cases of
241 suture closure (Rojas-Peña et al., 2014). Instead, we found that candidate genes are functionally
242 enriched in proteins for the transport of lipids across the membrane. Lipids play an important role in
243 skeletal metabolism, for example, by limiting permeability of the bone surface and by regulating
244 biominerilization through the transport of essential fat-soluble vitamins D and K (Tintut & Demer,
245 2014). In the context of cranial sutures, a relationship between vitamin D deficiencies (congenital or
246 nutritional) and craniosynostosis has been known for a long time (Imerslund, 1951; Jaszczuk et al.,
247 2016; Wang et al., 2015). This result suggests that mechanisms of cranial suture closure in
248 evolution could evolve through changes in the regulation of vitamin D transport, rather than acting
249 directly on osteological regulation pathways. Finally, for genes differentially mutated in two out of
250 three of the sutures, we did find enrichments for biological adhesion and components of the

251 extracellular matrix, which are essential for the maintenance and closure of cranial sutures
252 (Opperman & Rawlins, 2005; Stamper et al., 2011).

253

254 **Are evolution and pathological development decoupled for cranial suture closure?**

255 Candidate genes from our evolutionary analysis show a complete lack of overlap with genes linked
256 to pathological suture closure (Adhikari et al., 2016; Justice et al., 2012, 2020; Rojas-Peña et al.,
257 2014). There are many plausible reasons that could explain this mismatch, from methodological
258 limitations to biological causes. On the one hand, the list of genes compared could be incomplete.
259 This is because either (1) our evolutionary analysis fails to identify candidate genes for suture
260 closure or because (2) we only know a limited number of genes which mutation lead to premature
261 suture closure. The first reason would imply that our approach does not work for this phenotype,
262 because it cannot capture mutations affecting the timing of closure (only the mechanism performing
263 the closure), whereas pathological conditions maybe occur due to mutations affecting timing
264 exclusively (e.g., via ectopic gene expression, Poot, 2019). The second reason would mean that our
265 current knowledge of the genetic origins of nonsyndromic craniosynostosis is limited and, therefore,
266 the lists of genes compared fail to capture the complete genetic landscape of this complex disease
267 (Magalhães & Wang, 2019; Lattanzi et al., 2017). On the other hand, there may be biological
268 reasons that explain this mismatch. As mentioned before, changes in brain growth rates or vitamin
269 D regulation in evolution could be one of such underlying causes, acting differentially for each
270 suture (Barbeito-Andrés et al., 2020).

271

272 Another possibility is that evolutionary mechanisms are decoupled from developmental
273 mechanisms commonly disrupted in disease, so that analogous phenotypic changes (i.e., closing a
274 suture) can proceed through different paths. Decoupling evolutionary mechanisms of phenotypic
275 variation from those genetic pathways whose disruption is most likely to be detrimental for the
276 individual could be a way to maintain evolvability without compromising fitness, bypassing

277 pleiotropic or epistatic constraints (Payne & Wagner, 2019). The fact that candidate evolutionary
278 genes for suture closure show no enrichment in any disease set supports this hypothesis. However,
279 it is unclear whether macroevolutionary genetic changes should involve the same loci or mutations
280 uncovered by microevolutionary and clinical studies (Smith et al., 2020). For example, the Runt-
281 related transcription factor 2 (*RUNX2*) is a strongly supported candidate to drive facial
282 morphological and suture closure in human evolution (Adhikari et al., 2016; Magherini et al., 2015)
283 and which mutation causes craniosynostosis (Cuellar et al., 2020; Maeno et al., 2011). However,
284 *RUNX2* takes no part in marsupial craniofacial diversity (Newton et al., 2017). This suggests that
285 different mammalian clades can use alternate pathways to control the exact same phenotypic traits.

286

287 **Conclusion**

288 Our study dissected the phenotypic and genetic causes of cranial suture patency in evolution,
289 highlighting developmental and evolutionary factors for suture closure in mammals. From a
290 phenotypic point of view, we found two main factors: (1) brain growth, which was a known cause
291 of suture patency in normal and pathological development, and (2) sutures self-regulation, which
292 was previously suggested only by theoretical models. From a comparative genomics approach, we
293 identified candidate genes involved in lipid transport, cell adhesion, and the formation of the
294 extracellular matrix. The best supported candidate genes to play a role in cranial suture closure in
295 evolution are *HRNR*, *KIAA1549*, and *TTN*. If validated by additional comparative analyses, and
296 experimentally in model organisms for suture closure (e.g., zebrafish, mice, or rabbit), they could
297 provide new ways to study the genetic basis of suture closure in evolution and disease. To our
298 knowledge, this study is the first attempt to search for the genetic causes of cranial suture closure
299 and associated pathologies at a macroevolutionary scale. Our findings highlight the importance of
300 evolutionary approaches to make new discoveries and test hypothesis on development and disease.

301

302 **METHODS**

303 **Sampling**

304 We surveyed an initial sample of 53 species of mammals with multiple sequence alignments of their
305 reference genomes available at UCSC (Kent et al., 2002) and with reliable information on their diet,
306 brain mass, and body mass (Burger et al., 2019). We examined adult skull specimens *in vivo* and in
307 digital images from museums and online collections with an ID catalog number. A total of 48
308 species had more than two well-preserved specimens available for examination and were included
309 in the present study. Details for specimens ID, suture patency, life traits, phylogeny, and analysis
310 code are available at https://figshare.com/projects/Cranial_Suture_Closure/81209.

311

312 **Suture patency**

313 For each specimen, we coded the state of the metopic, coronal, and sagittal sutures as either open or
314 closed, depending on whether they were visible (patent) or not (obliterated). Ambiguous cases (e.g.,
315 when a suture is half closed) were rare and we excluded them from the study. Suture patency was
316 quantified as the ratio of the number of specimens with the suture open to the total number of
317 specimens examined, ranging from 1 (all open) to 0 (all closed). This continuous measure provided
318 an amenable variable to perform the phylogenetic path analysis. We omitted from our analyses the
319 sagittal suture in the orca and the dolphin, because cetaceans never form this suture in the first place
320 due to the expansion of the occipital bone (Roston & Roth, 2019).

321

322 To later search for convergent amino acid substitution (CAAS), suture patency was binarized by
323 thresholding it between 0.75 and 0.25. A suture with a patency above 0.75 was counted as open and
324 below 0.25 was counted as closed. A binarization of suture patency was necessary because CAAS
325 comparisons require as input two discrete groups of species (Muntané et al., 2018). Because suture
326 patency is a highly conserved trait, most species ranked well above or below these thresholds. Only

327 15 sutures out of 144 observations were left uncategorized, and we omitted them when selecting
328 pairs of species to compare their protein-coding sequences.

329

330 **Life traits and phylogenetic path analysis**

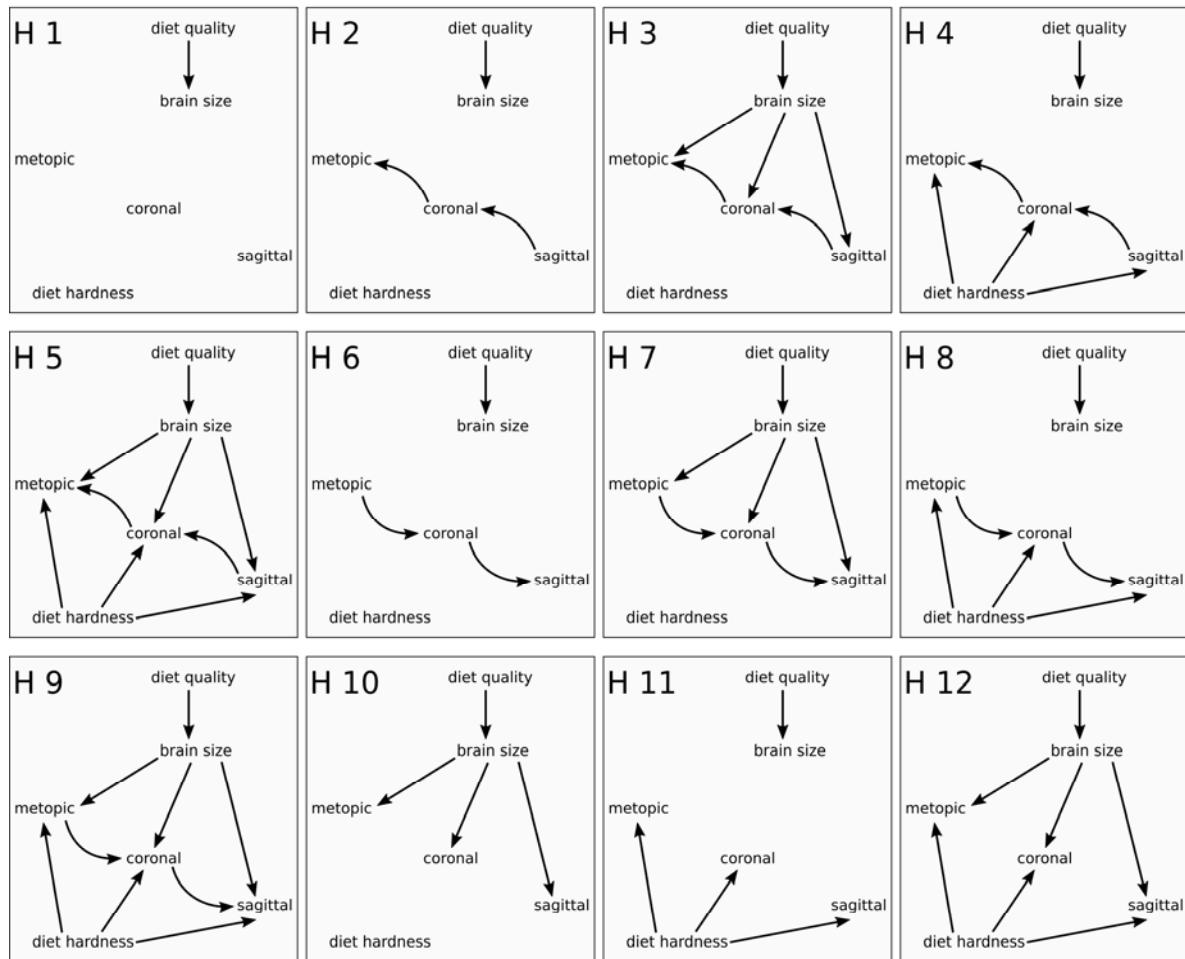
331 We tested 12 alternative causal models for the closure of the metopic, coronal, and sagittal sutures
332 using a phylogenetic confirmatory path analysis (von Hardenberg & Gonzalez-Voyer, 2013). To
333 this end, we downloaded a calibrated phylogeny for all mammals from TimeTree
334 (<http://www.timetree.org/>) and pruned off the species not sampled. The analysis was carried using
335 the Pagel's lambda model of evolution, which is estimated internally by the function *phylo_path*
336 (Bijl, 2018) in R (R Core Team, 2019). **Figure 4** shows the models evaluated. As potential relations
337 we modeled the mutual causation between sutures due to their development (Koyabu et al., 2014;
338 Rager et al., 2014), the effect of hard diet on sutures due to the stress involving in chewing
339 (Herring, 2008; Rafferty et al., 2019; Sun et al., 2004), and the effect of brain size on sutures due to
340 the influence of the brain on the growth of the bones of the vault and the maintenance of sutures
341 (Richtsmeier, 2018; Richtsmeier et al., 2006; Richtsmeier & Flaherty, 2013). Finally, we included
342 the effect of diet quality on brain size as an indirect link on sutures (Aiello & Wheeler, 1995; Allen
343 & Kay, 2012). To reduce the number of variables in the models, body size was included as a
344 corrector for brain size, instead of as an independent variable.

345

346 Brain and body mass information was gathered from a recent study on brain size allometry in
347 mammals (Burger et al., 2019). We noticed an error in the body mass for *Bos taurus* (46,100 g) and
348 fixed using the correct value (461,000 g) from the original reference (Isler & van Schaik, 2012). We
349 favor Burger's dataset because measurements were systematically compiled (e.g., two cross-
350 reference check to assess authenticity of measurements, female-male averages except for dimorphic
351 species), and brain and body mass for each species come from the same study, which minimizes

352 potential errors. Brain size was calculated as the residual of a phylogenetic generalized least square
353 regression of the log-transformation of brain mass against body mass.

354


355 Diet information was extracted from EltonTraits 1.0 database on species-level foraging attributes
356 (Wilman et al., 2014). Data includes the percentage of the type of food consumed for each species.

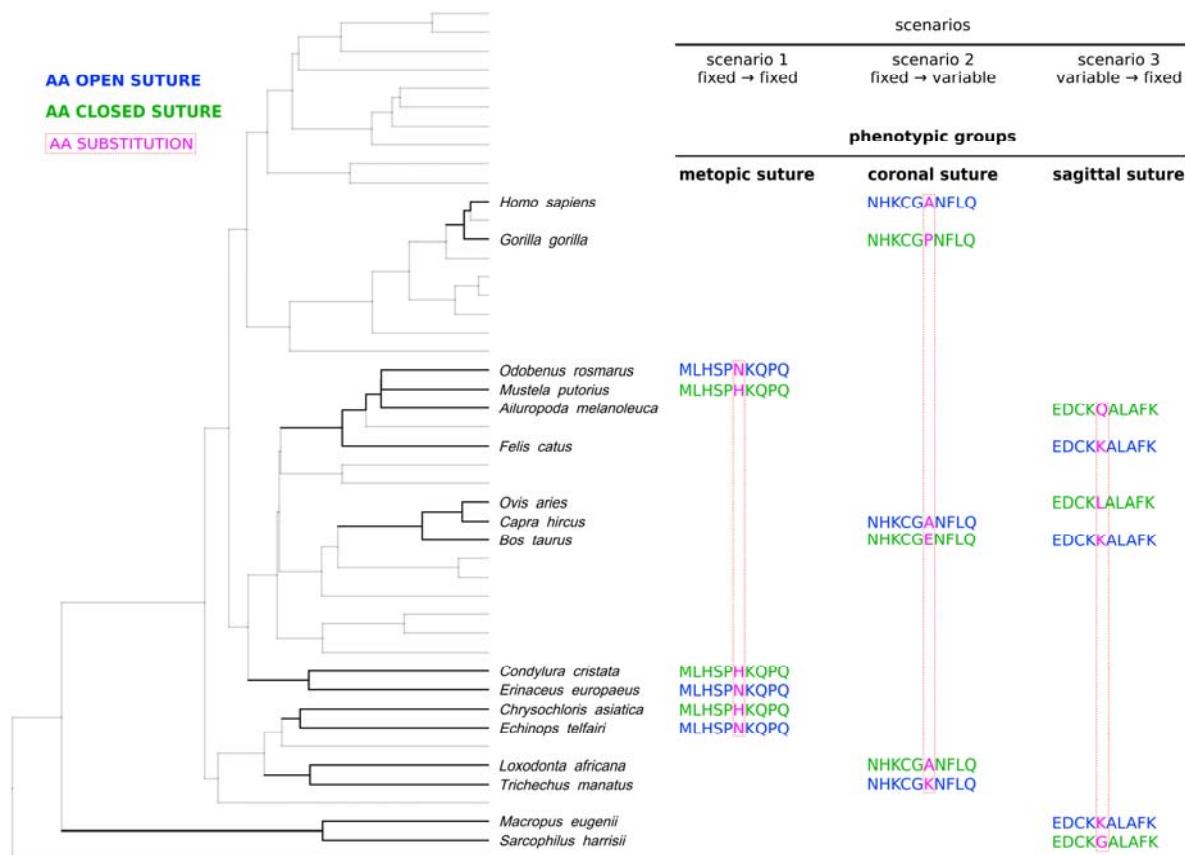
357 Diet quality was measured using Sailer and colleagues' equation (Sailer et al., 1985) as, $DQ =$
358 $plants + 2 \times (fruit + seed + nectar) + 3.5 \times (meat)$, ranging from 100 to 350. Because there

359 is not a similar measure for diet hardness based on the relative amount of food consumed, we
360 followed an approach similar to that used for diet quality, measuring diet hardness as, $DH =$

361 $(fruit + meat) + 2 \times (plants + invertebrates) + 3.5 \times (seed + scanveing)$, ranging from 0
362 to 350 (however, only species with a nectar-based diet will rank between 0 and 100). This relative
363 division of food types by hardness (i.e., 1x, 2x, 3.5x) agrees with the division of hard foods used in
364 experimental studies (Marcé-Nogué et al., 2017; Williams et al., 2005). Diet quality and hardness
365 were both normalized between 0 and 1.

366

Figure 4. Alternative causal models compared with the phylogenetic path analysis. Model H1 is the null hypothesis of no causal relation among brain size, diet hardness, and sutures patency. H2 to H5 evaluate the causation of brain and/or diet when suture closure has a causal directionality following the relative order of closure in mammals (Rager et al., 2014). H6 to H9 evaluate the causation of brain and/or diet when suture closure follows the anteroposterior timing of ossification of the skull (Koyabu et al., 2014). H10 to H12 evaluate the influence of brain and diet in the absence of any type of developmental causation between sutures.


368 **Convergent amino acid substitutions (CAAS)**

369 Multiple sequence alignments (MSA) were downloaded from the University of California Santa
370 Cruz (UCSC) Genome Browser (Kent et al., 2002). We kept the 18533 MSA corresponding to the
371 longest transcript of each gene. We then filtered out those sequences having more than 30% gaps or
372 ambiguous amino acid definitions in any of the species analyzed. The final background pool of
373 genes included 10922 MSA. On this gene pool, we searched for CAAS that co-occur in three pairs
374 of closely related species with an opposite suture patency (open/closed) for the metopic, coronal,
375 and sagittal sutures (**Figure 5**), for a total of nine pair-wise comparisons. Using an in-house script
376 from a past study (Muntané et al., 2018), we retrieved all positions in which an amino acid differed
377 between species with the suture open and species with the suture closed. We kept those cases in
378 which an amino acid differed between the two groups and was shared by all the species of at least
379 one group, discarding any case with a gap in that position. The final list of candidate genes includes
380 only those genes that had convergent amino acid substitutions in the compared pairs for the three
381 sutures.

382

383 We considered three scenarios or types of convergent substitution. Scenario 1 captures the same,
384 single amino acid substitution for all pairs compared between species with the suture open and
385 closed (e.g., open = {asparagine} → closed = {histidine}). Scenario 2 captures substitutions of a
386 same fixed amino acid in species with the suture open to a variable set of different amino acids in
387 species with the suture closed (e.g., open = {alanine} → closed = {proline, glutamate, lysine}).
388 Scenario 3 is the reverse case of scenario 2: a variable set of amino acids in species with the suture
389 open changed to a same amino acid in species with the suture closed (e.g., open = {glutamine,
390 leucine, glycine} → closed = {lysine}).

391

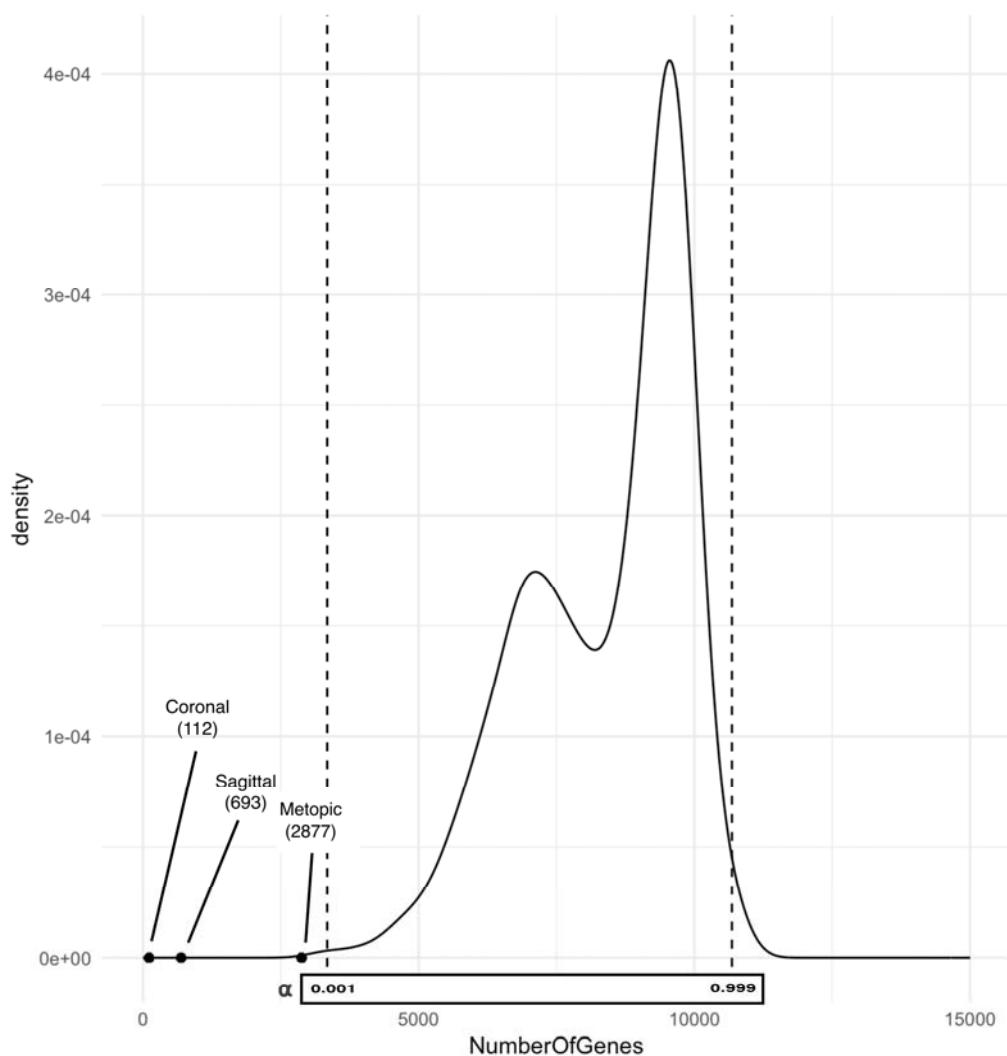


Figure 5. Structure of the convergent amino acid substitution analysis. Pairs of closely related species were selected for comparison based on their suture status as either open (blue) or closed (green), producing three phenotypic groups with three pairs of species each. Three scenarios of substitution were searched for every phenotypic group (only one is shown here for each suture).

392

393 **Statistical and internal validation of candidate genes**

394 We performed a statistical validation of candidate genes using bootstrapping to assess whether the
395 number of genes carrying CAAS were different than expected at random. For 1000 iterations, we
396 sorted the 17 species analyzed (see **Figure 6**) into two random groups and scanned the background
397 pool of genes for genes carrying at least one non-gapped CAAS. The bootstrap results span from
398 3,274 to 10,681 hits with a median of 8,898 hits, and 5% and 95% intervals are 5,759.8 and 10,082
399 genes hit, respectively. Finally, we tested the significance of the genes overlapping for the three
400 sutures in R using the *SuperExactTest* package (Wang et al., 2015).

Figure 6. Results of the bootstrap comparisons of CAAS. Red lines show the 0.001 and 0.999 probability limits. Dots mark the total number of genes identified for each suture.

401

402 To assess biological significance, we performed an internal validation of candidate genes within the
403 whole sample of mammals, following the same procedure described before. We considered a
404 candidate gene as validated when it is also identified carrying open-versus-closed CAAS in the
405 whole sample. Validated genes are discussed in the context of suture biology in more detail.

406

407 **Functional and pathological enrichment**

408 We performed set enrichment analyses for the list of candidate genes using GOATOOLS
409 (Klopfenstein et al., 2018) with the background pool of 10,922 protein-coding genes as reference.
410 First, we performed a functional enrichment for biological processes, cellular components, and
411 molecular functions of the Gene Ontology (GO) database (Ashburner et al., 2000;
412 The Gene Ontology Consortium, 2019) using in-house scripts. Enrichments are based on GO
413 definitions present in the go-basic.obo file available on Gene Ontology public database (Accessed
414 February 2020). Then, we performed an enrichment analysis of candidate genes for three sets of
415 genes associated to premature cranial suture closure (craniosynostosis) using Fisher's exact test.
416 The first set comprises 97 genes linked to (mostly) syndromic craniosynostosis conditions in the
417 Human Phenotype Ontology (HP:0001363). The second set comprises 959 genes with differential
418 gene expression profiles in RNA-Seq data for human osteoblast cultures derived from bone biopsy
419 of nonsyndromic craniosynostosis cases (Rojas-Peña et al., 2014). The third set comprises 53 genes
420 from two GWAS studies on nonsyndromic craniosynostosis: one for the sagittal suture (Justice et
421 al., 2012) and one for the metopic suture (Justice et al., 2020). Note that we only included genes
422 that are also present in our background pool of genes.

423

424 **Methodological limitations**

425 *Suture patency and sample size.* The number of specimens examined of each species is uneven, and
426 for some species only a few individuals were available. This is either because the species is rare and
427 was not available in the natural history museums visited or in the online repositories consulted or
428 because the covid-19 outbreak prevented us visiting additional museum collections. However, the
429 conserved nature of suture patency gave us confidence that the suture patency measurements
430 represent the general, highly conserved pattern of each species, and that its categorization as open
431 or closed is valid. A broad sampling would provide stronger support to our conclusions. Moreover,

432 it would make possible to include intraspecific variation within the analysis, which was not possible
433 now because some species (perhaps due to the small sample size) showed little variation.

434

435 *Quality of referenced genomes, alignments, and number of gaps.* The quality of the mammalian
436 reference genomes available for comparison is also uneven; specially compared to human and some
437 model organisms. The consequence is that some alignments of protein-coding genes have a high
438 number of gaps (i.e., not comparable positions because of unknown amino acid, deletion/insertion).
439 These gapped positions complicate comparing simultaneously many species. In this study, we
440 decided to take the most conservative approach: we excluded genes with more than 30% of
441 positions with a gap from the background pool and also positions with gaps for each pairwise
442 CAAS. The side effect of this strategy is that some genes are inevitably excluded because they
443 show many gaps, among them genes linked to craniofacial development, such as ALX4, ERF,
444 SMAD6. In addition, protein lengths may exert some bias in the genes excluded as well as the
445 number of CAAS. Nevertheless, we adopted this conservative approach because the laxer
446 alternative added an additional layer of ambiguity in the results. We hope that soon more and better
447 referenced genomes will be available that allow expanding our comparative study.

ACKNOWLEDGEMENTS

This work will not have been possible without the help from many colleagues that shared their museum skull photographs and CT scans, which mitigated the impossibility to visit museum collections due to COVID-19 lockdowns worldwide. We thank Borja Figueirido, Georgina Hutton, Jordi Marcé-Nogué, Laura O. Wilson, Mathew J. Stewart, Patrick Arnold, and Soledad De Esteban Trivigno. Also, to Christopher Smith for his photographs from the American Museum of Natural History, New York. We also thank curators Javier Quesada (Museum of Zoology of Barcelona), Ángel Luís Garvía Rodriguez and Luís Castelo Vicente (National Museum of Natural Sciences) for their help in accessing specimens. Finally, we are thankful to Tomàs Marquès-Bonet and his group, specially David Juan, for their insights and feedback.

FUNDING

BE-A has received financial support for this project by the Postdoctoral Junior Leader Fellowship Programme from “la Caixa” Banking Foundation (LCF/BQ/LI18/11630002). BE-A and AN are supported by AEI-PGC2018-101927-BI00 (FEDER/UE). We also thank the Unidad de Excelencia María de Maeztu funded by the AEI (CEX2018-000792-M).

COMPETING INTERESTS

Authors declare no competing interests.

DATA AND CODE AVAILABILITY

Data and code used in this manuscript is available at
https://figshare.com/projects/Cranial_Suture_Closure/81209

AUTHOR CONTRIBUTIONS

BE-A designed the study, collected the data, and wrote the manuscript.

BE-A and FB analyzed the data.

FB, XF, GM, and AN conceived and designed the in-house scripts for CAAS.

All authors interpreted the results and wrote the manuscript.

REFERENCES

Adhikari, K., Fuentes-Guajardo, M., Quinto-Sánchez, M., Mendoza-Revilla, J., Camilo Chacón-Duque, J., Acuña-Alonso, V., Jaramillo, C., Arias, W., Lozano, R. B., Pérez, G. M., Gómez-Valdés, J., Villamil-Ramírez, H., Hunemeier, T., Ramallo, V., Silva de Cerqueira, C. C., Hurtado, M., Villegas, V., Granja, V., Gallo, C., ... Ruiz-Linares, A. (2016). A genome-wide association scan implicates *DCHS2*, *RUNX2*, *GLI3*, *PAX1* and *EDAR* in human facial variation. *Nature Communications*, 7, 11616.
<https://doi.org/10.1038/ncomms11616>

Aiello, L. C., & Wheeler, P. (1995). The expensive-tissue hypothesis: The brain and the digestive system in human and primate evolution. *Current Anthropology*, 36(2), 199–221.
<https://doi.org/10.1086/204350>.

Alföldi, J., & Lindblad-Toh, K. (2013). Comparative genomics as a tool to understand evolution and disease. *Genome Research*, 23(7), 1063–1068. <https://doi.org/10.1101/gr.157503.113>

Allen, K. L., & Kay, R. F. (2012). Dietary quality and encephalization in platyrhine primates. *Proceedings of the Royal Society B: Biological Sciences*, 279(1729), 715–721.
<https://doi.org/10.1098/rspb.2011.1311>

Al-Rekabi, Z., Cunningham, M. L., & Sniadecki, N. J. (2017). Cell mechanics of craniosynostosis. *ACS Biomaterials Science & Engineering*, 3(11), 2733–2743.
<https://doi.org/10.1021/acsbiomaterials.6b00557>

Armand, T., Schaefer, E., Di Rocco, F., Edery, P., Collet, C., & Rossi, M. (2019). Genetic bases of craniosynostoses: An update. *Neuro-Chirurgie*, 65(5), 196–201.
<https://doi.org/10.1016/j.neuchi.2019.10.003>

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., & Davis, A. P. (2000). Gene Ontology: Tool for the unification of biology. *Nature Genetics*, 25(1), 25–29. <https://doi.org/10.1038/75556>.

Atsawasuwan, P., Lu, X., Ito, Y., Zhang, Y., Evans, C. A., & Luan, X. (2013). Ameloblastin inhibits cranial suture closure by modulating *Msx2* expression and proliferation. *PLOS ONE*, 8(4), e52800. <https://doi.org/10.1371/journal.pone.0052800>

Barbeito-Andrés, J., Bonfili, N., Nogué, J. M., Bernal, V., & Gonzalez, P. N. (2020). Modeling the effect of brain growth on cranial bones using finite-element analysis and geometric morphometrics. *Surgical and Radiologic Anatomy*. <https://doi.org/10.1007/s00276-020-02466-y>

Bärmann, E. V., & Sánchez-Villagra, M. R. (2012). A phylogenetic study of late growth events in a mammalian evolutionary radiation: The cranial sutures of terrestrial artiodactyl mammals. *Journal of Mammalian Evolution*, 19(1), 43–56. <https://doi.org/10.1007/s10914-011-9176-8>

Bijl, W. van der. (2018). Phylopath: Easy phylogenetic path analysis in R. *PeerJ*, 6, e4718. <https://doi.org/10.7717/peerj.4718>

Bright, J. A. (2012). The importance of craniofacial sutures in biomechanical finite element models of the domestic pig. *PLOS ONE*, 7(2), e31769. <https://doi.org/10.1371/journal.pone.0031769>

Burger, J. R., George, M. A., Leadbetter, C., & Shaikh, F. (2019). The allometry of brain size in mammals. *Journal of Mammalogy*, 100(2), 276–283. <https://doi.org/10.1093/jmammal/gyz043>

Byron, C. D., Borke, J., Yu, J., Pashley, D., Wingard, C. J., & Hamrick, M. (2004). Effects of increased muscle mass on mouse sagittal suture morphology and mechanics. *The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology*, 279A(1), 676–684. <https://doi.org/10.1002/ar.a.20055>

Cohen, M., & MacLean, R. (2000). *Craniosynostosis: Diagnosis, evaluation, and management*. Oxford University Press.

Cornille, M., Dambroise, E., Komla-Ebri, D., Kaci, N., Biosse-Duplan, M., Rocco, F. D., & Legeai-Mallet, L. (2019). Animal models of craniosynostosis. *Neurochirurgie*, 65(5), 202–209. <https://doi.org/10.1016/j.neuchi.2019.09.010>

Cray, J., Cooper, G. M., Mooney, M. P., & Siegel, M. I. (2014). Ectocranial suture fusion in primates: Pattern and phylogeny. *Journal of Morphology*, 275(3), 342–347. <https://doi.org/10.1002/jmor.20218>

Cuellar, A., Bala, K., Di Pietro, L., Barba, M., Yagnik, G., Liu, J. L., Stevens, C., Hur, D. J., Ingersoll, R. G., Justice, C. M., Drissi, H., Kim, J., Lattanzi, W., & Boyadjiev, S. A. (2020). Gain-of-function variants and overexpression of RUNX2 in patients with nonsyndromic midline craniosynostosis. *Bone*, 115395. <https://doi.org/10.1016/j.bone.2020.115395>

Davis, A. A., Zuccoli, G., Haredy, M. M., Losee, J., Pollack, I. F., Madan-Khetarpal, S., Goldstein, J. A., & Nischal, K. K. (2019). RASopathy in patients with isolated sagittal synostosis. *Global Pediatric Health*. <https://doi.org/10.1177/2333794X19846774>

de Magalhães, J. P., & Wang, J. (2019). The fog of genetics: What is known, unknown and unknowable in the genetics of complex traits and diseases. *EMBO Reports*, 20(11), e48054. <https://doi.org/10.15252/embr.201948054>

Dempsey, R. F., Monson, L. A., Maricevich, R. S., Truong, T. A., Olarunnipa, S., Lam, S. K., Dauser, R. C., Hollier, L. H., & Buchanan, E. P. (2019). Nonsyndromic craniosynostosis. *Clinics in Plastic Surgery*, 46(2), 123–139. <https://doi.org/10.1016/j.cps.2018.11.001>

Esteve-Altava, B., & Rasskin-Gutman, D. (2014). Beyond the functional matrix hypothesis: A network null model of human skull growth for the formation of bone articulations. *Journal of Anatomy*, 225(3), 306–316. <https://doi.org/10.1111/joa.12212>

Esteve-Altava, B., & Rasskin-Gutman, D. (2015). Evo-Devo insights from pathological networks: Exploring craniosynostosis as a developmental mechanism for modularity and complexity

in the human skull. *Journal of Anthropological Sciences*, 93, 103–117.
<https://doi.org/10.4436/JASS.93001>

Esteve-Altava, B., Vallès-Català, T., Guimerà, R., Sales-Pardo, M., & Rasskin-Gutman, D. (2017). Bone fusion in normal and pathological development is constrained by the network architecture of the human skull. *Scientific Reports*, 7(1), 3376.
<https://doi.org/10.1038/s41598-017-03196-9>

Falk, D., Zollikofer, C. P. E., Morimoto, N., & Ponce de Leon, M. S. (2012). Metopic suture of Taung (*Australopithecus africanus*) and its implications for hominin brain evolution. *Proceedings of the National Academy of Sciences*, 109(22), 8467–8470.
<https://doi.org/10.1073/pnas.1119752109>

Foote, A. D., Liu, Y., Thomas, G. W. C., Vinař, T., Alföldi, J., Deng, J., Dugan, S., van Elk, C. E., Hunter, M. E., Joshi, V., Khan, Z., Kovar, C., Lee, S. L., Lindblad-Toh, K., Mancia, A., Nielsen, R., Qin, X., Qu, J., Raney, B. J., ... Gibbs, R. A. (2015). Convergent evolution of the genomes of marine mammals. *Nature Genetics*, 47(3), 272–275.
<https://doi.org/10.1038/ng.3198>

Garza, R. M., & Khosla, R. K. (2012). Nonsyndromic craniosynostosis. *Seminars in Plastic Surgery*, 26(2), 53–63. <https://doi.org/10.1055/s-0032-1320063>

Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M. H.-Y., Hansen, N. F., Durand, E. Y., Malaspinas, A.-S., Jensen, J. D., Marques-Bonet, T., Alkan, C., Prüfer, K., Meyer, M., Burbano, H. A., ... Pääbo, S. (2010). A draft sequence of the Neandertal genome. *Science (New York, N.Y.)*, 328(5979), 710–722. <https://doi.org/10.1126/science.1188021>

Grova, M., Lo, D. D., Montoro, D., Hyun, J. S., Chung, M. T., Wan, D. C., & Longaker, M. T. (2012). Animal models of cranial suture biology. *The Journal of Craniofacial Surgery*, 23(70 1), 1954–1958. <https://doi.org/10.1097/SCS.0b013e318258ba53>

Herring, S. W. (2008). Mechanical influences on suture development and patency. In D. P. Rice (Ed.), *Craniofacial Sutures. Development, Disease and Treatment* (Vol. 12, pp. 41–56). S. KARGER AG. <https://doi.org/10.1159/000115031>

Herring, & Teng, S. (2000). Strain in the braincase and its sutures during function. *American Journal of Physical Anthropology*, 112(4), 575–593. [https://doi.org/10.1002/1096-8644\(200008\)112:4<575::AID-AJPA10>3.0.CO;2-0](https://doi.org/10.1002/1096-8644(200008)112:4<575::AID-AJPA10>3.0.CO;2-0)

Imerslund, O. (1951). Craniostenosis and vitamin D resistant rickets. *Acta Paediatrica*, 40(5), 449–456. <https://doi.org/10.1111/j.1651-2227.1951.tb16509.x>

Isler, K., & van Schaik, C. P. (2012). Allomaternal care, life history and brain size evolution in mammals. *Journal of Human Evolution*, 63(1), 52–63. <https://doi.org/10.1016/j.jhevol.2012.03.009>

Jaszczuk, P., Rogers, G. F., Guzman, R., & Proctor, M. R. (2016). X-linked hypophosphatemic rickets and sagittal craniosynostosis: Three patients requiring operative cranial expansion: case series and literature review. *Child's Nervous System*, 32(5), 887–891. <https://doi.org/10.1007/s00381-015-2934-9>

Justice, C. M., Cuellar, A., Bala, K., Sabourin, J. A., Cunningham, M. L., Crawford, K., Phipps, J. M., Zhou, Y., Cilliers, D., Byren, J. C., Johnson, D., Wall, S. A., Morton, J. E. V., Noons, P., Sweeney, E., Weber, A., Rees, K. E. M., Wilson, L. C., Simeonov, E., ... National Birth Defects Prevention Study. (2020). A genome-wide association study implicates the *BMP7* locus as a risk factor for nonsyndromic metopic craniosynostosis. *Human Genetics*. <https://doi.org/10.1007/s00439-020-02157-z>

Justice, C. M., Yagnik, G., Kim, Y., Peter, I., Jabs, E. W., Erazo, M., Ye, X., Ainehsazan, E., Shi, L., Cunningham, M. L., Kimonis, V., Roscioli, T., Wall, S. A., Wilkie, A. O. M., Stoler, J., Richtsmeier, J. T., Heuzé, Y., Sanchez-Lara, P. A., Buckley, M. F., ... Boyadjiev, S. A. (2012). A genome-wide association study identifies susceptibility loci for nonsyndromic

sagittal craniosynostosis near *BMP2* and within *BBS9*. *Nature Genetics*, 44(12), 1360–1364. <https://doi.org/10.1038/ng.2463>

Katsianou, M. A., Adamopoulos, C., Vastardis, H., & Basdra, E. K. (2016). Signaling mechanisms implicated in cranial sutures pathophysiology: Craniosynostosis. *BBA Clinical*, 6, 165–176. <https://doi.org/10.1016/j.bbaci.2016.04.006>

Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M., & Haussler, and D. (2002). The human genome browser at UCSC. *Genome Research*, 12(6), 996–1006. <https://doi.org/10.1101/gr.229102>

Khonsari, R. H., Olivier J., Vigneaux P., Sanchez S., Tafforeau P., Ahlberg P. E., Di Rocco F., Bresch D., Corre P., Ohazama A., Sharpe P. T., & Calvez V. (2013). A mathematical model for mechanotransduction at the early steps of suture formation. *Proceedings of the Royal Society B*, 280(1759), 20122670. <https://doi.org/10.1098/rspb.2012.2670>

Klopfenstein, D. V., Zhang, L., Pedersen, B. S., Ramírez, F., Warwick Vesztrocy, A., Naldi, A., Mungall, C. J., Yunes, J. M., Botvinnik, O., Weigel, M., Dampier, W., Dessimoz, C., Flick, P., & Tang, H. (2018). GOATOOLS: A Python library for Gene Ontology analyses. *Scientific Reports*, 8(1), 10872. <https://doi.org/10.1038/s41598-018-28948-z>

Koyabu, D., Endo, H., Mitgutsch, C., Suwa, G., Catania, K. C., Zollikofer, C. P., Oda, S., Koyasu, K., Ando, M., & Sánchez-Villagra, M. R. (2011). Heterochrony and developmental modularity of cranial osteogenesis in lipotyphlan mammals. *EvoDevo*, 2(1), 21. <https://doi.org/10.1186/2041-9139-2-21>

Koyabu, D., Werneburg, I., Morimoto, N., Zollikofer, C. P. E., Forasiepi, A. M., Endo, H., Kimura, J., Ohdachi, S. D., Truong Son, N., & Sánchez-Villagra, M. R. (2014). Mammalian skull heterochrony reveals modular evolution and a link between cranial development and brain size. *Nature Communications*, 5(1). <https://doi.org/10.1038/ncomms4625>

Lattanzi, W., Barba, M., Di Pietro, L., & Boyadjiev, S. A. (2017). Genetic advances in craniosynostosis. *American Journal of Medical Genetics*, 173(5), 1406–1429.
<https://doi.org/10.1002/ajmg.a.38159>

Lieberman, D. E. (2010). *The Evolution of the Human Head*. Belknap Press Harvard University Press.

Lieberman, D. E. (2011). Epigenetic integration, complexity, and evolvability of the head. In B. Hallgrímsson & B. K. Hall (Eds.), *Epigenetics. Linking Genotype and Phenotype in Development and Evolution* (pp. 271–289). University of California Press.

Maeno, T., Moriishi, T., Yoshida, C. A., Komori, H., Kanatani, N., Izumi, S., Takaoka, K., & Komori, T. (2011). Early onset of *Runx2* expression caused craniosynostosis, ectopic bone formation, and limb defects. *Bone*, 49(4), 673–682.
<https://doi.org/10.1016/j.bone.2011.07.023>

Magherini, S., Fiore, M. G., Chiarelli, B., Serrao, A., Paternostro, F., Morucci, G., Branca, J. J. V., Ruggiero, M., & Pacini, S. (2015). Metopic suture and RUNX2, a key transcription factor in osseous morphogenesis with possible important implications for human brain evolution. *Italian Journal of Anatomy and Embryology*, 120(1), 5–20.

Marcé-Nogué, J., Püschel, T. A., & Kaiser, T. M. (2017). A biomechanical approach to understand the ecomorphological relationship between primate mandibles and diet. *Scientific Reports*, 7(1), 1–12. <https://doi.org/10.1038/s41598-017-08161-0>

Moazen, M., Curtis, N., O'Higgins, P., Jones, M. E. H., Evans, S. E., & Fagan, M. J. (2009). Assessment of the role of sutures in a lizard skull: A computer modelling study. *Proceedings of the Royal Society B: Biological Sciences*, 276(1654), 39–46.
<https://doi.org/10.1098/rspb.2008.0863>

Moriss-Kay, G. M., & Wilkie, A. O. M. (2005). Growth of the normal skull vault and its alteration in craniosynostosis: Insights from human genetics and experimental studies. *Journal of Anatomy*, 207(5), 637–653. <https://doi.org/10.1111/j.1469-7580.2005.00475.x>

Moss, M. L. (1975). Functional anatomy of cranial synostosis. *Child's Brain*, 1(1), 22–33.

Moss, M. L., & Young, R. W. (1960). A functional approach to craniology. *American Journal of Physical Anthropology*, 18(4), 281–292.

Muntané, G., Farré, X., Rodríguez, J. A., Pegueroles, C., Hughes, D. A., de Magalhães, J. P., Gabaldón, T., & Navarro, A. (2018). Biological processes modulating longevity across primates: A phylogenetic genome-phenome analysis. *Molecular Biology and Evolution*, 35(8), 1990–2004. <https://doi.org/10.1093/molbev/msy105>

Newton, A. H., Feigin, C. Y., & Pask, A. J. (2017). *RUNX2* repeat variation does not drive craniofacial diversity in marsupials. *BMC Evolutionary Biology*, 17(1).
<https://doi.org/10.1186/s12862-017-0955-6>

Oh, J., Kim, Y. K., Yasuda, M., Koyabu, D., & Kimura, J. (2017). Cranial suture closure pattern in water deer and implications of suture evolution in cervids. *Mammalian Biology*, 86, 17–20.
<https://doi.org/10.1016/j.mambio.2017.03.004>

Opperman, L. A. (2000). Cranial sutures as intramembranous bone growth sites. *Developmental Dynamics*, 219, 472–485.

Opperman, L. A., & Rawlins, J. T. (2005). The extracellular matrix environment in suture morphogenesis and growth. *Cells, Tissues, Organs*, 181(3–4), 127–135.
<https://doi.org/10.1159/000091374>

Payne, J. L., & Wagner, A. (2019). The causes of evolvability and their evolution. *Nature Reviews Genetics*, 20(1), 24–38. <https://doi.org/10.1038/s41576-018-0069-z>

Poot, M. (2019). Structural genome variations related to craniosynostosis. *Molecular Syndromology*, 10(1–2), 24–39. <https://doi.org/10.1159/000490480>

R Core Team. (2019). *R: A language and environment for statistical computing* (Version 3.6.2) [Computer software]. R Foundation for Statistical Computing. <https://www.R-project.org/>

Rafferty, K. L., Baldwin, M. C., Soh, S. H., & Herring, S. W. (2019). Mechanobiology of bone and suture—Results from a pig model. *Orthodontics & Craniofacial Research*, 22 Suppl 1, 82–89. <https://doi.org/10.1111/ocr.12276>

Rafferty, K. L., & Herring, S. W. (1999). Craniofacial sutures: Morphology, growth, and in vivo masticatory strains. *Journal of Morphology*, 242(2), 167–179. [https://doi.org/10.1002/\(SICI\)1097-4687\(199911\)242:2<167::AID-JMOR8>3.0.CO;2-1](https://doi.org/10.1002/(SICI)1097-4687(199911)242:2<167::AID-JMOR8>3.0.CO;2-1)

Rager, L., Hautier, L., Forasiepi, A., Goswami, A., & Sánchez-Villagra, M. R. (2014). Timing of cranial suture closure in placental mammals: Phylogenetic patterns, intraspecific variation, and comparison with marsupials. *Journal of Morphology*, 275(2), 125–140. <https://doi.org/10.1002/jmor.20203>

Rasskin-Gutman, D., & Esteve-Altava, B. (2018). Concept of burden in evo-devo. In L. Nuno de la Rosa & G. Müller (Eds.), *Evolutionary Developmental Biology: A Reference Guide* (pp. 1–11). Springer International Publishing.

Richtsmeier, J. T. (2018). A century of development. *American Journal of Physical Anthropology*, 165(4), 726–740. <https://doi.org/10.1002/ajpa.23379>

Richtsmeier, J. T., Aldridge, K., DeLeon, V. B., Panchal, J., Kane, A. A., Marsh, J. L., Yan, P., & Cole, T. M. (2006). Phenotypic integration of neurocranium and brain. *Journal of Experimental Zoology Part B: Molecular and Developmental Evolution*, 306B(4), 360–378. <https://doi.org/10.1002/jez.b.21092>

Richtsmeier, J. T., & Flaherty, K. (2013). Hand in glove: Brain and skull in development and dysmorphogenesis. *Acta Neuropathologica*, 125(4), 469–489. <https://doi.org/10.1007/s00401-013-1104-y>

Rojas-Peña, M. L., Olivares-Navarrete, R., Hyzy, S., Arafat, D., Schwartz, Z., Boyan, B. D., Williams, J., & Gibson, G. (2014). Characterization of distinct classes of differential gene expression in osteoblast cultures from non-syndromic craniosynostosis bone. *Journal of Genomics*, 2, 121–130. <https://doi.org/10.7150/jgen.8833>

Roosenboom, J., Lee, M. K., Hecht, J. T., Heike, C. L., Wehby, G. L., Christensen, K., Feingold, E., Marazita, M. L., Maga, A. M., Shaffer, J. R., & Weinberg, S. M. (2018). Mapping genetic variants for cranial vault shape in humans. *PLOS ONE*, 13(4), e0196148. <https://doi.org/10.1371/journal.pone.0196148>

Roston, R. A., & Roth, V. L. (2019). Cetacean skull telescoping brings evolution of cranial sutures into focus. *The Anatomical Record*, 302(7), 1055–1073. <https://doi.org/10.1002/ar.24079>

Rymer, K. (2015). *Identification of Candidate Genes for Craniosynostosis* [Virginia Commonwealth University]. <https://scholarscompass.vcu.edu/etd/3782>

Sailer, L. D., Gaulin, S. J. C., Boster, J. S., & Kurland, J. A. (1985). Measuring the relationship between dietary quality and body size in primates. *Primates*, 26(1), 14–27. <https://doi.org/10.1007/BF02389044>

Salpea, P., Russanova, V. R., Hirai, T. H., Sourlingas, T. G., Sekeri-Pataryas, K. E., Romero, R., Epstein, J., & Howard, B. H. (2012). Postnatal development- and age-related changes in DNA-methylation patterns in the human genome. *Nucleic Acids Research*, 40(14), 6477–6494. <https://doi.org/10.1093/nar/gks312>

Sewda, A., White, S. R., Erazo, M., Hao, K., García-Fructuoso, G., Fernández-Rodríguez, I., Heuzé, Y., Richtsmeier, J. T., Romitti, P. A., Reva, B., Jabs, E. W., & Peter, I. (2019). Nonsyndromic craniosynostosis: Novel coding variants. *Pediatric Research*, 85(4), 463–468. <https://doi.org/10.1038/s41390-019-0274-2>

Smith, S. D., Pennell, M. W., Dunn, C. W., & Edwards, S. V. (2020). Phylogenetics is the new genetics (for most of biodiversity). *Trends in Ecology & Evolution*, 35(5), 415–425. <https://doi.org/10.1016/j.tree.2020.01.005>

Spector, J. A., Greenwald, J. A., Warren, S. M., Bouletreau, P. J., Crisera, F. E., Mehrara, B. J., & Longaker, M. T. (2002). Co-culture of osteoblasts with immature dural cells causes an increased rate and degree of osteoblast differentiation. *Plastic and Reconstructive Surgery*, 109(2), 631–642. <https://doi.org/10.1097/00006534-200202000-00033>

Stamper, B. D., Park, S. S., Beyer, R. P., Bammler, T. K., Farin, F. M., Mecham, B., & Cunningham, M. L. (2011). Differential expression of extracellular matrix-mediated pathways in single-suture craniostenosis. *PLOS ONE*, 6(10).
<https://doi.org/10.1371/journal.pone.0026557>

Sun, Z., Lee, E., & Herring, S. W. (2004). Cranial sutures and bones: Growth and fusion in relation to masticatory strain. *The Anatomical Record*, 276(2), 150–161.
<https://doi.org/10.1002/ar.a.20002>

The Gene Ontology Consortium. (2019). The Gene Ontology Resource: 20 years and still GOing strong. *Nucleic Acids Research*, 47(D1), D330–D338. <https://doi.org/10.1093/nar/gky1055>

Tintut, Y., & Demer, L. L. (2014). Effects of bioactive lipids and lipoproteins on bone. *Trends in Endocrinology and Metabolism*, 25(2), 53–59. <https://doi.org/10.1016/j.tem.2013.10.001>

Twigg, S. R. F., Forecki, J., Goos, J. A. C., Richardson, I. C. A., Hoogeboom, A. J. M., van den Ouwehand, A. M. W., Swagemakers, S. M. A., Lequin, M. H., Van Antwerp, D., McGowan, S. J., Westbury, I., Miller, K. A., Wall, S. A., WGS500 Consortium, van der Spek, P. J., Mathijssen, I. M. J., Pauws, E., Merzdorf, C. S., & Wilkie, A. O. M. (2015). Gain-of-function mutations in ZIC1 are associated with coronal craniostenosis and learning disability. *American Journal of Human Genetics*, 97(3), 378–388.
<https://doi.org/10.1016/j.ajhg.2015.07.007>

Twigg, S. R. F., & Wilkie, A. O. M. (2015). A genetic-pathophysiological framework for craniostenosis. *American Journal of Human Genetics*, 97(3), 359–377.
<https://doi.org/10.1016/j.ajhg.2015.07.006>

von Hardenberg, A., & Gonzalez-Voyer, A. (2013). Disentangling evolutionary cause-effect relationships with phylogenetic confirmatory path analysis. *Evolution*, 67(2), 378–387.
<https://doi.org/10.1111/j.1558-5646.2012.01790.x>

Wang, M., Zhao, Y., & Zhang, B. (2015). Efficient test and visualization of multi-set intersections. *Scientific Reports*, 5(1), 16923. <https://doi.org/10.1038/srep16923>

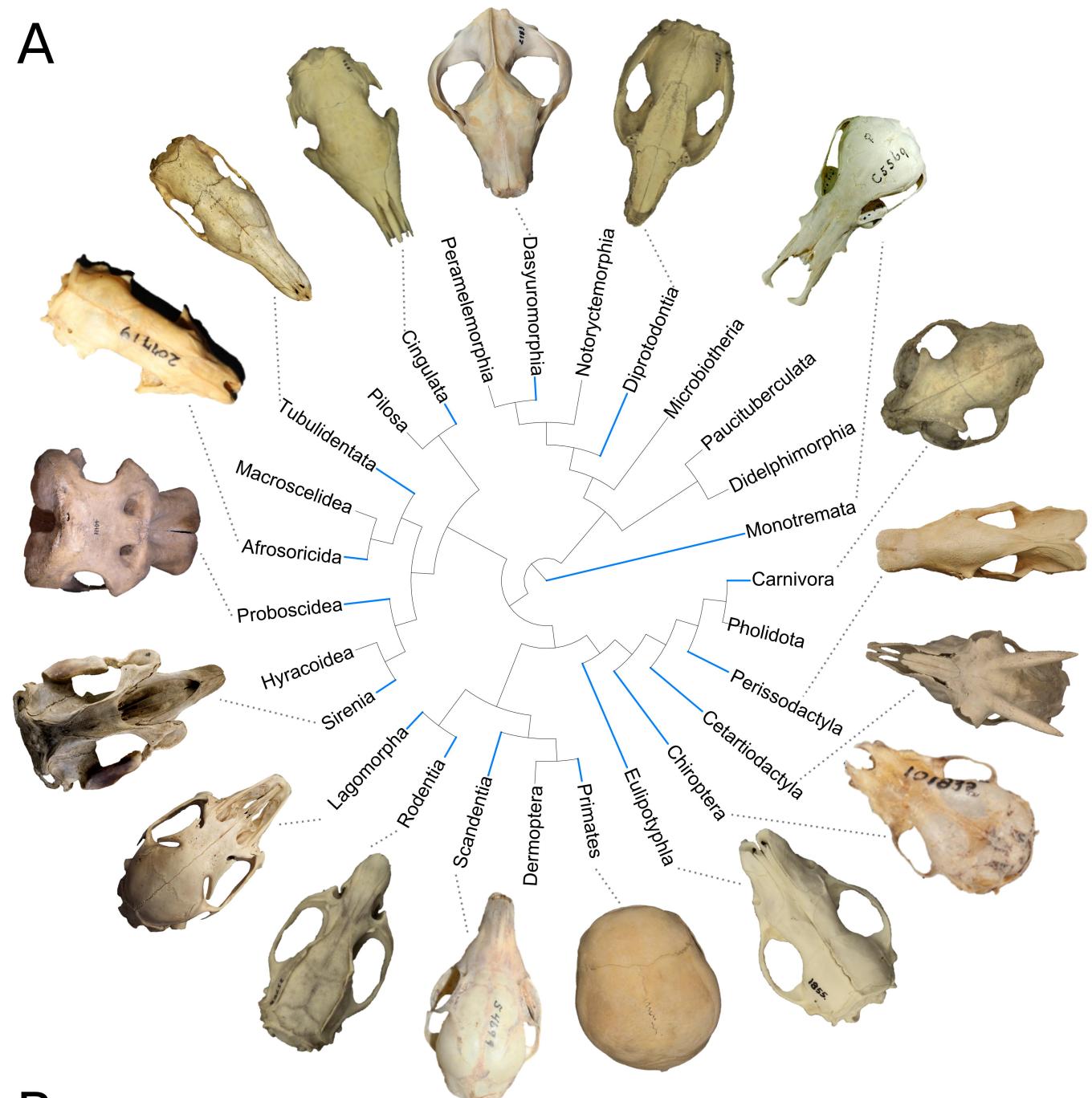
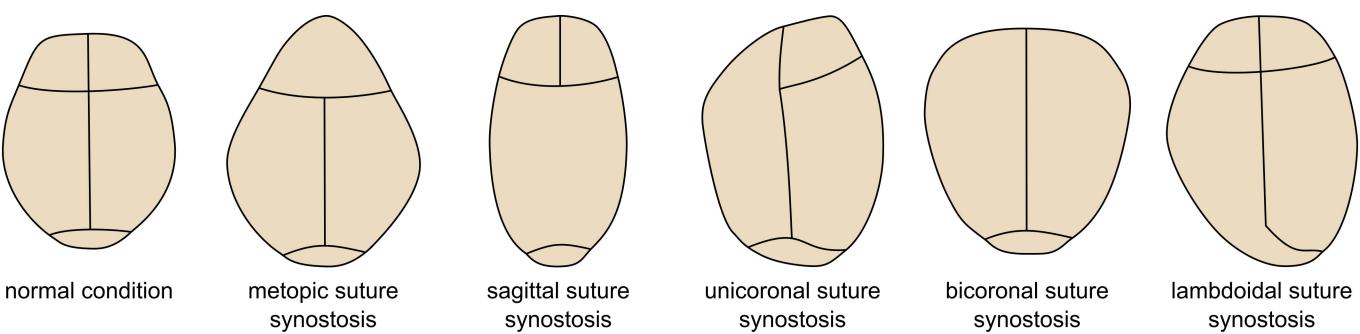
Wang, P. I., Marcus, J. R., Fuchs, H. E., & Mukundan, S. (2015). Craniosynostosis secondary to rickets: Manifestations on computed tomography. *Radiology Case Reports*, 2(3).
<https://doi.org/10.2484/rccr.v2i3.43>

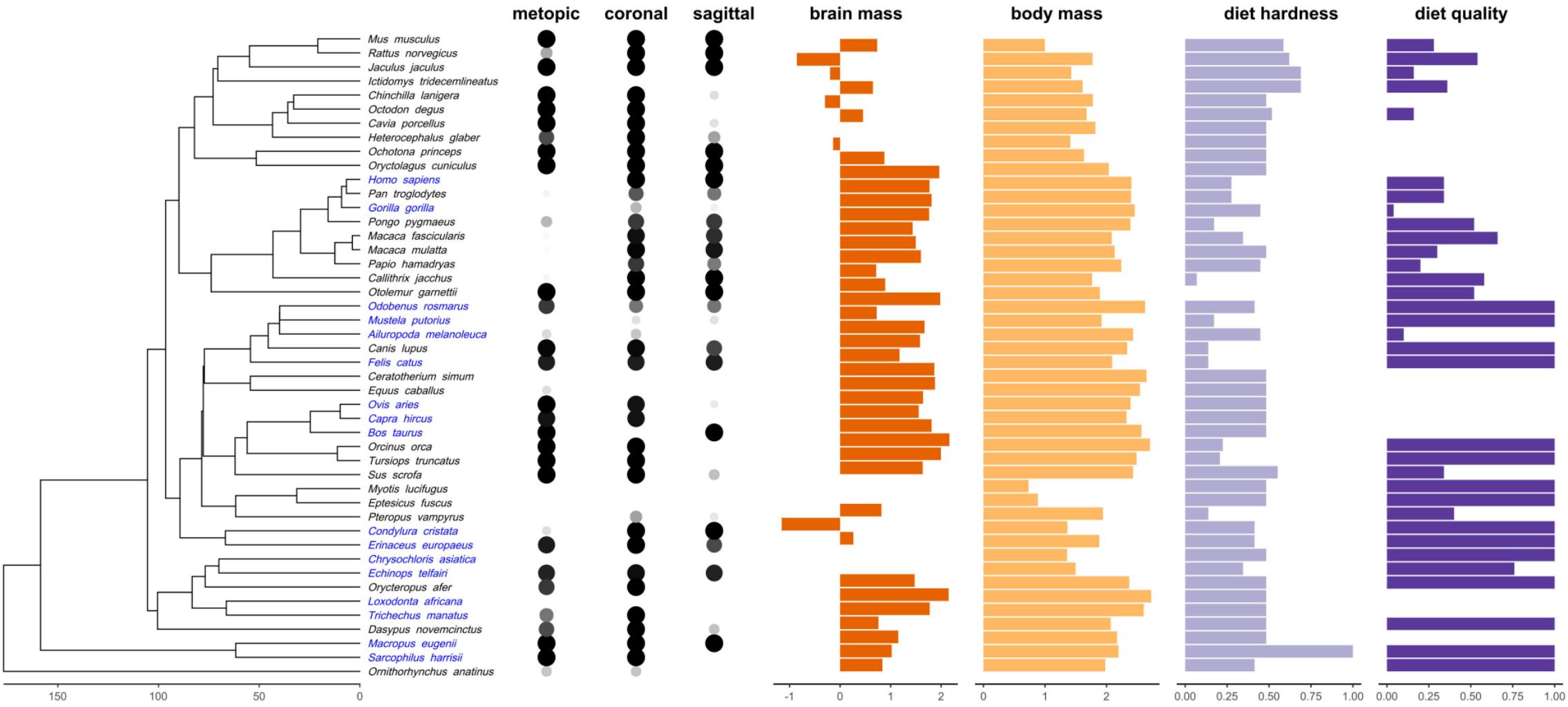
Wilkie, A. O. M., Johnson, D., & Wall, S. A. (2017). Clinical genetics of craniosynostosis. *Current Opinion in Pediatrics*, 29(6), 622–628. <https://doi.org/10.1097/MOP.0000000000000542>

Williams, S. H., Wright, B. W., Truong, V. den, Daubert, C. R., & Vinyard, C. J. (2005). Mechanical properties of foods used in experimental studies of primate masticatory function. *American Journal of Primatology*, 67(3), 329–346.
<https://doi.org/10.1002/ajp.20189>

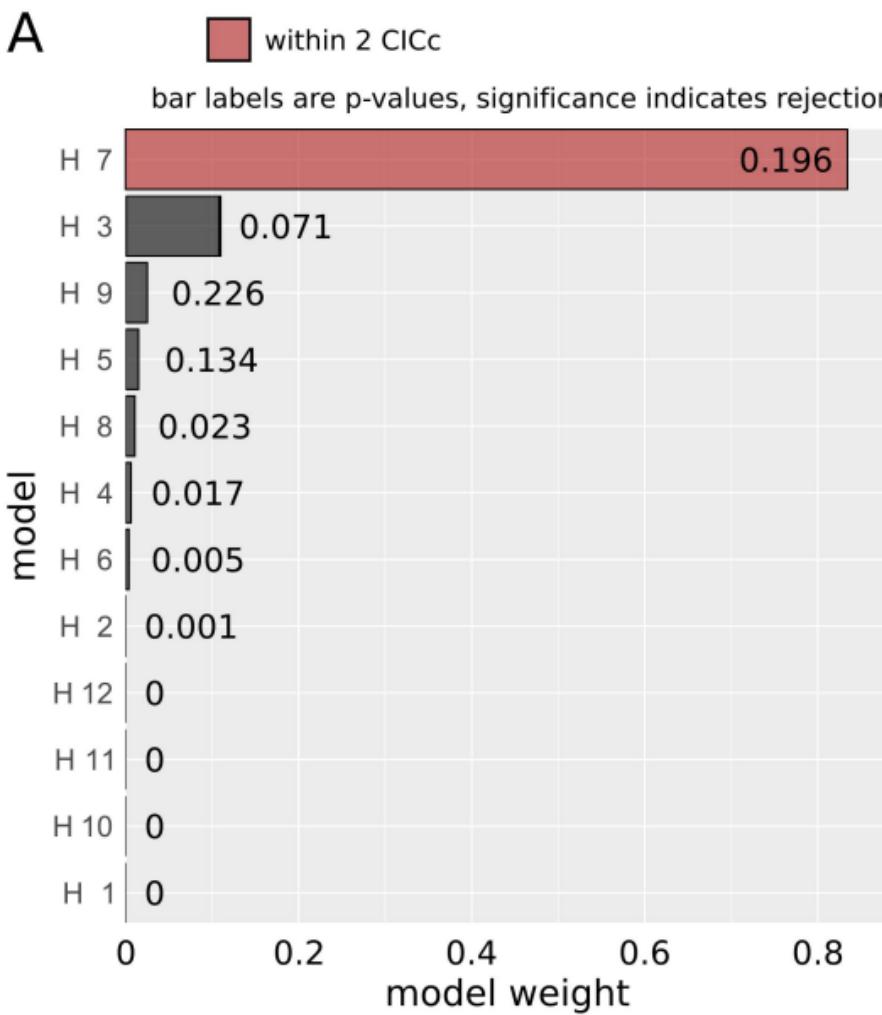
Wilman, H., Belmaker, J., Simpson, J., Rosa, C. de la, Rivadeneira, M. M., & Jetz, W. (2014). EltonTraits 1.0: Species-level foraging attributes of the world's birds and mammals. *Ecology*, 95(7), 2027–2027. <https://doi.org/10.1890/13-1917.1>

Wilson, L. A. B., & Sánchez-Villagra, M. R. (2009). Heterochrony and patterns of cranial suture closure in hystricognath rodents. *Journal of Anatomy*, 214(3), 339–354.
<https://doi.org/10.1111/j.1469-7580.2008.01031.x>

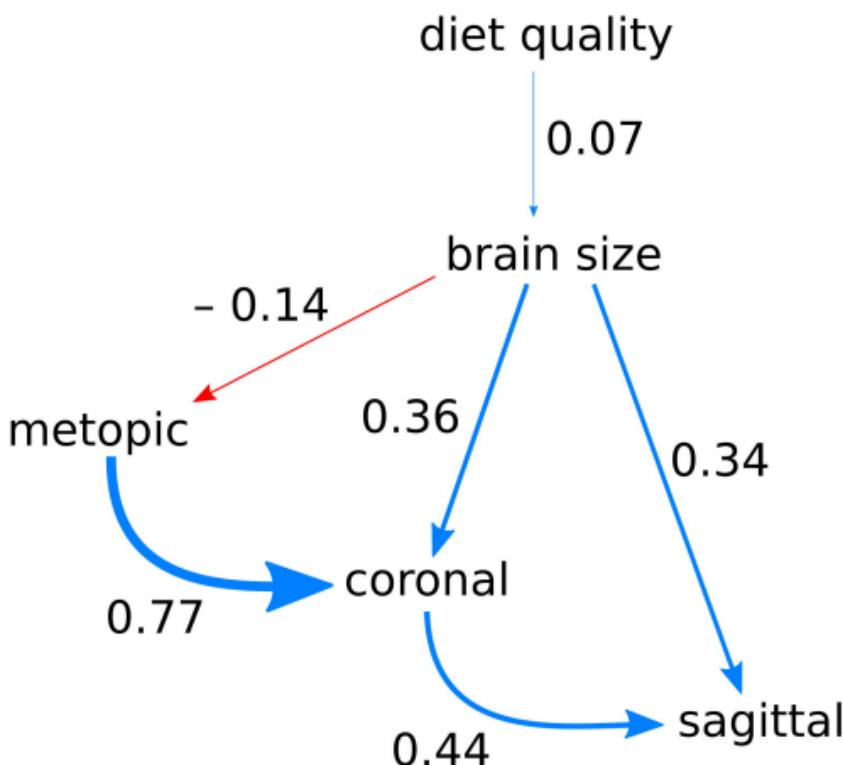


Wu, D.-D., Jin, W., Hao, X.-D., Tang, N. L. S., & Zhang, Y.-P. (2010). Evidence for positive selection on the osteogenin (BMP3) gene in human populations. *PLOS ONE*, 5(6), e10959.
<https://doi.org/10.1371/journal.pone.0010959>

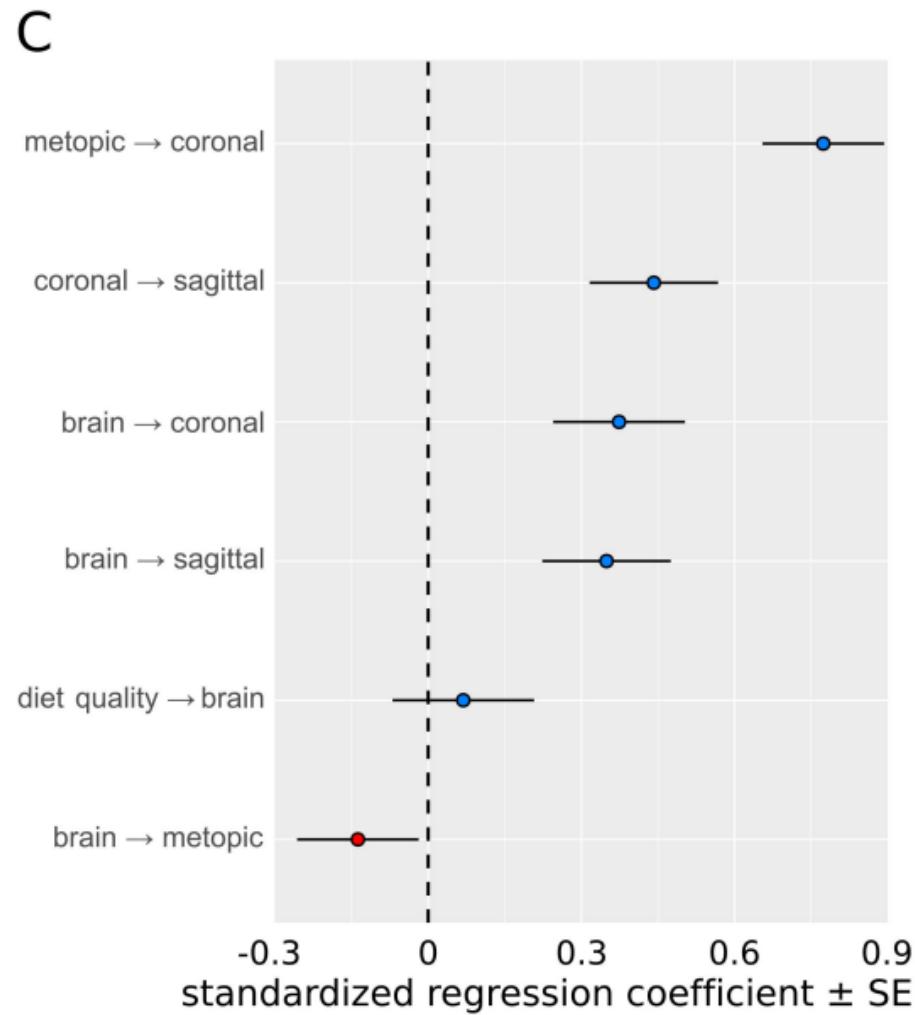

Wu, D.-D., Li, G.-M., Jin, W., Li, Y., & Zhang, Y.-P. (2012). Positive selection on the osteoarthritis-risk and decreased-height associated variants at the GDF5 Gene in East Asians. *PLOS ONE*, 7(8), e42553. <https://doi.org/10.1371/journal.pone.0042553>

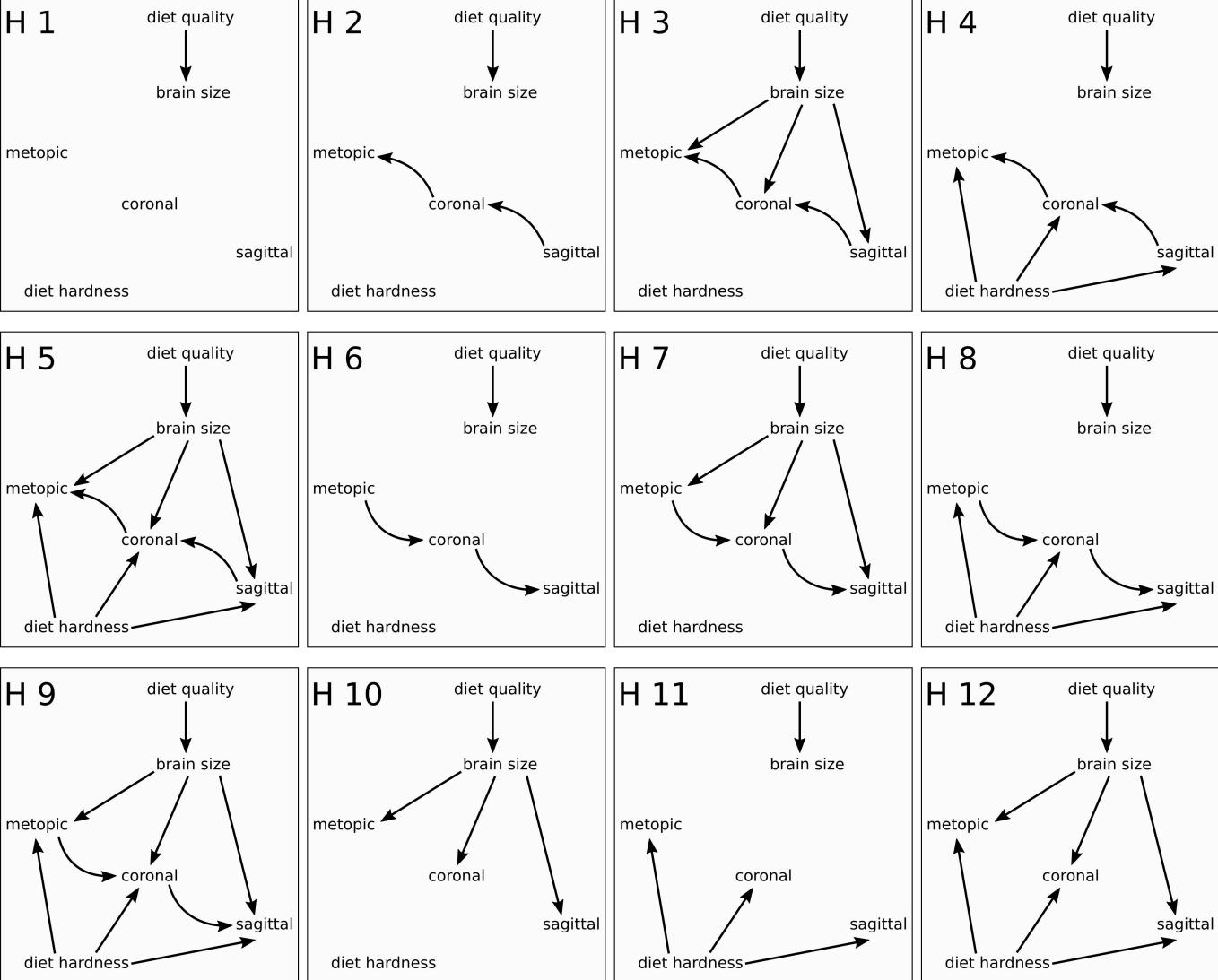
Yamashita, S., Takeshima, H., Matsumoto, F., Yamasaki, K., Fukushima, T., Sakoda, H., Nakazato, M., Saito, K., Mizuguchi, A., Watanabe, T., Ohta, H., & Yokogami, K. (2019). Detection of the *KIAA1549-BRAF* fusion gene in cells forming microvascular proliferations in pilocytic astrocytoma. *PLOS ONE*, 14(7), e0220146. <https://doi.org/10.1371/journal.pone.0220146>


Zhou, X., Seim, I., & Gladyshev, V. N. (2015). Convergent evolution of marine mammals is associated with distinct substitutions in common genes. *Scientific Reports*, 5(1), 16550.

<https://doi.org/10.1038/srep16550>

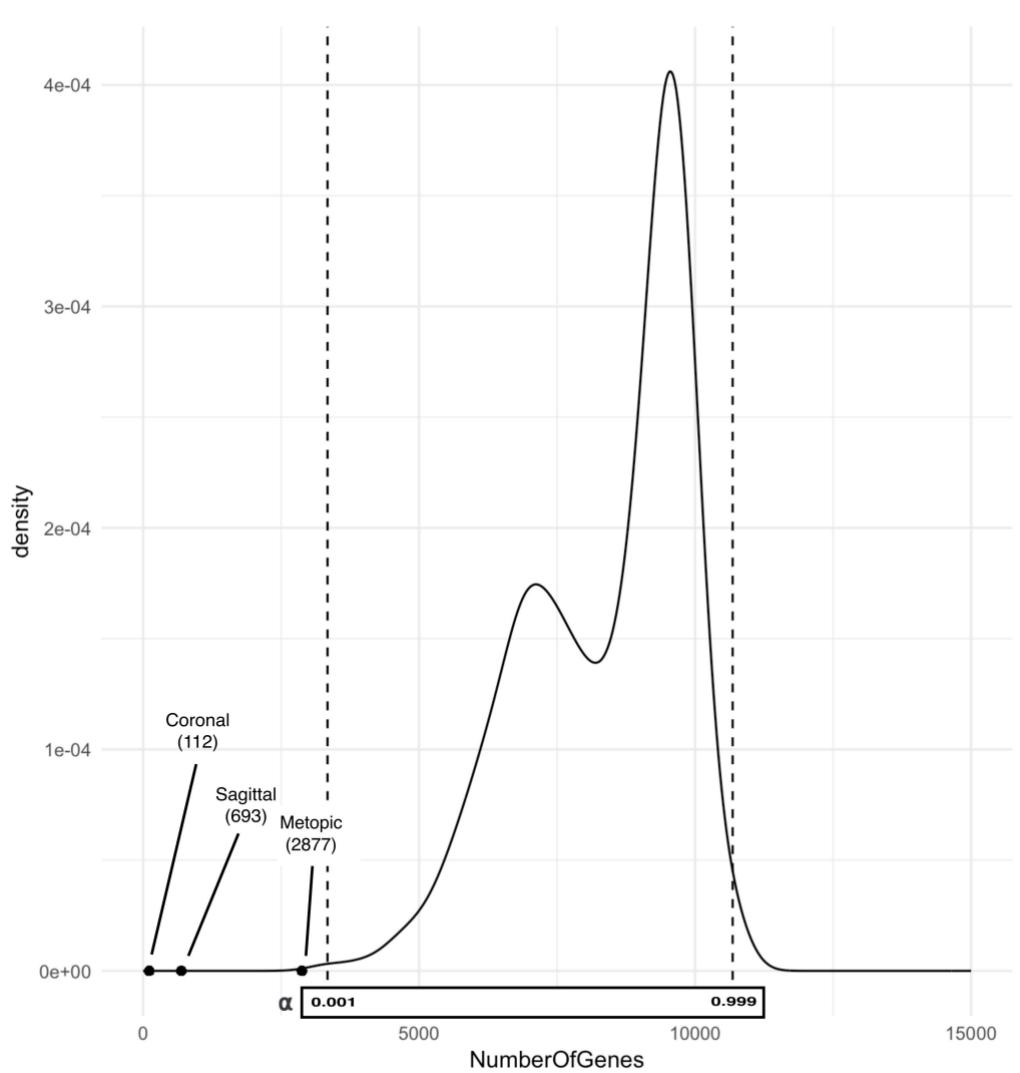

A**B**


A



B

C


AA OPEN SUTURE

AA CLOSED SUTURE

AA SUBSTITUTION

	scenarios		
	scenario 1 fixed → fixed	scenario 2 fixed → variable	scenario 3 variable → fixed
phenotypic groups			
metopic suture	coronal suture	sagittal suture	
AA OPEN SUTURE	NHKCG A NFLQ	NHKCG P NFLQ	
AA CLOSED SUTURE	MLHSP N KQPQ	MLHSP H KQPQ	EDCK Q ALAFK
AA SUBSTITUTION	MLHSP N KQPQ	MLHSP H KQPQ	EDCK K ALAFK
	NHKCG G ANFLQ	NHKCG E NFLQ	EDCK L ALAFK
	NHKCG G ANFLQ	NHKCG E NFLQ	EDCK K ALAFK
	MLHSP H KQPQ	MLHSP H KQPQ	
	MLHSP N KQPQ	MLHSP H KQPQ	
	MLHSP H KQPQ	MLHSP N KQPQ	
	MLHSP N KQPQ	MLHSP H KQPQ	
	NHKCG G ANFLQ	NHKCG G ANFLQ	EDCK K ALAFK
	NHKCG G ANFLQ	NHKCG G ANFLQ	EDCK G ALAFK

