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Abstract 
Many computer-aided design tools are available for synthetic biology and metabolic engineering. 
Yet, these tools can be difficult to apprehend, sometimes requiring a level of expertise that limits 
their use by a wider community. Furthermore, some of the tools, although complementary, rely 
on different input and output formats and cannot communicate with one another. Scientific 
workflows address these shortcomings while offering a novel design strategy. Among the 
workflow systems available, Galaxy is a web-based platform for performing findable and 
accessible data analyses for all scientists regardless of their informatics expertise, along with 
interoperable and reproducible computations regardless of the particular platform that is being 
used. 

Here, we introduce the Galaxy-SynBioCADa portal, the first Galaxy toolshed for synthetic biology 
and metabolic engineering. It allows one to easily create workflows or use those already 
developed by the community. The portal is a growing community effort where developers can 
add new tools and users can evaluate the tools performing design for their specific projects. The 
tools and workflows currently shared on the Galaxy-SynBioCAD portal cover an end-to-end 
metabolic pathway design process from the selection of strain and target to the calculation of 
DNA parts to be assembled to build libraries of strains to be engineered to produce the target. 

Standard formats are used throughout to enforce the compatibility of the tools. These include 
SBML for strain and pathway and SBOL for genetic layouts. The portal has been benchmarked on 
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81 literature pathways, overall, we find we have a 65% (and 88%) success rate in retrieving the 
literature pathways among the top 10 (50) pathways predicted and generated by the workflows. 

Keywords: Design Automation, Biosynthetic Pathway Engineering, Galaxy workflows,  Standards, 
Web Application 

Introduction 
Computation has become an essential tool in life science research. Synthetic biology is no 
exception to that trend. While historically synthetic biology was mostly focused on the rational 
design of genetic logic devices from modular DNA parts, it is now being developed and used for 
biotechnological widespread applications, including the design of metabolic pathways for the 
production of chemicals. A fundamental goal of synthetic biology is to make biological systems 
easier to engineer. As part of this endeavor, significant attention is being paid to the development 
of workflows that will assist researchers through the synthetic biology lifecycle. Disregarding the 
application, synthetic biology consistently follows a Design-Build-Test-Learn workflow and 
adheres to design principles from engineering such as standardization and abstraction of modular 
parts, as well as the decoupling of design from fabrication in order to speed up the process. 

Following the electronic design automation (EDA) concept, which was an essential contribution 
that spurred the digital society we live in, there are many design automation tools for circuit and 
pathway, these are extensively reviewed in Appleton et al.1 and Lin et al.2  respectively. As an 
example, Cello3 applies the EDA approach to genetic circuits. With Cello, a specific desired logic 
function is encoded into the Verilog language (a standard hardware description language used to 
model and design electronic circuits) which in turn is transformed into a linear DNA sequence 
that can be constructed and eventually run in living cells. The user enters the desired logic 
function and a “user constraints file” which contains the details on a logic gate library, the layout 
of the genetic system, the organism and strain, and the operating conditions for which the circuit 
design is valid. Additionally, Cello encompasses a combinatorial algorithm allowing to design 
multiple constructs containing the same circuit while varying unconstrained design elements to 
build a library that can be screened. Cello eventually includes a simulator generating predicted 
cytometry distribution for all combinations of input states, which can be directly compared to 
flow cytometry experiments. Cello was applied to the design of 60 circuits for Escherichia coli, 45 
(75%) of which performed correctly in every output state. 

Cello comprises several steps, which are connected and therefore need to use standardized 
input/output formats. Among those formats are Verilog to represent a logic function, JSON to 
describe the user constraints, and Eugene4 to encode a set of parts and constraints between the 
parts. While Cello achieved to compile and standardize several pieces of software for genetic 
design, in general, available Synthetic Biology design tools are far from parallel that achievement. 
Yet, two main standards have emerged in the past two decades. The first, SBML5 is a biological 
modeling standard that has been developed by the systems biology community and is currently 
supported by more than 250 different software tools. The primary goal of SBML is to enable 
exchange between modeling and simulation software for biological systems like for instance 
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metabolic pathways and networks. The second standard, SBOL6, is a data exchange standard 
specific to synthetic biology. SBOL has been developed to document genetic components (DNA, 
RNA, protein, etc.) for the purpose of engineering design. SBOL can now encode complex genetic 
circuits, metabolic pathways, vectors, and plasmids.  

One of the biggest challenges and a barrier to the reuse of successful designs, is that biological 
data relevant to the design of novel systems are often not exchanged. Addressing this challenge, 
the SynBioHub repository7 is an open-source software project that facilitates the sharing of 
information about engineered biological systems using the SBOL format. SynBioHub provides 
computational access for software and data integration, and a web-based graphical user 
interface that enables users to search for and share designs. 

As pointed in Appleton et al.1, most of the tools mentioned above feature dedicated support for 
designing genetic regulatory networks/circuits, but they do not feature the same level of support 
for designing biosynthetic/metabolic pathways. One of the purposes of the Galaxy-SynBioCAD 
portal is addressing this shortcoming by providing a suite of interoperable and standardized tools 
to design pathways from the design specification (choice of the compound, strain) to the DNA 
parts to be assembled. 

As for metabolic circuit design, there are plenty of pathway design software tools2 . Briefly, from 
a given target compound and a given chassis strain, the first step consists of finding metabolic 
reactions that are heterologous to the chassis and link the target compound to the native 
metabolites of the host organism. This step is carried out by retrosynthesis software8–13 and 
requires the use of reaction rules14 if one wishes to search for novel pathways or find pathways 
that produce unnatural target compounds. The result of retrosynthesis software tools is a 
metabolic map and there is a need in a second step to enumerate the pathways linking the chassis 
metabolites to the target. There are many tools for pathway enumeration and search15, which 
are sometimes integrated into the retrosynthesis software itself. The third step is to find the most 
promising enzyme sequences catalyzing the metabolic reactions of the enumerated pathways. 
This can be achieved either through similarity search to enzyme annotated metabolic reactions16–

18, or machine learning trained on metabolic databases19,20. Once the pathways have been 
annotated with enzyme sequences, they can be ranked in a fourth step. The ranking criteria are 
diverse, they can be among others based on thermodynamics21, predicted yield of the target22, 
target rate of production through flux balance analysis9,11,21, chassis cytotoxicity of the target and 
intermediates21, along with simpler criteria like pathway length. Moreover, there are multiple 
layout solutions and settings available in order to engineer the top-ranked pathways. Indeed the 
individual genes coding for the enzyme can be placed under different promoters, in a different 
order, with different RBS strength (if the chassis is a bacteria), and on different plasmids with 
different origins of replication if the engineering is performed on a plasmid. The fifth step deals 
with this issue by making use of tools such as the RBS calculator23 to compute RBS sequences for 
different strengths, and design of experiments (DoE)24,25 to sample the space of possible 
constructs, which can be quite large. The result of that step is a library of layouts representing 
either the same or different pathways. At this stage one can either synthesize the whole layout 
DNA or, as it is most commonly done, synthesize individual DNA parts. Several computational 
tools can be used to perform this sixth and last step before engineering the pathways, these tools 
compute parts to be synthesized depending on the assembly protocol chosen by the user.  With 
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the DNA parts in hands engineering can begin. Computation tools to help the build tasks are more 
sparse than for design. One can cite here Aquarium26, which provides instructions to a person or 
a robot to perform the assembly tasks along with Antha27, BioBlocks28, and DNA-BOT29. As with 
SynBioHub for designs there are repositories where protocols for the build task can be stored30. 
Engineered pathways are generally evaluated using HPLC or mass spectrometry analyses. Here 
too, computational tools can help in particular the workflows produced by OpenMS31 or 
Worlflow4Metabolomics32 and data depot33 exist to upload the results along with commercial 
data management systems like Benchling or Ryffin.  

Considering the above, we are clearly at a stage where the pathway engineering process is not 
that far from being fully driven by computer software products. However, there are several 
hurdles that prevent this from happening even for tools covering pathway design only. First, the 
tools are not easily findable, they are stored in different places and unless you are an expert, the 
keywords to search online are not obvious. Secondly, some of the tools are difficult to access 
some requiring registration, purchase or access fees. Thirdly, almost none of the tools are 
interoperable and cannot be chained one after another to ensure that computational 
experiments are communicated well, and hence reproducible. Lastly, and perhaps most 
problematic for wider acceptance,  the tools can be difficult to comprehend requiring a level of 
expertise that limits their use by a large community. 

Scientific workflows help to address these issues by providing an open, web-based platform for 
performing findable and accessible data analyses linked to experimental protocols for all 
scientists regardless of their informatics expertise, along with interoperable and reproducible 
computations regardless of the particular platform that is being used.34 Indeed, without 
programming or informatics expertise, scientists that need to use computational approaches are 
impeded by difficulties ranging from tool installation to determining which parameter values to 
use, to efficiently combining and interfacing multiple tools together in an analysis chain. Scientific 
workflows provide solutions where data is combined and processed into a configurable, 
structured set of steps that implements computational solutions to a scientific problem. Existing 
systems often provide graphical user interfaces to combine different technologies along with 
efficient methods for using them, and thus increase the efficiency of the scientists using them. 
Additionally, workflow systems generally provide a platform for developers seeking a wider 
audience and broad integration of their tools, and can thus drive forward further developments 
in a specific field of research. Among existing workflow platforms, Galaxy is a system originally 
developed for genome analysis35 which now includes several thousand tools that can be found 
in the public ToolShed36. 

Here, we introduce the Galaxy-SynBioCAD portal, the first Galaxy set of tools for synthetic biology 
and metabolic engineering. It allows one to easily create workflows or use already developed 
shared workflows. The portal is a growing community effort where developers can add new tools 
and users can evaluate the tools performing design for their specific projects. The tools and 
workflows currently shared on the Galaxy-SynBioCAD portal cover an end-to-end metabolic 
pathway design process from the selection of strain and target to the calculation of DNA parts to 
be assembled to build libraries of strains to be engineered to produce the target. 
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Results 

Tools implementation into Galaxy nodes 
To be implemented into Galaxy, software applications were selected among the computational 
tools mentioned in the Introduction section. Several criteria were used for this selection, (i) the 
tools needed to be relevant for pathway design, (ii) be published, (iii) open-source under MIT,  
GNU GPL, or related licenses, (iv) well documented and deposited in GitHub, (v) making use of 
standard input/output, and (vi) amenable to compartmentalization in Docker and 
implementation into a Galaxy node. 

The process used to integrate computational tools into Galaxy nodes is described in the Methods 
section (see IT Architecture subsection where an example is provided for the tool RetroPath2.0). 
The list of Galaxy nodes provided below are currently installed on the Galaxy-SynBioCAD portal 
and enable one to design pathways from target and strain selection to DNA part calculation. 

RetroRulesb,14 is a searchable database of reaction rules. Reaction rules are generic descriptions 
of (bio)chemical reactions encoded into the community standard SMARTS. The use of reaction 
rules allows estimating the outcomes of chemical transformation based on the generalization of 
reactions available in knowledge DBs such as BRENDA37 , MetaCyC38, Rhea39, or MetaNetX40. The 
degree of generalization is controlled by describing the surrounding environment of the reaction 
center up to a given diameter.  To ensure the accuracy of the predicted transformations that will 
outcome from the reaction rules, the RetroRules dataset provided by the Galaxy RetroRules node 
has been validated by (i) checking that rules allow to reproduce the template reactions, and by (ii) 
checking that results obtained by decreasing diameters are supersets of results obtained with 
higher diameters. Only the reaction rules that successfully passed the 2 checks are retained. The 
RetroRules dataset provided presently is tagged as rr02 and is freely downloadable from the 
RetroRules databasec. The validation of this dataset has a success rate of 99.3%. The node 
outputs a CSV file of reaction rules in SMARTS format. 

RetroPath2.0d is an open-source tool for building retrosynthesis networks by combining reaction 
rules and a retrosynthesis-based algorithm to link the desired target compound to a set of 
available precursors10. Typically, the target compound, also named “source compound” is the 
compound of interest one wishes to produce, while the precursors are usually compounds that 
are natively present in a chassis strain. Starting from the source compound at the first iteration, 
the reaction rules matching the chemical structure of the source are applied and newly predicted 
chemicals are generated. For each reaction a score is calculated based on the ability to retrieve 
enzyme sequences catalysing substrate to product transformations. Newly produced chemicals 
are scanned and kept for the next iteration if they are not within the set of available precursors. 
In that way, a new iteration is started using the previously collected chemicals as the new source 
set. The iterative process stops when either no new chemicals are discovered or the predefined 
                                                        
b github.com/Galaxy-SynBioCAD/RetroRules_image, github.com/Galaxy-SynBioCAD/RetroRules 
c retrorules.org 
d github.com/Galaxy-SynBioCAD/RetroPath2_image, github.com/Galaxy-SynBioCAD/RetroPath2 
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number of steps is reached. The node takes as input three CSV files, one with a list of sink 
molecules using the standard InChI format, another with a single source (target) molecule in InChi 
format too, and a last file containing the reaction rules in SMARTS format. The retrosynthesis 
network is outputted as a CSV file providing reactions in the reaction SMILES format and 
chemicals in both SMILES and InChI formats along with other information like the score for each 
reaction. 

RP2pathse in an open-source tool dedicated to the enumeration of heterologous pathways that 
lie in a retrosynthesis network as produced by RetroPath2.010. Such analysis is a required step in 
our workflow to ensure that only pathways fulfilling all the precursor needs are retained for 
further analysis. Quickly, the main steps performed are (i) the scope reduction, which aims to 
reduce the size of the input metabolic network using an iterative node removal approach to 
retain only reactions and chemicals involved in at least one producible pathway, (ii) the 
stoichiometric matrix build of the subnetwork containing only the scope, i.e. the chemicals and 
reactions retained at the previous step, followed by (iii) the Elementary Flux Mode Enumeration 
(EFM)41, from which only the enumerated modes linking the target compound to precursors are 
output as a heterologous pathway. The node takes as input a retrosynthesis network in the CSV 
file produced by RetroPath2.0, and outputs the enumerated pathways (using IDs) as well as 
structure of involved chemicals (as SMILES) in CSV files as well. 

Pathways to SBML and Complete Reactions. The node Pathways to SBMLf converts the output 
of RP2paths, as well as each individual pathway, to distinct SBML files. Those output pathways 
are “enriched” with additional information (see Method section) that cannot be easily stored as 
part of a normal SBML file and include structural information for chemical species (SMILES, InChI 
and InChIKey) and for each reaction a rule ID, a score based on enzyme availability produced by 
RetroPath2.0, and the rule itself in SMARTS format. The tools also adhere to the MIRIAM 
annotation standard for the cross-references of chemical species to public databases42. The tool 
takes the CSV outputs of RP2paths as well as the output of RetroPath2.0 and outputs a collection 
of SBML files compressed in a TAR file. The second node, called Complete Reactionsg, adds the 
required cofactors to complete the reactions. Indeed, due to the nature of RetroPath2.0 
retrosynthesis algorithm, the reactions it produces are mono-component10. To complete 
reactions, the node queries the MetaNetX database for the appropriate cofactors and adds them 
to the SBML files. The node takes for input either a single SBML file, or a collection compressed 
in a TAR. The node produces a collection of SBML files compressed in a TAR file. 

Thermodynamicsh calculates the Gibbs free energy of reactions and heterologous pathways by 
considering every chemical species involved in each reaction. This is done using the tool 
eQuilibrator43 calculating the formation energy either using public database ID reference (when 
recognized with the tools internal database),  or by deconstructing the chemical structure and 
calculating its formation energy using the component contribution method. Thereafter, the 
species involved in a reaction are combined (with consideration for stoichiometry) and the 

                                                        
e github.com/Galaxy-SynBioCAD/rp2paths_image, github.com/Galaxy-SynBioCAD/rp2paths 
f github.com/Galaxy-SynBioCAD/rpReader_image, github.com/Galaxy-SynBioCAD/rpReader 
g github.com/Galaxy-SynBioCAD/rpCofactors_image, github.com/Galaxy-SynBioCAD/rpCofactors 
h github.com/Galaxy-SynBioCAD/rpThermo_image, github.com/Galaxy-SynBioCAD/rpThermo 
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thermodynamic feasibility of the pathway is estimated by taking the sum of the reaction Gibbs 
free energy of each participating reaction. The node takes as input pathways in SBML format and 
returns annotated pathways (with thermodynamics information for each reaction, see Methods 
section for further details) also in SBML format. 

FBAi (Flux Balance Analysis) is used to calculate target production fluxes of the designed 
pathways. To perform FBA on a heterologous pathway, this tool first merges a heterologous 
pathway with a user-specified GEM model. This enables FBA to consider whole-cell conditions 
for the theoretical production of the user’s target molecule. The tool uses the CobraPy package 
to perform FBA44. The following native CobraPy methods are supported including FBA and 
parsimonious FBA (pFBA). The tool also contains an in-house developed method to consider the 
potential burden that the production of a target molecule may have on the cell and the impact 
of the target itself. We name the method “fraction of reaction”, and include the following steps. 
First the FBA for the biomass reaction is optimized and its value is saved as its optimum (note 
that by default the tool first optimizes to the biomass reaction, but the user may specify any 
reaction he so wishes). Then the upper and lower flux bounds of the biomass reaction is set to 
the same value, as a fraction of the optimum (default is 75%), and forces that flux to go through 
the biomass reaction regardless of the other set objective. Then the target reaction is optimized 
and the result of that flux is then reported.  The node takes as input pathways like those produced 
by RP2Path and a strain model both in SBML format and returns annotated pathways (with 
calculated fluxes, see Methods section) in SBML format. 

Rank Pathwaysj ranks a given a set of heterologous pathways to reveal what are the most likely 
pathways to produce the target molecule in an organism of choice. It uses four different criteria: 
target product flux calculated by FBA, thermodynamic feasibility, length of the pathway, and 
reaction score based on enzyme availability calculated by RetroPath2.0. The weights are 
optimized by computing a global score for all pathways, ranking the collection, and optimizing 
weights such that the closest predicted pathway to any  literature pathway for the same target 
is found on the top of the ranked list (for more information refer to section 2.3 and the Methods 
section). The node takes as input annotated pathways in SBML format and returns a ranked list 
of pathways also in SBML format. 

Selenzymek,17 is an open-source tool that performs enzyme sequence selection from a reaction 
query. The tool can be queried using a reaction template such as the reaction rules in RetroRules. 
This feature makes this tool especially useful in combination with RetroPath2.0. Selenzyme 
performs a reaction similarity search in the reference reaction database Metanetx40 and outputs 
the sequences annotated for the closest reactions. The tool provides several scores that can be 
combined in order to define an overall score. Scores are given for reaction similarity, 
conservation based on a multiple sequence alignment of the result, phylogenetic distance 
between source organism and host, and additional scores calculated from sequence properties. 
The Selenzyme node takes as input pathways in SBML format and returns annotated pathways 

                                                        
i github.com/Galaxy-SynBioCAD/rpFBA_image, github.com/Galaxy-SynBioCAD/rpFBA 
j github.com/Galaxy-SynBioCAD/rpRanker_image, github.com/Galaxy-SynBioCAD/rpRanker 
k github.com/synbiochem/selenzyme 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2020. ; https://doi.org/10.1101/2020.06.14.145730doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.14.145730
http://creativecommons.org/licenses/by-nd/4.0/


8 

(with UniProt ID for each reaction, see Method section) also in SBML format. A wrapper providing 
docker encapsulation for the Galaxy workflow is availablel. 

SBML to SBOL converterm provides the mapping from the theoretical space to the practical 
space. The node takes a pathway model (encoded in SBML) as input, and returns a collection of 
placeholders for the subsequent design of the synthetic DNA that is required to encode the 
enzymes defined in the pathway model (encoded in SBOL). The converter first parses the SBML 
model, and extracts a user-specified number of homologous enzymes for each metabolic 
reaction. Synthetic gene design templates, in the form of SBOL ComponentDefinitions, are 
generated for each enzyme, each consisting of an (enzyme) coding region (specified by a Uniprot 
sequence identifier), 5' and 3' flanking regions for downstream assembly, and - optionally - 
ribosome binding sites of user-specified translation initiation rates, allowing for the control of 
translational regulation. The SBOL document contains no sequence data, but acts as a template 
to be passed onto the next node, PartsGenie. 

PartsGenien is an established web application for the design of reusable synthetic DNA parts45. It 
supports the integrated design and optimisation of ribosome binding sites, coding sequences and 
other features, providing a multi-objective optimisation algorithm that simultaneously optimises 
translation initiation rate and codon usage along with elimination of repeating nucleotides and 
unwanted restriction sites. Furthermore, PartsGenie also implements guidelines from DNA 
manufacturers to optimise sequences for synthesisability, including the reduction of both local 
and global GC content. The PartsGenie node provides a wrapper for this functionality, taking in 
the "template" SBOL document from the preceding SBML to SBOL converter step as input, and 
using this a set of instructions for PartsGenie. The PartsGenie node then designs and optimises 
synthetic DNA sequences for each gene in the template, and updates the SBOL document with 
these novel sequences. 

OptDoEo combines selected genetic parts and enzyme variants for the desired. This node, based 
on the optimal design of experiments OptBioDes library25, accepts as input the pathways in SBML 
format annotated with the enzyme variants and the collection of genetic parts consisting of 
plasmid copy numbers of the vector backbone, resistance cassette, promoters, and terminator 
in SBOL format and registered in the SynBioHub repository. The D-optimal experimental design 
algorithm is based on a logistic regression analysis with an assumed linear model for the response 
evaluated based on its D-efficiency, which compares the design with an orthogonal design. 

DNA weaverp devises cloning strategies using either Golden Gate Assembly or Gibson Assembly 
to obtain plasmids for each combination of genetic parts selected by the OptDoE node. As both 
assembly methods have practical limitations, the algorithm first considers Golden Gate assembly 
using the type-2S enzymes BsmBI, BsaI, or BbsI (in this order) and defaults to Gibson Assembly, 
although this order of preference can be changed by the user. the resulting assembly strategies 

                                                        
l github.com/Galaxy-SynBioCAD/rpSelenzyme_image, github.com/Galaxy-SynBioCAD/rpSelenzyme 
m github.com/Galaxy-SynBioCAD/rpSBMLtoSBOL_image, github.com/Galaxy-SynBioCAD/rpSBMLtoSBOL 
n github.com/Galaxy-SynBioCAD/PartsGenie_image, github.com/Galaxy-SynBioCAD/PartsGenie 
o github.com/pablocarb/doebase, github.com/Galaxy-SynBioCAD/rpOptBioDes_image, github.com/Galaxy-
SynBioCAD/rpOptBioDes 
p github.com/Galaxy-SynBioCAD/DNAWeaver_image, github.com/Galaxy-SynBioCAD/DNAWeaver 
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produce “scarless” plasmids whose sequence is the direct concatenation of the sequences of the 
plasmid’s parts. The node output is a spreadsheet featuring a list of all the primers required to 
extend the standard genetic parts with sequence homologies necessary for the assembly, and a 
list of all PCRs and fragment assembly operations required to obtain the desired plasmids. The 
assembly strategy is optimized to maximize primer reuse between constructs, and optimize 
assembly homologies, via the DNA Weaver framework46. 

LCR Genieq,47 is a web-based tool for supporting the design of bridging oligos, which are required 
for annealing together individual synthetic DNA parts (designed by PartsGenie) into multi-gene 
plasmid assemblies, designed by OptDoE. The LCR Genie node provides a wrapper for this 
functionality, taking in an SBOL document containing numerous combinatorial plasmid 
assemblies, and designing bridging oligos necessary for assembly via the ligase cycling reaction 
method. The LCR Genie node performs analogous functionality to the DNA weaver node 
(supporting multi-part assembly but by a different experimental method) and as such, its output 
format matches that of DNA weaver. 

Pathway Visualizerr provides users an interactive web interface for exploring predicted pathways 
and their associated annotations. The tool is based on HTML and JavaScript only, which draws it 
as a “dependency-free” tool easy to set up locally for the user. Possible user interactions are 
pathway highlighting, cofactor handling, and the viewing of information at the levels of pathways, 
reactions, and involved compounds. The node takes as input pathways in SBML format. 

The Galaxy-SynBioCAD portal does not currently support the visualization of SBOL files such as 
those produced by PartsGenie and OptDoE, however, these files can be downloaded and can 
easily be visualized using online tools such as Visbols. 

The Galaxy-SynBioCAD portal also supports other nodes not listed above that perform simple 
operations like uploading a file, extracting taxonomy ID, or native metabolites from a GEM SBML 
file. All these nodes are fully described in the Supplementary Information and the Node 
Documentation file found on the portal. 

Building workflows with nodes 
As described in the above section, the SynBioCAD-Galaxy portal contains a collection of tools that 
have simple standardized input and outputs. These “nodes” are well documented and intended 
to perform a single well-defined task. To create more complex tasks, these tools may be chained 
together. We present three exemplar workflows. 

                                                        
q github.com/Galaxy-SynBioCAD/LCRGenie_image, github.com/Galaxy-SynBioCAD/LCRGenie 
r github.com/Galaxy-SynBioCAD/rpVisualiser_image, github.com/Galaxy-SynBioCAD/rpVisualiser 
s visbol.org 
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Retrosynthesis and Pathway Enumeration. The workflow (Figure 1) generates theoretical 
possible pathways for the production of a target molecule in an organism of choice. Three key 
steps are performed in this workflow. First, using the RetroPath2.0 node, it generates feasible 
metabolic routes between a collection of chemical species contained within a GEM SBML file of 
the selected organism, a target molecule that the user wishes 
to produce, and reactions rules extracted from RetroRules. 
That metabolic network is then deconstructed into individual 
pathways using the RP2paths node. Lastly, those individual 
metabolic pathways are converted to SBML files using the 
Pathways to SBML and Complete Reactions nodes. The former 
generates SBML files describing the individual heterologous 
pathways while the later adds the appropriate cofactors and 
removes duplicate pathways. 

 

Figure 1. The RetroSynthesis workflow as seen in the Galaxy portal. (A) The workflow in workflow editor. (B) The 
workflow menu upon executing it. There, the user must specify the GEM SBML model of the host organism, the InChI 
structure of the target molecule, and the maximal pathway length. The workflow generates a collection of 
heterologous pathways for the production of the target into distinct SBML files. 

Pathway analysis and ranking. Given a set of pathways generated by RetroPath2.0, this workflow 
informs the user as to the theoretically best performing ones based on the four criteria 
mentioned on the previous section (node Rank Pathway: target product flux calculated by FBA, 
thermodynamic feasibility, length of the pathway, and reaction score based on enzyme 
availability). In the previous workflow, molecules contained within a full SBML model are used to 
compute heterologous pathways. As a result, the calculated heterologous pathways can easily 
be merged into the full organism model, enabling whole-cell context to calculate the potential 
flux of a given target. Under such simulation conditions, the analysis that returns a low flux may 
be caused by the starting compound itself not having a high flux, or the cofactors required having 
a low flux, while the pathways with high flux would be caused by both the starting compound 
and the cofactors being in abundance. In either case, bottlenecks that limit the flux of the 
pathway may be identified and pathways that do not theoretically generate high yields can be 
filtered out. Furthermore, the production of heterologous molecules in an organism often causes 
a burden on the growth of the cell. To emulate such a condition, we use here the method named 
“fraction of reaction” and described in the previous section for the FBA node. The method forces 
a fraction of its maximal flux through the biomass reaction while optimizing for the target 
molecule. The reaction score that probes enzyme availability for the chemical transformation is 
also taken into consideration, where high values favour less promiscuous reaction rules and 

(A) 

(B) 
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express better confidence. Finally, the length of the pathway is taken into consideration as well, 
here shorter pathways are favored over longer pathways. The results of the pathway analysis are 
combined using a weighted mean, and a single global score is computed. The results may be 
graphically inspected by the user using a Galaxy embedded visualizer that displays the 
heterologous metabolic routes for the production of a target molecule in an organism of choice, 
where complete descriptions of the chemical species, reaction and pathways are displayed 
(Figure 2). 

Figure 2. Top scored enumerated 
pathways. The example plots the top 
3 ranking pathways for the 
production of muconic acid in E. coli 
after running the “Pathway Ranker” 
workflow as seen on the portal 
Visualiser. The squares depict the 
molecules and the ovals the 
reactions. The green squares are the 
compounds that exist in the GEM 
model, the blue squares are 
intermediate compounds, and the 
red square is the target. Each 
compound and reaction can be 
selected and the right hand side 
displays details of the selection (here 
for the reaction 4.1.1.46). The panel 
offers also a link to look up the 
reaction on the Selenzyme web 
service to manually search enzymes 
that may perform such chemical 
transformations. On the left hand 
side is the ranked list of pathways 
predicted, color coded so that the 

best theoretical performing ones have warmer colors. The user may inspect the pathway as a whole by selecting the 
boxed arrow. This action displays on the right hand panel information on the pathway including the number of steps, 
its thermodynamic feasibility, its flux and its global score. The user can also display the cofactors for all the reactions 
by selecting the “Show cofactors” button on the left side panel. 

Genetic Design. This workflow encodes the top-ranking predicted pathways from the previous 
workflow into plasmids intended to be expressed in the specified organism. First, the Selenzyme 
node is executed to return a user defined number of UniProt ID’s associated with each reaction. 
Then a maximum number of pathways, as defined by the user, are converted to SBOL. The next 
tool, PartsGenie, then retrieves the DNA sequences of the predicted enzymes based on their 
Uniprot ID, performs a codon optimization and creates a first level of library based on those, 
adding before the CDS some specific strength calculated RBS. These constructions are then used 
by OptDoE to generate a defined size library of plasmids, expressing at various levels the genes 
coding for the multiple enzymes present in the predicted pathways. The other genetic parts 
required by this software (origin of replications, promoters, terminators and markers) are either 
provided by a default list or a specific list of parts provided by the user which needs to refer to 
parts stored in SynBioHub. The Galaxy tool “OptDoE Parts Reference Generator” has been written 
for that purpose. This final library is generated in a SBOL format and can then be used as an input 
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to other softwares or visualised using tools implementing the SBOL visual standard.  The Genetic 
Design workflow ends with two different tools tackling the library construction problematic: LCR 
Genie that propose an assembly strategy using the Ligase Chain Reaction method and DNA 
weaver that calculate the optimal synthesis plan and the assembly protocol following either a 
Golden Gate or a Gibson Assembly method. The output of LCR Genie or DNA weaver are excel 
files containing the full sequence of the plasmid library and of the intermediate parts required to 
construct them. 

 
Figure 3. Architecture of the constructed library of plasmids in SBOL format. The figure illustrates three layouts in 
SBOL format representing each one of the plasmids implementing the heterologous pathways producing muconic 
acid in E. coli. The SBOL pathway layouts are visualized using the web service visBOL. 

Benchmarking with literature data 
Although criteria like target product flux, thermodynamic feasibility, pathway length, and 
reaction score based on enzyme availability inform the user as to the best potential candidate 
pathway to produce a compound of interest, we are interested in ranking pathways combining 
these criteria in such a way that a global score value may be used to determine what are the best 
candidates. 

To achieve this, a list of experimentally expressed compounds in engineered organisms (E. coli, 
S. cerevisiae, B. subtilis and Y. lipolytica) reported in the literature was collected. For each 
pathway and each heterologous pathway reaction we compiled the EC number of the reaction 
along with the  substrates and products of the reaction. This list may be found in the 
Supplementary Information. Each target compound within that list was used to run the 
“Pathways Analysis and Ranking” workflow described in the previous section to generate a 
collection of predicted pathways that produce the same target molecule in the same host 
organism than those reported in the literature (Figure 4.A). Following that, the predicted 
collection of pathways were compared with their corresponding literature pathways using a 
matching algorithm described in the Methods section and illustrated in Figure 4.B. The predicted 
pathway with the highest similarity (and above a given similarity threshold, see Supplementary 
Information) was flagged as the best performing pathway among the collection. 
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In the current study, we assumed that the literature pathway is among the best performing 
predicted pathways, but we also hypothesize that other predicted pathways may be valid as well. 
The similarity with literature pathway is thus used to determine the importance (weights) of the 
criteria contributing to the scoring of the pathways and generate a global score to rank the 
predicted pathways from best to worst (Figure 4.C). 

Figure 4. Scoring workflow predicted pathways with literature pathways.  (A) The RetroSynthesis and Pathway 
Analysis workflows are run on a given literature target molecule (here muconic acid) to generate a collection of 
predicted pathways. (B) Comparison is performed between all the predicted results to the literature pathway (marked 
with a star). (C) The weights associated with the different criteria of the predicted pathways are combined using a 
weighted mean to calculate the global scores of the pathways, where: 𝑗 is the target product FBA flux results, 𝛥𝐺𝑚  
is the thermodynamics result, 𝑙 is the length of the pathway, rr is the enzyme availability reaction score, and 𝑤are 
the weight parameters. (D) The global scores are then used to rank the list. This process is repeated for every literature 
pathway and the weights are optimised such that a maximum of literature pathways are found on the top of the 
ranked list.  

In order to find the literature pathway in the top scored predicted pathways we used the ranked-
biased overlap algorithm48 to score the performance of the weights (see Method section). The 
algorithm produced the following list of optimized weights:  pathway length weight: 0.73%, 
reaction score weight: 12.46%, FBA  target product flux weight: 32.4%, and thermodynamics 
weight: 54.4%. 

Using the above weights, Figure 5 shows the results of the ranked-biased overlap optimization 
schema. Each row is a ranked list of collections of predicted pathways for a given target molecule, 
where on the left-hand side are the best ranking pathways. The color code shows the global score 
that was used to rank the pathways. The black boxes correspond to the literature pathways that 
are the most closely similar to the literature pathway (see Supplementary Table SX for score 
values of literature pathways). Overall, we find that our “Pathways Analysis and Ranking” 
workflow after adjusting the weights using ranked-biased overlap has a 65.4% success rate (53 
out of a total of 81) in retrieving the literature pathway among the top 10 predicted pathways.  
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Figure 5. Results of the optimization showing the first 50 ranked predicted pathways for the predicted pathways. 
The black boxes show the location of the closest predicted pathway to the literature pathway. The optimization 
algorithm balances the weights of the criteria of pathways such that the literature pathways are on the top rank of 
the predicted pathways. If a row does not contain a black box then the identified literature pathway is not found 
within the first 50 predicted pathways.  
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Discussion 
We have presented in this paper several Galaxy workflows to design pathways in host organisms. 
These workflows have been built using 20 different computational tools (named nodes) currently 
present on the platform (cf. section 2.1 and Supplementary Information for a complete list of 
nodes). Chaining the nodes together to form workflows was made possible only because the 
input and output of each node were standardized. As far as standardization is concerned, we 
chose community adopted standards like InChI and SMARTS for compounds and reactions, SBML 
for pathways and strains, and SBOL for genetic constructs. Considering all the workflows that 
could potentially be created on Galaxy SynBioCAD with the current nodes, the end-to-end 
process offered in the portal starts from the specifications of the targeted compounds and the 
selected hosts, to the DNA parts to be synthetized depending on the assembly protocol (LCR, 
Golden Gate, Gibson are currently offered). Combinatorial layouts of the pathways can also be 
generated via the OptDoE node. 

The pathways generated by the workflows have been compared with literature pathways, and in 
order to maximize the number of times the literature pathways were found in the top pathway 
list returned by the workflows, a ranking function was developed (see section 2.3). That function 
is a weighted sum of four criteria: target product flux, reaction thermodynamic feasibility, 
reaction score based on enzyme availability, and pathway length. Interestingly, the pathway 
length weight alone seems to be a bad predictor of the quality of the pathways. We suspect that 
the reason this criterion has such a meager influence on the global score stems from the fact 
that, for a given target molecule, we have most often only identified a single pathway that 
describes its production in the literature. Therefore, while our workflow returns a plethora of 
heterologous pathway solutions to produce a given target (some of which are shorter than the 
literature reported) the scoring method penalizes the shorter metabolic pathways that might 
otherwise be considered to be better solutions. For a better optimization solution regarding that 
parameter, we would need to compare multiple pathways that produce the same target with 
different lengths and favor shorter length pathways. Experimental validation would be needed 
to confirm that shorter pathways are better predictors, which is out of the scope in the current 
study. For the time being, lack of such data in the literature leads the length to have a small 
influence on the global score. 

While searching literature pathways in the set of pathways produced by our workflows is 
appropriate, this does not mean other pathways generated by the workflows are not valid and 
cannot be engineered. In order to assess the validity of all predicted pathways, one strategy that 
has been used for synthesis planning in chemistry is the double-blind testing strategy performed 
by a pool of participants49. In that strategy neither the participants nor the conductors are aware 
of the origin of the pathways, and the participants are asked to flag pathways they deemed valid 
without having explicit information on pathways found in the literature. Such a method could be 
applied here to further refine the ranking function. 

To summarize, the Galaxy-SynBioCAD portal proposes the first set of synthetic biology 
computational tools in a Galaxy framework35. We chose Galaxy as our workflow system because 
the tools found in the ToolShed36, have reached way beyond genome analysis for which Galaxy 
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was originally developed. Just by focusing on tool categories found relevant to the present 
manuscript, one can cite proteomics, transcriptomics, metabolomics, flow cytometry analysis, 
and computational chemistry.  Several communities are using Galaxy and many papers can be 
found online50 for microbiome (267 items are found as of 07/04/2020), plants (258 items), 
diseases like cancer (312 items), and drug design and discovery (75 items). However, the library 
hardly contains references related to biotechnology (4 items) and even fewer to synthetic biology 
and metabolic engineering. 

The current offering in Galaxy-SynBioCAD focuses on providing tools for pathway design. 
However, as Galaxy-SynBioCAD is a community effort, we anticipate our tool set will grow. 
Regarding pathway design tools, many of the software products listed in the introduction could 
be considered to be added to the portal. In particular, strain design including knockout genes to 
maximize targeted product fluxes, could easily be implemented via the FBA tools making use of 
Cobrapy (see section 2.1).  Additionally, there are already Galaxy workflows to take up and 
analyze metabolomics flow cytometry data in ToolShed36, and these workflows could directly be 
incorporated into the portal to deal with data generated in the ‘Test’ step of the DBTL cycle. As 
mentioned in the introduction several open source software products deposited in GitHub26–29 
could cover the ‘Build’ step and eventually provide drivers to automated constructions. 
Regarding the ‘Learn’ step in DBTL, the OptDoE tool (cf. section 2.1) could easily be adapted to 
propose new designs as it was done in Carbonell et al., more complex approaches to be 
considered are methods that make use of machine learning as in Borkowski et al.51. While all 
design examples provided in the current paper are for engineering pathways in host organisms, 
because of the recent development of models (similar to GEM models) for cell-free systems52, 
one can also consider adapting the portal for design and engineering in cell free. 

All of the above suggested additions could be implemented in our portal with relatively small 
efforts. There are other applications that could be envisioned beyond pathway design and 
engineering. For instance, as shown in Delepine et al.10 retrosynthesis software can easily be 
adapted to design biosensors, and tools used in Cello3 or Pandi et al.53 that respectively propose 
designs for genetic logic circuits and metabolic neural network biocomputation could also be 
considered. 

Methods 

Pathway annotation 
Some results generated by the workflow nodes produced in this study cannot be readily stored 
in the SBML files natively (example: reaction rule, thermodynamics, etc...). As such, we elected 
to enrich the SBML format in such a way that our information can be stored directly within the 
SBML file without breaking any standard of the original file. Because SBML files are based on 
XML, new XML annotations are created that are outside the standard scope of a SBML file and 
thus are ignored by any standard SBML readers5. We denote that enriched file format rpSBML 
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and is compatible with any other SBML readers (additional details can be found in Supplementary 
Information). 

Standard SBML extensions are also used in this project. The “groups” package is used to link the 
heterologous reactions and chemical species to identify them easily, as well as classifying the 
chemical species that are main actors in a heterologous pathway54. While the FBC package is used 
to define the FBA simulation conditions55. 

Literature Pathways matching algorithm 
An important requirement in this project is the need to compare two different metabolic 
pathways, and quantify the degree of similarity between the two. This is used when searching if 
a literature pathway can be found in a list of pathways produced by our workflows. To this end 
we wrote a matching algorithm that compares SBML files and calculates a similarity value using 
the following criteria: 

• Chemical species 
○ Chemical structure (InChiKey) 
○ Public database cross-references (MIRIAM) 

• Reactions 
○ Substrates/Products similarity 
○ EC number 

• Pathway 
○ Length 

A more complete description of the algorithm may be found in Supplementary Information. In 
short, all the chemical species between two SBML pathways are first compared and the best 
matching ones are coupled ensuring 1:1 matches. The species match is then used, when 
comparing two reactions, to match all the substrates and products between two reactions. The 
EC number is also used as a criterion to determine the similarity of two reactions. If two reaction 
EC numbers have the same main class, subclass and sub-subclass then these reactions are 
considered to be the same. The full EC number is however not ignored, as two reactions with 
exactly the same EC number would score higher than two that have up to the third similar EC 
numbers. Finally, a penalty score is applied to the similarity value if the length of the pathways 
differ. The output is a single similarity value that can be used to determine what is the closest 
predicted pathway to the literature reported pathway. 

Ranked-Biased overlap method 
To validate predicted pathways, we use literature reports of engineered pathways and compare 
the results corresponding to the same target compounds. The underlying assumption we are 
making is that the literature pathway must be among the best performing pathways, but must 
not necessarily be the best performing one. 
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Our workflows generate a collection of heterologous pathways for the production of a given 
compound. The first step involves computing a similarity value for every predicted pathway with 
a given literature pathway and selecting the top ranking one as the member that best matches 
the litterature pathway. Thereafter, a global score is computed (for a given set of weights 
associated with the criteria of the pathway, see section 2.3.) that also returns a ranked list with 
the better ranking pathways on the top of the list. For this ranked list, we must determine if the 
corresponding litterature pathway is on the top or not. To this end, we use the Rank-Biased 
overlap algorithm (RBO)48.  

This algorithm offers a few advantages that particularly suit our needs. First, it can compare lists 
of disparate sizes. Indeed, during our optimisation, we select only the best or the closely 
matching similar predicted pathways to the literature pathway as the best performing pathways. 
Secondly, RBO provides a parameter to control the degree of importance of matches on the top 
of the list (also called top-weight). In other words, it controls the sharpness of increase in the 
score as the literature pathway finds itself on the top of the ranked list of pathways. We use this 
parameter to loosen the requirement of the literature pathway to be necessarily on the absolute 
top of the ranked list, while still giving a scoring advantage that the pathway finds itself in a better 
position (see Supplementary Information).  

IT Architecture 
The Tools in Galaxy-SynBioCAD can be used in a stand-alone way or chained into workflows. The 
source code of each tool is open-source and available in GitHub repositoriest. The IT architecture 
of SynBioCAD is based on the Dockeru framework. Each component of this architecture is running 
with Docker, from web interface to network management. 

Each container is confined into its own network so that it is not reachable by any other 
component. To make communications possible between two containers, one of them is put into 
the other’s network by choosing the most secure option. As an example, in order to enable 
communication between the Galaxy container and a RESTful tool, we have two options: (1) put 
the tool into the Galaxy container’s network or (2) puts the Galaxy container into the tool’s 
container. Let’s say we have several RESTful tools, the first option stores all tools into the Galaxy 
container’s network that enables the communication between tools themselves; which also 
breaks the network confinement and decreases the global system’s security level. The second 
option preserves the network confinement between tools while making possible 
communications between each tool and the Galaxy container. In the SynBioCAD framework, we 
choose the option that optimizes the security for all containers that need to communicate 
(reverse-proxy/Galaxy, Galaxy/database...). 

The overall architecture is illustrated in Figure 6 details regarding Galaxy and tool services are 
detailed next and an example is provided for RetroPath2.0. 

                                                        
t github.com/Galaxy-SynBioCAD, github.com/brsynth 
u www.docker.com 
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Figure 6. SynBioCAD IT architecture overview. Each component is embedded in the Docker environment installed on 
the (virtual or physical) host. In addition, each container is confined into its own network and therefore is unable to 
be reached by any other components. To make communication possible between two containers, we put them into 
the same network by preserving networking confinement. 

Galaxy Service 
The main brick is the Galaxy service which is the web interface for end-users and orchestrates 
tool executions. The Docker Galaxy system is based on the following bricks: (1) Install container 
runs once and downloads galaxy project sources from the webv. (2) Galaxy container downloads 
from the web the Galaxy project, and runs it within the galaxy imagew. This step is time-
consuming for the first time due to Galaxy’s initialization. (3) Database containers are used by 
Galaxy for users accounts and dynamic web pages. This service is dedicated to Galaxy service. 
About data storage, each container described above relies on Docker data volumes for storing 
persistent data. Concerning networking level, the database container is confined into its own 
network so that, by default, it is not reachable by any other container. The Galaxy container is 
                                                        
v github.com/galaxyproject/galaxy 
w github.com/brsynth/galaxy_image, github.com/brsynth/galaxy-dind_image 
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confined into its own network so that, by default, it is not reachable by any other container. 
However, this service is also part of the database service network in order to communicate with 
it. All these bricks are orchestrated by the Docker Compose tool and embedded in a docker-
compose file. 

Tools Services 
All tools available in the Galaxy-SynBioCAD portal are dockerized and run in two different modes: 
(1) on-demand where tool images are instantiated each time the tool is requested. These tools 
run within the Galaxy container, which embeds a Docker engine. (2) RESTful, where a REST service 
is always up and embeds the tool. These services run next to the Galaxy container and 
communicate with the Galaxy container through Docker networking.  Tools available in Galaxy 
have to be deployed within the Galaxy container. 

 

RetroPath2.0 Service Example 

RetroPath2.0 runs as a REST service and is deployed next to the Galaxy container. Its 
deployment is based on two containers. 

Install container runs once and downloads data (e.g. RetroRules) into the data volume. 
REST container is a RESTful container that embeds the tool (through the tool image) and waits 
for requests. 

Concerning data storage and networking level, RetroPath2.0 follows the policy described 
above. All sources can be found on GitHub and are splitted into two different repositories: 

(1) Docker image embeds all packages needed for running the tool. In addition, RetroRules 
data is downloaded within the image and the KNIME Analytics portal is installed. 

(2) Galaxy wrapper contains the necessary code for displaying the tool web page and to 
trigger the tool algorithm.  
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