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Abstract

Hybridization in plants results in phenotypic and genotypic perturbations that can have dramatic
effects on hybrid physiology, ecology, and overall fitness. Hybridization can also perturb
epigenetic control of transposable elements, resulting in their proliferation. Understanding the
mechanisms that maintain genomic integrity after hybridization is often confounded by changes
in ploidy that occur in hybrid plant species. Homoploid hybrid species, which have no change in
chromosome number relative to their parents, offer an opportunity to study the genomic
consequences of hybridization in the absence of change in ploidy. Yucca gloriosa
(Asparagaceae) is a young homoploid hybrid species, resulting from a cross between Yucca
aloifolia and Yucca filamentosa. Previous analyses of ~11kb of the chloroplast genome and
nuclear-encoded microsatellites implicated a single Y. aloifolia genotype as the maternal parent
of Y. gloriosa. Using whole genome resequencing, we assembled chloroplast genomes from
multiple accessions of all three species to re-assess the hybrid origins of Y. gloriosa. We further
used re-sequencing data to annotate transposon abundance in the three species and mRNA-seq to
analyze transcription of transposons. The chloroplast phylogeny and haplotype analysis suggest
multiple hybridization events contributing to the origin of Y. gloriosa, with both parental species
acting as the maternal donor. Transposon abundance at the superfamily level was significantly
different between the three species; the hybrid was frequently intermediate to the parental
species in TE superfamily abundance or appeared more similar to one or the other parent. In only
one case - Copia LTR transposons - did Y. gloriosa have a significantly higher abundance
relative to either parent. Expression patterns across the three species showed little increased
transcriptional activity of transposons, suggesting that either no transposon release occurred in Y.

gloriosa upon hybridization, or that any transposons that were activated via hybridization were
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rapidly silenced. Further work will assess the degree to which transposon abundance and location

has affected the epigenomic landscape, gene expression, and ecophysiology in Y. gloriosa.

Keywords: homoploid, hybrid, Yucca, chloroplast, transposable element, genomic shock
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Introduction

Hybridization between related species has the potential to generate novel genotypic and
phenotypic combinations, sometimes resulting in the origin of new species. Understanding the
factors that promote the process of hybridization, as well as the maintenance of newly created
hybrids, has been of considerable interest to both the fields of ecology and evolution (Gross and
Rieseberg, 2005). As the generation of biodiversity is of primary importance to evolutionary
biology, many studies have sought to determine whether or not newly created hybrids are
reproductively isolated from parental species and are capable of persisting in a hybrid state for
many generations. The tools aimed at studying plant hybridization include observational studies
of plants and their pollinators in the wild (Leebens-Mack and Milligan, 1998; Hersch and Roy,
2007), reciprocal transplant studies across multiple environments (Wang et al., 1997), manual
pollinations between related species (Sun et al., 2018), cytogenetics (Thdrsson et al., 2001), and
population genomics (Bredeson et al., 2016). Hybridization can result in allopolyploid
individuals, in which hybridization occurs at the same time as chromosome doubling, as well as
homoploids, in which there is no change in chromosome number (for a review, see Soltis and
Soltis, 2009 and Rieseberg, 1997). Transposable element content and abundance has been
hypothesized to contribute to genome dominance in allopolyploid species (Edger et al., 2017;
Bird et al., 2018), but change in ploidy makes it difficult to assess its importance relative to
hybridization in the genesis of a new species. Homoploid hybrid species provide an opportunity
to focus on the effects of hybridization while controlling for ploidy level (Ungerer et al., 2009;
Staton et al., 2012).

Investigation of hybridization almost always begins with a detailed understanding of the

genetics and life history of the putative parental and hybrid species. In the case of wild
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5
sunflowers, numerous studies have focused on how Helianthus annuus and H. petiolaris have
hybridized multiple independent times to form three homoploid hybrid species: H. anomalus, H.
deserticola, and H. paradoxus (Rieseberg, 1991; Rieseberg et al., 2003). These hybrid species
are morphologically distinct from their parents and each other (Rieseberg et al., 2003), display
varying levels of salt tolerance (Welch and Rieseberg, 2002; Karrenberg et al., 2006), show gene
expression differences (Lai et al., 2006), and exhibit population genetic patterns consistent with
selective sweeps (Sapir et al., 2007). The repeated formation of homoploid hybrids in Helianthus
has increased our understanding of hybrid speciation from both ecological and genomic
perspectives, yet it is only one example of homoploid hybridization in flowering plants. Another
well-studied example of homoploid hybridization is in Iris nelsonii, a hybrid suspected to have
genetic contributions from more than two species based on patterns of both nuclear and plastid
genetic variation (Arnold, 1993). The fitness of the hybrid species relatives to the parental
species varies depending on the moisture of the environments, implying that genotype-by-
environment interactions differentially affect parental and hybrid genotypes, a phenomenon that
can lead to hybrid speciation (Johnston et al., 2001).

While hybridization’s effect on the generation of biodiversity and the movement of
adaptive traits between species has been well established, the effect on the genome is only
recently being fully understood. Barbara McClintock described hybridization as a “challenge” or
“shock” for the genome (McClintock, 1984); the merger of two separate genomes in a single
nucleus results in a completely novel genomic environment. Post hybridization, alleles once
restricted to separate species now interact in a new cellular setting, allowing for the formation of
novel phenotypes, epistatic interactions, and potentially significant and rapid evolutionary

change. Possible outcomes of hybridization and subsequent genome shock include: alteration of
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92  gene expression (Hegarty et al., 2009; Xu et al., 2009); chromosomal rearrangements (Rieseberg
93 etal., 1995; Lai et al., 2005; Danilova et al., 2017); genome dominance, in which one progenitor
94  genome expresses and/or retains more genes (Rapp et al., 2009; Bardil et al., 2011; Schnable et
95 al, 2011; Yoo et al., 2013; Edger et al., 2017; Bird et al., 2018); epigenetic perturbation (Salmon
96 etal., 2005), which in turn can lead to a release of silencing of repetitive elements and allows for
97  subsequent repeat proliferation (Ungerer et al., 2006; Parisod et al., 2009).
98 Repetitive elements in particular have been implicated in the divergence of hybrid species
99  from their progenitors. For example, RNA-seq suggests that established homoploid hybrid
100 sunflowers, as opposed to newly synthesized hybrids, have elevated transposon expression levels
101  (Renaut et al., 2014). In two of these hybrid sunflower species fluorescent in situ hybridization
102  studies identified expansions of Gypsy retrotransposons relative to the progenitor species (Staton
103  and Ungerer, 2009). Gypsy and Copia elements are both Class | retrotransposons that replicate
104  viaa “copy and paste” mechanism (Wessler et al., 1995), in contrast to the variety of Class Il
105 DNA transposons that replicate via a “cut and paste” mechanism (Feschotte and Pritham, 2007).
106  Transposons can affect traits by disrupting genes, duplicating or re-organizing genes (Xiao et al.,
107  2008), or they can land upstream and create new patterns of gene expression (Studer et al.,
108  2011). The accumulation of transposons contributes to a large proportion of genome size
109 variation seen in plants (Tenaillon et al., 2011), and ectopic recombination between transposable
110 elements can result in genomic deletions and are a major force in genome evolution (Devos et
111 al., 2002).
112 While homoploid hybrid systems are relatively rare, recent efforts to sequence the
113  genomes of Yucca (Asparagaceae) species allows us to investigate the effects of hybridization on

114  ahomoploid genome. Yucca aloifolia and Yucca filamentosa are emergent models in
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115 understanding the evolution of CAM photosynthesis, as the species use CAM and Cs,

116  respectively (Heyduk et al., 2016). The two species also hybridize to form Y. gloriosa (Rentsch
117  and Leebens-Mack, 2012), which is photosynthetically intermediate and a relatively recently

118  derived homoploid hybrid species (Trelease, 1902). All three species are sympatric in the

119  southeastern United States, with Y. filamentosa found across a broader range of the eastern

120  seaboard, including into New England and the Midwest; Y. aloifolia is restricted largely to the
121  southeastern United States and reaches only as far north as North Carolina. Yucca gloriosa is
122 even more restricted than either parent in its range, found only in the coastal dune systems of the
123  Atlantic seaboard and, based on herbarium records, along the coast of the Gulf of Mexico. It is
124  thought that Y. aloifolia was introduced into the southeastern United States from Mexico or the
125  Caribbean by Spanish colonists (Trelease, 1902; Groman and Pellmyr, 2000). Perhaps as a result
126  of the human-involved introduction, Y. aloifolia has escaped the dependence on the obligate

127  Yucca-yucca moth pollination mutualism and can be pollinated by the yucca moth Tegeticula
128  yuccasella (Leebens-Mack and Pellmyr, 2004) or introduced generalist honeybees (Apis

129  mellifera) (Rentsch and Leebens-Mack, 2014). Yucca filamentosa still retains its obligate

130 pollination mutualism with the yucca moths (Tegeticula yuccasella and T. cassandra) (Pellmyr,
131  1999), and overlaps in flowering time with Y. aloifolia briefly and only in some years, suggesting
132  that hybridization between the two species may be rare.

133 Previous work suggested no variation in chloroplast or microsatellite repeats in a small
134  sampling of Y. aloifolia genotypes, and further indicated that Y. aloifolia is the maternal parent in
135 any hybridization events that led to Y. gloriosa (Rentsch and Leebens-Mack, 2012). Through a
136  whole genome sequencing project that aims to assemble the genomes of Y. aloifolia and Y.

137  filamentosa, resequencing was performed on a number of individuals of all three Yucca species.
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138  Using the resequencing data, we sought to re-test hypotheses on the number and direction of
139 hybridization events in Y. gloriosa. We further examined the repeat landscape of all three species
140  to determine if repeat content in the hybrid is purely additive, or if transgressive repeat
141  phenotypes exist that suggest some degree of genomic shock post hybridization. Finally, using
142  existing RNA-sequencing datasets in the three species of Yucca, we examined the activity of
143  repeats using mRNA reads as a proxy. Through the use of high throughput genomic data, we find
144  thatY. gloriosa is the result of repeated and bi-directional hybridization events that evidently led
145  to minimal repeat proliferation. Our findings further suggest that there is little evidence of
146  repetitive element release in Y. gloriosa as a result of hybridization.
147  Materials and Methods
148 DNA sampling, library preparation, and sequencing
149 Clones of 41 individuals (5 from Y. aloifolia, 24 from Y. gloriosa, and 12 form Y.
150 filamentosa) were collected throughout the Southeastern United States from 2013 to 2015 and
151  planted in the University of Georgia greenhouse (Figure 1, Supplemental Table 1). In 2018,
152  approximately 100 mg of fresh tissue was harvested from fully expanded leaves and kept on ice
153  until DNA extraction, using a CTAB protocol with sorbitol addition that removes secondary
154  compounds before DNA purification (Doyle, 1987; Storchova et al., 2000). DNA was visualized
155 ona 1.5% agarose gel to measure integrity and quantified via Qubit. Samples were shipped to the
156  HudsonAlpha Institute for Biotechnology, where Illumina 350 basepair PCRfree fragment
157 libraries were constructed using standard protocols. Each library was uniquely barcoded and
158  sequenced on a NovaSeq 6000 with paired end 150bp reads. Data is available on the NCBI
159  Sequence Read Archive (for a full list of SRA accessions, see Supplemental Table 1).

160  Chloroplast genome assembly and analysis


https://paperpile.com/c/69IgLw/nCbT+eTTc
https://doi.org/10.1101/2020.06.14.150078
http://creativecommons.org/licenses/by-nc-nd/4.0/

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.14.150078; this version posted June 15, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

9
Raw reads were first quality trimmed using Trimmomatic v 0.36 (Bolger et al., 2014).
Due to the sheer size of the sequence data per individual — roughly 400-800 million reads — a
subset of four million paired-end reads was randomly sub-sampled from each library’s trimmed
dataset in order to speed up computational analyses. The sub-sampled data were used as input

into the program Fast-Plast (https://github.com/mrmckain/Fast-Plast), which assembles plastid

genomes by first mapping reads to a reference plastid genome (here we used a previously
assembled Y. filamentosa chloroplast genome (McKain et al., 2016)).

Chloroplast genomes of Agave americana (NCBI accession: KX519714.1, Abraham et
al., 2016) and Nolina atopocarpa (NCBI accession: NC_032708.1) were used as outgroups for
phylogenetic analyses. All Yucca chloroplast assemblies as well as Agave and Nolina were
aligned using MAFFT (Katoh and Standley, 2013). The alignment was manually inspected for
misaligned regions, and as a result three Yucca genotypes (Y. aloifolia YA7, and Y. gloriosa
YG13 and YG61) containing considerable misalignments indicative of a sub-optimal genome
assembly were not included in further analyses. The second inverted repeat (IR) region was
removed before tree estimation: an aligned Y. aloifolia chloroplast genome sequence (YA23)
was annotated for the IR by conducting a BLASTn (Altschul et al., 1990) against itself. The
position of an inverted self-hit in YA23 was used to remove the second IR from the multi-species
alignment. The optimal model of molecular evolution (GTR+Gamma) was determined using
JModelTest v2 and BIC penalized-likelihood (Darriba et al., 2012) on the CIPRES gateway
(Miller et al., 2010). The multiple sequence alignment was then used to estimate a chloroplast
phylogeny using RAXML v8.2.11, with 500 bootstrap replicates (Stamatakis, 2006). The entire
chloroplast alignment (with both IR) of the Yucca species without outgroups was also used to

construct a median joining chloroplast haplotype network using PopArt (epsilon = 0) (Leigh and
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184  Bryant, 2015). Chloroplast genome assemblies were annotated in Geneious Prime 2019.2.3,
185  using the built-in annotation tool with the previously published Y. filamentosa annotation as a
186  reference. Chloroplast genome assemblies have been uploaded to NCBI’s GenBank, and the

187  plastid alignment and newick files can be found at https://github.com/kheyduk/Yucca plastome.

188  Repetitive content annotation and analysis

189 In a similar fashion to the chloroplast sequence processing, one million trimmed paired-
190 end reads were randomly sub-sampled for an analysis of transposon content. In order to ensure
191 that only nuclear repetitive sequences were being analyzed, reads were first mapped to Yucca
192  chloroplast and mitochondrial genome sequences (reference files are available at JGI Genome
193  Portal, genome.jgi.doe.gov) using Bowtie v2 with default settings (Langmead and Salzberg,
194  2012) to be flagged for removal. The nuclear data were retained and further processed in

195 preparation for downstream steps, including: converting bam mapping files to fastq files using
196 SAMTools v1.9 (Li et al., 2009) and BEDTools v2.26 (Quinlan and Hall, 2010), interleaving
197  fastq files so that pairs are found sequentially in a single file (script available at

198  https://github.com/sebhtml/ray/blob/master/scripts/interleave-fastq.py, from Boisvert et al.,

199  2010), and converting fastq files to fasta files with the FASTX-Toolkit v 0.14

200  (http://hannonlab.cshl.edu/fastx toolkit/).

201 Transposome (Staton and Burke, 2015) was used to cluster and identify repetitive DNA
202  sequences in all 41 Yucca genotypes using a Yucca-specific reference. Briefly, RepeatModeler
203  was used to predict repeat families de novo on the assembled Yucca genomes; RepeatModeler
204  uses both RECON (Bao and Eddy, 2002) and RepeatScout (Price et al., 2005) to identify repeat
205  family consensus sequences. To remove false positives (e.g., repetitive domains within genes),

206  the predicted RepeatModeler consensus sequences were searched for functional PFAM and
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207  Panther domains. If no domains - or only known transposable element domains - were found in a
208  given putative repeat family, it was retained as a true repeat; if only false positive domains were
209 identified, the family was removed from further analysis. Putative repeat families that had a
210 combination of transposable element and false positive domains, or had otherwise unknown
211  domain classes, underwent manual curation.
212 For annotating Y. aloifolia and Y. filamentosa repeats via Transposome, we used the
213  species-specific RepeatModeler families (repetitive element reference files are available at JGI
214  Genome Portal, genome.jgi.doe.gov). For Y. gloriosa hybrid individuals, we concatenated the
215  two parental repeat databases. Finally, we used the following parameters in our usage of
216  Transposome: percent identity = 90%, a required fraction of overlap between pairwise matches
217  of 0.55, a minimum cluster size of 100, a merge threshold of 1000, and a BLAST e-value of 1.
218  Cross-species comparisons of transposon annotation included the average amount of total
219 repetitive DNA as well as the relative amounts of the annotated transposon families. In R v. 3.6.1
220 (R Core Team, 2019), we used ANOVA to determine whether there were significant differences
221  between species in the relative amount of repetitive DNA in each of the 10 annotated families.
222  Additionally, a data matrix containing each individual’s relative amount of repetitive DNA for
223  each of the 10 annotated families served as the input for a principal components analysis, using
224 the prcomp() function in R.
225  Repetitive element activity via mRNAseq
226 Many repetitive elements contain sequences that are involved in their replication and
227  therefore are translated into mMRNA,; transcripts produced from these repeats can be detected by
228  mRNA sequencing (Hollister et al., 2011; Dion-C6té et al., 2014). While read counts from

229  mRNA sequencing are a proxy for transcription of a repeat, no assumptions can be made as to
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230 the successful integration of a repeat copy into the genome post transcription; a variety of
231 genomic mechanisms exist to silence and degrade repetitive element-derived transcripts (Lisch,
232 2009; Fultz et al., 2015). Nevertheless, as a first approximation of repeat activity, we used
233  previously published mMRNA-seq data on the three species of Yucca analyzed here (Heyduk et al.,
234 2019). Briefly, RNA was collected from all three species of Yucca growing in growth chambers
235  setto 30 °C/18 °C day/night temperatures, with ~ 400 pmol m st of light at leaf level, and 40%
236  humidity in a 12 hour day/night light regime. While the previous study further assessed gene
237  expression under drought, here only libraries from well-watered plants taken during the daytime
238  were analyzed. The original study used 2-3 genotypes per species, each of which had 2-3
239 replicates that were taken from different time points during the day. Because replication within a
240  genotype is confounded with time, we limited our analyses to considering only species-specific
241  differences rather than examining genotypic differences within species. Final species-level
242  replication varied from 6 in Y. aloifolia to 9 in Y. gloriosa and Y. filamentosa.
243 RNA reads were mapped to the same repeat databases used in Transposome; Y. aloifolia
244  and Y. filamentosa reads were mapped to each species’ specific repeat reference, while Y.
245  gloriosa reads were mapped to a merged parental reference. RNA reads were mapped via
246  Kallisto v 0.43 using default parameters (Bray et al., 2016). For Y. gloriosa, counts were
247  summed in cases where both parental species had a consensus sequence for a given repeat
248  family. Libraries were first normalized by the Trimmed Mean of M-values (TMM) (Robinson
249  and Oshlack, 2010) as implemented in EdgeR (Robinson et al., 2010), then scaled by overall
250 abundance of that repeat family as estimated by Transposome. To scale, a matrix consisting of
251  all repeat abundances across all genotypes from the three Yucca species was scaled by the

252  maximum abundance of all families identified by Transposome. These scaled abundance values
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253  were then used as a multiplier of the TMM normalized read counts. By normalizing by genomic
254  abundance, expression of repeats could then be compared across genotypes and species that have
255  varying genomic fraction of the repeat families. Once normalized and scaled, we tested for
256  significant expression within species using a glm intercept model in the glm.nb() function in the
257 R package MASS (Venables and Ripley, 2013), which employs a negative binomial model
258  appropriate for count data that exhibits a degree of overdispersion. Differentially expressed
259  repeats between species were also tested with a negative binomial model, and post hoc tests were
260  done using the emmeans() function from the R package emmeans.
261  Results
262  Plastid phylogenetic and haplotype analyses
263 Despite the relatedness between the three Yucca species studied here, there was enough
264  divergence between the species’ chloroplast genomes to identify highly supported clades of
265  chloroplast haplotypes (Fig. 2). Y. gloriosa genotypes were found nested within three separate
266  clades (Fig. 2). A single Y. gloriosa genotype, YG16, was within a clade that otherwise
267  contained all of the Y. filamentosa individuals that were analyzed. Three Y. gloriosa genotypes
268 (YG12, YG55, and YG56) were placed in a clade with two Y. aloifolia genotypes (YA23 and
269  YALL). The remaining 18 Y. gloriosa genotypes were grouped with the remaining two Y.
270  aloifolia individuals (YA3 and YA32).
271 PopArt haplotype analysis (Leigh and Bryant, 2015) identified the same patterns found in
272  the maximum likelihood-based phylogeny. Over 350 substitutions differentiated the two major
273  groupings of genotypes (Y. aloifolia and Y. filamentosa-like chloroplast genomes; Fig. 3). Yucca
274  filamentosa had considerably more chloroplast haplotypes compared to Y. aloifolia (7 vs. 2,
275  respectively; Fig. 3). In contrast to previous analysis of nuclear simple repeats (Rentsch and

276  Leebens-Mack, 2012), genetic diversity was seen not only in the Y. aloifolia chloroplast genomes
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277  butalso for Y. gloriosa, which had four substitutions separating the different Y. aloifolia-like
278  haplotypes, and over 400 substitutions separating the single Y. filamentosa-like haplotype from
279  other individuals of Y. gloriosa.
280  Repetitive fraction of Yucca genomes
281 The fraction of the genome containing repetitive DNA significantly differed between the
282  three species (p < 0.001, F2,3s = 17.853). While Y. aloifolia (mean repetitive genome fraction =
283  0.658;s.d. =0.0138) and Y. gloriosa (mean = 0.662; s.d. = 0.0215) had statistically
284  indistinguishable amount of repetitive DNA, Y. filamentosa was significantly lower than both
285  species (mean = 0.621; s.d. =0.0167; p<0.01 for both post hoc comparisons). Moreover, the
286 fraction of the genome comprised of various repeat families varied across the three species. The
287  most abundant type of repeat in all three genomes were members of the Gypsy superfamily (Fig.
288  4), comprising ~39 % of the total genome, although species did not significantly differ in overall
289  Gypsy abundance. The second most abundant superfamily in the Yucca genomes, at about ~ 16.5
290 %, was Copia (Fig. 4). Yucca gloriosa had significantly more Copia elements than either parent
291  (post-hoc comparison of Y. gloriosa to either parent p < 0.001). The third most abundant repeat
292  superfamily was DNA Helitrons, at ~ 3.5 %, which had significantly different abundances
293  between all three species (post-hoc comparison p<0.01). In general, the variation in repeat family
294  abundance between the three species was large enough to distinguish each species (Supplemental
295  Figure 1), though intraspecific variation in repeat abundance was apparent as well. The three
296  Yucca species also exhibited presence/absence variation for repeat families: the LTR DIRS
297  element and the non-LTR Zisupton elements were found in Y. filamentosa and Y. gloriosa, but

298 notinY. aloifolia (Supplemental Table 2, Fig. 4). In contrast, the LINE-2 (L2) non-LTR
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299  element, and the Novosib and P DNA elements were found in both Y. aloifolia and Y. gloriosa,
300 butnot Y. filamentosa (Supplemental Table 2, Fig. 4).
301  Repeat mRNA expression
302 Transposome abundance analysis of Y. aloifolia and Y. filamentosa identified 443 and
303 569 repeat families in at least one genotype of either species, respectively; only 138 repeat
304  families were present in both parental species (Fig. 5). Of the 138 families present in both
305  species, only 118 and 119 repeat families had significantly non-zero expression in Y. aloifolia
306 and Y. filamentosa, respectively (Benjamini-Hochberg adjusted p-value < 0.01) (Supplemental
307 Table 3). Only 27 families were significantly expressed in both parental species (Table 1).
308 Repeat families with significant expression were typically from Gypsy (64% and 61% of total
309 families expressed in Y. aloifolia and Y. filamentosa, respectively) and Copia (25%, 27%)
310 superfamilies. Yucca gloriosa had largely overlapping expression with its parental species; the
311  hybrid shared significant expression of 74 families with Y. aloifolia and 70 families with Y.
312 filamentosa. Yucca gloriosa had only two families that were not also significantly expressed in
313  either parent: one a member of the Gypsy superfamily, the other belonging to the Copia
314  superfamily, and both had genomic abundance at less than 1%.
315 In comparing the repeat families that are significantly expressed in any of the three
316  species, Y. gloriosa showed little transgressive expression patterns; in most of the 178 repeat
317  families that had significant post hoc comparisons, Y. gloriosa was not statistically different than
318 one of its parental species. There were only three repeat families where expression differed
319 significantly in all three species (post-hoc p<0.01) (Supplementary Table 4), and in 5 families, Y.
320 gloriosa exhibited an expression level that was significantly different than the pattern shared in

321  the two parental species (post-hoc p<0.01) (Fig. 6). In all five cases, Y. gloriosa expression was
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322  significantly lower than the parental species’ expression, though notably not zero. In general,
323  however, the expression levels of repetitive elements in Y. gloriosa were shared with one or both
324  parental species. Nine transposons families showed shared expression in Y. gloriosa and Y.
325 filamentosa that differed significantly from Y. aloifolia, and seven transposons had shared
326  expression between Y. gloriosa and Y. aloifolia that differed significantly from Y. filamentosa.
327  The majority of transposons had shared expression between the two parents, but significantly
328  different expression between Y. gloriosa and either Y. aloifolia (n=76) or Y. filamentosa (n=77).
329  There was a single transposon family where the parental species had significantly different
330 expression from each other and Y. gloriosa’s expression was not significantly different than
331  either parent.
332  Discussion
333 By increasing both the number of Yucca genotypes and assessing the whole chloroplast
334  genome we have greatly improved resolution of the history of homoploid hybridization in Yucca
335 relative to previous analyses of simple sequence repeats and short fragments of the chloroplast
336  (Rentsch and Leebens-Mack, 2012). Whereas the previous work inferred a single, shared plastid
337 haplotype in Y. aloifolia and Y. gloriosa, our findings implicate multiple origins of Y. gloriosa
338  with both Y. aloifolia and Y. filamentosa acting as maternal parents. Moreover, analyses of
339 nuclear TE abundances document overall quite similar TE landscapes across the three species,
340  Dbut certain families showed species-specific shifts in abundance. Using mRNA to assess current
341  transposon activity, we find little evidence for ongoing release of transposons in the hybrid
342  genome.

343  Reciprocal parentage and multiple origins
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344 Using 15-40x whole genome resequencing data, chloroplast assemblies for 38 individuals
345  of Yucca across three species provided robust re-assessment of the history of this hybrid system.
346  The presence of three separate clades containing Y. gloriosa (Fig. 2) strongly suggests that not
347 only can Y. aloifolia act as the maternal parent in the cross, as previously suggested, but that a
348  reciprocal cross with Y. filamentosa as the maternal parent was viable enough to produce at least
349  one extant lineage in Y. gloriosa. While Y. filamentosa acting as the maternal parent in at least
350 one cross is a parsimonious explanation for the data, the presence of a Y. filamentosa chloroplast
351 inY. gloriosa could also be due to a backcrossing event in which a Y. gloriosa pollen grain sired
352 aseedonay. filamentosa individual. Such a backcross is unlikely to have happened recently.
353  Many of the individuals in this study have been phenotyped extensively for photosynthesis
354 related traits (Heyduk et al., 2020), and a recent backcrossed hybrid would be expected to have
355  photosynthetic physiology more similar to Y. filamentosa than Y. aloifolia, as the parents are
356  strongly divergent in whether they use Cs photosynthesis or CAM, respectively. However, the
357  genotype of Y. gloriosa with the Y. filamentosa chloroplast haplotype (YG16) has strong
358  signatures of CAM, including nocturnal CO; uptake as well as acid accumulation, traits which
359 are diagnostic of the CAM phenotype displayed by Y. aloifolia (Heyduk et al., 2020).
360 Additionally, the three species are very easy to distinguish in the field by leaf morphology: Y.
361 filamentosa has filamentous leaf margins, Y. aloifolia has serrated leaf margins, and Y. gloriosa
362 has smooth leaf margins. However these observations cannot rule out a more ancient
363  backcrossing event, in which an original Y. filamentosa x Y. gloriosa cross’s progeny thereafter
364  crossed only within Y. gloriosa, which over time would largely dampen the addition of the Y.
365 filamenotsa nuclear genome but the chloroplast haplotype would remain.

366 The two clades of Y. gloriosa individuals that group with Y. aloifolia further support that
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367 Y. gloriosa is derived from multiple hybridization events. However, as with the one instance of a
368 Y. filamentosa chloroplast in Y. gloriosa, it is difficult to rule out recent backcrossing as the
369  source of this observation (though leaf margins of all Y. gloriosa individuals sampled here had
370  smooth margins that are diagnostic of this species in the wild). Additional analysis of re-
371  resequencing data will assist in determining the number and timing of putative hybridization
372  events. For example, the length of parental haplotype segments in a hybrid genome is related to
373  the degree of recombination across the hybrid genome; short haplotype blocks would indicate a
374  greater degree of recombination and, therefore, an older hybridization event. On the other hand,
375 longer intact parental haplotype blocks in the hybrid may point to more recent hybridization.
376  Moreover, the length of these haplotype blocks will vary between individuals, and may point to a
377  mixture of both older and younger hybridization events within Y. gloriosa.
378 Previous work on the three Yucca species suggested that all Y. aloifolia and Y. gloriosa
379 individuals shared a single chloroplast haplotype (Rentsch and Leebens-Mack, 2012).
380 Comparisons across the entire chloroplast genome show that four nucleotide differences
381  separated the two clades of Y. aloifolia and Y. gloriosa individuals. Over 400 genetic changes
382  separate the Y. filamentosa and YG16 haplotypes from all Y. aloifolia and the remaining Y.
383  gloriosa haplotypes. In agreement with the previous work, this study documents low plastid
384  genetic diversity within Y. aloifolia and most Y. gloriosa samples. Yucca aloifolia is introduced
385 into the southeastern United States and likely suffered a bottleneck, resulting in lower overall
386  diversity. The current sample of Y. gloriosa individuals identified one individual with a Y.
387 filamentosa-derived haplotype. Additionally, this analysis identified seven discrete haplotypes
388 within Y. filamentosa, which parallels its greater number of alleles per locus in Y. filamentosa

389  suggested by previous work (Rentsch and Leebens-Mack, 2012).
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390 Any attempt at describing the frequency of hybrid formation will be largely affected by
391 the number of individuals in the germplasm collection. The original collection area spanned a
392 large portion of the southeastern United States in order to capture a significant amount of genetic
393  diversity within the genus. Collections of Y. gloriosa in particular likely represent many of the
394  extant populations, but the ranges of both Y. aloifolia and Y. filamentosa are much larger than
395 sampled here. As a result, any interpretation of geographic patterns to the chloroplast phylogeny
396  or haplotype network are hampered by relatively low sampling of the parental genetic diversity.
397  For example, the single Y. gloriosa individual found with a Y. filamentosa chloroplast (YG16)
398  was collected in South Carolina, while Y. filamentosa individuals with the most similar
399  haplotypes were collected in Delaware, North Carolina, and South Carolina. This haplotype
400 grouping is clearly not geographically localized to one portion of the Atlantic coast and could be
401  the result of missing genetic diversity in our analysis. Additionally, the southeastern United
402  States coastline experiences hurricanes and/or tropical storms on nearly an annual basis. Such
403  storms have the potential to both disperse genets as well as eradicate entire populations and
404  could make geographic interpretation of extant diversity difficult.
405  Transposable abundance and amplification
406 Genome resequencing provides a relatively unbiased sampling of the genome, allowing
407  us to estimate the genomic fraction composed of transposable elements. Among sequenced plant
408 genomes, transposable element contribution to genome size ranges from 14% in Eragrostis tef to
409  85% in Zea mays (Wendel et al., 2016). While all three Yucca species described in this work fall
410  within the described range, the three species varied in the total amount of repetitive DNA with Y.
411  filamentosa having significantly less repetitive DNA that Y. aloifolia and Y. gloriosa (62% vs.

412  65%/66%). However, variation in abundance of particular repeat superfamilies does suggest
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413  superfamily-specific changes between the three species. Copia elements, the second most
414  abundant superfamily of repeat in all three species, were more abundant in Y. gloriosa relative to
415  Dboth parents, suggesting an amplification of this superfamily post-hybridization. While Class 2
416  elements represent a relatively small proportion of Yucca genomes, Helitrons were found more
417  oftenin Y. filamentosa compared to either Y. aloifolia or Y. gloriosa. Helitrons are capable of
418  generating a tremendous amount of structural novelty, including the ability to capture and re-
419  distribute pieces of genes (Yang and Bennetzen, 2009). As genomes become available for these
420  species, it will be possible to analyze the extent to which all types of transposable elements have
421 facilitated structural rearrangements and have affected expression of neighboring genes.
422 Previous work in various hybrid systems has shown incredible changes to the genomes
423  post-hybridization. In a wallaby x kangaroo cross, reduced methylation of the genome resulted in
424  the proliferation of a novel transposable element that caused significant structural changes to the
425  chromosomes (O’Neill et al., 1998). Interspecific hybrids in Drosophila had an increase in
426  transposable element mobilization relative to parental species (Vela et al., 2014). Three
427  independent homoploid hybrids in Helianthus all show increased genome size due to expansion
428  of repetitive elements, particularly in Ty3/gypsy-like LTR elements (Ungerer et al., 2006, 2009).
429 In Yucca, however, there seems to be little indication that transposable elements were released
430  from silencing mechanisms and proliferated in the hybrid Y. gloriosa. Instead, Y. gloriosa shows
431  similar abundance of transposable elements relative to its progenitor species, though with a
432  notable increase in Copia elements in the hybrid (Fig. 4). Extant genotypes of Y. gloriosa have
433 little in the way of increased repeat expression (Fig. 6); whether this means no genomic shock
434 initially happened upon hybridization, or that the genome has had sufficient time to stabilize

435  repetitive elements, remains unclear.


https://paperpile.com/c/69IgLw/1IPt
https://paperpile.com/c/69IgLw/POXZ
https://paperpile.com/c/69IgLw/IjGm
https://paperpile.com/c/69IgLw/cgtu+Tdyc
https://doi.org/10.1101/2020.06.14.150078
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.14.150078; this version posted June 15, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

21
436 Finally, the three Yucca species provide an excellent system within which to describe the
437  role of repetitive content on novel phenotypic evolution and adaptation. Yucca gloriosa has been
438  studied extensively for its intermediate photosynthetic phenotype (Heyduk et al., 2016, 2019).
439  When well-watered, the majority of carbon fixation happens during the day through the Cz cycle,
440  although low levels of CAM activity are present. When drought stress, Y. gloriosa can switch to
441  predominantly CAM photosynthesis, but the degree to which individual genotypes do so varies.
442  The hybrid’s photosynthetic phenotype is novel, in that neither parent displays CAM induction
443  upon drought stress, nor the ability to switch from primarily Cz carbon fixation to primarily
444  CAM. On first glance, negligible differences in repeat content and activity in Y. gloriosa relative
445  to its parents suggest that repetitive content is unlikely to underlie the novel photosynthetic
446  phenotype in the hybrid. However, here we only assessed overall abundance and activity in
447  extant individuals; location of repeats in the hybrid relative to the parental species, as well as
448  older repetitive content bursts, still have the potential to create transgressive and novel
449  phenotypes in the hybrid. Repetitive elements can alter gene expression and gene networks by
450  inserting into regulatory regions (Kunarso et al., 2010; Wang et al., 2013), can interfere with
451  alternative splicing (Leprince et al., 2001; Li et al., 2014), and can be a general source of
452  genomic variation and rapid evolution (Gonzalez et al., 2010; Schrader et al., 2014). Moreover,
453  transposable element activity can increase in response to environmental stressors (Makarevitch et
454  al., 2015) and can play a role in forming stress-induced regulatory networks (Naito et al., 2009).
455  Whether transposable elements are responsible for Y. gloriosa’s ability to upregulate CAM
456  photosynthesis under drought stress remains to be tested.

457  Conclusions
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458 Since the chloroplast phylogeny and haplotype network imply multiple hybridization
459  events contributing to the origin of Y. gloriosa, new hypotheses regarding the repeatability of
460  transposon accumulation can now be tested. For example, since YG16 appears to most likely be
461  derived from a distinct hybridization event relative to other Y. gloriosa genotypes, we can assess
462  whether the genomic organization of its transposable elements is vastly different from the major
463  clade of Y. gloriosa genotypes grouping with Y. aloifolia (Fig. 2). Integrating transposable
464  element abundance and expression with other types of genomic data, including RNA-seq and
465  bisulfite sequencing, may help us understand the potential for insertions to differentially regulate
466  genes. The Yucca system is particularly powerful, in that the parental species are strongly
467  divergent in photosynthetic pathway and the hybrid segregates for many of the same traits; this
468  provides a framework in which to understand the role of repeats in regulating these genes in Y.
469  gloriosa.
470 Given the massively expanding availability of whole genome sequence data, hypothesis-
471  driven comparative analyses of genome content and structure are becoming more tractable. In
472  this work, reads that normally would have been filtered out were instead analyzed to address
473  whether a hybrid species had multiple and/or reciprocal origins. Furthermore, these reads helped
474  provide a first glance into the repetitive landscape of 40 genotypes across three related species.
475  While whole genomes will ultimately have the greatest ability to answer many of the questions
476  brought up in this work, the approaches used here are quicker, less expensive, and generate many
477  hypotheses for testing at the genome level in the future.
478
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733  Table 1 - Mean expression and abundance of repeat families in Y. aloifolia and Y. filamentosa
734 significantly expressed above zero (p<0.01).

Yucca aloifolia | Yucca filamentosa | Yucca gloriosa

Family Superfamily | Mean Mean Mean Mean Mean Mean
Exp.t Abun.? | Exp. Abun. Exp. Abun.
Copia_18_BD_I§¢ LTR/Copia 15.10 0.01% 16.19 0.01% 5.37 0.004%
Copial2_ZM_| LTR/Copia 4.49 0.15% 291 0.10% 1.86 0.08%
Gypsy_120_SB_I® LTR/Gypsy | 12.67 1.21% 24.94 2.62% 8.58 0.91%
Gypsy_3_0S_[*¢ LTR/Gypsy | 16.52 0.12% 97.12 0.29% 9.82 0.09%
Gypsy 4 BD LTR® |LTR/Gypsy |4.91 0.10% |[4.16 0.10% 1.62 0.07%

Gypsy_5B_0S_LTR | LTR/Gypsy | 66.37 053% |38.85 0.27% 14.00 0.19%

Gypsy_8_0S_I* LTR/Gypsy | 70.39 0.12% | 37253 | 0.34% 4528 | 0.13%
Helitron_N117 0s® | Helitron 1796.11 |0.76% | 195353 | 1.19% 989.95 | 0.67%
Helitron_N29B_0S | Helitron 3.77 0.10% |6.11 0.11% 3.13 0.09%
Helitron_N84_0s¥ | Helitron 16.65 120% | 12.14 0.71% 4.67 0.46%
Helitron7_0S Helitron 92.69 0.86% | 10454 | 1.03% 5254 | 0.60%
NUSIFL TMS LTR/Gypsy |507.41 |2.80% |405.08 |2.64% 128.68 | 1.87%

rd_1_family_13% LTR/Gypsy | 14624 |1.22% |147.59 | 0.96% 65.60 | 1.03%

md_1_family_14%5 LTR/Gypsy | 58.75 048% | 17.27 0.17% 22.38 0.27%

md_1_family 15+% | LTR/Gypsy | 98.84 049% | 21.90 0.35% 41.25 0.43%

md_1 family 20+ | LTR/Gypsy |65.94 [043% [2069 |0.5% |[9.31 0.14%

md_1 family 23<¢ | LTR/Gypsy | 15.88 011% | 45.68 0.35% 12.38 0.17%

md_1_family_30*¢ LTR/Gypsy 8.83 0.20% 14.89 0.28% 5.18 0.24%
rnd_1_family_32 LTR/Gypsy 7.75 0.09% 5.83 0.24% 4.97 0.17%
rd_1_family_37 LTR/Gypsy 9.69 0.13% 8.24 0.10% 4.28 0.12%
md_]__fami|y_47*§ LTR/Gypsy 22.26 0.50% 3.63 0.33% 5.91 0.51%

md_1_family 505%¢ | LTR/Copia | 2.66 013% | 20.96 0.36% 3.93 0.18%
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rnd_1_family_56 LTR/Gypsy 66.87 0.21% 54.49 0.20% 58.95 0.25%
rnd_1_family_71*¢ LTR/Gypsy 13.84 0.19% 3.05 0.35% 12.97 0.27%
md_1_fami|y_76*§ LTR/Gypsy 56.40 0.28% 10.09 0.20% 13.02 0.23%
rnd_l_family_9*§ LTR/Gypsy 275.20 0.54% 15.66 0.11% 20.41 0.16%
Sz 22 int*? LTR/Gypsy 243 0.14% 9.69 0.25% 1.84 0.16%

1 - Mean expression is TMM normalized and scaled by abundance, then averaged across

libraries.

2 - Mean abundance is the genomic fraction predicted by Transposome per genotype and
averaged across genotypes within each species.
Indicates repeat family is significantly differentially expressed between the parental species (*),
between Y. gloriosa and Y. aloifolia (8), or between Y. gloriosa and Y. filamentosa (¢), all at p <

0.01.

See Supplemental Table 4 for full test results and ANOVA statistics.
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747  Figure 1 - Map of populations sampled for this study. See Supplemental Table 1 for full
748  geographic locality information.
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757  Figure 2
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759  Figure 2 - RAXML estimated phylogeny of the plastome using only one inverted repeat copy in
760  the alignment. Bootstrap support indicated on the branches, with nodes that had less than 50
761  bootstrap support collapsed. Colors indicate the three species: Y. aloifolia (yellow), Y.

762  filamentosa (blue), and Y. gloriosa (teal).
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764  Figure 3
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765
766  Figure 3 - Haplotype network estimated from the entire plastome alignment across all three

767  species, excluding outgroup accessions. Haplotype estimated via PopArt, with number of

768  substitutions separating haplotypes on branches and size of the haplotype circles representative
769  of the total number of individuals within that haplotype.
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771  Figure 4
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774  Figure 4 - The genomic proportion (as a %) of the genome of a subset of transposable element
775 families in Y. aloifolia (yellow), Y. gloriosa (teal), and Y. filamentosa (blue). Letters indicate
776  significant differences based on Tukey post-hoc tests from an ANOVA (abundance ~ species)
777  per repeat family; shared letters indicate no significant difference at p<0.01.
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779  Figure5
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781  Figure 5 - Heatmap of normalized and scaled expression of 92 repeat families that were both
782  present in all three species and had any detectable expression in any library.
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785 Figure 6
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Abundance (percent of genome)
Family Y. aloifolia Y. gloriosa Y. filamentosa
Helitron_N84_0S (RC/Helitron) 1.2% (A) 0.46% (C) 0.70% (C)
NUSIF1_TM (LTR/Gypsy) 2.8% (A) 1.87% (B) 2.63% (A)
Copia_18_BD (LTR/Copia)  0.01% (A) 0.004% (B) 0.008% (AB)
Gypsy_5B_0S (LTR/Gypsy) 0.5% (A) 0.1% (B) 0.2% (B)
787 rnd_1_family_13 (LTR/Gypsy) 1.2% (A) 1.02% (A) 0.96% (A)
788
789  Figure 6 - A) Expression plot of the 5 TE families that were significantly differentially
790  expressed between Y. gloriosa (teal) and both of its parental species (Y. aloifolia = yellow, Y.
791 filamentosa = blue). TMM-normalized count data that is further scaled by abundance is plotted.
792  B) Mean percent abundance per species, as estimated by Transposome, and the result of post hoc
793  test using emmeans() in R on the results of a negative binomial generalized linear model. Shared
794  letters indicate no significant difference at a p<0.01.
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