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Abstract

The use of evolutionary profiles to predict protein secondary structure, as well as other protein structural
features, has been standard practice since the 1990s. Using profiles in the input of such predictors, in place or
in addition to the sequence itself, leads to significantly more accurate predictors. While profiles can enhance
structural signals, their role remains somewhat surprising as proteins do not use profiles when folding in
vivo. Furthermore, the same sequence-based redundancy reduction protocols initially derived to train and
evaluate sequence-based predictors, have been applied to train and evaluate profile-based predictors. This
can lead to unfair comparisons since profile may facilitate the bleeding of information between training and
test sets. Here we use the extensively studied problem of secondary structure prediction to better evaluate
the role of profiles and show that: (1) high levels of profile similarity between training and test proteins are
observed when using standard sequence-based redundancy protocols; (2) the gain in accuracy for profile-
based predictors, over sequence-based predictors, strongly relies on these high levels of profile similarity
between training and test proteins; and (3) the overall accuracy of a profile-based predictor on a given
protein dataset provides a biased measure when trying to estimate the actual accuracy of the predictor, or
when comparing it to other predictors. We show, however, that this bias can be avoided by implementing a
new protocol (EVALpro) which evaluates the accuracy of profile-based predictors as a function of the profile
similarity between training and test proteins. Such a protocol not only allows for a fair comparison of the
predictors on equally hard or easy examples, but also completely removes the need for selecting arbitrary
similarity cutoffs when selecting test proteins. The EVALpro program is available for download from the
SCRATCH suite (http://scratch.proteomics.ics.uci.edu).
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1. Introduction

Protein structure prediction is usually decomposed into simpler but still difficult tasks like the prediction
of secondary structure, relative solvent accessibility, domains, or contact/distance maps. Despite the variety
of methods proposed to tackle each of these tasks, the use of evolutionary information, notably sequence
profiles, in the input of the prediction methods has been a constant since the 90s when it was shown to
significantly improve prediction accuracies (Rost and Sander, 1993). It is not uncommon to report an
improvement of 10% or more when using profiles instead of sequences alone.

A key reason for why profiles improve accuracy is that they can amplify structural signals against the
noisy background of evolution. For instance, an alternating pattern of buried and exposed residues in a
profile, typically signals the presence of an alpha helix on the surface of a protein (Benner and Gerloff,
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1991). The same pattern can be less visible at the level of an individual sequence. However, this observation
alone does not provide a full explanation for their usefulness for two main reasons. First, proteins do not
use profile information when folding in vivo. Thus, in principle, one may expect sequence-based predictors
to be able to achieve the same level of accuracy as profile-based predictors; however, this has not been
observed in the past 30 years. Second, over the same time period, the same sequence-based redundancy
reduction protocols–initially derived to train and evaluate sequence-based predictors–have been applied to
train and evaluate profile-based predictors. However, if we visualize a profile as creating a sort of “ball”
around a sequence in protein space, then profiles increase the volume occupied by both training and test
sequences, increasing the chance of an overlap, i.e. of information bleeding between training and test sets
(Figure 1), thereby reducing the quality and fairness of the evaluation. Thus here we set out to study these
subtle effects and consider the possibility that the observed gain in accuracy could be at least in part due
to an evaluation bias - the bias that results from having sequence-based redundancy reduction protocols for
evaluating profile-based predictors.

1.1. Three decades of profile-based predictors

The transition from sequence-based to profile-based predictors occurred after a series of landmark studies
in the 80s and 90s revealing on one side the relationship between sequence and structure (Doolittle, 1981;
Chothia and Lesk, 1986; Sander and Schneider, 1991), and on the other side, providing fast alignment
methods to detect putative homologous proteins in large un-annotated protein databases (Sankoff and
Kruskal, 1983; Lipman and Pearson, 1985; Altschul et al., 1990, 1997). It became clear at this point
that a single protein sequence was sufficient to retrieve information about the entire protein family and
its evolution. Evolutionary profiles, calculated from multiple sequence alignments (MSA) of the putative
homologous proteins and expressed in the form of amino acid frequencies at each alignment position or
position-specific scoring matrices (PSSM), were rapidly selected as a solution to represent and incorporate
this newly available information into prediction systems in place of the previously used sequence-based
features. The resulting gain in accuracy observed in these studies was striking. For instance, sequence-
based secondary structure predictors available in the early 90s with an estimated accuracy between 60% and
65% (Qian and Sejnowski, 1988) were rapidly replaced by a new generation of profile-based predictors with
an estimated accuracy between 70% and 76% (Rost and Sander, 1993; Jones, 1999). Since then, predictors
have kept improving thanks notably to more sophisticated prediction methods and larger databases (Yang
et al., 2016; Jiang et al., 2017) but still belong to the same generation of profile-based predictors. The ˜10%
gain in accuracy initially observed is still visible nowadays as recently showed in Heffernan et al., 2018 and
Torrisi et al., 2019. Similar trends can be observed for predictors beyond secondary structure to the point
that today most state-of-the-art predictors include evolutionary profiles in their input representations.

1.2. Assessing predictors: redundancy versus evolutionary profiles

The general evaluation protocol used in the field to assess the accuracy of profile-based predictors was
proposed in Rost and Sander, 1993. With this protocol, training and test proteins are selected from the
Protein Data Bank (PDB, Gilliland et al., 2000), or from databases directly derived from the PDB like
SCOPe (Chandonia et al., 2013) or CATH (Orengo et al., 2016), via a redundancy reduction step performed
at the sequence identity level using tools like PSI-BLAST (Altschul et al., 1997), CD-HIT (Godzik and Li,
2006), or Pisces (Wang and Dunbrack, 2003). This protocol was suggested based on the assumption that a
protein sequence sharing less than 25% identity with the protein sequences used to train the predictor is a
suitable independent test protein to evaluate a profile-based predictor, an assumption clearly visible from
Figure 2 of Rost and Sander, 1993 (depicted by case (A) in Figure 1 of this study). However, we have known
for a long time that it isn’t particularly unlikely that such a protein may belong to the same family as some
of the training proteins (Sander and Schneider, 1991; Brenner et al., 1998; Rost, 1999; Sauder et al., 2000).
Such cases would inevitably result in high levels of similarity between the corresponding profiles despite the
low level of sequence identity (cases (B) to (E) in Figure 1), and may be the reason for much of the gain
in accuracy of profile-based predictors. Likewise, overall differences in accuracy between predictors could
result from there being different proportions of cases (A) to (E) in Figure 1 between their training sets and
the sets they are tested on.
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Figure 1: Illustration of various cases of protein space coverage obtained when using evolutionary profiles, derived from multiple
sequence alignments (MSA), to train and evaluate a predictor on two proteins sharing less than 25% sequence identity. (A)
corresponds to the case initially anticipated in the early 90s (Figure 2 of Rost and Sander, 1993). Other cases observed in this
study are depicted by (B), (C), (D), and (E). Profiles lead to different kinds of overlap between training and test sequences.

1.3. A profile-induced evaluation bias?

To better understand the mechanism by which evolutionary profiles contribute to a predictor’s accuracy,
we first designed and implemented a simple evaluation protocol to assess the accuracy of a predictor as a
function of a profile similarity measure between training and test proteins, calculated using a sliding windows
of fixed length. We then applied this protocol to six state-of-the-art profile-based secondary structure
predictors using both their respective training and test datasets, whenever available, and a separate test
dataset specifically prepared for these predictors. The results of this first set of experiments confirm our
initial suspicions, notably: (1) high levels of profile similarity between training and test examples can be
observed despite the low level of sequence identity between the corresponding proteins; (2) the accuracy of
the predictors is strongly correlated to the level of profile similarity; and (3) high levels of profile similarity
are necessary for the predictors to perform significantly better than sequence-based predictors. We then
confirm that the redundancy between training and test datasets introduced by the use of evolutionary
profiles is the consequence of a larger than initially anticipated coverage of the protein space by these
profiles (illustrated in Figure 1). We finally show these conclusions are not specific to secondary structure
predictors by showing that comparable results are obtained when using other kinds of predictors. Take
together, these results suggest that the use of evolutionary profiles introduces evaluation biases within the
current protocols, and that the level and distribution of profile similarity between training and test sets
should be explicitly considered when evaluating and comparing different predictors.

2. Methods

2.1. Profile similarity measure

Measuring the similarity between evolutionary profiles is a problem usually addressed in the context
of identifying homologous regions of proteins based on their respective evolutionary profiles. For instance,
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Predictors Datasets Profiles
Name & Release Date Date Training Test Method Type Database Release

SSpro, ACCpro 5.1 10/2013 08/2013 5,772 - PSI-Blast Frequency UniRef50 06/2015
JPred 4 12/2014 07/2014 1,348 149 PSI-Blast PSSM UniRef90 07/2014
PSIPRED 4.02 03/2016 03/2016 10,739 - PSI-Blast PSSM UniRef90 05/2016

SPIDER 3 10/2016 06/2014 4,590 1,199
PSI-Blast PSSM UniRef90 05/2016
HHblits Frequency UniProt20 02/2016

Porter, PaleAle 5 03/2018 12/2014 15,753 3,154
PSI-Blast Frequency UniRef90 05/2016
HHblits Frequency UniProt20 02/2016

SPOT-1D 08/2018 02/2017 10,029 1,213
PSI-Blast PSSM UniRef90 04/2018
HHblits Frequency UniClust30 10/2017

Table 1: Description of the profile-based predictors used in this study. The reported release date for each predictor corresponds
to the date the models were trained whenever available, to the release date of the software otherwise. The reported date for each
dataset is such that all proteins in the corresponding training set had their structure available prior to that date. The protein
database release reported in the last column is the release currently used by the online version of the predictors whenever the
information was available, a close match with the predictor’s release date otherwise.

HHblits (Remmert et al., 2011) detects homologous sequences by performing numerous pairwise alignments
of profile HMMs. While remarkably efficient at identifying homologous protein regions, these approaches
are more complex and costly to implement than needed in this study. Indeed, the similarity we wanted
here is a numerical similarity between the training and test examples of a predictor, independent from the
biology, fast to compute on any pair of profiles, and with no need to consider possible insertions in the
profiles. We also wanted this measure to be calculated between short protein regions of fixed length in order
to address the likely variations of profile similarity along the protein sequences and to limit this measure
to a very rough approximation of the information used by the predictors to make a prediction for a given
sequence position. We selected a window length of 30 amino acids in our experiments as a compromise
between various considerations such as the actual window sizes used by the predictors and the significance
of the measure for the selected length. This simplified the problem to measuring the similarity between two
30x20 numerical matrices that we further simplified by flattening the matrices into vectors of dimension
600 without any loss of generality since the matrix structure is not exploited by any of the predictors
considered in this study. We selected the cosine similarity measure between the vectors of dimension 600 in
our experiments for its desirable properties including notably its low complexity, amplitude independence,
and [0, 1] boundaries for positive spaces ([−1, 1] otherwise). For any profile window A of length 30 in a test
protein, we therefore define the similarity of A with the training dataset as the maximum cosine similarity
value calculated between A and all profile windows of length 30 in the corresponding training dataset.

2.2. Profile-based secondary structure predictors and corresponding training/test datasets

We selected six widely used protein secondary structure predictors such that (1) evolutionary profiles
constitute the largest part of their input features and (2) the training and test datasets used in the corre-
sponding studies were prepared using a 25% sequence identity threshold. Namely, we used:

• SSpro (Pollastri et al., 2002; Cheng et al., 2005; Magnan and Baldi, 2014)

• JPred (Cuff and Barton, 2000; Drozdetskiy et al., 2015)

• PSIPRED (Jones, 1999; Buchan and Jones, 2019)

• SPIDER (Heffernan et al., 2015, 2017)

• Porter (Pollastri and McLysaght, 2004; Torrisi et al., 2019)

• SPOT-1D (Hanson et al., 2018)

For each predictor, we also collected the corresponding training and test datasets whenever made available
by the authors and retrieved the protein databases used by these predictors to generate the profiles. A
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summary of the software releases, datasets, and profile generation methods used in this study is provided in
Table 1. Note however that:

• SSpro and Porter were evaluated without using their template-based prediction modules to remove
the evaluation bias they would introduce.

• The datasets used for the latest release of PSIPRED were not retained by the authors so we extracted
a fairly large representative training set from the PDB snapshot matching with the release date of the
predictor using Pisces (Wang and Dunbrack, 2003) with default settings.

• SSpro was originally evaluated using a cross-validation procedure on a large protein dataset. We
therefore considered this dataset as being only the training set of the predictor in this study.

• Porter’s test set is suitable for an independent evaluation of SSpro as all the proteins in this dataset
were released after June 2017 and share less than 25% sequence identity with any protein in the
training set of SSpro. We also used it to test PSIPRED in our experiments despite high redundancy
levels with the PSIPRED training set described above.

2.3. Sequence-based secondary structure predictor

In order to get a baseline accuracy for sequence-based prediction of the secondary structure in our
experiments and compare the performances between sequence-based and profile-based prediction, we used
the most recent predictor we found in that category: SPIDER3 single (Heffernan et al., 2018). Other
sequence-based predictors were considered during our study but were all systematically outperformed by
SPIDER3 single so only comparisons with this predictor’s accuracy are reported here.

2.4. Independent test protein dataset

We extracted from the PDB an independent test set of proteins for the seven predictors listed in Sec-
tions 2.2 and 2.3 so that all predictors could be evaluated on the same set of proteins with less than 25%
sequence identity with any of the proteins used to train all the predictors, i.e. following the evaluation pro-
tocol currently used in the field. PDB entries deposited after February 2017, with less than 25% sequence
identity with any of the proteins in the seven training datasets (sequence identity was estimated using PSI-
BLAST), and not violating any of the predictor-specific restrictions on the protein sequences (minimal and
maximal sequence lengths, no non-standard or unknown amino acids) were selected. The process resulted
in 409 such proteins. We name the corresponding protein dataset PDB409.

2.5. Profile similarity based evaluation protocol

We implemented the protocol described below to assess the accuracy of a profile-based predictor as a
function of the similarity level calculated between the profiles of its training and test proteins.

1. Evolutionary profiles are extracted for each training and test protein following the methods reported
in Table 1, i.e. using the same tools and protein databases as the ones originally used to train each
predictor.

2. Predicted secondary structures are obtained for each test protein by running the corresponding pre-
dictor with the same protein database as the one used to generate the profiles in the previous step.

3. Prediction accuracy and profile similarity level with the proteins in the training dataset are calculated
for each possible fragment of length 30 in the test proteins using a sliding window approach. Profile
similarity levels are calculated as described in Section 2.1. For the three predictors using two different
profiles in input, we consider each profile separately and report the results for both types of profiles.

4. We use the implementation of the Gaussian Process Regression (GPR) method publicly available
in the scikit-learn python library to interpolate the numerous pairs (profile similarity level, accuracy)
obtained during the previous step. The resulting functions are used to estimate and plot the predictors
accuracy at each profile similarity level.
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Figure 2: Evaluation results for the six profile-based secondary structure predictors considered in this study on their own
test datasets (Porter’s test set for SSpro and PSIPRED) following the protocol described in Section 2.5. The legend for each
plot is as follows: (a) the x-axis represents the profile similarity level calculated as indicated in Section 2.1, (b) the y-axis
represents the estimated predictor accuracy, (c) the GPR-learned functions interpolating the numerous observations at each
profile similarity level are drawn using continuous black curves with 95% confidence intervals drawn around the curve in grey
color, (d) the predictor’s average accuracy on the entire test dataset is depicted using discontinuous horizontal black lines, and
(e) the frequency of profile fragments observed at each profile similarity level is depicted by plain grey areas in the lower parts
of the plots, re-scaled for improved visibility.

3. Results

The results obtained following this protocol are reported individually for each of the six profile-based
secondary structure predictors in Figure 2 when evaluating the predictors using their own test sets and in
Figure 3 when evaluating them using the PDB409 dataset. A combined view for each set of results and
a comparison with the accuracy of the top-performing sequence-based predictor (SPIDER3 single) on the
same test datasets are provided respectively in Figures 4 and 5.

3.1. Origin of the redundancy observed when using profiles

The results obtained following the protocol described in Section 2.5 and reported in Figures 2 and 3
show clearly that high frequencies of test profile windows very similar or identical to the training profile
windows can be observed in several cases despite the very low level of sequence identity between the proteins.
A quick observation of the corresponding MSAs revealed large intersections between the members of each
MSA, providing a natural explanation for the high profile similarity values obtained on these examples. The
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various cases we observed (illustrated in Figure 1) suggest that the protein space covered by the members
of an MSA may be much larger than initially anticipated in the 90s (depicted by case (A) in Figure 1) and
could be a major factor influencing the overall accuracy of the profile-based predictors developed during the
last decades.

We test this assumption by evaluating both a profile-based predictor on sequences and a sequence-based
predictor on profiles. On one side, the experiment aims to check if the high accuracy of a profile-based
predictor is strongly dependent on the large intersections mentioned above by observing the change in
accuracy resulting from removing these intersections. On the other side, the experiment aims to check if
the low accuracy of sequence-based predictors is improved by adding such intersections. We trained the two
predictors using the same encoding for both sequences and profiles so that the two types of input data could
be used to evaluate the predictors. Sequences were represented as frequency profiles containing only 0 and 1
values as commonly done by sequence-based predictors. No extra features were used in these experiments.
The dataset and methods used to train the two predictors are not detailed here but are identical for each
predictor and closely follow the protocols used in Torrisi et al., 2019. The PDB409 dataset described in
Section 2.4 is used to evaluate the trained models both on sequences and profiles generated using HHblits.
The accuracy of each model on both types of input data is reported in Table 2.

Figure 3: Evaluation results for the six profile-based secondary structure predictors considered in this study on the PDB409
test dataset using the same representation than in Figure 2.
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Figure 4: Combined view of the evaluation results provided separately for each profile-based secondary structure predictor in
Figure 2, obtained on their own test datasets. Predictor names are omitted for visibility purposes and the average accuracy of
SPIDER3 single on the same test sets is indicated for comparison purposes by the discontinuous black line.

Figure 5: Combined view of the evaluation results provided separately for each profile-based secondary structure predictor in
Figure 3, obtained on the PDB409 test dataset. Predictor names are omitted for visibility purposes and the average accuracy
of SPIDER3 single on PDB409 is indicated for comparison purposes by the discontinuous black line.
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3.2. Profile-based prediction of other structural features

As mentioned in introduction, the use of evolutionary profiles to predict structural features of a protein
is not limited to the secondary structure prediction problem. We performed the same analysis on different
kinds of predictors to make sure that the main results of this study are not specific to the profile-based
prediction of the secondary structure. All these experiments led to highly similar results and conclusions so
we decided to report only some of these results for the three prediction problems listed below.

• Secondary Structure (8-class)

• Relative Solvent Accessibility (2-class)

• Torsion Angles (14-class)

We selected three predictors for each prediction problem among the ones already used during the pre-
vious experiments as most of these predictors are also trained to predict other structural features than the
secondary structure 3-class, occasionally distributed under a different name. Datasets and profile generation
methods reported in Table 1 are also valid for the corresponding predictors evaluated in this experiment.
Evaluation results are reported in Figure 6 and were obtained by evaluating each predictor on its own test
dataset similarly to the results reported in Figure 2.

4. Discussion

Studying the accuracy of profile-based predictors as a function of the profile similarity between training
and test datasets provides interesting results at two different levels. On one side, it reveals the mechanism
by which evolutionary profiles increases the prediction accuracy. On the other side, it reveals their use
introduce a fairly significant evaluation bias with the protocols used in the field. Both aspects are discussed
separately below.

4.1. How profiles improve prediction accuracy

The common belief that evolutionary profiles are more informative, compared to single sequences, in
structural feature prediction must be qualified in light of the results obtained in this study. All the predictors
evaluated in our experiments show a clear correlation between their prediction accuracy and the level of
profile similarity. It is striking to see how similarly all these predictors perform when looking at the results
reported in Figures 4 and 5. All predictors perform overall poorly on low profile similarity fragments
with, in some cases, a level of accuracy which is even below the level achieved by pure sequence-based
predictors. And all predictors improve steadily as the profile similarity level increases. A proper evaluation
of a predictor should use test proteins that are unrelated to the training proteins. We have seen that this
is not systematically the case with current protocols where variable levels of redundancy are observed as a
result of profiles being calculated from alignments of homologous sequences that contain identical subsets.
The results reported in Table 2 show that profile-based predictors are unable to sustain their performances
without this redundancy. This result is also visible when performing the opposite experiment, i.e. adding
some redundancy between the training and test sequences of a sequence-based predictor, by replacing test

Tested on sequences

Trained from sequences 72.3%
Trained from profiles 68.6%

Tested on profiles

Trained from sequences 74.5%
Trained from profiles 81.5%

Table 2: Observed accuracy of the profile-based and sequence-based predictors trained as described in Section 3.1 on the
PDB409 dataset.
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Figure 6: Evaluation results for profile-based predictors of structural features other than the secondary structure 3-class on
their own test dataset using the same representation than in Figure 2.

sequences with profiles, which ends up boosting the predictor’s accuracy. Taken together, these results
show that the ∼ 10% accuracy difference between profile-based and sequence-based predictors is in part due
to large quantities of highly similar or identical profiles in the training and test datasets, a regime where
machine learning methods are naturally expected to be more accurate.

4.2. Consequences for current evaluation protocols

The results obtained in this study are also evidence that the current evaluation protocols used by the
community are not adequate to: (1) reliably assess the accuracy of a profile-based predictor; and (2) compare
profile-based predictors. Indeed, results reported in Figures 2, 3, and 6 show that the mean accuracy of a
profile-based predictor will strongly depend on the abundance of profile fragments highly similar between
training and test sets. From the same results, one can also see that this abundance is not constant at all
when using a 25% sequence identity threshold to reduce the redundancy between training and test datasets,
leading to important variations of the estimated accuracy of a predictor from a test set to another (up
to 6.1% between the results reported in Figure 2 and 3 for instance). Even comparing the predictors on
identical datasets would not solve this issue as the abundance of high similarity profile fragments is also
dependent on other factors such as: the method used to generate the profiles; the protein database used
to find homologous proteins; and even the type of profiles used in input of the predictors. An evaluation
protocol assessing the accuracy of a profile-based predictor as a function of the similarity level between
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training and test profiles, such as the one implemented in this study, can actually solve this issue since
predictors can then be compared at each profile similarity level. It also presents several major advantages:
(1) it removes the need to compare predictors on the same datasets; (2) it naturally separates easy test
examples from hard ones, making unnecessary to even decide if a protein is a suitable test example or not;
and (3) it is simple to implement and does not require a lot of computation time. If a protocol, such as
the one described here, is used to assess and compare predictors, the need to separate training and test sets
using a strict, but arbitrary, sequence identity threshold becomes redundant, leading to the possibility of
adopting larger training sets and designing predictors that have a higher accuracy over a larger portion of
the protein space.

4.3. Software availability

An implementation of the evaluation protocol proposed in this study, named EVALpro, is available for
download, with a full documentation, from the SCRATCH suite (Cheng et al., 2005) at:
http://scratch.proteomics.ics.uci.edu. It can be used to either reproduce the analysis presented here or,
more generally, to evaluate other profile-based predictors and training/test sets.

5. Conclusion

By probing the mechanisms behind the increase in average accuracy of profile-based predictors versus
sequence-based predictor, we have shown that this increase largely relies on the presence and level of re-
dundancy introduced by the use of evolutionary profiles. This redundancy produces evaluation biases when
current evaluation protocols are used. Despite these results, and somewhat paradoxically, the usefulness of
including evolutionary profiles in the predictors’ inputs remains unchanged. This is for the same reasons,
and with the same limitations, as using template-based prediction methods when templates are available
in structural databases. In both cases, a significant improvement in accuracy can be expected; but this
improvement occurs only when certain conditions of overlap are met. The continued growth of protein
databases benefits profile-based predictors by increasing the number of situations where these favorable
overlap conditions occur. Nevertheless, at the opposite end, our work clearly shows that the evaluation
protocols used in the field need to be revised to account for the biases associated with these overlaps. In
particular, we have shown that measuring average accuracy alone on a protein data set is not particularly
meaningful or reliable. Instead, we should measure accuracy as a function of profile similarity. Such a
protocol provides a mean for evaluating profile-based predictors, and compare them with each other and
with sequence-based predictors, in a fairer way.
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