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Abstract

Brain atlases have proven to be valuable neuroscience tools for localizing regions of interest and performing statistical inferences
on populations. Although many human brain atlases exist, most do not contain information about white matter structures, often
neglecting them completely or labelling all white matter as a single homogenous substrate. While few white matter atlases do
exist based on diffusion MRI fiber tractography, they are often limited to descriptions of white matter as spatially separate
“regions” rather than as white matter “bundles” or fascicles, which are well-known to overlap throughout the brain. Additional
limitations include small sample sizes, few white matter pathways, and the use of outdated diffusion models and techniques.
Here, we present a new population-based collection of white matter atlases represented in both volumetric and surface
coordinates in a standard space. These atlases are based on 2443 subjects, and include 216 white matter bundles derived from 6
different state-of-the-art tractography techniques. This atlas is freely available and will be a useful resource for parcellation and

segmentation.

Keywords: White Matter, Atlas, Tractography

1. Background & Summary

The creation and application of medical image-based brain atlases is
widespread in neuroanatomy and neuroscience research. Atlases have
proven to be a valuable tool to enable studies on individual subjects and
facilitate inferences and comparisons of different populations, leading
to insights into development, cognition, and disease[1-3]. Through the
process of spatial normalization, images can be aligned with atlases to
facilitate comparisons of brains across subjects, time, or experimental
conditions. Additionally, atlases can be used for label propagation,
where anatomical labels are propagated from the atlas to new data in
order to identify a priori regions of interest. With these applications in
mind, a number of human brain atlases have been created (Figure 1),
with variations in the number of labels, the regions of the brain that are
delineated, the methods used to generate labels, and the population or
individuals used to create the atlas (for a review of the existing atlases
and their standardization, see recent work by Myers et al.[4]).

Despite the wide variety of human brain atlases available to the research
community, there is a distinct lack of resources available to describe the
white matter of the brain. For example, most atlases emphasize cortical
or sub-cortical gray matter, and do not contain a label for white matter

[5-24] or only label white matter as a single homogenous structure, or
simply separate into the “cerebral white matter” of the left and right
hemispheres[25, 26].

Some atlases do indeed include labels for white matter. However, in
many cases these labels are for “regions” of the white matter rather than
labels for specific white matter bundles[27-32]. For example, an atlas
may contain a label for the “anterior limb of the internal capsule” or
“corona radiata” which are descriptions of regions through which
several white matter bundles are known to pass. While these regions are
certainly scientifically useful, the white matter pathways themselves
would be more informative for network neuroscience investigations or
applications where white matter structure, connectivity, and location are
paramount. Additionally, regional labels do not overlap, whereas the
fiber bundles of the brain are known to be organized as a complex
mixture of structures, overlapping to various degrees.

To overcome these limitations, several atlases have been created using
diffusion MRI fiber tractography, a technique which allows the
investigator to perform a “virtual dissection” of various white matter
bundles of the brain. Examples include population-based atlases of
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Harvard-Oxford Cortical atlas
N=37
Makris et al, Schizophr Res, 2006

Yeo Cortical Parcellation

N=1000
Yeo et al., ) Neurophysiol, 2011

Schaefer Local-Global
N=744
Schaefer et al., Cerebral Cortex, 2018

Desikan-Killiany Cortical Atlas
N=40
Desikan et al., Neurolmage, 2006

HCP MMP 1.0
N=210
Glasser et al., Nature, 2016

Julich Histological Atlas
N=10

Eickhoff et al., Neurolmage, 2005
Eickhoff et al., Neurolmage, 2006
AAL Single Subject Atlas
N=1

Tzourio-Mazoyer et al., Neurolmage,
2001

Talairach Atlas
 N=1
Talairach et al., Co-planar stereotaxic atlas of
the human brain. 1988.
Neubert Ventral Frontal
N=25
Neubert et al., Neuron, 2014

JHU Eve Atlas

N=1

Oishi et al., Neurolmage, 2009
Sallet Dorsal Frontal
N=9

Sallet et al., Journal of Neuroscience, 2013

SMATT Atlas

N=100

Archer, Cerebral Cortex, 2018
SENSAAS Language Atlas
N=144

Labache et al., Brain Struct Funct, 2018

JHU ICBM-DTI-81
N=81
Mori et al., MRI Atlas of Human White

MarsAtlases (TPJ, Parietal) Matter. 2005.

N=8
Mars et al., Journal of NeuroScience, 2011
Mars et al., Cerebral Cortex, 2011

JHU ICBM-DTI-81

N=81

Mori et al., MRI Atlas of Human White
Matter. 2005.

SPL/NAC Brain Atlas

N=1

Shenton et al., Biomed Visualization, 1995
Kikinis et al., IEEE TVCG 1996

DTI Atlas of WM Connections
N=20

Catani & Thiebaut de Schotten, Cortex, 2008.
MNI Structural Atlas
N>50

Mazziotta et al., Phil. Trans. Royal Soc. B
Biol. Sci. 2001.

Superficial WM bundle atlas
N=79

Roman et al., Front Neuroinform, 2017

Oxford Thalamic Atlas
N=8

Behrens et al., Nature Neuroscience,
2003

Pyramidal Tract Atlas
N=410
Chenot et al., Braint Struct Func, 2018

80 Bundle Population Atlas
N=842
Yeh et al., Neurolmage, 2018

Subthalamic Nucleus Atlas
N=13

Forstmann et al., Neurolmage, 2012.

Recobundles Streamline Atlas
N=842

Garyfallidis et al, Neurolmage, 2017

Yeh et al., Neurolmage, 2018

Oxford-GSK-Imanova Striatal
N=26

Tziortzi et al., Cerebral Cortex, 2013
Tziortzi et al., Neurolmage, 2011

ORG Fiber Clustering Atlas
N=100
Zhang et al., Neurolmage, 2018

Probabilistic Cerebellar Atlas

> OO

Diedrichsen et al., Neurolmage, 2009.

Figure 1. Comparison of types of human brain atlases and regions present in each. Visualizations were made using FSLview tri-planar view for
volumetric atlases and using Ml-brain 3D-view for streamline atlases. Note that because atlases are in different spaces, visualized slices, anatomy, and
orientation is not guaranteed to be the same across atlases. Note that this figure is not exhaustive, and is only representative of the types of atlases and
the information they contain. Figure inspired by work on standardizing gray matter parcellations (Figure 1 of Myers et al.*).

association and projection pathways[33-36], atlases of the superficial U- tracts[42], or lobular-specific connections[36, 43, 44]. Existing
fibers connecting adjacent gyri[37, 38], and atlases created from tractography-based atlases, however, typically suffer from one or more
tractography on diffusion data averaged over large population limitations: (1) small population sample sizes, (2) restriction to very few

cohorts[34, 39, 40]. In particular, several atlases have been made with a white matter pathways, and (3) the use of out-dated modeling for
focus on a single pathway or a set of pathways with functional tractography (specifically the use of diffusion tensor imaging which is
relevance, for example the pyramidal tract[41], the sensorimotor associated with a number of biases and pitfalls). Further, it is not clear
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Figure 2. Experimental workflow and generation of Pandora atlases. Data from three repositories (HCP, BLSA, and VU) were curated. Subject-level
processing includes tractography and registration to MNI space. Volumetric atlases for each set of bundle definitions is created by population-averaging
in standard space. Point clouds are displayed which allow qualitative visualization of probability densities of a number of fiber pathways. Finally, surface
atlases are created by assigning indices to the vertices of the MNI template white matter/gray matter boundary.

whether the same pathway defined using one atlas results in the same
structure when compared to another atlas due to differences in the
procedures utilized to define and dissect the bundle under investigation.
A final type of atlas, streamline-based atlases[38, 39, 45-47] have
become popular in recent years. These are composed of millions of
streamlines and can be used as a resource to cluster sets of streamlines
on new datasets, thus they nicely complement the use and application of
volumetric atlases when diffusion MRI is available.

In this work, we introduce the Pandora® white matter bundle atlas. The
Pandora atlas is actually a collection of 4-dimensional population-based
atlases represented in both volumetric and surface coordinates in a
standard space. Importantly, the atlases are based on a large number of
subjects, and are created from multiple state-of-the-art tractography and
dissection techniques, resulting in a sizable number of (possibly
overlapping) white matter labels. In the following, we describe the
creation of these atlases, the data records of the files and their formats,
and validate the use of multiple subject populations and multiple
tractography methodologies. The Pandora atlas is freely available
(https://www.nitrc.org/projects/pandora_atlas;

https://github.com/M ASILab/Pandora-WhiteMatterAtlas) and will be a
useful resource for parcellation and segmentation.

" This name was chosen as a parallel to the JHU “Eve” atlas, where
Pandora was the first woman in Greek mythology. Also, from Pandora’s
box was released “evil” and only “hope” remained. Our Pandora’s “box”
just happens to contain white matter labels.

2. Methods

Figure 2 presents an overview of the pipeline and methodology used to
create these atlases. Briefly, we retrieved and organized data from 3
large repositories (Figure 2, Data). For each subject, we performed six
different automated methods of tractography and subsequent white
matter dissection (Figure 2, Subject-level processing: tractography),
and registered all data to a standard volumetric space (Figure 2,
Subject-level processing: registration). Next, a probabilistic map was
created separately for each white matter bundle in standard space in
order to create the volumetric atlases (Figure 2, Volumetric atlas
creation). Finally, a surface mesh of the boundary between white and
gray matter was created, and the volumetric maps were used to assign
probabilities along this surface to create the surface-intersection atlases
(Figure 2, Surface Atlas creation). In addition to making the atlases
available, all methods are also available as source code
(https://github.com/M ASILab/Pandora-Methods).

2.1 Data

We used de-identified images from the Baltimore Longitudinal Study of
Aging (BLSA), Human Connectome Project (HCP) S1200 release, and
Vanderbilt University (Figure 2, Data). The BLSA is a long-running
study of human aging in community-dwelling volunteers and is
conducted by the Intramural Research Program of the National Institute
on Aging, NIH. Cognitively normal BLSA participants with diffusion
MRI data were included in the present study, using only one scan per
participant, even if multiple follow-ups were available. HCP data are
freely available and unrestricted for non-commercial research purposes,
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and are composed of healthy young adults. This study accessed only de-
identified participant information. All datasets from Vanderbilt
University were acquired as part of a shared database for MRI data
gathered from healthy volunteers. A summary of the data is given in
Table 1, including number of subjects, age, sex, and handedness. All
human datasets were acquired under research protocols approved by the
local Institutional Review Boards.

All datasets included a T1-weighted image, as well as a set of diffusion-
weighted images (DWIs). Briefly, the BLSA acquisition (Philips 3T
Achieva) included T1-weighted images acquired using an MPRAGE
sequence (TE=3.1 ms, TR=6.8 ms, slice thickness = 1.2 mm, number
of Slices=170, flip angle=8deg, FOV =256x240mm, acquisition
matrix =256%240, reconstruction matrix =256%256, reconstructed
voxel size = 1xImm). Diffusion-weighted images were acquired using a
single-shot EPI sequence, and consisted of a single b-value
(b =700 s/mm?), with 33 volumes (1 b0+32 DWIs) acquired axially
(TE=75ms, TR=6801ms, slice thickness=2.2mm, number of
slices=65, flip angle=90 degrees, FOV =212*%212, acquisition
matrix = 96*95, reconstruction matrix =256*256, reconstructed voxel
size =0.83x0.83 mm). HCP acquisition (custom 3T Siemens Skyra)
included T1-weighted images acquired using a 3D MPRAGE sequence
(TE=2.1ms, TR=2400ms, slice thickness=0.7mm, flip
angle =8 deg, FOV =224x224mm, acquisition, voxel
size =0.7x0.7mm). Diffusion images were acquired using a single-shot
EPI sequence, and consisted of three b-values (b=1000, 2000, and
3000 s/mm?), with 90 directions (and 6 b=0 s/mm?) per shell
(TE=289.5 ms, TR =5520 ms, slice thickness = 1.25 mm, flip angle=78
degrees, FOV =210*180, voxel size=1.25mm isotropic). The scans
collected at Vanderbilt included healthy controls from several projects
(Philips 3T Achieva). A typical acquisition is below, although some
variations exist across projects. T1-weighted images acquired using an
MPRAGE sequence (TE =2.9 ms, TR =6.3 ms, slice thickness =1 mm,
flip angle =8 deg, FOV =256x240mm, acquisition matrix =256x240,
voxel size = 1x1x1mm). Diffusion images were acquired using a single-
shot EPI sequence, and consisted of a single b-value (b= 1000 s/mm?),
with 65 volumes (1 b0+ 64 DWIs per shell) acquired axially
(TE=101 ms, TR=5891 ms, slice thickness = 2.2 mm, flip angle=90
degrees, FOV =220%220, acquisition matrix=144*144, voxel
size =2.2mm isotropic).

Data pre-processing included correction for susceptibility distortions,
subject motion, eddy current correction[48], and b-table correction[49].

2.2 Subject-level processing: tractography

Six methods for tractography and virtual bundle dissection were
employed on all diffusion datasets in native space (Figure 2, Subject-
level processing). These included (1) TractSeg[50], (2)
Recobundles[45], (3) Tracula[33], (4) XTract[51], (5) Automatic Fiber-
tract Quantification (AFQ)[52], and (6) post-processing of AFQ where

HCP BLSA )
Subjects 1060 963 303
Age 28.843.5 66.2+14.82 29.7411.5
Age Range [2235] [22.495.1] [18 75]
Handedness N/A 86L; 843R; 35N/A | 30L;270R; 3N/A
Sex 488M; 572F 431M; 532F 134M; 169F

Table 1. Meta-data information. Note that several inputs are not
provided due to confidentiality and data release agreements.
only the stem of the bundle was retained, which we call AFQ-clipped.

Algorithms were chosen because they are fully automated, validated,
and represent a selection of the state-of-the art methods in the field. In
all cases, algorithms were run using default parameters or parameters
recommended by original authors.

Briefly, TractSeg is based on convolutional neural networks and
performs bundle-specific tractography based on a field of estimated
fiber orientations[50, 53], and delineates 72 bundles. We implemented
the dockerized version at (https:/github.com/MIC-DKFZ/TractSeg).
Recobundles segments streamlines based on their shape-similarity to a
dictionary of expertly delineated model bundles. Recobundles was run
using DIPY[54] software (https://dipy.org) after performing whole-
brain tractography. The bundle-dictionary contains 80 bundles, but only
44 were selected to be included in the Pandora atlas after consulting
with the algorithm developers based on internal quality assurance (for
example removing cranial nerves which are often not used in brain
imaging). Of note, Recobundles is a method to automatically extract
and recognize bundles of streamlines using prior bundle models, and the
implementation we chose uses the DIPY bundle dictionary for
extraction, although others can  be used. Tracula
(https://surfer.nmr.mgh.harvard.edu/fswiki/Tracula) uses probabilistic
tractography with anatomical priors based on an atlas and
Freesurfer[55-57] (https://surfer.nmr.mgh.harvard.edu) cortical
parcellations to constrain the tractography reconstructions. Tracula
resulted in 18 bundles segmented per subject. Xtract
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/’XTRACT) is a recent automated
method for probabilistic tractography based on carefully selected
inclusion, exclusion, and seed regions, selected for 42 tracts in the
human brain. AFQ (https://github.com/yeatmanlab/AFQ) is a technique
that identifies the core of the major fiber tracts with the aim of
quantifying tissue properties within and along the tract, although we
only extracted the bundle profile itself. In our case, we extracted the full
profile of the bundle, as well as the core of the bundle which was
performed in the AFQ software by a clipping operation. For this reason,
we called these AFQ and AFQ-clipped, respectively. Both of these
methods resulted in 20 bundles. In total, we present 216 bundles in the
atlas. A list of the bundles from each pipeline is given in Appendix A.

Output from all algorithms were in the form of streamlines, tract-
density maps, or probability maps. In all cases, pathways were binarized
at the subject level, indicating the voxel-wise existence or non-existence
of the bundle in that subject, for that pathway. These binary maps were
used to create the population atlases after deformation to standard
space.

Exhaustive manual quality assurance (QA) was performed on
tractography results. QA included displaying overlays of binarized
pathways over select slices for all subjects, inspecting and verifying
appropriate shape and location of all bundles on all subjects. We note
that not all methods were able to successfully reconstruct all pathways
on all subjects, for this reason, some atlases contain information from
slightly fewer than all 2443 subjects. Tractography scripts and
singularity/dockerized containers as well as QA scripts are provided at
(https://github.com/M ASILab/Pandora-Methods).

2.3 Subject-level processing: registration

In order to create the atlases, all images were registered and transformed
to a standard space (Figure 2, Subject-level processing). For this work,
we chose the MNI standard space, a commonly used space in
neuroimaging literature. To do this, the T1 image was intensity
normalized using FreeSurfer’s mri_nu_correct, mni, and mri_normalize
which perform N3 bias field correction and intensity normalization,
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respectively on the input T1 image[58]. Next, the diffusion b0 image
was coregistered to the T1 using FSL’s epi reg/59] (a rigid-body 6
degrees of freedom transformation). The T1 was then nonlinearly
registered using ANTS antsRegistrationSyn to a 1.0 mm isotropic MNI
ICBM 152 asymmetric template[60]. The FSL transform from epi reg
was converted to ANTS format using the ¢3d_affine_tool. Afterwards,
all data could be transferred from subject native diffusion space to MNI
space (and vice-versa) through antsApplyTransforms tools. Thus, all
binarized pathways for all subjects were transformed to MNI space
using both linear and nonlinear transforms. Transforms were also
applied to the normalized T1 images to transform these structural
images to standard space.

QA was performed to verify acceptable image registration. This again
included generating and visualizing overlays of the b0 images,
pathways, and T1 images in MNI spaces overlaid and/or adjacent to the
MNI ICBM template image. Both normalization and registration scripts,
as well as QA scripts, are provided at
(https://github.com/M ASILab/Pandora-Methods).

2.4 Volumetric atlas creation

Once all data were in MNI space, population-based atlases were created
by following methods previously used to create tractography atlases[41,
61, 62]. For each pathway, the binarized maps were summed and set to
a probabilistic map between 0 and 100% population overlap (Figure 2,
Volumetric Atlas). Thus, each pathway was represented as a 3D
volume, and concatenation of all volumes results in the 4D volumetric
atlas. Atlases were additionally separated based on the method used to
create the atlas, as well as separated by dataset (BLSA, HCP, VU) if
population-specific or method-specific analysis is required (see
Technical Validation, below). Scripts for volumetric atlas generation are
provided at (https://github.com/MASILab/Pandora-Methods).

2.5 Surface-intersection atlas creation

To overlay each pathway onto the MNI template surfaces, a standard
FreeSurfer pipeline[58] was used to reconstruct the white/gray matter
cortical surfaces directly from the MNI ICBM template image. Each of
the probability maps overlaid over the volumetric atlas was then
transferred to the reconstructed surfaces to create the surface atlas.
However, the reconstructed cortical surfaces do not necessarily
guarantee unique voxel-to-vertex matching (normally, more than one
vertex belongs to a single voxel) even if they perfectly trace the white-
and gray-matter boundary. This potentially degenerates vertex-to-voxel
mapping without a voxel-wise resampling scheme. Therefore, the
probability to a given vertex was obtained by tri-linear resampling of
the associated voxel for sub-voxel accuracy. Scripts for surface atlas
generation are provided at (https:/github.com/MASILab/Pandora-
Methods).

2.6 Data visualization and validation

Qualitative validation of the atlases included pathway visualization as
an overlay of the population probability on the MNI ICBM template
image, or visualization of population-probability on the white
matter/gray matter surface. These displays were used in QA during atlas
creation, ensuring acceptable probability values, as well as agreement
with expected anatomy, shape, and location.

To quantify similarities and differences across pathways and methods, a
pathway-correlation measure was used. The pathway-correlation was
calculated between two pathways by taking the correlation coefficient
of all voxels where either pathway has a probability > 0. This

Hansen et al., 10 June 2020 — preprint copy - BioRxiv

correlation coefficient ranged from -1 to 1, where a value of 1 indicates
a perfect correlation of population densities. Thus, this metric measures
the coherence between population maps obtained from the bundles and
was used to assess if the distribution of population probabilities in space
is similar. We used this measure to test similarities/differences between
the pathways from different bundle dissection methods (to justify the
use of different tractography methods) as well as between pathways
generated from the different datasets (to justify making available atlases
separated by dataset, as well as understand differences in results based
on populations).

Finally, a uniform manifold approximation and projection (UMAP)[63]
was used for dimensionality reduction in order to further assess
similarities and differences in pathways across methodologies. The
UMAP is a general non-linear dimension reduction that is particularly
well suited for visualizing high-dimensional datasets.

3. Data Records

All data records described in this manuscript are available through both
NITRC and Github repositories
(https://www.nitrc.org/projects/pandora_atlas;

https://github.com/M ASILab/Pandora-WhiteMatterAtlas). The data is
composed of several file types, including GNU-zipped NifTi files, VTK
files, and atlas meta-data CSV files. For each of the six methods used
for WM parcellation (where the nomenclature <METHODS> represents
“AFQ”, “AFQ-clipped”, “Recobundles”, “TractSeg”, “Tracula”, and
“Xtract”) there are three primary file sub-divisions: (1) volumetric
atlases, (2) surface atlas, and (3) meta-data information files.

3.1 Volumetric Atlas

The WM volumetric atlases created using the nonlinear registration to
standard space are NifTi file formats. For each bundle segmentation
method, there is one file which corresponds to the atlas composed of all
data with the naming convention <METHOD>.nii.gz, and there are
three supplementary files which designate the subset of data the atlas is
composed of: “BLSA”, “HCP”, and “VU” with the naming convention
<METHOD> <DATASET>.nii.gz. Here <METHOD> and
<DATASET> describe the segmentation method and population
dataset.

Each WM pathway corresponds to a single 3D volume of the 4D
dataset, stored as double-precision floating-point format with values
ranging from O to 1. For simplicity, and in line with the template used
for data normalization, the image matrix is gridded at 1 mm?® isotropic
resolution, but other resolutions can be calculated given an appropriate
interpolation.

3.2 Surface-Intersection Atlas

The surface-intersection atlases created for each method are stored as a
VTK file type. For each method and for each hemisphere, there is one
file which corresponds to the atlas composed of all data with the name
convention <HEMISPHERE> <METHOD>.vtk.gz, and there are three
supplementary files which designate the subset of data the atlas is
composed of: “BLSA”, “HCP”, and “VU” with the naming convention
<HEMISPHERE> <METHOD>_ <DATASET>.vtk.gz. Here
<HEMISPHERE>, <METHOD>, and <DATASET> describe the left or
right hemisphere (lh or rh), the segmentation method, and the
population dataset.
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VTK file contains polygonal data with graphics primitives including
vertices, edges, and triangle strips defining the polygonal data.
Although the surface mesh itself (i.e., vertices and triangles) is the same
for all datasets and methods, each VTK file has a separate dataset
attribute that consists of scalar values assigned to each vertex. Thus,
within each VTK file there is a set of scalars for each WM pathway, as
well as a lookup table name as a character string based on the name of
the specific pathway.

3.3 Meta-data

Each <METHOD> has an associated meta-data file stored as a CSV
file. This file contains a numerical index for every volume within the
atlas. With every number there is also an associated anatomical label for

— that is friendly for scripting (no spaces or special characters), as well
as the number of subjects from each database that are included in the
creation of the population-template for that pathway.

3.4 Additional data: T1 template, linear atlases, gray matter atlases,
and scripting

In addition to the WM labels, a number of supplementary data are also
provided with the atlas. First, we created the Tl-averaged template
derived from all datasets, as well as each dataset separately, and make
these available for use as an alternative to the MNI ICBM template, if
desired. Second, we also created WM volumetric atlases created using
linear registration to MNI space and provide these as supplementary
data within each method. Third, we created the population-average of

the pathway, a “file-system” name using a label — typically an acronym several commonly used gray matter parcellations, including
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Figure 3. Visualization of data contained in example volumetric and surface atlases. Example visualization for 10 pathways in the TractSeg nonlinear
atlas are shown as both overlays and surfaces.
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brainCOLOR labels, and also the Desikan-Killany[26], Destrieux[55],
and DKTatlas40[64] parcellation schemes from FreeSurfer. Every
subjects T1 image was labeled in native space, and labels were warped
to standard space where majority voting was applied to produce labels
in atlas space. These gray matter labels may provide a reference for
localizing the bundles within the WM atlas. Finally, several MATLAB
and python scripts are provided to extract individual labels from a given
atlas (because many software packages do not facilitate 4D analysis), as
well as example normalization and label-propagation scripts.

Hansen et al., 10 June 2020 — preprint copy - BioRxiv

4. Technical Validation

We begin with a qualitative validation of the data, thoroughly
inspecting and visualizing all volumes and surfaces from each atlas. An
example visualization for 10 selected pathways from the TractSeg sets
of atlases is shown in Figure 3. All pathways overlay in the correct
location, with the correct shape and trajectory, as expected. Population
agreement is generally high in the core of the bundle (values ~1) with
larger variability along the periphery of pathways. Through this
qualitative validation process, differences in the methodologies were
noted including some possessing high sensitivity (larger volumes,

Other
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Figure 4. Data validation. (A) Matrix of correlation coefficient of pathways plotted against all others indicates similarities within and across
methodologies for bundle dissection. Solid white lines are used to visually separate bundle segmentation methods. (B) UMAP dimensionality
reduction projected onto un-scaled 2D plane shows that many WM pathways are similar, but not the same, across methods. Object colors represent
specific atlas bundles, with shape indicating segmentation methods. (C) Correlation coefficient of atlases separated by dataset indicates small, but
significant, differences between datasets. Together, these justify the inclusion of all tractography methods, as well as separation of atlases by datasets.
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greater agreement across subjects) and those with higher specificity
(smaller, well-defined pathways with lower population agreement).

Next, to assess differences within and between tractography techniques,
we show pathway-correlations against all other pathways as a large
216x216 matrix of correlations (Figure 4, a) and also plotting the
UMAP projection of each pathway on a 2D plane (Figure 4, b). As
expected, most pathways are quite different from others (for example
we do not expect the optic radiations to share any overlap whatsoever
with the uncinate fasciculus, regardless of methodology), however there
are clearly clusters of pathways sharing some similarity, due to both
spatial overlap of pathways with comparable anatomies (for example
inferior longitudinal fasciculus and inferior frontal occipital fasciculus),
as well as methods representing the same pathway. We identified a core
group of 20 pathways that are commonly dissected in all methods, and
clusters of these pathways are apparent in the UMAP projection (for
example, the corticospinal tracts, forceps major and minor, optic
radiations, and inferior longitudinal fasciculi are quite similar across
algorithms). Thus, certain pathways are similar, but not exactly the
same, across methodologies, justifying the use of all six state-of-the art
methods for bundle dissection.

Finally, we quantify differences across datasets by showing boxplots of
the pathway-correlations after separating by source of data (Figure 4,
¢). While all methods show quite high correlations, it is clear that BLSA
and VU datasets and bundles are more similar to each other than to
HCP datasets. This is expected as HCP data quality, SNR, resolution,
and acquisitions are quite different from the more clinically feasible
BLSA and VU sets. Thus, bundles are also different based on dataset
source. Because of this, in addition to combining results from all
subjects, we also supply atlases separated by dataset.

5. Usage Notes

Here, we have created and made available the Pandora white matter
bundle atlas, that addresses a number of limitations of current human
brain atlases by providing a set of population-based volumetric and
surface atlases in standard space, based on a large number of subjects,
including many pathways from multiple diffusion MRI tractography
bundle segmentation methods. We envision the use of these atlases for
spatial normalization and label propagation in ways similar to standard
usage of volumetric brain atlases. These labels can be used not only for
statistical analysis across population and individuals, but also for priors
for tractography, relating neuroimaging findings to structural pathways
or to inform future methodologies for parcellating and segmenting
white matter based on functional, molecular, or alternative contrasts.
Similarly, although much less frequently used in the field, the surface-
based atlas can also be used to relate functional MRI findings (which
are largely applied to cortex, with some evidence for signal contrast in
white matter), as priors for cortico-cortical tractography and future
bundle segmentations, as a tool for gray matter based spatial statistics,
and again for relating alternative neuroimaging findings to structure.

As a simple example workflow. An investigator may be interested in
relating tumour localization on a structural image to specific white
matter pathways hypothesized to be involved in some functional
network. The investigator may choose to register their image to the
MNI template, and can either warp their data to template space or apply
the inverse transform to get white matter labels into the subject native
space. The investigator could then relate tumour location to the
probability of given pathways, or could simply threshold the
probabilistic maps at a given threshold (for example 0.5) and relate

these to the existence/non-existence of the bundle being displaced by
the tumour.

We currently recommend the use of the concatenation of all datasets for
standard investigative studies unless a population-specific template is
required. While differences between datasets are clear and expected, the
increased population variability that results from including data from all
sources is likely an advantage when investigators are using their own
data with possible differences in acquisition, resolution, and subjects.
However, future work will investigate creation and dissemination of
age-specific white matter analysis, as well as including an age-adjusted
surface mesh instead of using the MNI template to generate the surface.
We have chosen to include a large number of algorithms for streamline
generation and bundle dissection. Our results (Figure 4) show that even
if the same white matter structure is segmented using different
techniques, the results are not guaranteed to be the same. Thus, an
investigator could use our atlas with the set of protocols that they agree
with most, or alternatively, could relate findings to all white matter
pathways across all methodologies in our atlas. We note that we have
chosen six standard algorithms to create this atlas, although others exist
and new ones are continually developed based on improvements in both
our understanding of anatomical connections and our ability to
reconstruct these connections with tractography. Inclusion of other
tractography and/or segmentation methods are likely additions in future
iterations of the atlas, and are easily integrated with existing
deformation fields and data organization. Finally, future iterations can
include variations and concatenations of gray matter and/or regional
atlases in the same space, continually adding to the number of features
to be investigated with a single dataset in standard space.

Code Availability
This atlas is freely available at
https://www.nitrc.org/projects/pandora_atlas and

https://github.com/M ASILab/Pandora-WhiteMatterAtlas. All methods
in atlas creation are available at https://github.com/MASILab/Pandora-
Methods, including subject-level processing of tractography and
registration, volumetric and surface atlas creation, and all QA
generation and visualizations.
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Appendix A
The bundles resulting from each bundle-segmentation pipeline are given
as a list below.

AFQ: Corpus Callosum Forceps Major; Corpus Callosum Forceps
Minor; Arcuate Fasciculus left; Cingulum-Cingulate Gyrus left;
Cingulum-Hippocampal Gyrus left; Corticospinal Tract left; Inferior
Occipito-frontal Fasciculus left; Inferior Longitudinal Fasciculus left;
Superior Longitudinal Fasciculus left; Thalamic Radiation left;
Uncinate Fasciculus left; Arcuate Fasciculus right; Cingulum-Cingulate
Gyrus right; Cingulum-Hippocampal Gyrus right; Corticospinal Tract
right; Inferior Occipito-frontal Fasciculus right; Inferior Longitudinal
Fasciculus right; Superior Longitudinal Fasciculus right; Thalamic
Radiation right; Uncinate Fasciculus right

AFQ-clipped: Corpus Callosum Forceps Major; Corpus Callosum
Forceps Minor; Arcuate Fasciculus left; Cingulum-Cingulate Gyrus left;
Cingulum-Hippocampal Gyrus left; Corticospinal Tract left; Inferior
Occipito-frontal Fasciculus left; Inferior Longitudinal Fasciculus left;
Superior Longitudinal Fasciculus left; Thalamic Radiation left;
Uncinate Fasciculus left; Arcuate Fasciculus right; Cingulum-Cingulate
Gyrus right; Cingulum-Hippocampal Gyrus right; Corticospinal Tract
right; Inferior Occipito-frontal Fasciculus right; Inferior Longitudinal
Fasciculus right; Superior Longitudinal Fasciculus right; Thalamic
Radiation right; Uncinate Fasciculus right

Recobundles: Arcuate Fasciculus left; Arcuate Fasciculus left; Frontal
Aslant Tract left; Frontal Aslant Tract right; Cerebellum left;
Cerebellum right; Corpus Callosum Major; Corpus Callosum Minor;
Central Tegmental Tract left; Central Tegmental Tract right; Extreme
Capsule left; Extreme Capsule right; Fronto-pontine tract left; Fronto-
pontine tract right; Inferior Fronto-occipital Fasciculus left; Inferior
Fronto-occipital Fasciculus right; Inferior Longitudinal Fasciculus left;
Inferior Longitudinal Fasciculus right; Middle Cerebellar Peduncle;
Middle Longitudinal Fasciculus left; Middle Longitudinal Fasciculus
right; Medial Longitudinal fasciculus left; Medial Longitudinal
fasciculus right; Medial Lemniscus left; Medial Lemniscus right;
Occipito Pontine Tract left; Occipito Pontine Tract right; Optic
Radiation left; Optic Radiation right; Parieto Pontine Tract left; Parieto
Pontine Tract right; Superior longitudinal fasciculus left; Superior
longitudinal fasciculus right; Spinothalamic Tract left; Spinothalamic
Tract right; Temporopontine Tract left; Temporopontine Tract right;
Uncinate Fasciculus left; Uncinate Fasciculus right; Vermis

TractSeg: Arcuate fascicle left; Arcuate fascicle right; Anterior
Thalamic Radiation left; Thalamic Radiation right; Commissure
Anterior; Rostrum; Genu; Rostral body (Premotor); Anterior midbody
(Primary Motor); Posterior midbody (Primary Somatosensory);
Isthmus; Splenium; Corpus Callosum — all; Cingulum left; Cingulum
right; Corticospinal tract left; Corticospinal tract right; Fronto-pontine
tract left; Fronto-pontine tract right; Fornix left; Fornix right; Inferior
cerebellar peduncle left; Inferior cerebellar peduncle right; Inferior
occipito-frontal fascicle left; Inferior occipito-frontal fascicle right;
Inferior longitudinal fascicle left; Inferior longitudinal fascicle right;
Middle cerebellar peduncle; Middle longitudinal fascicle left; Middle
longitudinal fascicle right; Optic radiation left; Optic radiation right;
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Parieto-occipital pontine left; Parieto-occipital pontine right; Superior
cerebellar peduncle left; Superior cerebellar peduncle right; Superior
longitudinal fascicle III left; Superior longitudinal fascicle III right;
Superior longitudinal fascicle II left; Superior longitudinal fascicle II
right; Superior longitudinal fascicle I left; Superior longitudinal fascicle
I right;Striato-fronto-orbital left; Striato-fronto-orbital right; Striato-
occipital left; Striato-occipital right; Striato-parietal left; Striato-parietal
right; Striato-postcentral left; Striato-postcentral right; Striato-precentral
left; Striato-precentral right; Striato-prefrontal left; Striato-prefrontal
right; Striato-premotor left; Striato-premotor right; Superior Thalamic
Radiation left; Superior Thalamic Radiation right; Thalamo-occipital
left; Thalamo-occipital right; Thalamo-parietal left; Thalamo-parietal
right; Thalamo-postcentral left; Thalamo-postcentral right; Thalamo-
precentral left; Thalamo-precentral right; Thalamo-prefrontal left;
Thalamo-prefrontal right; Thalamo-premotor left; Thalamo-premotor
right; Uncinate fascicle left; Uncinate fascicle right

Tracula: Corpus Callosum Forceps Major; Corpus Callosum Forceps
Minor; Anterior Thalamic Radiation left; Cingulum - Angular Bundle
left; Cingulum - Cingulate Gyrus left; Corticospinal Tract left; Inferior
Longitudinal Fasciculus left; Superior Longitudinal Fasciculus - Parietal
left; Superior Longitudinal Fasciculus - Temporal left; Uncinate
Fasciculus left; Anterior Thalamic Radiation right; Cingulum - Angular
Bundle right; Cingulum - Cingulate Gyrus right; Corticospinal Tract
right; Inferior Longitudinal Fasciculus right; Superior Longitudinal
Fasciculus - Parietal right; Superior Longitudinal Fasciculus - Temporal
right; Uncinate Fasciculus right

Xtract: Anterior Commissure; Arcuate Fascile left; Arcuate Fascile
right; Acoustic Radiation left; Acoustic Radiation right; Anterior
Thalamic Radiation left; Anterior Thalamic Radiation right; Cingulum
Bundle Dorsal left; Cingulum Bundle Dorsal right; Cingulum Bundle
Parahippocampal left; Cingulum Bundle Parahippocampal right;
Cingulum Bundle Temporal left; Cingulum Bundle Temporal right;
Corticospinal Tract left; Corticospinal Tract right; Frontal Aslant left;
Frontal Aslant right; Forceps Major; Forceps Minor; Fornix left; Fornix
right; Inferior Fronto-occipital Fasciculus left; Inferior Fronto-occipital
Fasciculus right; Inferior Longitudinal Fasciculus left; Inferior
Longitudinal Fasciculus right; Middle Cerebellar Peduncle; Medio-
Dorsal Longitudinal Fasciculus left; Medio-Dorsal Longitudinal
Fasciculus right; Optic Radiation left; Optic Radiation right; Superior
Longitudinal Fasciculus 1 left; Superior Longitudinal Fasciculus 1 right;
Superior Longitudinal Fasciculus 2 left; Superior Longitudinal
Fasciculus 2 right; Superior Longitudinal Fasciculus 3 left; Superior
Longitudinal Fasciculus 3 right; Superior Thalamic Radiation left;
Superior Thalamic Radiation right; Uncinate Fasciculus left; Uncinate
Fasciculus right; Vertical Occipital Fasciculus left; Vertical Occipital
Fasciculus right;
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