

1 **A circulating T-cell differentiation marker to predict response to immune
2 checkpoint inhibitors**

3

4 Takayoshi Yamauchi¹, Toshifumi Hoki¹, Takaaki Oba¹, Vaibhav Jain¹, Hongbin Chen²,
5 Kristopher Attwood⁴, Sebastiano Battaglia^{1,5}, Saby George^{2,3}, Gurkamal Chatta², Igor Puzanov²,
6 Carl Morrison⁶, Kunle Odunsi^{1,7,8}, Brahm H. Segal^{2,3,8}, Grace K. Dy², Marc S. Ernstoff^{2,3},
7 Fumito Ito^{1,8,9,10 *}

8

9 ¹ Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY

10 ² Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York

11 ³ Department of Medicine, University at Buffalo Jacobs School of Medicine and Biomedical
12 Sciences, the State University of New York, Buffalo, NY

13 ⁴ Department of Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY

14 ⁵ Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center,
15 Buffalo, NY

16 ⁶ Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY

17 ⁷ Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo,
18 NY

19 ⁸ Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY

20 ⁹ Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY

21 ¹⁰ Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical
22 Sciences, the State University of New York, Buffalo, NY

23

24 Please address all correspondence to F. Ito
25 Elm and Carlton Streets, Buffalo, NY 14263
26 Phone: 716-845-1300 FAX: 716-845-1595
27 Email: fumito.ito@roswellpark.org

28

29 **Running title:** CX3CR1 as a dynamic blood-based T-cell predictive biomarker

30

31 **Grant support:** This work was supported by National Cancer Institute (NCI) grant
32 P30CA016056 involving the use of Roswell Park Comprehensive Cancer Center's Flow
33 Cytometry Core, Clinical Research and Pathology Network, Biostatistics & Statistical Genomics
34 Shared Resource, and Genomic Shared Resources, and by the National Center for Advancing
35 Translational Sciences of the NIH (UL1TR001412) to the University of Buffalo. This work was
36 also supported by grants from the Roswell Park Alliance Foundation, the Melanoma Research
37 Alliance, Department of Defense Lung Cancer Research Program (LC180245), and the NIH/NCI
38 (K08CA197966) (F. Ito), R01CA188900 (B.H. Segal), R01CA188900 (B.H. Segal),
39 U01CA154967, P50CA159981-01A1 (K. Odunsi), Uehara Memorial Foundation (T. Oba), and
40 Astellas Foundation for Research on Metabolic Disorders and the Nakatomi Foundation (T.
41 Yamauchi).

42

43 **Competing interests:** Igor Puzanov: Amgen consultant. Marc S. Ernstoff receives clinical trial
44 support from Merck, Bristol Myers Squibb, Alkermes, EMD Serono and serves on a BMS
45 DMSC and consultant for ImmuNext, Alkermes, EMD Serono, Merck and BMS. Kunle Odunsi
46 co-founder of Tactiva Therapeutics and receives research support from Astra Zeneca and Tessaro.

47

48 **Abstract**

49 Immune checkpoint inhibitors (ICI) have revolutionized treatment for various cancers; however,
50 durable response is limited to only a subset of patients. Discovery of blood-based biomarkers
51 that reflect dynamic change of the tumor microenvironment, and predict response to ICI will
52 markedly improve current treatment regimens. Here, we investigated a role of CX3C chemokine
53 receptor 1 (CX3CR1), a marker of T-cell differentiation, in predicting response to ICI therapy.
54 Successful treatment of tumor-bearing mice with ICI increased the frequency and T-cell receptor
55 clonality of the peripheral CX3CR1⁺CD8⁺ T-cell subset that included an enriched repertoire of
56 tumor-specific and tumor-infiltrating CD8⁺ T cells. Furthermore, an increase in the frequency of
57 the CX3CR1⁺ subset in circulating CD8⁺ T cells early after initiation of anti-PD-1 therapy
58 correlated with response and survival in patients with non-small cell lung cancer (NSCLC).
59 Taken together, these data support T-cell CX3CR1 expression as a blood-based dynamic
60 biomarker to predict response to ICI therapy.

61 Cancer immunotherapies that target the immune checkpoints, such as cytotoxic T
62 lymphocyte associated antigen 4 (CTLA-4), programmed cell death protein-1 (PD-1), and PD1
63 ligand-1 (PD-L1), have transformed the therapeutic landscape of a variety of malignancies¹⁻³.
64 However, despite unprecedented and durable clinical responses seen across diverse tumor types,
65 only a fraction of patients achieve durable responses. Moreover, unusual response patterns such
66 as pseudoprogression and delayed response, a dichotomous outcome, potentially severe toxicity,
67 and high cost indicate a critical need for a reliable predictive biomarker⁴⁻⁷.

68 Baseline PD-L1 expression on immune and tumor cells, preexisting infiltrating CD8⁺ T
69 cells, and tumor mutational burden (TMB) correlate with response²⁻¹¹; however, the use of these
70 pretreatment markers are hampered by the significant overlap between responders and non-
71 responders, limited quantity and quality of the tissue, and/or lack of standardization¹²⁻¹⁴. Analysis
72 of serially collected tumor samples could aid in the assessment of evolution of the tumor
73 microenvironment (TME) during immune checkpoint inhibitor (ICI) therapy¹⁵⁻¹⁸; however, this
74 approach is invasive and challenging for visceral tumors such as non-small cell lung cancer
75 (NSCLC). Discovery of dynamic circulating immune biomarkers that reflect the evolution of
76 adaptive immunity in the TME and are early predictors of clinical response to ICI would be of
77 value to guide selection of patients most likely to benefit from ICI therapy.

78 Emerging blood-based biomarkers such as exosomal PD-L1, TMB and T cell receptor
79 (TCR) sequence in cell-free DNA, and hypermutated circulating tumor DNA associate with
80 response¹⁹⁻²³; however, these approaches require complex platforms, and/or bioinformatics
81 analysis, that limit their widespread application in community-based clinical practice. Since ICI
82 targets T-cell regulatory pathways, utility of surface and intracellular proteins expressed on T
83 cells have been investigated as a potential biomarker for response^{8, 9, 24-28}. Of these, the

84 proliferation marker Ki-67 has been extensively investigated. However, most studies showed Ki-
85 67 expression only transiently increased in subsets of peripheral blood (PB) CD8⁺ T cells after
86 the first cycle with unclear predictive and prognostic value as a stand-alone predictive biomarker
87 for ICI^{8, 9, 24-27}.

88 Recently, CX3C chemokine receptor 1 (CX3CR1) was found to be a marker of T-cell
89 differentiation, where CX3CR1⁺CD8⁺ T cells were progeny of CX3CR1⁻CD8⁺ T cells, and
90 exhibited robust cytotoxicity in anti-viral immunity^{29, 30}. Mechanistically, CX3CR1 is stably
91 expressed on CD8⁺ T cells through unidirectional differentiation from CX3CR1⁻CD8⁺ T cells
92 during the effector phase³⁰⁻³², which theoretically provides an advantage as a biomarker
93 compared with transiently expressed molecules on T cells. Indeed, an increased frequency of
94 PB CX3CR1⁺CD8⁺ T cells has been observed in a few patients who responded to anti-VEGF
95 and anti-PD-L1 antibodies (Ab)³³ or chemotherapy and anti-PD-1 Ab³⁴; however, no studies
96 have evaluated the utility of CX3CR1 on T cells as a blood-based predictive biomarker only
97 for ICI therapy.

98 Here, we hypothesized that changes in the frequency of PB CX3CR1⁺CD8⁺ T cells
99 would correlate with response to ICI and help identify responders versus non-responders early
100 after initiation of therapy. We investigated the frequency of CX3CR1⁺CD8⁺ T cells in PB
101 before and during ICI therapy, and delineated the TCR repertoire in peripheral
102 CX3CR1⁺CD8⁺ T-cell subsets and CD8⁺ tumor-infiltrating lymphocytes (TILs) using
103 preclinical models. To understand the clinical utility of CX3CR1 as a circulating T-cell
104 biomarker, we analyzed longitudinal PB samples from patients with NSCLC undergoing anti-
105 PD-1 therapy and evaluated the predictive and prognostic value of changes in the frequency of

106 PB CX3CR1⁺ CD8⁺ T cells. Our results support circulating CX3CR1⁺CD8⁺ T cells as an early
107 on-treatment biomarker for clinical response to anti-PD-1 therapy.

108

109 **Results**

110 **Increased frequency of PB CX3CR1⁺CD8⁺ T cells after effective ICI therapy**

111 While ICI are known to restore cytokine production and proliferation of effector T
112 cells³⁵, whether or not ICI affect differentiation of tumor-specific T cells remains elusive. To
113 this end, we evaluated CX3CR1 expression, a marker of T-cell differentiation in combination
114 with CD27 (refs.²⁹⁻³¹), on PB CD8⁺ T cells before and during treatment with anti-PD-L1 and
115 anti-CTLA-4 Ab or isotype Ab (NT: no-treatment) in two mouse tumor models, MC38 and
116 CT26 colon adenocarcinoma (**Fig. 1A**). Significant tumor growth delays (**Fig. 1B**) and
117 increased frequency of CX3CR1⁺CD8⁺ T cells (**Fig. 1C**) were observed in MC38 and CT26
118 tumor-bearing mice treated with ICI compared to mice receiving isotype Ab. Next, we used a
119 tetramer (Tet) to detect CD8⁺ T cells specific for mutated Adpgk protein (Adpgk^{Mut}) in MC38
120 and shared tumor-associated antigen (TAA), gp70 in CT26 tumors^{36, 37}, and found
121 substantially increased frequency of CX3CR1⁺Tet⁺CD8⁺ T cells in both tumor models (**Fig.**
122 **1D**), suggesting that T-cell differentiation after ICI therapy occurs in tumor-specific CD8⁺ T
123 cells.

124

125 **Changes in the frequency of PB CX3CR1⁺CD8⁺ T cells associate with response to ICI**

126 Although both anti-PD-L1 Ab and anti-CTLA-4 Ab target subsets of exhausted-like
127 CD8⁺ T cells, they do so through distinct cellular mechanisms³⁸. Therefore, we evaluated
128 CX3CR1 expression of PB CD8⁺ T cells in CT26-bearing mice treated with either anti-PD-L1

129 Ab, anti-CTLA-4 Ab or both. Increased frequency as well as the percentage change of the PB
130 CX3CR1⁺CD8⁺ T cells in individual mice were seen after either monotherapy or combined
131 ICI therapy compared to no treatment (**Fig. 1E**). We also examined whether the frequency of
132 the CX3CR1⁺ subset in Tet⁺CD8⁺ T cells correlates with treatment response. To this end, we
133 drew PB and measured CT26 tumor size in individual mice before and 1 week after treatment
134 with either anti-PD-L1 Ab, anti-CTLA-4 Ab or both. We found that frequency of the
135 CX3CR1⁺ subset in PB Tet⁺CD8⁺ T cells correlated with response to ICI, suggesting the
136 potential utility of CX3CR1 as a blood-based T-cell biomarker to predict response to ICI (**Fig.**
137 **1F**).

138

139 **CX3CR1 but not Ki-67 is stably upregulated in PB CD8⁺ T cells during ICI therapy**

140 To gain insight into the PB CX3CR1⁺ CD8⁺ T cells, we evaluated the expression of the
141 nuclear protein Ki-67, a marker for proliferation that is upregulated in subsets of PB CD8⁺ T
142 cells in response to ICI^{8, 9, 24-27}. The levels of Ki-67 expression in the CX3CR1⁺CD8⁺ T cells
143 were significantly higher than in the CX3CR1⁻ (CD27^{lo}CX3CR1⁻ and CD27^{hi}CX3CR1⁻)
144 subsets 2 weeks after ICI therapy in CT26 tumor-bearing mice (**Fig. 2A**). We next examined
145 whether an increased expression of CX3CR1 on PB CD8⁺ T cells is transient or sustained
146 during ICI therapy. Increased frequency of CX3CR1⁺ subset was seen in both CD8⁺ and
147 Tet⁺CD8⁺ T cells starting from day 7, which remained high during treatment (**Fig. 2B**). In
148 contrast, Ki-67 expression peaked at day 14, and returned to the baseline at day 21 (**Fig. 2B**).
149

150 **Tumor-specific CD8⁺ T cells are enriched in the CX3CR1⁺ subset in PB**

151 Identification of circulating T-cell biomarkers that enrich tumor-reactive T cells may
152 facilitate discovery of dynamic predictive marker of response to ICI. First, we assessed the
153 frequency of $\text{Tet}^+ \text{CD8}^+$ T cells within the PB CX3CR1 $^+$ and CX3CR1 $^-$ subsets in MC38 and
154 CT26 tumor-bearing mice (**Supplementary Fig. 1A**). We found more $\text{Tet}^+ \text{CD8}^+$ T cells in the
155 CX3CR1 $^+$ subset than in the CX3CR1 $^-$ subsets even before treatment although the frequency
156 varied between individual mice (**Supplementary Fig. 1B**). Next, we evaluated change in the
157 frequency of $\text{Tet}^+ \text{CD8}^+$ T cells during ICI therapy in CT26 tumor-bearing mice. The frequency
158 of $\text{Tet}^+ \text{CD8}^+$ T cells remained higher in the CX3CR1 $^+$ subset than in the CX3CR1 $^-$ subsets, and
159 became less variable between individual mice at day 21 (**Fig. 2C**).
160

161 **Clonally expanded TCR repertoires of CD8 $^+$ TILs are enriched in the peripheral CX3CR1 $^+$
162 subset during ICI therapy.**

163 The high frequency of tumor-specific CD8 $^+$ T cells in the CX3CR1 $^+$ subset before and
164 during ICI treatment is suggestive that heterogeneous tumor-infiltrating CD8 $^+$ T cells are also
165 enriched in the CX3CR1 $^+$ subset. To this end, we performed TCR sequencing on isolated
166 CD8 $^+$ TILs and splenic CD27 $^{\text{lo}}$ CX3CR1 $^-$, CD27 $^{\text{hi}}$ CX3CR1 $^-$, and CX3CR1 $^+ \text{CD8}^+$ T cells from
167 MC38 tumor-bearing mice treated with combined ICI therapy (**Supplementary Fig. S2A, B**).
168 Comparison of the TCR repertoire in CD8 $^+$ TILs and three subsets of splenic CD8 $^+$ T cells
169 demonstrated high degree of overlap in TCR usage between CD8 $^+$ TILs and splenic
170 CX3CR1 $^+ \text{CD8}^+$ T cells (**Fig. 3A; Supplementary Fig. S3**) as determined by the Morisita's
171 overlap index³⁹.

172 Next, we evaluated TCR clonality in CD8 $^+$ TILs and three subsets of splenic CD8 $^+$ T
173 cells 2 weeks after ICI therapy (**Fig. 3B**). The 100 most abundant TCR clones (colored)

174 comprised more than 50% of TCR sequences in the splenic CX3CR1⁺ subset and CD8⁺ TILs
175 while the majority of TCR sequences in the splenic CX3CR1⁻ subsets were constituted of less
176 frequent clones (purple). To quantify the skewness of the clonal distribution, we measured the
177 Gini index, and found similarly higher clonality in the splenic CX3CR1⁺ subset and CD8⁺
178 TILs compared to splenic CX3CR1⁻ subsets. Lorenz curves for splenic CX3CR1⁺ subset and
179 CD8⁺ TILs were far from the equidistribution line, suggesting unequal distribution and
180 skewing of the TCR repertoire.

181

182 **ICI therapy induces high degree of TCR sequence similarity and clonality between CD8⁺
183 TILs and the peripheral CX3CR1⁺ subset.**

184 TCRs that recognize the same antigen may not be the exact TCR clonotypes but have
185 highly homologous sequences and share similar sequence features^{40, 41}. Unlike Morisita's
186 overlap index, a bioinformatics program, ImmunoMap⁴², allows us to analyze biological
187 sequence similarity in between peripheral and intratumoral CD8⁺ T cells. Compared to the
188 CX3CR1⁻ subsets, splenic CX3CR1⁺CD8⁺ T-cell subsets contain highly frequent clonally
189 expanded CD8⁺ T cells indicated by the large circles in the end of many different branches of
190 the tree 2 weeks after ICI therapy (**Fig. 3C; Supplementary Fig. S4A, B**).

191 Analysis of the top six dominant CDR3 β amino acid (AA) sequences in splenic
192 CX3CR1⁺CD8⁺ T cells and CD8⁺ TILs revealed they shared a highly frequent AA sequence
193 (CASSLVGNQDTQYF) in all three independent experiments (**Table 1, yellow highlighted**).
194 Although the most frequent AA sequence, CASSPRLGDNYAEQFF, in splenic
195 CX3CR1⁺CD8⁺ T cells was not identified in CD8⁺ TILs in the same experiment (Exp. #1 in
196 **Table 1A**), this AA sequence had a high degree of sequence homology with dominant AA

197 sequences, CASSPGYAEQFF and CASSPGQGYAEQFF in CD8⁺ TILs, located in the same
198 branch of the dendrogram (**Table 1B, blue highlighted; Supplementary Fig. S4A**). Similarly,
199 abundant AA sequences, CASSPGRGYEQYF in splenic CX3CR1⁺CD8⁺ T cells and
200 CASSSGTYEQYF in CD8⁺ TILs clustered largely in the same branch, indicating that they
201 shared a high degree of similarity (Exp. #2 in **Table 1, green highlighted; Supplementary**
202 **Fig. S4B**).

203 Furthermore, CD8⁺ TILs and splenic CX3CR1⁺CD8⁺ T cells had a similar number of
204 structural motifs that dominated the response, and higher numbers of responding clones that
205 expanded 10 times more than the summation of all other homologous clones in a sample (**Fig.**
206 **3D, E**). The TCR diversity score and the Shannon entropy calculations revealed that both
207 populations have similar TCR diversity (**Fig. 3F, G**). Collectively, these findings suggest
208 TCR repertoires in peripheral CX3CR1⁺CD8⁺ T-cell clones reflect the TCR repertoires in
209 CD8⁺ TILs, and CX3CR1 on PB CD8⁺ T cells may act as a dynamic biomarker during the
210 course of effective ICI therapy.

211

212 **Expansion of the CX3CR1⁺ subset in PB CD8⁺ T cells correlates with improved response to**
213 **anti-PD-1 therapy and survival in patients with NSCLC.**

214 We next explored whether changes in the frequency of the CX3CR1⁺ subset in PB
215 CD8⁺ T cells correlate with response to ICI in patients. We analyzed PBMC samples from the
216 PB of a cohort of 36 NSCLC patients treated with anti-PD-1 Ab (Pembrolizumab or
217 Nivolumab) (**Fig. 4A**). PB was obtained before treatment and every 2-6 weeks during therapy
218 for 12 weeks. All patients had pretreatment tumor tissue available to assess PD-L1 expression.
219 The frequency of TILs and TMB were also analyzed as described before⁴³. Baseline

220 characteristics of 36 NSCLC patients are described in **Supplementary Table S1**. Clinical
221 response in individual patients was derived from investigator-reported data per iRECIST
222 criteria⁴⁴ at the 12 week time point. Overall response rates (ORR) which include complete
223 response (CR) and partial response (PR) were 36.7% and 20% for patients with a PD-L1
224 tumor proportion score (TPS) of 50% or greater and 1-49%, respectively, in line with previous
225 studies^{45, 46}.

226 We evaluated the maximal percent change of the CX3CR1⁺ subset in PB CD8⁺ T cells
227 at 3, 6, 9 and 12-weeks relative to baseline. The maximal percent change was substantially
228 higher in responders than non-responders as early as 3 weeks from the initiation of the treatment
229 (**Fig. 4B**). Next, we obtained estimates of the area under the curve (AUC) and corresponding
230 95% confidence interval (CI) using a logistic regression model, and the optimal cut-off score for
231 discriminating between groups using the Youden's index criterion⁴⁷. These analyses revealed
232 that an increase of CX3CR1⁺CD8⁺ T-cell subsets by 15.5~21.2% from baseline segregated
233 responders from non-responders at 6-12 weeks (**Supplementary Table S2**). Hereafter the
234 percent change of the CX3CR1⁺ subset in PB CD8⁺ T cells from baseline are designated as a
235 "CX3CR1 score". **Fig. 4C** shows longitudinal CD8 T-cell responses in individual patients.
236 We found at least 20% increase of the CX3CR1 score in 92.3% (12/13) of responders
237 compared to only 13.0% (3/23) of non-responders.

238 Based on these results, we hypothesized that a cut-off of at least 20% increase of the
239 CX3CR1 score would correlate with response to anti-PD-1 therapy and assessed the
240 association between the CX3CR1 score and objective response. The maximal CX3CR1 score of
241 at least 20 was strongly associated with ORR ($P<0.0001$) (odds ratio, 80.00; 95% CI, 7.45 to
242 858.94), while PD-L1 TPS at $\geq 50\%$ was also correlated with ORR ($P=0.005$) (odds ratio,

243 2.53; 95% CI, 0.25 to 25.39) (**Fig. 4D**). Next, we analyzed the corresponding sensitivity,
244 specificity, positive predictive value (PPV), and negative predictive value (NPV) of the CX3CR1
245 score and the PD-L1 TPS. The CX3CR1 score demonstrated remarkably high PPV, NPV,
246 sensitivity, and specificity, and identified response in 32/36 (88.9%) while a PD-L1 TPS of at
247 least 50% had suboptimal PPV and specificity, and correctly identified response only in 16/36
248 (44.4%) (**Fig. 4E**). Notably, tumor tissues were available for assessing frequency of TILs and
249 TMB for only 66.6% (24/36) and 61.1% (22/36) of NSCLC patients, respectively
250 (**Supplementary Table S3**), suggesting limitation of these analyses, in line with previous
251 reports^{48, 49}. Lastly, we evaluated correlation between the CX3CR1 score and survival. We
252 found that at least 20% increase of the CX3CR1 score was associated with better progression
253 free (PFS) and overall survival (OS) (**Fig. 4F**). Median PFS and OS among patients with a
254 CX3CR1 score of less than 20% were 5.7 months (95% CI, 2.2 to 11.8), and 8.6 months (95%
255 CI, 1.4 to 9.4), respectively, while median PFS and OS among patients with a CX3CR1 score
256 of at least 20% were not reached. Taken together, the CX3CR1 score provides highly accurate
257 prediction of a patient's clinical response early on-treatment and correlates with survival.
258

258

259 **Discussion**

260 The lack of robust predictive biomarker for response is a major obstacle of ICI therapy.
261 Blood-based mechanism-driven dynamic biomarkers that reflect constantly evolving TME would
262 be ideal, and intense efforts are ongoing to identify circulating biomarkers for ICI response^{4-7, 19-}
263 ²³. Here, we provide evidence in tumor-bearing mice that: 1) effective ICI therapy correlates with
264 the increased frequency and TCR clonality of peripheral CX3CR1⁺CD8⁺ T cells that identify an
265 enriched repertoire of neoantigen- and TAA-specific CD8⁺ T cells; 2) the frequency of

266 CX3CR1⁺ but not Ki-67⁺ PB CD8⁺ T cells remained elevated during ICI therapy; and 3) there
267 are high degree of TCR sequence overlap and similarity between CD8⁺ TILs and the peripheral
268 CX3CR1⁺ subset during ICI therapy. Furthermore, analysis of longitudinal PB samples obtained
269 from a cohort of NSCLC patients highlights the potential clinical utility of CX3CR1 as a useful
270 blood-based biomarker to predict response to ICI early after initiation of therapy.

271 Mechanistically, there are some potential advantages for CX3CR1 as a blood-based
272 biomarker. First, unlike other molecules such as Ki-67 and PD-1 which are transiently
273 upregulated on T cells after activation, CX3CR1 is stably expressed on virus- and tumor-specific
274 CD8⁺ T cells upon differentiation³⁰⁻³². In agreement with this, we found CX3CR1 but not Ki-67
275 remains elevated in tumor-specific CD8⁺ T cells during ICI therapy in preclinical models.
276 Additionally, many responding NSCLC patients in our cohort maintained the level of CX3CR1
277 expression on CD8⁺ T cells above their baseline. Second, given the low levels of CXCR3
278 expression in CX3CR1^{hi} CD8⁺ T cells³⁰, which is required to traffic to tumors⁵⁰, it is possible that
279 CX3CR1⁺CD8⁺ T cells remain in circulation, and might not actively traffic to the tumor unless
280 fractalkine (CX3CL1), the ligand of CX3CR1 is produced from the TME. In support with this
281 notion, a recent study showed a higher fraction of CX3CR1⁺CD8⁺ T cells in PB compared with
282 tumors in NSCLC patients⁵¹. Furthermore, we have recently reported that adoptively transferred
283 tumor-specific CX3CR1⁻CD8⁺ T cells generate CX3CR1⁺CD8⁺ T cells upon *in vivo* stimulation,
284 traffic to the TME, and mediate effective regression of established tumors³². In contrast,
285 CX3CR1⁺CD8⁺ T cells had no impact on established tumors compared with the CX3CR1⁻ subset
286 and became dominant in PB in a preclinical model³². These features of CX3CR1⁺CD8⁺ T cells
287 might have contributed to the greater accuracy of the CX3CR1 score in our cohort and make
288 them uniquely suitable for a circulating T-cell biomarker.

289 Increased TCR clonality can be identified in tumors and associates with response to
290 anti-PD-1 therapy¹⁰; however, the role of PB TCR clonality in predicting response to ICI
291 remains elusive. PB T cells contain highly diverse TCR repertoires, the majority of which are
292 not specific to the tumor; therefore, changes of PB TCR clonality might be difficult to detect
293 even in responders. Identification of markers to detect tumor-specific T cells in PB might
294 overcome this limitation. PD-1 was found to be a cell-surface marker to identify PB neoantigen-
295 reactive T cells⁵², and a recent study showed TCR clonality changes can be observed in PB
296 PD-1⁺CD8⁺ T cells⁵³. Although additional clinical studies are required to determine the
297 predictive and prognostic significance of the TCR clonality in PB CX3CR1⁺CD8⁺ T cells, our
298 findings also provide insight into the utility of TCR clonality in the peripheral T-cell subset. Our
299 findings of high clonality in peripheral CX3CR1⁺CD8⁺ T cells that contain intratumoral CD8⁺
300 T-cell repertoires also align with emerging evidence from high-dimensional profiling of PB T
301 cells by single-cell RNA and/or TCR sequencing showing expansion of cytotoxic effector
302 memory CD8⁺ T cells that include novel intratumoral clones in patients responding to ICI
303 therapy^{22, 54, 55}.

304 There is an unmet clinical need in establishing reliable predictive biomarkers for
305 combined anti-PD-1 and anti-CTLA-4 therapy, where the risk of severe immune-related adverse
306 events (irAEs) is as high as the proportion of patients responding to combined ICI. High NPV
307 early on-treatment biomarkers could reliably identify a lack of response, and minimize
308 unnecessary treatment, toxicity and associated cost. This is especially relevant for patients with
309 NSCLC who have various treatment options available. Our analyses demonstrated that the
310 CX3CR1 score ≥ 20 at 6-12 weeks could discriminate responders from non-responders with

311 high NPV, suggesting that the CX3CR1 score may help make a decision about whether to
312 continue ICI or switch to alternative more effective treatment.

313 The CX3CR1 score might be convenient to use in clinical setting from technical and
314 analytical perspective. While we isolated PBMCs in this study, the same analysis can be done
315 with as little as 1 ml of whole blood without isolating PBMC by density gradient centrifugation.
316 Unlike intracellular proteins, there is no need for fixation/permeabilization procedure to stain
317 CX3CR1. The CX3CR1⁺ subset can be easily distinguishable from the CX3CR1⁻ subsets in PB
318 CD8⁺ T cells unlike other markers such as PD-1, where the boundary between positive and
319 negative populations might be difficult to set⁵⁶. The CX3CR1 score can be obtained by
320 traditional fluorescence flow cytometric analysis, and does not require NGS platform, complex
321 algorithm, or bioinformatics analysis. Thus, the results can be readily available for prompt
322 feedback to oncologists and patients.

323 Tumor PD-L1 expression predicts the likelihood of response to ICI and is used as a
324 companion diagnostic for NSCLC but not for several other malignancies such as melanoma.
325 Therefore, it remains elusive whether the CX3CR1 score would be useful in patients with
326 other types of cancer. A recent study showed T-cell invigoration to tumor burden ratio was
327 associated with response to anti-PD-1 Ab and clinical outcome in melanoma patients²⁴.
328 Although it was not within the scope of our study, one future area of investigation would be to
329 compare the utility of different PB T-cell biomarkers in the same disease, or evaluate whether
330 combining multiple biomarkers could improve predictive and prognostic values.

331 In summary, our findings demonstrate that CX3CR1 is a useful dynamic circulating T-
332 cell biomarker, and that at least 20% increase of the CX3CR1⁺ subset in PB CD8⁺ T cells
333 identifies NSCLC patients responding to anti-PD-1 therapy early on-treatment. Our study

334 provides a rationale for further investigation to test the utility of the circulating T-cell
335 differentiation marker for a wide variety of malignancies in larger prospective trials.

336

337 **Methods**

338 Please see the Supplementary Data.

339 **Acknowledgments**

340 We thank the patients, their families and the clinical study staff, Ms. Elongia Farrell, Noelle
341 Brunsing, Suzanne M. Stack, Rushka Kallicharan-Smith, and Ann Marie DiRaddo (Roswell
342 Park) for their contribution to the study. We acknowledge the NIH Tetramer Core Facility
343 (contract HHSN272201300006C) for provision of MHC-I tetramers, and Dr. Weiping Zou
344 (University of Michigan, Ann Arbor, Michigan) for MC38 cells, Drs. James J. Moon (University
345 of Michigan, Ann Arbor, Michigan), Kenichi Makino and Toshihiro Yokoi (Roswell Park) for
346 technical assistance, and Ms. Sue Hess and Judith Epstein (Roswell Park) for administrative
347 assistance. This work was supported by National Cancer Institute (NCI) grant P30CA016056
348 involving the use of Roswell Park's Flow and Image Cytometry, Clinical Research and
349 Pathology Network, Biostatistics & Statistical Genomics Shared Resource and Genomic Shared
350 Resources, and by the National Center for Advancing Translational Sciences of the NIH
351 (UL1TR001412) to the University of Buffalo. This work was supported by Roswell Park
352 Alliance Foundation, the Melanoma Research Alliance, Department of Defense Lung Cancer
353 Research Program (LC180245), and NCI grant, K08CA197966 (F. Ito), R01CA188900 (B.H.
354 Segal), R01CA188900 (B.H. Segal), U01CA154967, P50CA159981-01A1 (K. Odunsi), Uehara
355 Memorial Foundation (T. Oba), and Astellas Foundation for Research on Metabolic Disorders
356 and the Nakatomi Foundation (T. Yamauchi).

357

358 References

- 359 1. Hodi FS, *et al.* Improved survival with ipilimumab in patients with metastatic melanoma.
360 *N Engl J Med* **363**, 711-723 (2010).
- 361
- 362 2. Topalian SL, *et al.* Safety, activity, and immune correlates of anti-PD-1 antibody in
363 cancer. *N Engl J Med* **366**, 2443-2454 (2012).
- 364
- 365 3. Brahmer JR, *et al.* Safety and activity of anti-PD-L1 antibody in patients with advanced
366 cancer. *N Engl J Med* **366**, 2455-2465 (2012).
- 367
- 368 4. Lesterhuis WJ, Bosco A, Millward MJ, Small M, Nowak AK, Lake RA. Dynamic versus
369 static biomarkers in cancer immune checkpoint blockade: unravelling complexity. *Nat Rev Drug Discov* **16**, 264-272 (2017).
- 371
- 372 5. Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to
373 guide immune checkpoint blockade in cancer therapy. *Nat Rev Cancer* **16**, 275-287
374 (2016).
- 375
- 376 6. Nishino M, Ramaiya NH, Hatabu H, Hodi FS. Monitoring immune-checkpoint blockade:
377 response evaluation and biomarker development. *Nature reviews Clinical oncology* **14**,
378 655-668 (2017).
- 379
- 380 7. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint
381 inhibitor immunotherapy. *Nat Rev Cancer* **19**, 133-150 (2019).
- 382
- 383 8. Herbst RS, *et al.* Predictive correlates of response to the anti-PD-L1 antibody
384 MPDL3280A in cancer patients. *Nature* **515**, 563-567 (2014).
- 385
- 386 9. Powles T, *et al.* MPDL3280A (anti-PD-L1) treatment leads to clinical activity in
387 metastatic bladder cancer. *Nature* **515**, 558-562 (2014).
- 388
- 389 10. Tumeh PC, *et al.* PD-1 blockade induces responses by inhibiting adaptive immune
390 resistance. *Nature* **515**, 568-571 (2014).
- 391
- 392 11. Rizvi NA, *et al.* Cancer immunology. Mutational landscape determines sensitivity to PD-
393 1 blockade in non-small cell lung cancer. *Science* **348**, 124-128 (2015).
- 394
- 395 12. Horn L, *et al.* Nivolumab Versus Docetaxel in Previously Treated Patients With
396 Advanced Non-Small-Cell Lung Cancer: Two-Year Outcomes From Two Randomized,
397 Open-Label, Phase III Trials (CheckMate 017 and CheckMate 057). *J Clin Oncol* **35**,
398 3924-3933 (2017).
- 399
- 400 13. Robert C, *et al.* Nivolumab in previously untreated melanoma without BRAF mutation. *N Engl J Med* **372**, 320-330 (2015).
- 401
- 402

403 14. Taube JM, *et al.* Association of PD-1, PD-1 ligands, and other features of the tumor
404 immune microenvironment with response to anti-PD-1 therapy. *Clin Cancer Res* **20**,
405 5064-5074 (2014).

406

407 15. Riaz N, *et al.* Tumor and Microenvironment Evolution during Immunotherapy with
408 Nivolumab. *Cell*, (2017).

409

410 16. Vilain RE, *et al.* Dynamic Changes in PD-L1 Expression and Immune Infiltrates Early
411 During Treatment Predict Response to PD-1 Blockade in Melanoma. *Clin Cancer Res* **23**,
412 5024-5033 (2017).

413

414 17. Chen PL, *et al.* Analysis of Immune Signatures in Longitudinal Tumor Samples Yields
415 Insight into Biomarkers of Response and Mechanisms of Resistance to Immune
416 Checkpoint Blockade. *Cancer Discov* **6**, 827-837 (2016).

417

418 18. Anagnostou V, *et al.* Evolution of Neoantigen Landscape during Immune Checkpoint
419 Blockade in Non-Small Cell Lung Cancer. *Cancer Discov* **7**, 264-276 (2017).

420

421 19. Chen G, *et al.* Exosomal PD-L1 contributes to immunosuppression and is associated with
422 anti-PD-1 response. *Nature* **560**, 382-386 (2018).

423

424 20. Gandara DR, *et al.* Blood-based tumor mutational burden as a predictor of clinical benefit
425 in non-small-cell lung cancer patients treated with atezolizumab. *Nat Med* **24**, 1441-1448
426 (2018).

427

428 21. Khagi Y, *et al.* Hypermutated Circulating Tumor DNA: Correlation with Response to
429 Checkpoint Inhibitor-Based Immunotherapy. *Clin Cancer Res* **23**, 5729-5736 (2017).

430

431 22. Valpione S, *et al.* Immune-awakening revealed by peripheral T cell dynamics after one
432 cycle of immunotherapy. *Nat Cancer* **1**, 210-221 (2020).

433

434 23. Cescon DW, Bratman SV, Chan SM, Siu LL. Circulating tumor DNA and liquid biopsy
435 in oncology. *Nature Cancer* **1**, 276-290 (2020).

436

437 24. Huang AC, *et al.* T-cell invigoration to tumour burden ratio associated with anti-PD-1
438 response. *Nature* **545**, 60-65 (2017).

439

440 25. Kamphorst AO, *et al.* Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-
441 targeted therapy in lung cancer patients. *Proc Natl Acad Sci U S A* **114**, 4993-4998
442 (2017).

443

444 26. Kim KH, *et al.* The First-week Proliferative Response of Peripheral Blood PD-
445 1(+)CD8(+) T Cells Predicts the Response to Anti-PD-1 Therapy in Solid Tumors. *Clin
446 Cancer Res* **25**, 2144-2154 (2019).

447

448 27. Huang AC, *et al.* A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes
449 in resectable melanoma. *Nat Med* **25**, 454-461 (2019).

450

451 28. Liakou CI, *et al.* CTLA-4 blockade increases IFNgamma-producing CD4+ICOShi cells
452 to shift the ratio of effector to regulatory T cells in cancer patients. *Proc Natl Acad Sci U*
453 *S A* **105**, 14987-14992 (2008).

454

455 29. Bottcher JP, *et al.* Functional classification of memory CD8(+) T cells by CX3CR1
456 expression. *Nature communications* **6**, 8306 (2015).

457

458 30. Gerlach C, *et al.* The Chemokine Receptor CX3CR1 Defines Three Antigen-Experienced
459 CD8 T Cell Subsets with Distinct Roles in Immune Surveillance and Homeostasis.
460 *Immunity* **45**, 1270-1284 (2016).

461

462 31. Gordon CL, *et al.* Induction and Maintenance of CX3CR1-Intermediate Peripheral
463 Memory CD8(+) T Cells by Persistent Viruses and Vaccines. *Cell Rep* **23**, 768-782
464 (2018).

465

466 32. Yamauchi T, *et al.* CX3CR1-CD8+ T cells are critical in antitumor efficacy, but
467 functionally suppressed in the tumor microenvironment. *JCI insight* **5**, e133920 (2020).

468

469 33. Wallin JJ, *et al.* Atezolizumab in combination with bevacizumab enhances antigen-
470 specific T-cell migration in metastatic renal cell carcinoma. *Nature communications* **7**,
471 12624 (2016).

472

473 34. Yan Y, *et al.* CX3CR1 identifies PD-1 therapy-responsive CD8+ T cells that withstand
474 chemotherapy during cancer chemoimmunotherapy. *JCI insight* **3**, e97828 (2018).

475

476 35. Blank C, *et al.* PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell
477 receptor (TCR) transgenic CD8+ T cells. *Cancer research* **64**, 1140-1145 (2004).

478

479 36. Yadav M, *et al.* Predicting immunogenic tumour mutations by combining mass
480 spectrometry and exome sequencing. *Nature* **515**, 572-576 (2014).

481

482 37. Huang AY, *et al.* The immunodominant major histocompatibility complex class I-
483 restricted antigen of a murine colon tumor derives from an endogenous retroviral gene
484 product. *Proc Natl Acad Sci U S A* **93**, 9730-9735 (1996).

485

486 38. Wei SC, *et al.* Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1
487 Checkpoint Blockade. *Cell* **170**, 1120-1133.e1117 (2017).

488

489 39. Morisita M. Measuring of the dispersion of individuals and analysis of the distributional
490 patterns. *Mem Fac Sci Kyushu Univ Ser E* **2**, 5-23 (1959).

491

492 40. Glanville J, *et al.* Identifying specificity groups in the T cell receptor repertoire. *Nature*
493 **547**, 94-98 (2017).

494

495 41. Dash P, *et al.* Quantifiable predictive features define epitope-specific T cell receptor
496 repertoires. *Nature* **547**, 89-93 (2017).

497

498 42. Sidhom JW, Bessell CA, Havel JJ, Kosmides A, Chan TA, Schneck JP. ImmunoMap: A
499 Bioinformatics Tool for T-cell Repertoire Analysis. *Cancer immunology research* **6**, 151-
500 162 (2018).

501

502 43. Morrison C, *et al.* Predicting response to checkpoint inhibitors in melanoma beyond PD-
503 L1 and mutational burden. *Journal for immunotherapy of cancer* **6**, 32 (2018).

504

505 44. Seymour L, *et al.* iRECIST: guidelines for response criteria for use in trials testing
506 immunotherapeutics. *Lancet Oncol* **18**, e143-e152 (2017).

507

508 45. Garon EB, *et al.* Pembrolizumab for the treatment of non-small-cell lung cancer. *N Engl
509 J Med* **372**, 2018-2028 (2015).

510

511 46. Herbst RS, *et al.* Pembrolizumab versus docetaxel for previously treated, PD-L1-positive,
512 advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial.
513 *Lancet* **387**, 1540-1550 (2016).

514

515 47. Youden WJ. Index for rating diagnostic tests. *Cancer* **3**, 32-35 (1950).

516

517 48. Lim C, *et al.* Biomarker testing and time to treatment decision in patients with advanced
518 nonsmall-cell lung cancer. *Ann Oncol* **26**, 1415-1421 (2015).

519

520 49. Green MR, Willey J, Buettner A, Lankford M, Neely DB, Ramalingam SS. Molecular
521 testing prior to first-line therapy in patients with stage IV nonsquamous non-small cell
522 lung cancer (NSCLC): A survey of U.S. medical oncologists. *Journal of Clinical
523 Oncology* **32**, 8097-8097 (2014).

524

525 50. Mikucki ME, *et al.* Non-redundant requirement for CXCR3 signalling during tumoricidal
526 T-cell trafficking across tumour vascular checkpoints. *Nature communications* **6**, 7458
527 (2015).

528

529 51. Guo X, *et al.* Global characterization of T cells in non-small-cell lung cancer by single-
530 cell sequencing. *Nat Med* **24**, 978-985 (2018).

531

532 52. Gros A, *et al.* Prospective identification of neoantigen-specific lymphocytes in the
533 peripheral blood of melanoma patients. *Nat Med* **22**, 433-438 (2016).

534

535 53. Han J, *et al.* TCR Repertoire Diversity of Peripheral PD-1(+)CD8(+) T Cells Predicts
536 Clinical Outcomes after Immunotherapy in Patients with Non-Small Cell Lung Cancer.
537 *Cancer immunology research* **8**, 146-154 (2020).

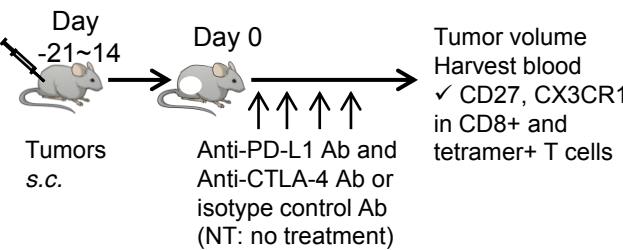
538

539 54. Wu TD, *et al.* Peripheral T cell expansion predicts tumour infiltration and clinical
540 response. *Nature* **579**, 274-278 (2020).

541

542 55. Fairfax BP, *et al.* Peripheral CD8(+) T cell characteristics associated with durable
543 responses to immune checkpoint blockade in patients with metastatic melanoma. *Nat
544 Med* **26**, 193-199 (2020).

545


546 56. Gros A, *et al.* PD-1 identifies the patient-specific CD8(+) tumor-reactive repertoire
547 infiltrating human tumors. *J Clin Invest* **124**, 2246-2259 (2014).

548

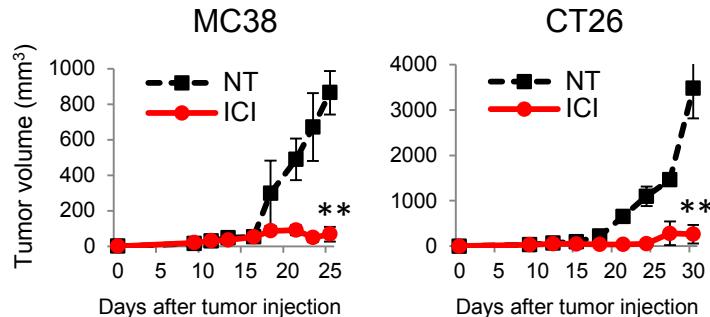
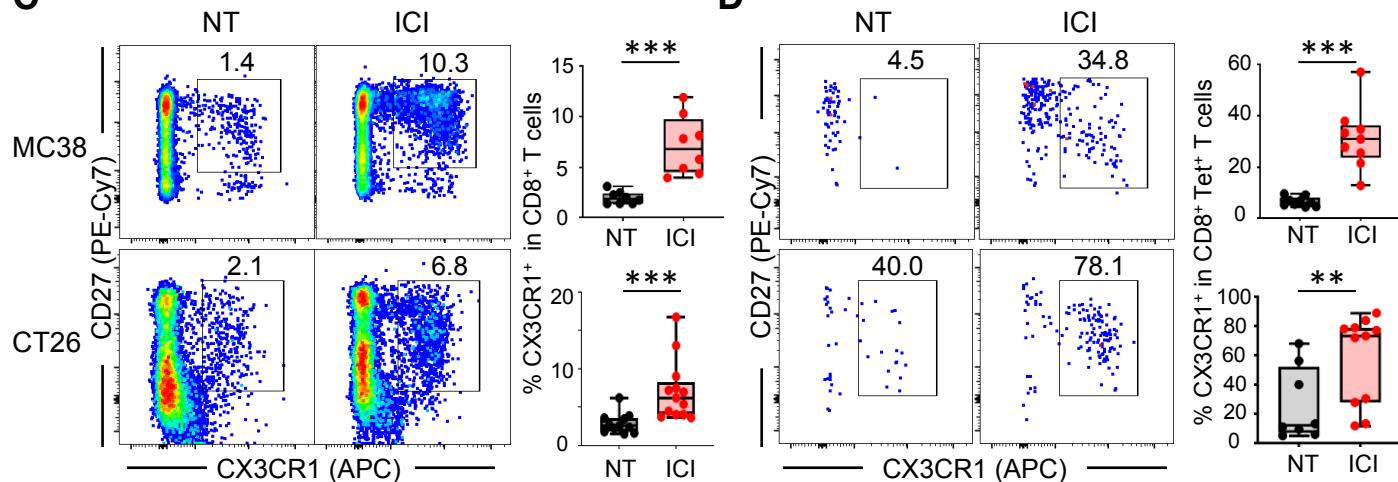
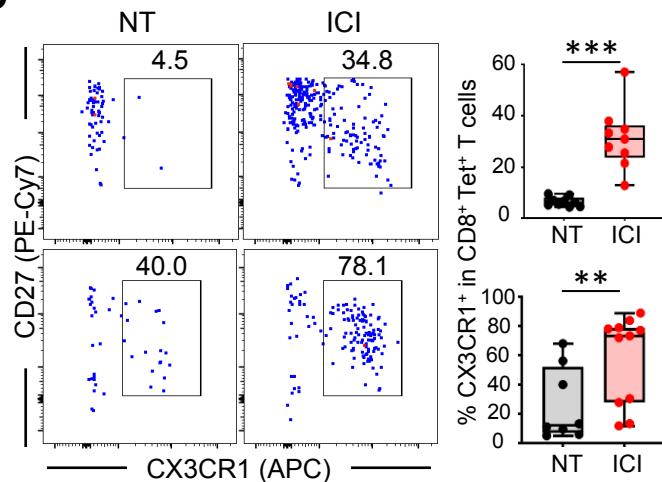
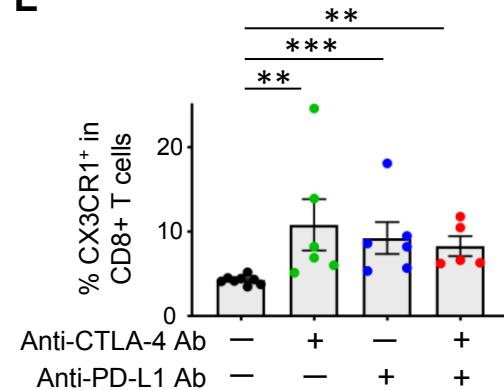
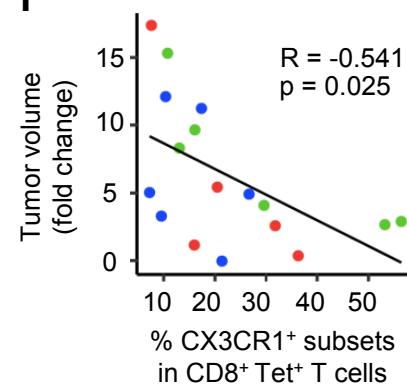

549

Figure 1


A


B


C


D

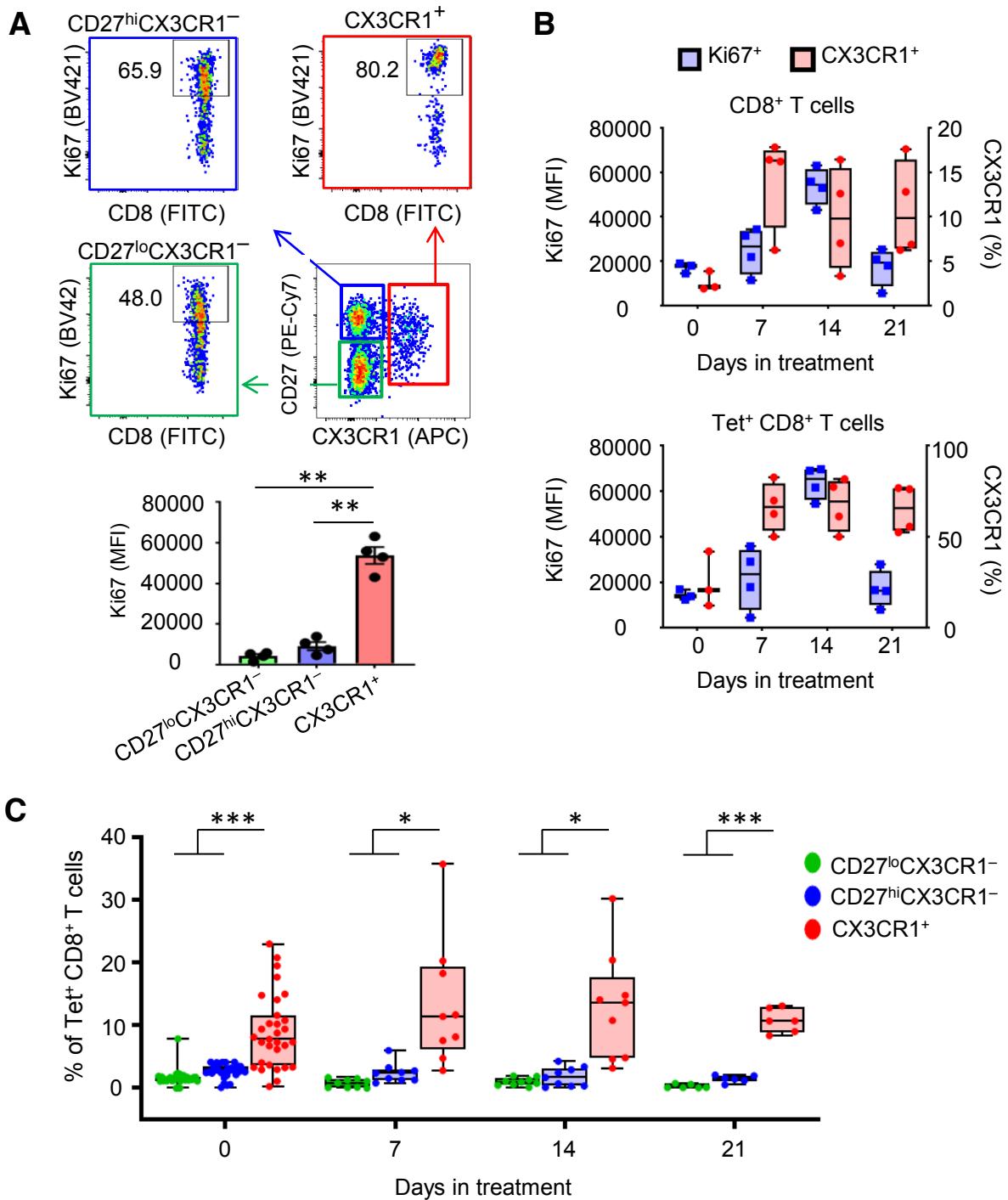
E

F

Figure 1. Changes in the frequency of PB CX3CR1⁺ CD8⁺ T cells associates with response to ICI therapy.

A, Experimental scheme of treatment with immune checkpoint inhibitors (ICI). Anti-PD-L1 antibody (Ab) and anti-CTLA-4 Ab were administered intraperitoneally every 3 days and every other day, respectively.

B, Tumor growth curves in MC38 (left) and CT26 (right) tumor-bearing mice treated with isotype Ab (NT) or ICI (n = 5 mice per group).


C, D, Representative bivariate plot showing CD27 and CX3CR1 expression of CD8⁺ T cells (**C**) and tetramer (Tet)⁺ CD8⁺ T cells (**D**) in peripheral blood (PB) of MC38 (upper) and CT26 (lower) tumor-bearing mice in different treatments as indicated; numbers denote percent CX3CR1⁺ cells. Right panels show the frequency of CX3CR1⁺ cells among CD8⁺ T cells (**C**) and Tet⁺ CD8⁺ T cells (**D**). PB was harvested at day 13. n = 2 experiments pooled.

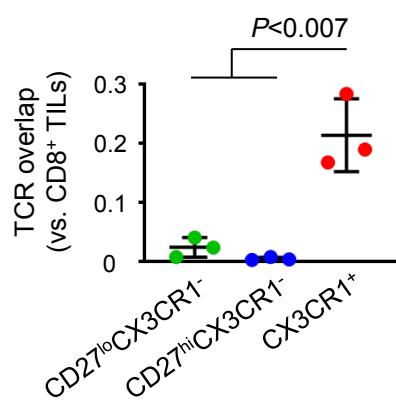
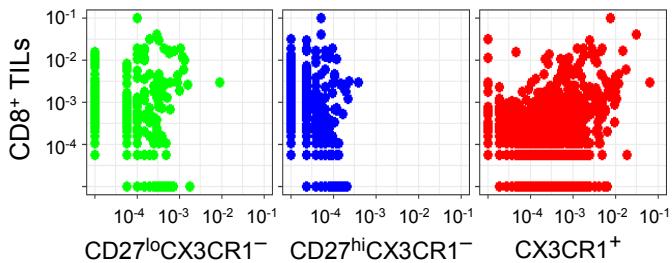
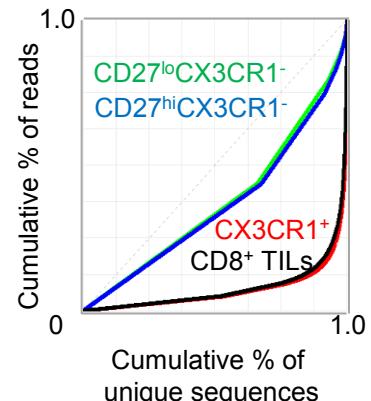
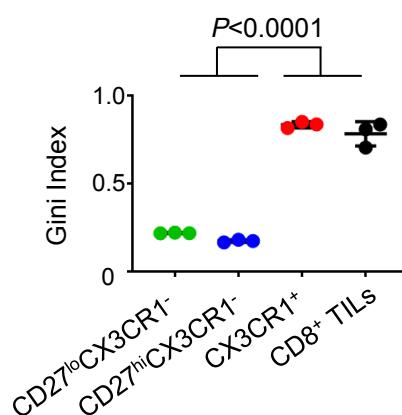
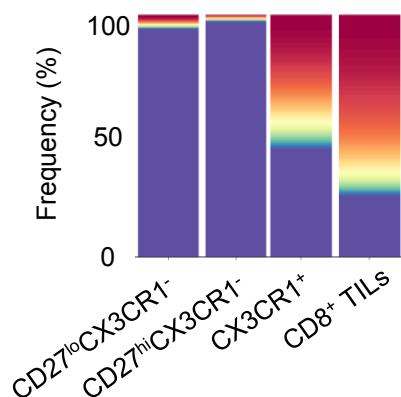
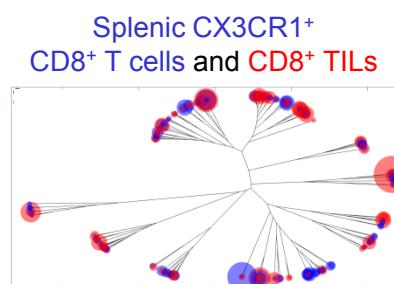
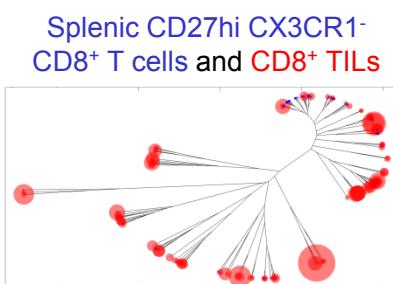
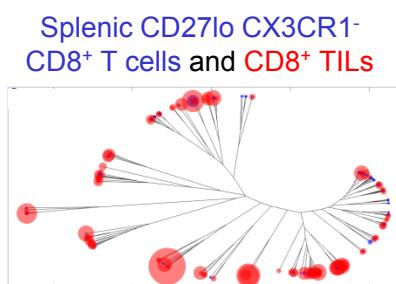
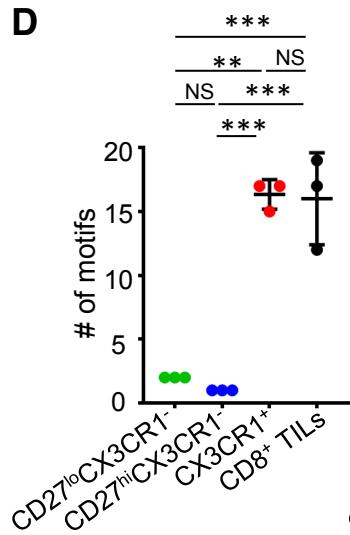
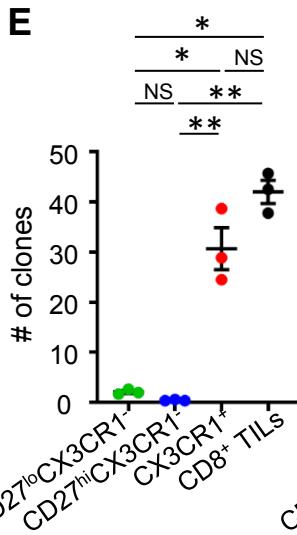
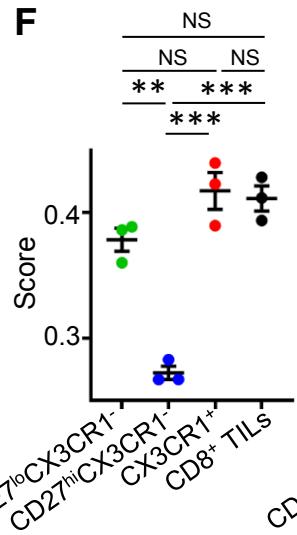
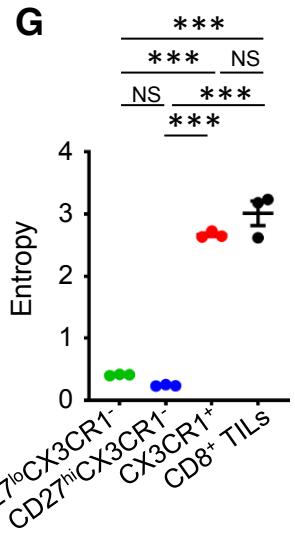
E, Frequency of the CX3CR1⁺ subset among CD8⁺ T cells (left) and percent change of CX3CR1⁺ T-cell subsets (right) in PB of CT26 tumor-bearing mice treated with isotype control Ab (black), anti-CTLA4 Ab (green), anti-PD-L1 Ab (blue), or combination of these two Ab (red). (n = 5 - 7 per each group). PB was harvested at day 7.

F, Scatter plot with correlation curve showing relationship between CT26 tumor volume (fold change) and the frequency of PB CX3CR1⁺ Tet⁺ CD8⁺ T cells at day 7 in CT26 tumor-bearing mice as in (E). Correlation is shown using Pearson correlation coefficients (R) and significance was determined using Spearman correlation.

(**B – E**)*, P < 0.05; **, P < 0.01; ***, P < 0.001; Mann-Whitney U-test. Values are mean \pm SEM.

Figure 2

Figure 2. Phenotypic analysis of PB CX3CR1⁺ CD8⁺ T cells before and during ICI therapy.













A-C, CT26 tumor-bearing mice were treated with anti-CTLA-4 Ab and anti-PD-L1 Ab. Peripheral blood (PB) was obtained before and during treatment.

A, Ki-67 expression of CD27^{lo}CX3CR1⁻ (green), CD27^{hi}CX3CR1⁻ (blue), and CX3CR1⁺ (red) CD8⁺ T cells in PB 2 weeks after ICI therapy. Numbers denote percent Ki-67⁺ cells. Data panel shows mean fluorescence intensity (MFI) of Ki-67⁺ cells in each subset (n=4 per each group).

B, Box and whiskers plots showing MFI of Ki-67⁺ (blue) and frequency of the CX3CR1⁺ subset (red) in CD8⁺ T cells (upper) and Tet⁺CD8⁺ T cells (lower) at day 0, 7, 14, and 21 in PB (n = 3 - 4 per each group).

C, Frequency of Tet⁺CD8⁺ T cells in the CD27^{lo}CX3CR1⁻ (green), CD27^{hi}CX3CR1⁻ (blue), and CX3CR1⁺(red) subsets at day 0, 7, 14, and 21 in PB. n = 2 experiments pooled. (**A** and **C**) *, P < 0.05; **, P < 0.01; ***, P < 0.0005; repeated-measures one-way ANOVA with Tukey's multiple comparisons test. Values are mean ± SEM.

Figure 3

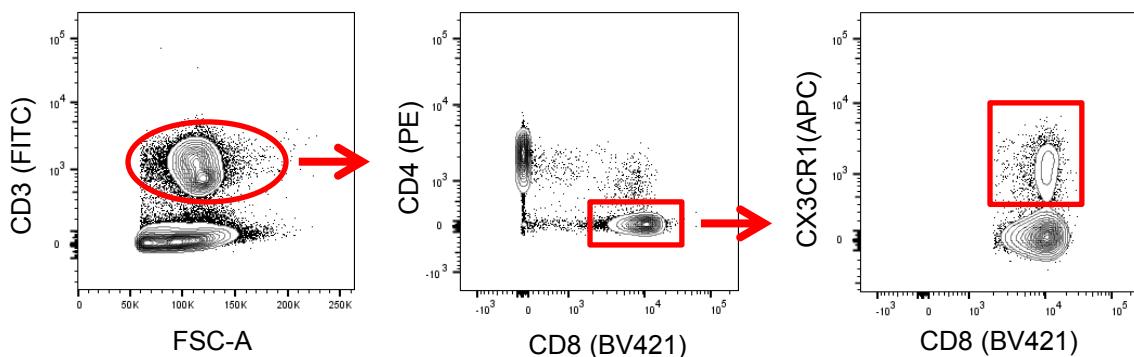
AFrequency of TCR β CDR3 AA sequences**B****C****D****E****F****G**

Figure 3. Effective ICI therapy induces high degree of TCR sequence similarity and clonality between tumor infiltrating CD8⁺ T cells and peripheral CX3CR1⁺ CD8⁺ T cells.

A-G, MC38 tumor-bearing mice were treated with anti-CTLA-4 Ab and anti-PD-L1 Ab. Three subsets of splenic CD8⁺ T cells determined by CD27 and CX3CR1 expression (CD27^{lo}CX3CR1⁻, CD27^{hi}CX3CR1⁻, and CX3CR1⁺), and CD8⁺ tumor-infiltrating lymphocytes (TILs) were isolated 2 weeks after treatment for TCR repertoire and clonality analysis.

A, TCR repertoire overlap by Morisita's index (left) and pairwise scatter plots of the frequency of TCR β CDR3 amino acid (AA) sequences between each subset of splenic CD8⁺ T cells and CD8⁺ TILs (right).

B, TCR clonality analysis of three subsets of splenic CD8⁺ T cells and CD8⁺ TILs by top sequence plot (left), Gini index (center), and Lorenz curve (right). The most abundant 100 AA sequences are colored while other less frequent clones are in purple in top sequence plot. **(A and B)** Data were analyzed using the one-way ANOVA test with Tukey's multiple comparisons to generate *P* values.


C, Representative overlapped weighted TCR repertoire dendrograms by ImmunoMap analysis between three subsets of splenic CD8⁺ T cells (blue) and CD8⁺ TILs (red). The distance of the branch ends represents sequence distance, and the size of circles denotes frequency of sequence. Data shown are representative of three independent experiments.

D-G, Number of dominant motifs (**D**), number of clones contributing response (**E**), TCR diversity score (**F**) and Shannon's entropy (**G**) of splenic CD27^{lo} CX3CR1⁻ (green), CD27^{hi} CX3CR1⁻ (blue), CX3CR1⁺ (red) CD8⁺ T cells, and CD8⁺ TILs (black).

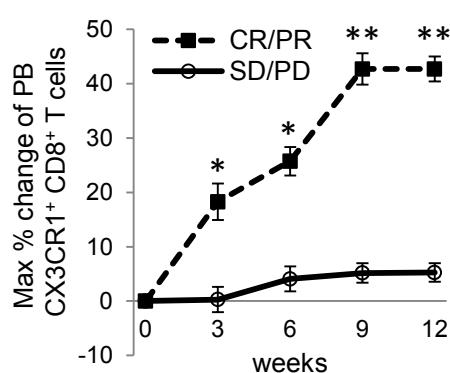
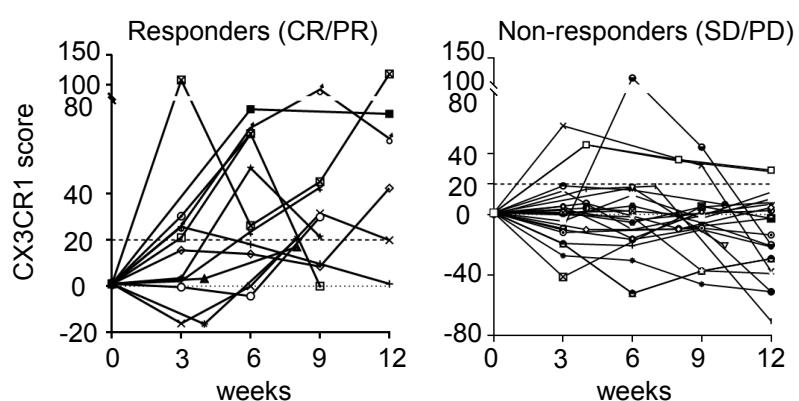
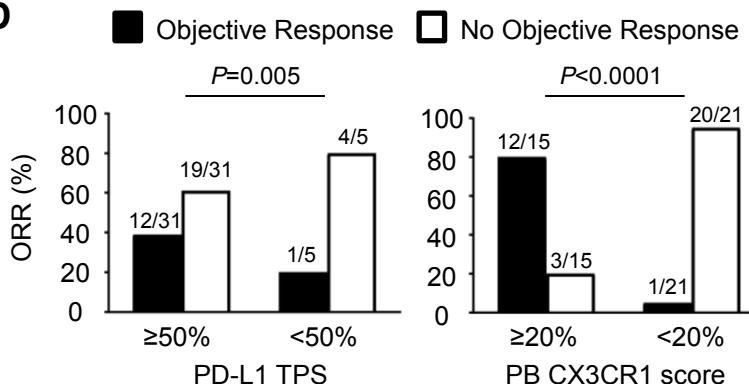
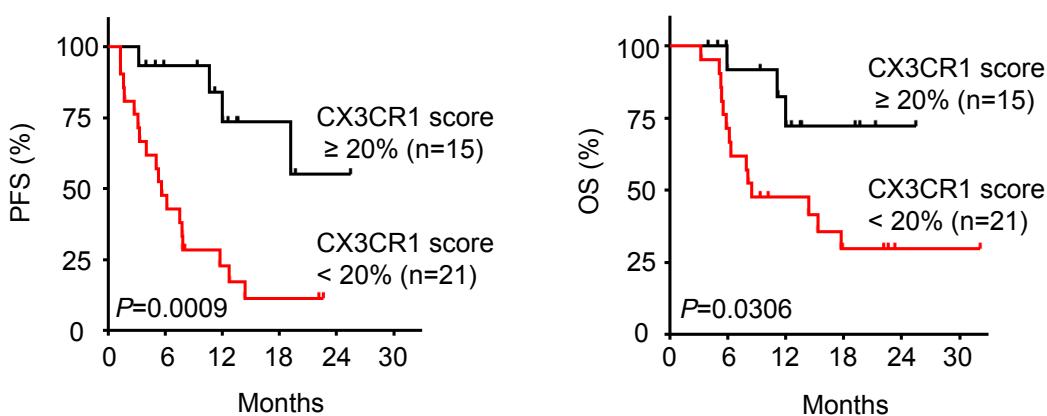

NS, not significant, *, $P < 0.05$; **, $P < 0.005$; ***, $P < 0.0005$ by repeated-measures one-way ANOVA with Tukey's multiple comparisons test. Values are mean \pm SEM.

Figure 4


A


B

C


D

E

	PD-L1 TPS ≥50% (n=36)	CX3CR1 score ≥20% (n=36)
PPV	38.7% (12/31)	80.0% (12/15)
NPV	80.0% (4/5)	95.2% (20/21)
Sensitivity	92.3% (12/13)	92.3% (12/13)
Specificity	17.4% (4/23)	87.0% (20/23)
Accuracy	44.4% (16/36)	88.9% (32/36)

F

Figure 4. Expansion of the CX3CR1⁺ subset in PB CD8⁺ T cells correlates with improved response to anti-PD-1 therapy and survival in patients with NSCLC.

A, Gating strategy for identifying CX3CR1⁺ CD8⁺ T cells in peripheral mononuclear blood cells. Cells were first gated for lymphocytes (SSC-A vs. FSC-A) and for singlets (FSC-H vs. FSC-A).

B, Maximal % change of CX3CR1⁺ subset in PB CD8⁺ T cells in responders and non-responders of 36 NSCLC patients treated with anti-PD-1 therapy by 12 weeks. CR/PR: complete and partial response, SD/PD: stable and progressive disease. *
 $P<0.04$, ** $P<0.0001$ by Mann-Whitney *U*-test. Values are median \pm SEM.

C, Percent change of the CX3CR1⁺ subset in PB CD8⁺ T cells from baseline (CX3CR1 score) in responders (left) and non-responders (right).

D, Objective response rate (ORR) for high and low PD-L1 tumor proportion score (TPS) (left) and PB CX3CR1 score (right). ORR was analyzed by Fisher's exact test.

E, Comparison of biomarker performance between PD-L1 TPS and CX3CR1 score at 12 weeks.

F, Kaplan-Meier progression free survival (PFS) (left) and overall survival (OS) (right) for high versus low CX3CR1 score. The two-tailed *P* value was calculated using the log-rank test.

Table 1:

Six most dominant clones in sorted splenic CX3CR1⁺ CD8⁺ T cells (**A**) and CD8⁺ TILs (**B**) in MC38-bearing mice treated with CTLA-4 and PD-L1 blockades (n=10 mice / experiment)

A	Exp.	CDR3β region sequence	Frequency^a (%)	Sequence also found in CD8⁺ TILs (%)		
#1 (n=10)	CASSPRLGDNVYAEQFF	4.26		#1 (0.24)	#2 (2.19)	#3 (0.82)
	CASSDRGRAEQFF	2.65		#1 (2.68)	#2 (9.68)	#3 (3.52)
	CASSLVGNQDTQYF	2.48		#1 (1.82)		#3 (3.01)
	CASGDAQYNNQAPLF	2.23				#3 (0.01)
	CASSPDKYEQYF	1.84				
	CASSQSGFAETLYF	1.75				
#2 (n=10)	CASSQWGAGNTLYF	17.59			#2 (1.44)	
	CASSPGRGYEQYF	2.92				
	CTCSPGTASGNLYF	2.89			#2 (0.15)	
	CASSLVGNQDTQYF	2.38		#1 (2.68)	#2 (9.68)	#3 (3.52)
	CASSGRDRKNERLFF	1.87				
	CASGDSNERLFF	1.38		#1 (0.02)	#2 (0.75)	
#3 (n=10)	CAWRGRTGSAETLYF	6.33				#3 (0.29)
	CASSGGRQYF	3.05				#3 (4.17)
	CASSLVGNQDTQYF	2.27		#1 (2.68)	#2 (9.68)	#3 (3.52)
	CASSNRVEQYF	1.87				#3 (0.005)
	CASRGDSYNYAEQFF	1.73				#3 (0.61)
	CASSPGRRSNGNTLYF	1.47				#3 (0.22)

B	Exp.	CDR3β region sequence	Frequency^a (%)	Sequence also found in CD8⁺ TILs (%)		
#1 (n=10)	CASTPRDWGVVAEQFF	13.61				
	CASSRDLGNTGQLYF	7.25		#2 (2.63)	#3 (0.01)	
	CASSLELGGPEQYF	3.84			#3 (0.01)	
	CASSPGYAEQFF	3.68				
	CASSPGQGYAEQFF	3.52			#3 (1.01)	
	CASSLVGNQDTQYF	2.68		#2 (9.68)	#3 (3.52)	
#2 (n=10)	CASSLVGNQDTQYF	9.68		#1 (2.68)		#3 (3.52)
	CASRRTTNSDYTEF	4.12				#3 (1.86)
	CASSSGTYEQYF	3.56				
	CASSLELGGREQYF	2.77		#1 (0.15)		
	CASSRDLGNTGQLYF	2.63		#1 (7.25)		#3 (0.01)
	CASHLSTSAETLYF	2.44				
#3 (n=10)	CTCSETGNSYEQYF	9.98				
	CASSGGRQYF	4.17				
	CASSLVGNQDTQYF	3.52		#1 (2.68)	#2 (9.68)	
	CASSGGWQYF	3.08				
	CASGDAQYNNQAPLF	3.01		#1 (1.81)		
	CASSPGQNYAEQFF	1.98		#1 (0.07)	#2 (0.20)	

^aProductive frequency.

Bold font with yellow highlight indicates that the clone was present in splenic CX3CR1⁺ CD8⁺ T cells and CD8⁺ TILs at high frequency (>2%) from all three independent experiments.

Green and blue-highlighted clones in sorted splenic CX3CR1⁺ CD8⁺ T cells (**A**) and CD8⁺ TILs (**B**) have a high degree of sequence homology, respectively.

1 **Supplementary Materials and Methods**

2

3 **Mice**

4 Male and female C57BL/6 mice and female Balb/c mice were purchased from the
5 Jackson Laboratories. All mice were 7 to 12 weeks old at the beginning of each experiment, and
6 were housed in the Unit for Laboratory Animal Medicine at the Roswell Park Comprehensive
7 Cancer Center in compliance with the Institutional Animal Care and Use Committee regulations.

8

9 **Cell lines**

10 MC38 and CT26 murine colon adenocarcinoma cell lines were gifts from Dr. Weiping
11 Zou (University of Michigan) and Dr. Sharon Evans (Roswell Park Comprehensive Cancer
12 Center), respectively. MC38 and CT26 cells were cultured in RPMI (Gibco) supplemented with
13 10% FBS (Sigma), 1% NEAA (Gibco), 2 mM GlutaMAX-1 (Gibco), 100 U/ml penicillin-
14 streptomycin (Gibco), and 55 μ M 2-mercaptoethanol (Gibco). Cells were authenticated by
15 morphology, phenotype and growth, and routinely screened for *Mycoplasma*, and were
16 maintained at 37°C in a humidified 5% CO₂ atmosphere.

17

18 ***In vivo* mouse studies**

19 Male or female C57BL/6 mice and female Balb/c mice were inoculated with $5-8 \times 10^5$
20 MC38 and 5×10^5 CT26, respectively per mouse on the right flank by subcutaneous injection on
21 day 0. When tumor volume reached approximately 50 mm³, 200 μ g of anti-PD-L1 Ab (clone
22 10F.9G2, BioXcell) and/or 100 μ g of anti-CTLA-4 Ab (clone 9H10, BioXcell) were
23 administered intraperitoneally every 3 days and every other day, respectively. Polyclonal syrian

24 hamster IgG (BioXcell) and rat IgG2b, κ (BioXcell) were used as isotype control Abs. Tumor
25 volumes were calculated by determining the length of short (*l*) and long (*L*) diameters (volume =
26 $l^2 \times L/2$). Experimental end points were reached when tumors exceeded 20 mm in diameter or
27 when mice became moribund and showed signs of lateral recumbency, cachexia, lack of
28 response to noxious stimuli, or observable weight loss.

29

30 **Single-cell preparations**

31 Blood, spleens and tumors were harvested at day 14-42 post MC38 or CT26 tumor
32 implantation. Spleens were homogenized by forcing the tissue through a cell strainer (70 μ m; BD
33 Biosciences). Red blood cells in blood and spleen were lysed using ACK Lysis Buffer (Gibco).
34 Tumors were cut into small pieces of 2-4 mm. Single-cell suspensions were obtained by
35 mechanical dispersion consisting of two 30-min incubations at 37°C, 5% CO₂ in 5 ml RPMI
36 1640 (Gibco) and tumor dissociation kit (Miltenyi Biotec) in C Tubes (Miltenyi Biotec)
37 interspersed with three mechanical dispersions on a GentleMACS dissociator (Miltenyi Biotec).
38 The tumor cell suspensions were then filtered through a cell strainer (70 μ m; BD Biosciences).

39

40 **Flow cytometry and cell sorting**

41 Surface staining of leukocytes in murine blood, spleens and tumors was performed in
42 FACS buffer (made in house) using monoclonal antibodies against mouse CD3 (145-2C11),
43 CD90.2 (53-2.1), CD4 (GK1.5), CD8 (53-6.7), CX3CR1 (SA011F11) (all BioLegend), CD27
44 (LG.7F9, eBioscience), CD45 (30-F11, Invitrogen), CD8 (KT15 for tetramer staining,
45 Invitrogen), and PD-1 (J43, BD Biosciences). Live/dead cell discrimination was performed using
46 Live/Dead Fixable Aqua Dead Cell Stain Kit or LIVE/DEAD Fixable Near-IR Dead Cell Stain

47 Kit (Invitrogen). Samples were incubated with antibodies for 20 min at RT in the dark. We used
48 the tetramer staining assay with peptide-MHC tetramer tagged with PE (H-2D^b-restricted
49 ASMTNMELM for MC38-bearing mice and H-2Ld-restricted SPSYVYHQF for CT26-bearing
50 mice (The NIH Tetramer Core Facility)) to analyze the percentages of tumor antigen-specific
51 CD8⁺ T cells. For intracellular staining, surface-stained cells were fixed and permeabilized using
52 a Foxp3 fixation/permeabilization kit (eBioscience), then stained with anti-Ki67 (16A8,
53 BioLegend) for 30 min.

54 For TCR sequencing of murine splenic CD8⁺ T cells, single cell suspensions from
55 freshly isolated splenocytes were stained as above. CD45⁺ CD3⁺ CD8⁺ T cells were gated, and
56 CD27^{lo} CX3CR1⁻, CD27^{hi} CX3CR1⁻, and CX3CR1⁺ CD8⁺ T cells were sorted using BD Aria
57 Sorter. An EasySep Mouse CD8a Positive Selection Kit II (STEMCELL Technologies) was
58 used to isolate murine CD8⁺ TILs for TCR sequencing.

59 For phenotypic analysis of PBTCs, fresh or cryopreserved PBMC samples were stained
60 with master mix of antibodies for surface stains including CD3 (UCHT1, BD Biosciences), CD4
61 (SK3, BD Biosciences), CD8 (RPA-T8, eBioscience), CD27 (O323, eBioscience), and, CX3CR1
62 (2A9-1, Biolegend). Samples were acquired using LSR II (BD), LSRFortessa (BD) or SONY
63 sorter and data analyzed with FlowJo software v10.1.5 (TreeStar).

64

65 **DNA isolation, TCR β CDR3 region sequencing and repertoire analysis**

66 DNA from flow-isolated murine splenic CD8⁺ T cells and CD8⁺ TILs, and PB CD8⁺ T
67 cells was extracted using (QIAamp DNA Micro Kit (QIAGEN)). DNA was quantified using
68 Qubit dsDNA BR Assay (Invitrogen). Amplification and sequencing of TCR β CDR3 regions
69 was performed using ImmunoSEQ immune profiling system at the survey level (Adaptive

70 Biotechnologies)(1). Sequencing was performed on an Illumina NextSeq system using 150 cycle
71 mid-output kit (Illumina Inc.). Processed data were uploaded to the immunoSEQ Platform
72 (Adaptive Biotechnologies) for preliminary bioinformatics analysis. Processed data were
73 downloaded and frequencies/counts for TCR clonotypes and diversity were examined by
74 nucleotide sequences after non-productive reads were filtered out.

75 TCR beta chain CDR3 variable region sequencing was performed using the ImmunoSEQ
76 assay at the survey level (Adaptive Biotechnologies). T-cell repertoires, comprising all detected
77 CDR3 sequences with annotated V and J gene segment identifications were downloaded directly
78 from the ImmunoSEQ Analyzer from Adaptive biotechnologies. Metrics of the complete TCR
79 repertoire in each sample, including the number of productive rearrangements, productive
80 clonality and clonal frequencies were determined using the ImmunoSEQ Analyzer software and
81 confirmed using the LymphoSeq package (2). All other analyses were performed using the
82 LymphoSeq package and custom scripts in the R statistical software environment. Dissimilarity
83 between sample repertoires was calculated using the Morisita's Index(3), using the vegan
84 package. Differential clone frequencies between samples were determined using the Fisher's
85 exact test with multiple test correction (Holm method). For differential analysis, only those
86 clones observed with at least 5 cumulative read counts were considered. TCR clonality was
87 calculated as 1-Pielou's evenness(4) using the immunoSEQ Analyzer®. Clonality values
88 approaching 1 indicate a very skewed distribution of frequencies, whereas values approaching 0
89 indicate that every rearrangement is present at nearly identical frequency.

90 TCR repertoires were visualized as weighted dendograms using ImmunoMap(5). Only
91 productive sequences with a frequency > 0.1% in the tumor were considered for analysis.
92 Sequence distances were calculated based on sequence alignments scores using a PAM10

93 scoring matrix and gap penalty of 30. Circles are overlaid at the end of the branches
94 corresponding to the CDR3 sequences with diameters proportional to the frequency of the
95 sequences observed in the samples. Shannon's Entropy, Dominant motifs, singular structural
96 clones, singular clones contributing response, and richness of motifs were identified using
97 ImmunoMap.

98

99

100 **Data reporting.**

101 No statistical methods were used to predetermine sample size. The experiments were not
102 randomized and the investigators were not blinded to allocation during experiments and outcome
103 assessment.

104

105 **Study design, patients and specimen collection.**

106 Thirty-six patients with naive or previously treated PD-L1 IHC positive non-small cell
107 lung cancer (NSCLC) adenocarcinoma and squamous cell type, undergoing anti-PD-1 Ab
108 (Pembrolizumab or Nivolumab) (Supplemental Table S2) were consented to the collection and
109 storage of blood samples, the analysis of archived tumor tissue, and the review of their medical
110 records under the protocol (I 188310), in accordance with the Institutional Review Board of
111 Roswell Park Comprehensive Cancer Center. Peripheral blood was obtained in EDTA-
112 containing tubes before treatment and before each infusion and every 2-6 weeks for 12 weeks.
113 Peripheral blood mononuclear cells (PBMCs) were isolated using Lymphocyte Separation
114 Medium (Corning) density gradient centrifugation and stored using standard protocols.

115

116 **Assessment of response.**

117 Clinical response to anti-PD-1 therapy was determined as best response based on
118 immune related RECIST (iRECIST)(6) at the 12 week time point, and classified as complete
119 response (CR) and partial response (PR) for responders or stable disease (SD) and progressive
120 disease (PD) for non-responders. Objective responses were confirmed by at least one
121 sequential tumor assessment, and objective response rates were calculated as $[(CR + PR) \div$
122 number of patients] $\times 100$. Fisher's exact test was used to assess the association between PD-
123 L1 expression and objective response.

124

125 **Immunohistochemical studies**

126 The expression of PD-L1 on the surface of tumor cells and frequency of CD8⁺ T cells
127 were evaluated as described before (7). Briefly, the expression of PD-L1 on the surface of tumor
128 cells was assessed by means of the Dako Omnis platform (Agilent) with the 28-8 pharmDx
129 antibody and scored by published guidelines (8). Serially sectioned tissue was evaluated for
130 lymphocyte infiltration using the anti-CD8 antibody C8/144B (Agilent) and assigned a
131 qualitative score of non-infiltrated, infiltrated, or excluded. Non-infiltrated referred to a sparse
132 number of CD8⁺ T-cells that infiltrate nests of neoplastic cells and with less than 5% of the
133 tumor showing an infiltrating pattern. Infiltrated represents frequent CD8⁺ T-cells that infiltrate
134 nests of neoplastic cells in an overlapping fashion at least focally and in more than 5% of the
135 tumor. Excluded represents restriction of more than 95% of all CD8⁺ T-cells in a tumor to the
136 periphery or interstitial stromal areas and not actively invading nest or groups of neoplastic cells.

137

138

139 **Tumor mutational burden profiling**

140 Tumor mutational burden (TMB) was evaluated as described before (7). In brief, DNA
141 was extracted from each sample and processed for whole-exon DNAseq. TMB was assessed by
142 targeted capture and sequencing of 409 cancer-related genes and amplicon sequencing of 394
143 immune transcripts, respectively, comprising 1.4 Mb of DNA on samples that met validated
144 quality control (QC) thresholds (7). Somatic mutation calling was conducted using Ion Torrent
145 Suite software's variant caller plugin. Mutational burden (MuB) cutoff was derived from a
146 reference population whereby the median MuB was determined on regular basis. This value was
147 used as a baseline and a high MuB was defined as $2 \times$ this median value, or a value of 10.0.

148

149 **Statistics**

150 Statistical analysis was performed using *t*-test or Mann-Whitney *U* test for comparisons between
151 2 groups, 1-way repeated measures ANOVA with Turkey-adjusted multiple comparisons for
152 comparisons more than 2 groups, or the Mantel-Cox method (log-rank test) for survival analysis
153 using GraphPad Prism 7.03 (GraphPad Software) and the R statistical software. TCR repertoire
154 analysis was performed using ImmunoSEQ software (Adaptive Biotechnologies) and
155 ImmunoMap. $P < 0.05$ was considered statistically significant. Data are presented as mean \pm
156 SEM except for Figure 4B (median \pm SEM).

157

158

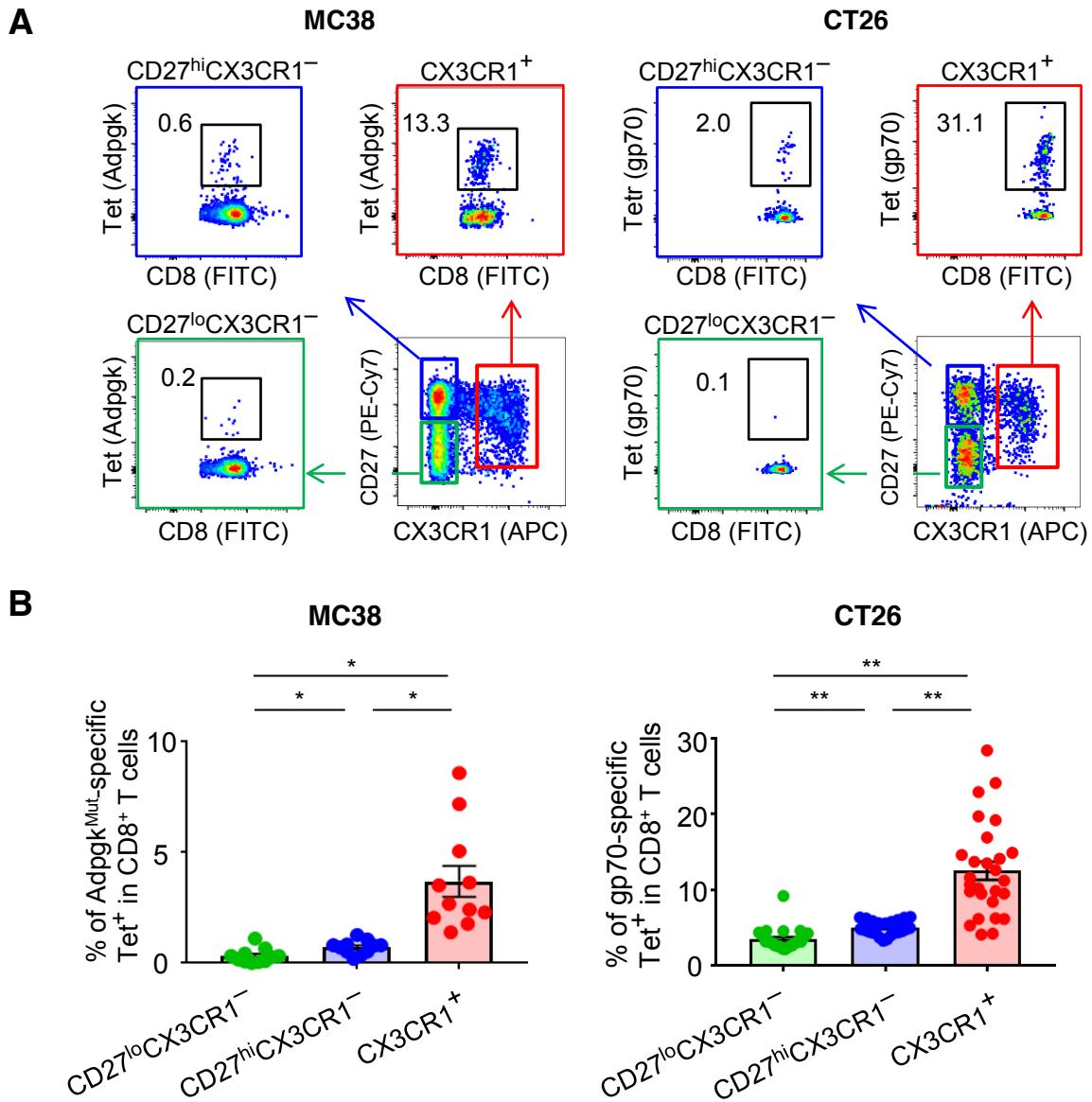
159 **References**

160 1. Carlson CS, Emerson RO, Sherwood AM, Desmarais C, Chung MW, Parsons JM, et al.
161 Using synthetic templates to design an unbiased multiplex PCR assay. *Nature*
162 *communications* 2013;4:2680.

163 2. Coffey D. LymphoSeq: Analyze high-throughput sequencing of T and B cell receptors. .
164 R package version 1140 2019.

165 3. Morisita M. Measuring of the dispersion of individuals and analysis of the distributional
166 patterns. *Mem Fac Sci Kyushu Univ Ser E* 1959;2(21):5-23.

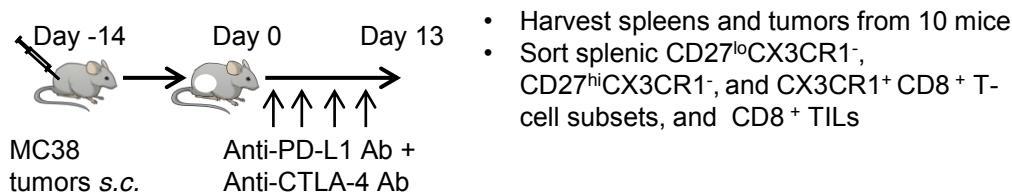
167 4. Pielou EC. Species-diversity and pattern-diversity in the study of ecological succession.
168 *Journal of theoretical biology* 1966;10(2):370-83.

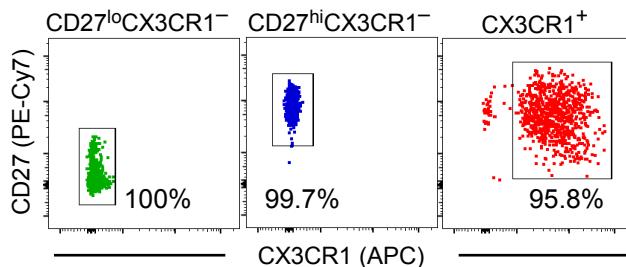

169 5. Sidhom JW, Bessell CA, Havel JJ, Kosmides A, Chan TA, Schneck JP. ImmunoMap: A
170 Bioinformatics Tool for T-cell Repertoire Analysis. *Cancer immunology research*
171 2018;6(2):151-62.

172 6. Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, et al. iRECIST:
173 guidelines for response criteria for use in trials testing immunotherapeutics. *Lancet Oncol*
174 2017;18(3):e143-e52.

175 7. Morrison C, Pabla S, Conroy JM, Nesline MK, Glenn ST, Dressman D, et al. Predicting
176 response to checkpoint inhibitors in melanoma beyond PD-L1 and mutational burden.
177 *Journal for immunotherapy of cancer* 2018;6(1):32.

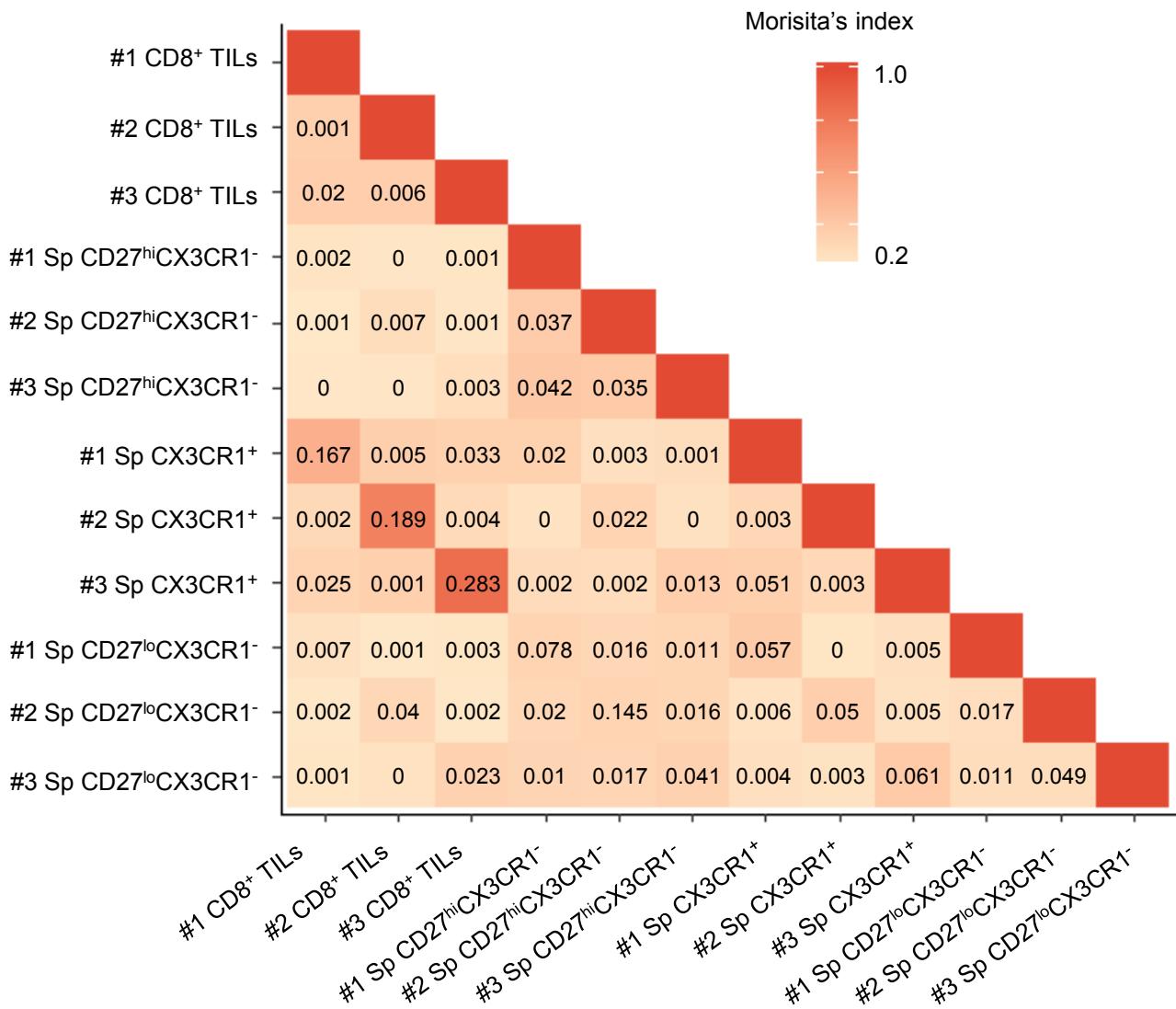
178 8. Dako. PD-L1 IHC 28-8 pharmDx: Non-Squamous Non-Small Cell Lung Cancer
179 [interpretation manual]. Santa Clara, CA: Dako 2017.


180

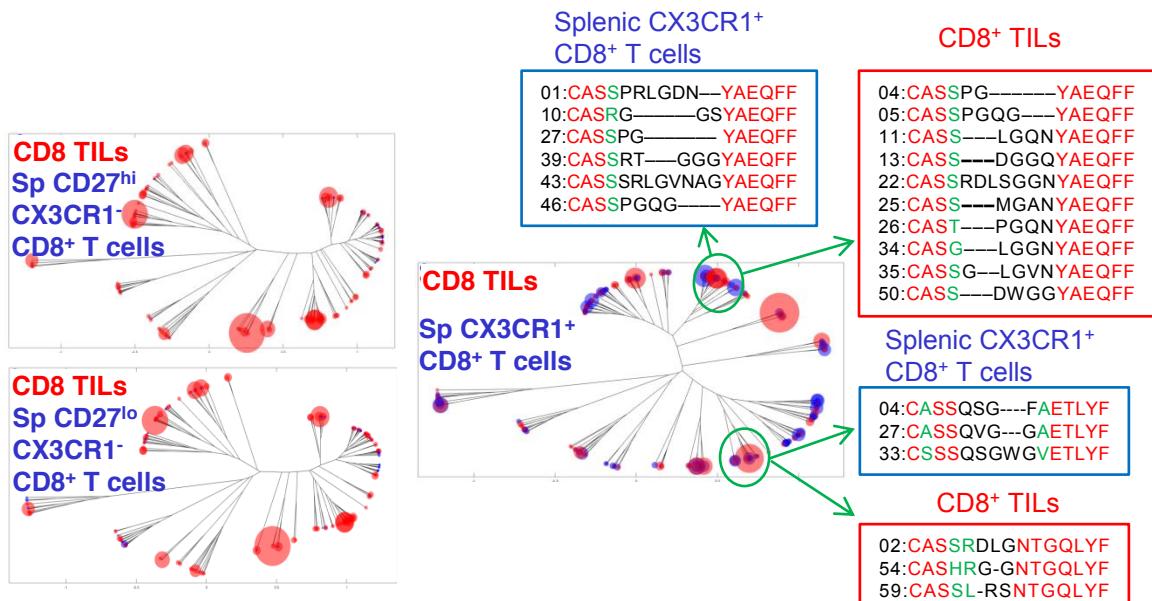

Supplementary Figure S1. Related to Figure 2. **(A)** Representative flow cytometric plots showing the frequency of tetramer (Tet)⁺ CD8⁺ T cells in the CD27^{lo} CX3CR1⁻ (green), CD27^{hi} CX3CR1⁻ (blue), and CX3CR1⁺ (red) subsets in peripheral blood (PB) of MC38 (left) or CT26 (right) tumor-bearing mice treated with immune checkpoint inhibitors (ICI; anti-PD-L1 Ab and anti-CTLA-4 Ab) for 14 days; numbers denote percent Tet⁺ cells. We used a tetramer to detect CD8⁺ T cells specific for mutated Adpgk protein (Adpgk^{Mut}) in MC38 and shared tumor-associated antigen (TAA), gp70 in CT26 tumor models.

(B) Frequency of Tet⁺ T cells in 3 subsets of PB CD8⁺ T cells at baseline in MC38 (left) and CT26 (right) tumor-bearing mice. n=3 experiments pooled. * $P<0.005$, ** $P<0.0001$ by Mann-Whitney *U*-test. Values are mean \pm SEM.

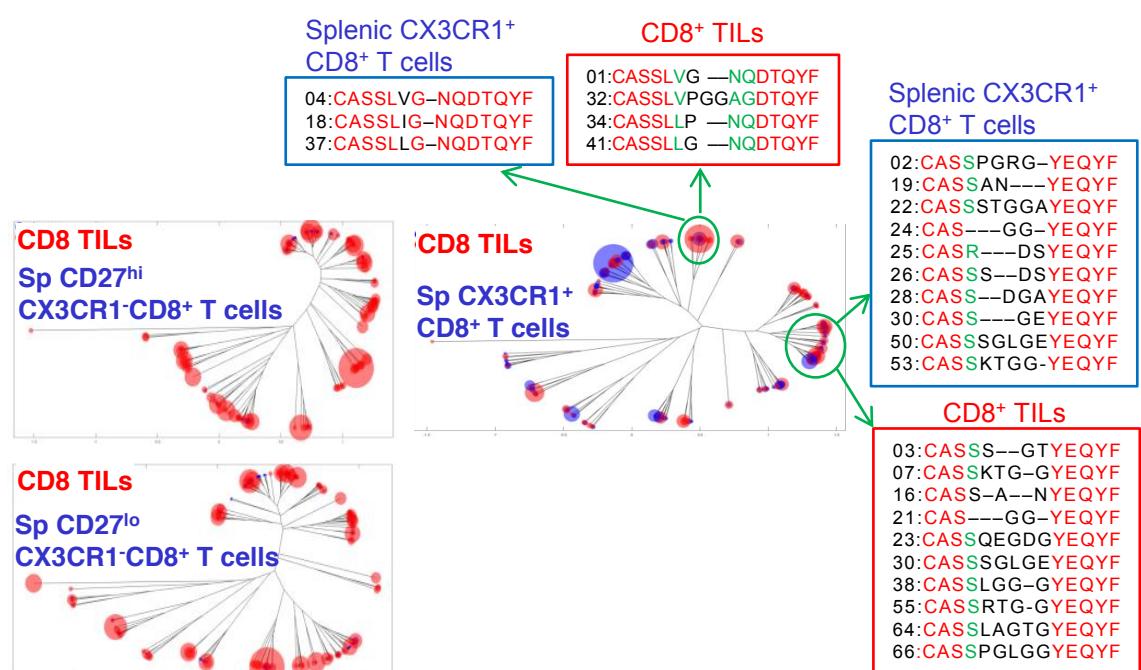
A



B


Supplementary Figure S2. Related to Figure 3. **(A)** Experimental scheme of treatment with immune checkpoint inhibitors (ICI), and isolation of three subsets of splenic CD8⁺ T cells and CD8⁺ TILs for TCR repertoire and clonality analysis for figure 3, supplementary figures S3 - S5, and supplementary table S1. **(B)** Representative flow cytometric plots showing the frequency of splenic CD27^{lo} CX3CR1⁻ (green), CD27^{hi} CX3CR1⁻ (blue), and CX3CR1⁺ (red) CD8⁺ T cells after flow-sort.

Supplementary Figure 3 Yamauchi *et al*



Supplementary Figure S3. Related to Figure 3A. Pairwise TCR β repertoire overlaps among different samples from three independent experiments (#1 - #3). Numbers denote TCR repertoire overlap by Morisita's index.

A

B

Supplementary Figure S4. Related to Figure 3C and Supplementary Table S1. Representative overlapped weighted TCR repertoire dendograms by ImmunoMap analysis between three subsets of splenic CD8+ T cells (blue) and CD8+ TILs (red) from two independent experiments (A and B). Dominant motif analysis clusters homologous sequences and selects for clusters contributing to significant proportion of the response. Two dominant motifs are shown representing highly represented structural motifs in each experiment. The numbers denote the ranking of the frequency within the subset. (red = fully conserved amino acids (AA), green = semi-conserved AA, black = non-conserved AA)

Supplementary Table S1.

Demographic and clinical characteristics of lung cancer patients on this study

Patient characteristics	<i>n</i> = 36
Median age (range)	68 (49-89)
Sex, <i>n</i> (%)	
Male	14 (39%)
Female	22 (61%)
Race, <i>n</i> (%)	
Caucasian	34 (94%)
African-American	2 (6%)
ECOG PS	
0/1	33 (92%)
History of smoking	
Never	4 (11%)
Former	22 (61%)
Current	10 (28%)
Histology, <i>n</i> (%)	
Adenocarcinoma	22 (61%)
Squamous cell carcinoma	13 (36%)
Non-small cell lung cancer with giant features	1 (3%)
Stage at diagnosis, <i>n</i> (%)	
II-III	9 (25%)
IV	27 (75%)
Prior lung surgery, <i>n</i> (%)	6 (17%)
Prior chemotherapy, <i>n</i> (%)	
One line	5 (14%)
Two lines	2 (6%)
Prior targeted therapy, <i>n</i> (%)	
Osimertinib and Erlotinib (EGFR)	2 (6%)
Dabrafenib/Trametinib (BRAF V600E)	1 (3%)
Prior radiation, <i>n</i> (%)	
Thoracic radiation	15 (42%)
Bone radiation	3 (8%)
Gamma knife stereotactic radiosurgery	7 (19%)
Known brain metastases, <i>n</i> (%)	7 (19%)
Study drug, <i>n</i> (%)	
Nivolumab	2 (6%)
Pembrolizumab	34 (94%)
Best disease response at 12 weeks, <i>n</i> (%)	
Complete Response (CR)	0 (0%)
Partial response (PR)	13 (36%)
Stable disease (SD)	14 (39%)
Progressive disease (PD)	9 (25%)

Supplementary Table S2

Marker Performance, Related to Figure 4B.

PB CX3CR1 ⁺ CD8 ⁺ T cells	Cut-point	Specificity	Sensitivity	PPV	NPV
Max % change by 3 weeks (n=27)	1.74	0.65	0.80	0.57	0.85
Max % change by 6 weeks (n=36)	21.19	0.87	0.62	0.73	0.80
Max % change by 9 weeks (n=36)	15.49	0.74	1.00	0.68	1.00
Max % change by 12 weeks (n=36)	19.62	0.71	0.92	0.80	0.95

Maximal percent change of the CX3CR1⁺ subset in PB CD8⁺ T cells at 3, 6, 9 and 12-weeks relative to baseline was evaluated. Cut-points for discriminating between responders and non-responders were obtained using the Youden's index criterion.

Abbreviations: PB, peripheral blood; Max, maximal; PPV, positive predictive value; NPV, negative predictive value.

Supplementary Table S3

Prediction performance for study biomarkers, Related to Figure 4E.

	Baseline CD8 ⁺ tumor-infiltrating lymphocytes (low/high vs. no/minimal infiltration) (n=24)	Baseline tumor mutational burden ($\geq 10.0/\text{Mb}$ vs. $< 10.0/\text{Mb}$) (n=22)
PPV	33.3% (5/15)	20.0% (1/5)
NPV	55.6% (5/9)	52.9% (9/17)
Sensitivity	55.6% (5/9)	11.1% (1/9)
Specificity	33.3% (5/15)	69.2% (9/13)
Accuracy	41.7% (10/24)	45.5% (10/22)

Abbreviations: PPV, positive predictive value; NPV, negative predictive value