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Abstract

Integrating single-cell measurements that capture different properties of the genome is vital to ex-
tending our understanding of genome biology. This task is challenging due to the lack of a shared
axis across datasets obtained from different types of single-cell experiments. For most such datasets,
we lack corresponding information among the cells (samples) and the measurements (features). In this
scenario, unsupervised algorithms that are capable of aligning single-cell experiments are critical to
learning an in silico co-assay that can help draw correspondences among the cells. Maximum mean
discrepancy-based manifold alignment (MMD-MA) is such an unsupervised algorithm. Without requir-
ing correspondence information, it can align single-cell datasets from different modalities in a common
shared latent space, showing promising results on simulations and a small-scale single-cell experiment
with 61 cells. However, it is essential to explore the applicability of this method to larger single-cell
experiments with thousands of cells so that it can be of practical interest to the community. In this paper,
we apply MMD-MA to two recent datasets that measure transcriptome and chromatin accessibility in
~2000 single cells. To scale the runtime of MMD-MA to a more substantial number of cells, we extend
the original implementation to run on GPUs. We also introduce a method to automatically select one of
the user-defined parameters, thus reducing the hyperparameter search space. We demonstrate that the
proposed extensions allow MMD-MA to accurately align state-of-the-art single-cell experiments.

1 Introduction

Most single-cell genomics assays measure a single property of the genome: scRNA-seq for mRNA expres-
sion, scMethyl-seq for methylation, scATAC-seq for chromatin accessibility, etc. The result is a detailed,
single-cell view of the genome, but one in which only one property of each single cell can be measured. In
some cases, pairs or even triplets of experimental assays can be combined into a single co-assay to explic-
itly measure multiple properties of the same cell (reviewed in [1]), but in general these co-assays tend to
be lower throughput, more expensive, and noisier than the individual assays. Accordingly, a problem of in-
creasing importance is to develop computational methods capable of integrating multiple types of single-cell
measurements.
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Figure 1: Two approaches to integration of heterogeneous single-cell data. A population of cells is
divided into aliquots and subjected to two different single-cell assays. The measurements for each cell can
either be embedded into a shared latent space (top right) or explicitly matched between data sets (bottom
right).

Name Year  Approach Problem Supervised
JLMA [2] 2011  Eigenvalue decomposition on joint Laplacian Embedding  No
GUMA [4] 2014  Optimize geometry matching and feature matching ~ Matching No
MATCHER [5] 2015  Gaussian process to 1D trajectory Embedding  No
MAGAN [6] 2018  Generative adversarial network Matching Yes
LIGER [7] 2019  Non-negative matrix factorization Embedding  Yes
Seurat v3 [8] 2019  Canonical correlation analysis Embedding  Yes
MMD-MA [9] 2019  Optimize maximum mean discrepancy Embedding No
UnionCom [3] 2020  Optimize geometry matching and global scaling Embedding  No

Table 1: Algorithms for aligning multi-omic single-cell data.

This general integration problem can be approached in two distinct ways: embedding or matching (Fig-
ure 1). In either case, a single cellular population is divided into two or more aliquots, and each aliquot is
subjected to a different single-cell assay. The result is a collection of matrices in which rows correspond to
individual cells and columns correspond to features of that cell. For scRNA-seq, the features are genes; for
scATAC-seq the features are peaks, and for scMethyl-seq, the features are CpGs. Notably, all of the axes
are disjoint: no cells and no features are shared across the different data sets. In the matching approach, for
each pair of data sets, cells are matched to another in a one-to-one fashion with the aim of matching cells
that share similar physical properties. In the embedding approach, integration is accomplished by projecting
all of the cells into a shared latent space, usually of some user-specified dimensionality p. Cells that are
close to one another in this latent space are inferred to share similar properties. In the machine learning lit-
erature, the problem of finding such a shared latent space is referred to as manifold alignment [2]. Note that
any embedding method can be adopted to also solve the matching task, simply by carrying out a matching
procedure in the latent space. Conversely, it is possible to use a matching to induce an embedding [3].

A variety of algorithms have been developed to address both variants of this integration problem (Ta-
ble 1). For embedding, some algorithms in the machine learning literature predate the existence of single-
cell genomics data. For example, the joint Laplacian manifold alignment (JLMA) algorithm [2] constructs
a cross-domain Laplacian submatrix using £-NN graphs that capture the local geometry of the data and then
performs eigenvalue decomposition to find an embedding. One of the earliest manifold alignment methods
explicitly developed for single-cell data, MATCHER [5], uses a Gaussian process latent variable model to
project two data sets onto a 1D “pseudotime” trajectory. The model outputs a matching computed in this 1D
space. More recently, LIGER [7] integrates single-cell data using an integrative non-negative matrix fac-
torization to project the data into a shared low-dimensional space and then performs joint clustering in this
space using a neighborhood graph. Finally, the latest version of the Seurat software (v3) [8] aligns pairs of
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single-cell data from different modalities but matching feature space by using canonical correlation analysis
with lo-normalization.

The earliest method we are aware of for constructing an explicit matching between data sets is the
generalized unsupervised manifold alignment (GUMA) algorithm [4], which optimizes an objective function
with three terms: a geometry matching term across two different domains, a feature matching term, and a
geometry preserving term for each domain. The algorithm aims to learn two matchings: not just a one-
to-one correspondence between cells but also a one-to-one correspondence between features in the two
domains. UnionCom [3] finds a matching between data sets using just the first matching term from GUMA.
The optimization is extended to better handle datasets of different sizes, and non-linearity is introduced
by running the matching on geodesic distances on a k-NN graph within each data set. Subsequently, the
matching can be used to induce an embedding via a modified t-distribution Stochastic Neighbor Embedding
(t-SNE) method. Another manifold alignment method, MAGAN [6], uses generative adversarial networks
(GAN5) to create a mapping between two different domains. Each domain is input into the generator of a
GAN, which tries to produce the other domain as output. The generator aims to output samples such that
the GAN’s discriminator module is unable to distinguish them from the real samples of the other domain.
Thus, rather than creating a shared manifold, MAGAN produces two manifolds with an explicit alignment
between them.

A key feature of each of these algorithms is whether the integration requires supervision in the form of
correspondence information, i.e., information about which cells (rows) or features (columns) are matched.
Of course, complete and perfect knowledge of the cell correspondence information is simply the solution to
the mapping problem, so the correspondence information is typically incomplete (i.e., it is known for only
a subset of cells or features) or noisy. JLMA, GUMA, MATCHER, and UnionCom are fully unsupervised
algorithms. MAGAN can be run in unsupervised mode, but empirical results indicate that including some
feature correspondence information is critical for good performance [6]. LIGER requires some feature-level
correspondence information, since this is necessary to construct its neighborhood graph. Seurat also requires
feature-level correspondence to perform the CCA step.

The current work builds upon a recently described method—maximum mean discrepancy manifold
alighment (MMD-MA)—that approaches integration of heterogeneous single-cell data sets as an unsuper-
vised embedding problem [9]. MMD-MA employs an objective function that minimizes the maximum mean
discrepancy (MMD) between the data sets in the latent space, while also maintaining the underlying struc-
ture of each data set. The original paper describing MMD-MA demonstrates the excellent performance of
the algorithm on three simulated data sets, as well as one real data set consisting of gene expression and
methylation profiles of 61 single cells. Here, we provide an open source, GPU-based implementation of
MMD-MA that allows it to scale up to the analysis of thousands of cells. We also demonstrate the utility of
MMD-MA on two additional data sets. A co-assay data set, comprised of measurements of mRNA expres-
sion and chromatin accessibility, provides a gold standard by which we can explictly measure the quality
of the matching induced by MMD-MA. We also apply MMD-MA to a differentiation time course dataset
comprised of scRNA-seq and scATAC-seq measurements over five developmental time points of mouse em-
bryonic stem cells (mESCs), demonstrating the algorithm’s ability to correctly match cells to neighbors from
the same time point. As part of our optimization, we demonstrate how to reparameterize MMD-MA, effec-
tively eliminating one of its key hyperparameters. And we provide empirical evidence that the GPU-based
implementation provides a factor of 25 speedup relative to the original CPU implementation.
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2 Methods

2.1 The maximum mean discrepancy manifold alignment algorithm

MMD-MA [9] optimizes an objective that embeds two datasets into a shared latent space. Let the two sets
of points, X(1) = (xgl),a:g), ,x%ﬁ)) from X and X@ = (xgz),xgz), ,a:g)) from X(?), represent
the two different single-cell measurements.

The input to the algorithm is in the form of similarity matrices K and K5 generated for domain X'(!)
and X2, respectively. The pairwise similarities between the samples in a domain are calculated using
positive definite kernel functions Ky : X (1) x xI) — R for I = 1,2. This formulation makes the method
generalizable across any type of data, like vectors, graphs, or strings, for which a kernel function can be
defined. In this work, we use a scalar product kernel for both K and K».

Mapping matrices «; and ag, of size n; X p and ny X p respectively, project the samples from the two
domains into a shared latent space of dimension p. MMD-MA optimization learns these mappings such that
the projections Kja; and Kaap are as similar as possible. Specifically, MMD-MA optimizes, with respect
to a1 and ao, an objective function that consists of three components. The first component is the MMD term
to encourage the differently measured points to have similar distributions in the latent space:

MMD? ({ugn’m’ugl)}’{u?)’”"u%)}) = nlfiélleM(ugl)’ug'l))

ny n2

2 1 &
=Y K ) 5 YT K ),
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where uz(]) =¢ [(acz(])), and ¢ is the mapping of the input space to the p-dimensional latent space. Follow-
ing Liu et al. [9], we use a radial basis function (RBF) kernel for K;:

Nyl ?

Ky (uj,uj) =e  -207 (D

where o is the bandwidth parameter. The second component of the MMD-MA objective is a distortion term
to preserve the structure of the data between the input space and the latent space:

dis(ay) = ||K1 — Krara] K7 |3, 2

where [, is an identity matrix such that p is the number of learned features for the dataset. The third
component avoids collapse to a trivial solution:

pen(ar) = |laf K[ o = L|l3, )
Thus, the final objective is

ami;l MMD(Klal, K2a2)2 + Ao (diS(Oq) + diS(ag)) + A (pen(al) + pen(ag)) . @
1,02

The MMD-MA algorithm requires that the user specify four hyperparameters: the dimensionality p of the
latent space, the relative weights A\; and Ao of the second and third terms in the objective (Equation 4), and
the bandwidth parameter o for the RBF kernel in the MMD term.
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2.2 Reparameterization of the kernel bandwidth

As with any kernel function, the RBF kernel K 5; in Equation 1 implicitly projects the data into a reproducing
kernel Hilbert space [10]. Although, in principle, the Hilbert space induced by an RBF kernel is infinite
dimensional, in practice any finite data set resides in a finite subspace of the full space. The bandwidth
parameter o associated with the kernel corresponds to the width of a Gaussian that is placed over each data
point. Small values of ¢ produce “skinny” Gaussians that make every data point highly dissimilar from every
other data point, and vice versa. Thus, o effectively controls dimensionality of the Hilbert space induced by
the kernel.

We implemented a heuristic reparameterization of MMD-MA that replaces the bandwidth parameter o
with a new parameter c. For a given collection of data points X (1) and X(?), we induce the corresponding
latent representations U 1) and U@ by using randomly initialized mapping matrices o1 and aa. We then
compute Euclidean distances between all pairs u;, u; € U (1) U U@, and we store the median Euclidean
distance d. Intuitively, this value provides a numeric scale for the distances in the embedded space. We
thus set the RBF kernel width as a constant factor of the scale d: 0 = cd. We hypothesize that setting
the bandwidth parameter in this data-driven way will allow us to fix c, thereby effectively reducing the
number of hyperparameters from four to three. Note that o1 and o are initialized using values drawn from
a uniform distribution over [0, 1], and that these matrices also serve as the starting point for the MMD-MA
optimization.

2.3 Datasets

Two sets of single-cell data sets from recent studies, each measuring both gene expression and chromatin
accessibility, are used in our experiments.

SNARE-Seq data Single-nucleus chromatin accessibility and mRNA expression sequencing (SNARE-
seq) [11] is a recently described, droplet-based method that can link a cell’s transcriptome with its accessible
chromatin for sequencing at scale. Because this method can measure both gene expression and chromatin
accessibility information from the same cell, we use the SNARE-seq dataset to validate MMD-MA by
evaluating the algorithm’s ability to correctly pair each expression profile with the correct chromatin acces-
sibility profile. The cells assayed for this dataset consist of a mixture of BJ, H1, K562 and GM 12878 cells,
downloaded from the Gene Expression Omnibus database under accession number GSE126074.

Gene expression information in single cells is stored as cell x gene counts matrix C;, of size n1 X my,
where n; = 1047 is the number of cells with RNA-seq measurements and m; = 18, 666 is the number of
genes. The chromatin accessibility information is stored in a Boolean cell x peak matrix C, of size no X ma,
where no = ni = 1047 is the number of single cells with ATAC-seq measurements and po = 136, 771 is
the number of peak regions. A value C,(i,j) = 1 indicates that peak j in cell 7 is accessible. As in the
original SNARE-seq publication, we reduce data sparsity and noise in the ATAC-seq data by performing
dimensionality reduction using the topic modeling framework cisTopic [12], resulting in a ny x m/, matrix
with m}, = 19

Mouse embryonic stem cell developmental data The second dataset consists of sciRNA-seq [13] and
sciATAC-seq [14] measurements, capturing transcription and chromatin accessibility information, respec-
tively. These measurements were taken during embryoid body (EB) differentiation of mouse embryonic
stem cells (mESCs) sampled at five stages: Days 0, 3, 7, 11, and finally as fully differentiated neural pro-
genitor cells (NPCs).

This mESC line, female (F121-6), was derived from a cross between Mus musculus strain 129/SV-Jae
(129) and Mus castaneus (cast) [15]. AIl mESCs were cultured and expanded on MEF feeders following the
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Figure 2: Integration of SNARE-seq data. PCA projection of the (a) gene expression and (b) chromatin
accessibility profiles from the SNARE-seq data set. (c) The MMD-MA algorithm was used to project
the SNARE-seq data into a 5-dimensional latent space, which was subsequently projected to 2D via PCA
for visualization. (d) Projection for UnionCom (also reduced to 2D using PCA) for the best performing
hyperparameters, using the reduced RNA-seq data (dimension p = 10).

standard operating procedure designed for male mESC cell line F123 (4DN Consortium https://data.
4dnucleome.org/protocols/1d390581-9200-4494-8b24-3dc77d595bbb, except for the
addition of 1% penicillin/streptomycin. Differentiation of mESCs into EBs was done using a standard LIF-
withdrawal protocol. In brief, mESCs were grown on gelatin-coated plates for two passages to remove MEF
feeders. Feeder-free mESCs were harvested and aliquots were saved as day O (D0). The remaining cells
were cultured in regular medium (10% FBS and 1% penicillin/streptomycin in DMEM with high glucose)
in non-adherent petri-dishes for 11 days of EB differentiation. EBs were collected at day 3, 7, and 11 (D3,
D7 and D11) and treated with accutase to prepare single-cell suspensions for single-nucleus sciRNA-seq
and sciATAC-seq. An aliquot of D11 EBs was used to derive NPCs using a published protocol [16]. NPCs
were positively identified by staining with an antibody for nestin and used for sciRNA-seq and sciATAC-seq

Similar to the SNARE-seq data, the mouse expression and chromatin accessibility profiles are repre-
sented as two matrices Cy and C,. However, for this dataset we reduced dimensions for both sciRNA-Seq
and sciATAC-seq using cisTopic [12]. In this way, we obtained feature matrices C, of size n1 x m1, where
n1 = 2127 and m; = 60 and C,, of size ny X ms, where ny = 1182 and my = 25.

Given that nl1 # n2, this dataset highlights the importance of developing unsupervised manifold align-
ment methods where it is hard or impossible to obtain one-to-one correspondence between the cells.

We perform ¢2-normalization on the samples of the two datasets before converting them into scalar
product similarity matrices K7 and K.
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2.4 Assessing alignment

For the SNARE-Seq dataset we have one-to-one correspondence information on the cell axis, because the
data is captured from a single-cell co-assay. We do not provide this correspondence information to the
MMD-MA algorithm, but instead use it to validate the performance of the method. To assess the alignment,
we use the known correspondence between cells in the two domains as follows. For each cell = in one
domain, we identify its true match in the other domain. We then rank all other-domain data points in the
learned latent space by their distance from z, and we compute the fraction of points that are closer than the
true match. Averaging this fraction across all data points in both domains yields the average “fraction of
samples closer than the true match” (FOSCTTM), where perfect recovery of the true manifold structure will
yield a value of zero.

For the mouse data, unlike the SNARE-Seq dataset, we do not have one-to-one correspondence infor-
mation between the cells. However, we do have a time point label associated with each cell, corresponding
to Days 0, 3, 7, 11, and NPCs. Therefore, to measure the performance of MMD-MA we evaluate how well
the cells cluster in their respective time-point clusters after the alignment. We use the silhouette coefficient
for this analysis [17], defined as (b — a)/ max(a, b), where a is the mean intra-cluster distance and b is the
mean distance to nearest sample in a different cluster. The silhouette coefficient ranges from -1 (worst) to 1
(best). Since the silhouette coefficient represents the overall clustering quality, we join the two datasets and
calculate the coefficient for the clusters of the combined data modalities.

2.5 Selection of hyperparameters

As described below, we fix one of MMD-MA’s four hyperparameters via simulations. Hence, our imple-
mentation of MMD-MA requires tuning the three remaining hyperparameters. To this end, we specified a
hyperparameter grid as follows: weights A1, A2 € {1073,1074,107°,1075,10~"} for the terms in the opti-
mization problem and the dimensionality p € {4, 5,6} of the embedding space. To select hyperparameters
we used the correspondence information and the time-point labels for the SNARE-seq and mouse datasets,
respectively. We split the dataset into a 2:1 ratio, such that two-thirds of the samples were used as the train-
ing set and one-third as the validation set. Next, we ran the MMD-MA algorithm on the training dataset
and calculated its performance on the validation set. We picked the set of hyperparameters that resulted in
the lowest FOSCTTM score for SNARE-seq data and the highest silhouette score score for the mouse data.
Finally, we ran the MMD-MA on the entire dataset using the selected hyperparameters and report the results
in Section 3. This strategy allows us to choose the optimal hyperparameters in a systematic manner.

2.6 Baselines

We compare MMD-MA with the following unsupervised algorithms that do not require any correspondence
information for aligning the datasets:

e JLMA [2] has one tunable hyperparameter, number of neighbors k, and we ran it for values kK = 5
(default) and k£ = 6. For larger values of &, the algorithm runs too slowly to be practical.

e UnionCom [3] requires tuning of four hyperparameters and we specified the following search grid
for them: the number k € {5,10,25,...,n} (with increments of 25 after k& = 25) of neighbors
in the graph, the dimensionality p € {3,5,10} of the embedding space, the trade-off parameter
g € {0.001,0.005,0.01,0.5, 0.1,0.5,1,5,10} for the embedding, and a regularization coefficient
p € {0.001,0.005,0.01,0.5,0.1,0.5,1,5,10}.

e PCA We used PCA to project the two datasets in the same space. This baseline demonstrates that
there is little to no correspondence present in the data that can be easily extracted by performing
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Figure 3: Comparison of MMD-MA'’s performance on the SNARE-seq data with other unsupervised
baselines. The figure plots the FOSCTTM score for all the cells in SNARE-Seq data, with cells sorted for
each method by increasing score. Note that the UnionCom algorithm includes an initial preprocessing step,
whereby the RNA-seq data is projected to 10 dimensions using PCA.

dimensionality reduction and projection in the same space. We need to learn such correspondences
by performing the alignment. Since PCA is indifferent to the orientation of each dimension, we treat
the direction of each dimension as a hyperparameter. We present results for the optimally performing
orientation.

¢ Random Projection We implemented another sanity check by randomly projecting the two datasets
in the same space.

2.7 Implementation details

To allow the MMD-MA algorithm to scale up from the 61 cells used in the original publication to ~2000 an-
alyzed here, we re-implemented the algorithm using Pytorch [18] to allow GPU usage. The Apache-licensed
source code and documentation are available at https: //bitbucket .org/noblelab/2020_mmdma_
pytorch

3 Results

3.1 MMD-MA successfully integrates SNARE-seq data

To evaluate the performance of the MMD-MA algorithm, we begin by analyzing the SNARE-seq data. This
data set contains gene expression and chromatin accessibility measurements which, when projected to 2D
using PCA, exhibit qualitatively similar clusterings into three groups (Figure 2a—b). This is roughly similar
to [11], where further pre-processing and t-SNE plots of the data result in four clusters representing BJ,
GM12878, H1, and K562 cell mixtures. MMD-MA analysis of this data set, using a 5D latent space fol-
lowed by projection to 2D via PCA, suggests that the algorithm succeeds in overlaying the two distributions
(Figure 2c). This result is in contrast to UnionCom, which induces some shared structure but also groups
a large cluster of gene expression measurements separately from any chromatin accessibility measurements
(Figure 2d).
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Figure 4: Comparison of MMDA-MA and UnionCom on the SNARE-seq data. The figure plots the
distribution of FOSCTTM scores across a grid of hyperparameters for MMD-MA and UnionCom. Two
variants of MMD-MA are included, one that operates on the original RNA-Seq count matrix with feature
dimension p = 18, 666, and one that operates on RNA-seq data that has been reduced to p = 10 dimensions
using PCA. Since UnionCom paper does not specify data pre-processing normalization scheme, we applied
both z-score and [2-normalization and found that the best performing score for z-score normalized data was
higher (mean FOSCTTM of 0.26) than [2-normalized data (mean FOSCTTM of 0.22). Both results were
better than applying UnionCom on the datasets without normalization (mean FOSCTTM of 0.39). Overall,
the best performing FOSCTTM scores obtained for MMD-MA (0.16 and 0.14) are much lower than that of
UnionCom.

To quantitatively evaluate these results, we exploit the fact that SNARE-seq is a co-assay and hence pro-
vides us with a true mapping between expression measurements and chromatin accessibility measurements.
Using this mapping, we can compute the fraction of samples closer than the true match (FOSCTTM) score,
as described in Methods. In addition to MMD-MA and UnionCom, we also apply JLMA and PCA to the
data. All methods use a 5-dimensional latent space. We include as a negative control a random projection
to 5 dimensions. The results (Figure 3) support the qualitative assessment from Figure 2, showing that
MMD-MA achieves the lowest average FOSCTTM value of 0.16.

Note that UnionCom is too computationally expensive to run directly on the RNA-Seq measurements
across 18,666 genes. Therefore, following [11], we first reduced the dimensions of the RNA-Seq measure-
ments to 10 using PCA. To be sure that this PCA step is not the cause of the good relative performance of
MMD-MA, we also ran MMD-MA on this 10-dimensional dataset. The performance (mean FOSCTTM of
0.14, Figure 4) is comparable to MMD-MA on the full dataset. Since UnionCom paper [3] does not specify
data pre-processing normalization scheme, we applied both z-score and [2-normalization and found that the
best performing score for z-score normalized data was higher (mean FOSCTTM of 0.26) than [2-normalized
data (mean FOSCTTM of 0.22, presented in Figure 3). Both results were better than applying UnionCom
on the datasets without normalization (mean FOSCTTM of 0.39) (See Figure 4).

3.2 Accurate time-point based clustering of mouse embryonic stem cell data

We next turn to the mouse embryonic stem cell time series data. Both components of this dataset, gene
expression and chromatin accessibility, exhibit a boomerang-shaped structure when visualized using PCA,
corresponding to the developmental trajectory (Figure Sa—b). Among the five time points, the neural precur-
sor cells (NPCs) appear to be the most distinct in both data modalities.
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Figure 5: Mouse embryonic stem cell data. (a) The first two principal components of the mouse scRNA-
Seq data. (b) Similar to panel (a), but for the scATAC-seq data. (c) The 4-dimensional embedding learned
by MMD-MA, projected to 2D via PCA. Points are colored according to data type. (d) Same as panel (c),
but coloring points by time point.

Projection of the data to five dimensions, followed by 2D PCA visualization, suggests that MMD-MA
successfully overlays the two data sets (Figure 5c¢), with measurements from the same developmental time
point lying near one another in the latent space (Figure 5d). To quantify this agreement, we compute the
silhouette coefficient for each time point. The resulting values agree with the visual layout in Figure 5d:
the NPC time point gives the best alignment performance of 0.9323, whereas the Day 7 and 11 clusters,
which overlap in both the expression and chromatin accessibility projections, achieve the lowest silhouette
coefficients (0.0214 and —0.0525, respectively).

We also use the silhouette analysis to quantitatively compare MMD-MA to UnionCom, JLMA, PCA
and random projections (Table 2). Note that this comparison is slightly unfair, in favor of UnionCom: for
UnionCom we report the results from the best performing hyperparameter values, whereas for MMD-MA
we pick hypeparameters using cross-validation, as described in Methods. Nonetheless, MMD-MA’s average
silhouette coefficient is the highest among all methods. Furthermore, the silhouette coefficient for MMD-
MA alignment is consistently better than JLMA for all five timepoints and better than UnionCom in four
out of five cases. In general, all methods struggle to discriminate between data from days 7 and 11, which
appear to be quite similar to one another.

To investigate whether integration of the two data modalities leads to improved clustering within each
data set, we compute silhouette coefficients separately within each data modality (sciRNA-seq and sciATAC-
seq, Figure 6). Not surprisingly, projecting to 5D using PCA consistently improves the silhouetted coeffi-
cient relative to analysis carried out in the original data space. This observation holds across all time points
and across both data modalities. However, when we compare PCA, which is performed independently
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Method Day 0 Day3 Day7 Dayll NPC Avg.
MMD-MA 0.7633 0.5107 0.0214 -0.0525 0.9323 0.4767
UnionCom 0.6906 04788 0.0824 -0.1025 0.8076 0.4223

JLMA 0.1674 -0.0691 -0.3229 -0.3684 0.6019 0.0239
PCA 0.4355 04661 -0.055 -0.1239 0.6059 0.3095

Random Projection (avg.) 0.2825 -0.0031 -0.1762 -0.4136 0.6997 0.0887

Table 2: Comparison of MMD-MA with other unsupervised baselines using the mouse data set. The
table lists the silhouette score for each method with respect to each time point in the mouse embryonic stem
cell data set, with the average score in the final column. The best-performing method in each column is
indicated in boldface.

(a) Gene Expression (b) Chromatin Accessibility
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Figure 6: Evaluation of the time-point based clustering within each sciRNA-seq and sciATAC-seq dataset.
MMD-MA not only preserves the local structure of the two datasets, but improves the clustering perfor-
mance of sciATAC-Seq data. We hypothesize that during the alignment step, the time-point information
from sciRNA-seq guides the cell measurements of sciATAC-seq to better local clustering.

on the two data modalities, to MMD-MA, which is performed jointly, we see a consistent improvement
in the silhouette scores computed with respect to the sciATAC-seq data. We hypothesize that during the
alignment step, information from the sciRNA-seq data perturbs the sciATAC-seq measurements to better
local clustering. The converse is not true—sciRNA-seq clustering is approximately the same using PCA
or MMD-MA—presumably because the sciRNA-seq data is less noisy, more informative with respect to
developmental time, or both.

3.3 Improved implementation

Faster GPU computation To compare the running time of our MMD-MA GPU implementation with the
original one in [9], we subsampled 50, 100, 200, 400, and 800 cells from the SNARE-Seq dataset and ran
both implementations of MMD-MA. We ran the GPU implementation on an Nvidia GTX 1080, and the
CPU implementation on an AMD Athlon”™ x 4950. Our GPU implementation scales well with the number
of cells (Figure 7a), requiring ~ 4 minutes to run 20,000 iterations of MMD-MA on 1047 cells, whereas the
CPU implementation takes ~ 100 minutes for the same task.

Automatic bandwidth selection We reparameterize MMD-MA by replacing the bandwidth parameter
o with a new parameter c. We aim to fix ¢ and reduce the effective number of hyperparameters from
four to three. To select a value of ¢, we re-created the three simulation datasets from [9] with a larger
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Figure 7: Improved MMD-MA implementation. (a) The figure plots wall clock time as a function of the
number of cells, with series corresponding to the original CPU implementation of MMD-MA and our GPU
implementation. (b) Best performing FOSCTTM values for running the reparameterized MMD-MA on the
three recreated simulations from [9] for different values of c.

number of samples (n = 1000). The three simulations consist of points belonging to a shared manifold
(branch, swiss-roll, and frustum) and projected non-linearly to a high dimensional space. The number of
samples was increased to represent the sample size of our real-world datasets. Given that all the points
have correspondence information, we can use the FOSCTTM value to evaluate the alignment performance.
Therefore, we ran our reparameterized MMD-MA algorithm that calculated o with different values of ¢ €
{2,4,8,16, 32,64} and recorded the best performing FOSCTTM values for each.

As shown in Figure 7b, we observe that different values of ¢ give widely varying performance. For
example, FOSCTTM values for ¢ = 4 range from 0.10 (simulation 1) to 0.22 (simulation 2) to 0.06 (simula-
tion 3). However, ¢ = 8 consistently gives low FOSCTTM values across all three simulations with minimal
variation (standard deviation 0.029). This is summarized by taking the averages of the FOSCTTM values
across the three simulations. Based on these results, we fixed the parameter as ¢ = 8 in the analyses of
SNARE-seq and mouse data reported above.

4 Discussion

Integration of heterogeneous single-cell data sets requires the development of effective alignment algo-
rithms. We demonstrate that MMD-MA can be effectively used to align real-world single-cell experiments
by applying it to two recent state-of-the-art datasets that measure single-cell transcriptome and chromatin
accessibility. We evaluate MMD-MA’s alignment performance and show that it outperforms existing state-
of-the-art unsupervised alignment methods.

We extend the MMD-MA implementation to GPUs, allowing it to scale to thousands of samples and
improve its running speed by a factor of 25. Finally, we also reduce the hyperparameter search space for
the MMD-MA algorithm by proposing a method to automatically select the o parameter that determines the
bandwidth during kernel calculation.

We acknowledge that we will not be able to use hyperparameter tuning for datasets without available
labels or correspondence information (that is, in a truly unsupervised setting). Therefore, analyzing hyper-
parameters and devising strategies to select them automatically is a part of the future work for this study.
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Our approach of automatically assigning the o parameter (Section 2.2) is the first step in that direction.
For now, a reduced hyperparameter search space and a fast GPU-based framework allow our MMD-MA
implementation to serve as a useful tool to perform single-cell alignment of different real-world datasets.

Funding This work was funded by NIH award U54 DK107979.
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