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Abstract 
Brain atlases have proven to be valuable neuroscience tools for localizing regions of interest and performing statistical inferences 
on populations. Although many human brain atlases exist, most do not contain information about white matter structures, often 
neglecting them completely or labelling all white matter as a single homogenous substrate. While few white matter atlases do 
exist based on diffusion MRI fiber tractography, they are often limited to descriptions of white matter as spatially separate 
“regions” rather than as white matter “bundles” or fascicles, which are well-known to overlap throughout the brain. Additional 
limitations include small sample sizes, few white matter pathways, and the use of outdated diffusion models and techniques. 
Here, we present a new population-based collection of white matter atlases represented in both volumetric and surface 
coordinates in a standard space. These atlases are based on 2443 subjects, and include 216 white matter bundles derived from 6 
different state-of-the-art tractography techniques. This atlas is freely available and will be a useful resource for parcellation and 
segmentation.  
 
Keywords: White Matter, Atlas, Tractography

1. Background & Summary 
The creation and application of medical image-based brain atlases is 
widespread in neuroanatomy and neuroscience research. Atlases have 
proven to be a valuable tool to enable studies on individual subjects and 
facilitate inferences and comparisons of different populations, leading 
to insights into development, cognition, and disease[1-3]. Through the 
process of spatial normalization, images can be aligned with atlases to 
facilitate comparisons of brains across subjects, time, or experimental 
conditions. Additionally, atlases can be used for label propagation, 
where anatomical labels are propagated from the atlas to new data in 
order to identify a priori regions of interest. With these applications in 
mind, a number of human brain atlases have been created (Figure 1), 
with variations in the number of labels, the regions of the brain that are 
delineated, the methods used to generate labels, and the population or 
individuals used to create the atlas (for a review of the existing atlases 
and their standardization, see recent work by Myers et al.[4]). 
 
Despite the wide variety of human brain atlases available to the research 
community, there is a distinct lack of resources available to describe the 
white matter of the brain. For example, most atlases emphasize cortical 
or sub-cortical gray matter, and do not contain a label for white matter 

[5-24] or only label white matter as a single homogenous structure, or 
simply separate into the “cerebral white matter” of the left and right 
hemispheres[25, 26]. 
 
Some atlases do indeed include labels for white matter. However, in 
many cases these labels are for “regions” of the white matter rather than 
labels for specific white matter bundles[27-32]. For example, an atlas 
may contain a label for the “anterior limb of the internal capsule” or 
“corona radiata” which are descriptions of regions through which 
several white matter bundles are known to pass. While these regions are 
certainly scientifically useful, the white matter pathways themselves 
would be more informative for network neuroscience investigations or 
applications where white matter structure, connectivity, and location are 
paramount. Additionally, regional labels do not overlap, whereas the 
fiber bundles of the brain are known to be organized as a complex 
mixture of structures, overlapping to various degrees.  
 
To overcome these limitations, several atlases have been created using 
diffusion MRI fiber tractography, a technique which allows the 
investigator to perform a “virtual dissection” of various white matter 
bundles of the brain. Examples include population-based atlases of 
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association and projection pathways[33-36], atlases of the superficial U-
fibers connecting adjacent gyri[37, 38], and atlases created from 
tractography on diffusion data averaged over large population 
cohorts[34, 39, 40]. In particular, several atlases have been made with a 
focus on a single pathway or a set of pathways with functional 
relevance, for example the pyramidal tract[41], the sensorimotor 

tracts[42], or lobular-specific connections[36, 43, 44]. Existing 
tractography-based atlases, however, typically suffer from one or more 
limitations: (1) small population sample sizes, (2) restriction to very few 
white matter pathways, and (3) the use of out-dated modeling for 
tractography (specifically the use of diffusion tensor imaging which is 
associated with a number of biases and pitfalls). Further, it is not clear 

Figure 1. Comparison of types of human brain atlases and regions present in each. Visualizations were made using FSLview tri-planar view for 
volumetric atlases and using MI-brain 3D-view for streamline atlases. Note that because atlases are in different spaces, visualized slices, anatomy, and 
orientation is not guaranteed to be the same across atlases. Note that this figure is not exhaustive, and is only representative of the types of atlases and 
the information they contain. Figure inspired by work on standardizing gray matter parcellations (Figure 1 of Myers et al.4). 
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whether the same pathway defined using one atlas results in the same 
structure when compared to another atlas due to differences in the 
procedures utilized to define and dissect the bundle under investigation. 
A final type of atlas, streamline-based atlases[38, 39, 45-47] have 
become popular in recent years. These are composed of millions of 
streamlines and can be used as a resource to cluster sets of streamlines 
on new datasets, thus they nicely complement the use and application of 
volumetric atlases when diffusion MRI is available. 
 
In this work, we introduce the Pandora* white matter bundle atlas. The 
Pandora atlas is actually a collection of 4-dimensional population-based 
atlases represented in both volumetric and surface coordinates in a 
standard space. Importantly, the atlases are based on a large number of 
subjects, and are created from multiple state-of-the-art tractography and 
dissection techniques, resulting in a sizable number of (possibly 
overlapping) white matter labels. In the following, we describe the 
creation of these atlases, the data records of the files and their formats, 
and validate the use of multiple subject populations and multiple 
tractography methodologies. The Pandora atlas is freely available 
(https://www.nitrc.org/projects/pandora_atlas; 
https://github.com/MASILab/Pandora-WhiteMatterAtlas) and will be a 
useful resource for parcellation and segmentation.   

                                                             
* This name was chosen as a parallel to the JHU “Eve” atlas, where 
Pandora was the first woman in Greek mythology. Also, from Pandora’s 
box was released “evil” and only “hope” remained. Our Pandora’s “box” 
just happens to contain white matter labels. 

2. Methods 
Figure 2 presents an overview of the pipeline and methodology used to 
create these atlases. Briefly, we retrieved and organized data from 3 
large repositories (Figure 2, Data). For each subject, we performed six 
different automated methods of tractography and subsequent white 
matter dissection (Figure 2, Subject-level processing: tractography), 
and registered all data to a standard volumetric space (Figure 2, 
Subject-level processing: registration). Next, a probabilistic map was 
created separately for each white matter bundle in standard space in 
order to create the volumetric atlases (Figure 2, Volumetric atlas 
creation). Finally, a surface mesh of the boundary between white and 
gray matter was created, and the volumetric maps were used to assign 
probabilities along this surface to create the surface-intersection atlases 
(Figure 2, Surface Atlas creation). In addition to making the atlases 
available, all methods are also available as source code 
(https://github.com/MASILab/Pandora-Methods).  

2.1 Data 
We used de-identified images from the Baltimore Longitudinal Study of 
Aging (BLSA), Human Connectome Project (HCP) S1200 release, and 
Vanderbilt University (Figure 2, Data). The BLSA is a long-running 
study of human aging in community-dwelling volunteers and is 
conducted by the Intramural Research Program of the National Institute 
on Aging, NIH. Cognitively normal BLSA participants with diffusion 
MRI data were included in the present study, using only one scan per 
participant, even if multiple follow-ups were available. HCP data are 
freely available and unrestricted for non-commercial research purposes, 

Figure 2. Experimental workflow and generation of Pandora atlases. Data from three repositories (HCP, BLSA, and VU) were curated. Subject-level 
processing includes tractography and registration to MNI space. Volumetric atlases for each set of bundle definitions is created by population-averaging 
in standard space. Point clouds are displayed which allow qualitative visualization of probability densities of a number of fiber pathways. Finally, surface 
atlases are created by assigning indices to the vertices of the MNI template white matter/gray matter boundary.  
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and are composed of healthy young adults. This study accessed only de-
identified participant information. All datasets from Vanderbilt 
University were acquired as part of a shared database for MRI data 
gathered from healthy volunteers.  A summary of the data is given in 
Table 1, including number of subjects, age, sex, and handedness. All 
human datasets were acquired under research protocols approved by the 
local Institutional Review Boards.  
 
All datasets included a T1-weighted image, as well as a set of diffusion-
weighted images (DWIs). Briefly, the BLSA acquisition (Philips 3T 
Achieva) included T1-weighted images acquired using an MPRAGE 
sequence (TE = 3.1 ms, TR = 6.8 ms, slice thickness = 1.2 mm, number 
of Slices = 170, flip angle = 8 deg, FOV = 256x240mm, acquisition 
matrix = 256×240, reconstruction matrix = 256×256, reconstructed 
voxel size = 1x1mm). Diffusion-weighted images were acquired using a 
single-shot EPI sequence, and consisted of a single b-value 
(b = 700 s/mm2), with 33 volumes (1 b0 + 32 DWIs) acquired axially 
(TE = 75 ms, TR = 6801 ms, slice thickness = 2.2 mm, number of 
slices = 65, flip angle = 90 degrees, FOV = 212*212, acquisition 
matrix = 96*95, reconstruction matrix = 256*256, reconstructed voxel 
size = 0.83x0.83 mm). HCP acquisition (custom 3T Siemens Skyra) 
included T1-weighted images acquired using a 3D MPRAGE sequence 
(TE = 2.1 ms, TR = 2400 ms, slice thickness = 0.7 mm, flip 
angle = 8 deg, FOV = 224x224mm, acquisition, voxel 
size = 0.7x0.7mm). Diffusion images were acquired using a single-shot 
EPI sequence, and consisted of three b-values (b = 1000, 2000, and 
3000 s/mm2), with 90 directions (and 6 b=0 s/mm2) per shell 
(TE = 89.5 ms, TR = 5520 ms, slice thickness = 1.25 mm, flip angle = 78 
degrees, FOV = 210*180, voxel size = 1.25mm isotropic). The scans 
collected at Vanderbilt included healthy controls from several projects 
(Philips 3T Achieva). A typical acquisition is below, although some 
variations exist across projects. T1-weighted images acquired using an 
MPRAGE sequence (TE =2.9 ms, TR = 6.3 ms, slice thickness = 1 mm, 
flip angle = 8 deg, FOV = 256x240mm, acquisition matrix = 256×240, 
voxel size = 1x1x1mm). Diffusion images were acquired using a single-
shot EPI sequence, and consisted of a single b-value (b = 1000 s/mm2), 
with 65 volumes (1 b0 + 64 DWIs per shell) acquired axially 
(TE = 101 ms, TR = 5891 ms, slice thickness = 2.2 mm, flip angle = 90 
degrees, FOV = 220*220, acquisition matrix = 144*144, voxel 
size = 2.2mm isotropic).  
 
Data pre-processing included correction for susceptibility distortions, 
subject motion, eddy current correction[48], and b-table correction[49].  

2.2 Subject-level processing: tractography 
Six methods for tractography and virtual bundle dissection were 
employed on all diffusion datasets in native space (Figure 2, Subject-
level processing). These included (1) TractSeg[50], (2) 
Recobundles[45], (3) Tracula[33], (4) XTract[51], (5) Automatic Fiber-
tract  Quantification (AFQ)[52], and (6) post-processing of AFQ where 

only the stem of the bundle was retained, which we call AFQ-clipped. 

Algorithms were chosen because they are fully automated, validated, 
and represent a selection of the state-of-the art methods in the field. In 
all cases, algorithms were run using default parameters or parameters 
recommended by original authors.  
 
Briefly, TractSeg is based on convolutional neural networks and 
performs bundle-specific tractography based on a field of estimated 
fiber orientations[50, 53], and delineates 72 bundles. We implemented 
the dockerized version at (https://github.com/MIC-DKFZ/TractSeg). 
Recobundles segments streamlines based on their shape-similarity to a 
dictionary of expertly delineated model bundles. Recobundles was run 
using DIPY[54] software (https://dipy.org) after performing whole-
brain tractography. The bundle-dictionary contains 80 bundles, but only 
44 were selected to be included in the Pandora atlas after consulting 
with the algorithm developers based on internal quality assurance (for 
example removing cranial nerves which are often not used in brain 
imaging). Of note, Recobundles is a method to automatically extract 
and recognize bundles of streamlines using prior bundle models, and the 
implementation we chose uses the DIPY bundle dictionary for 
extraction, although others can be used. Tracula 
(https://surfer.nmr.mgh.harvard.edu/fswiki/Tracula) uses probabilistic 
tractography with anatomical priors based on an atlas and 
Freesurfer[55-57] (https://surfer.nmr.mgh.harvard.edu) cortical 
parcellations to constrain the tractography reconstructions. Tracula 
resulted in 18 bundles segmented per subject. Xtract 
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/XTRACT) is a recent automated 
method for probabilistic tractography based on carefully selected 
inclusion, exclusion, and seed regions, selected for 42 tracts in the 
human brain. AFQ (https://github.com/yeatmanlab/AFQ) is a technique 
that identifies the core of the major fiber tracts with the aim of 
quantifying tissue properties within and along the tract, although we 
only extracted the bundle profile itself. In our case, we extracted the full 
profile of the bundle, as well as the core of the bundle which was 
performed in the AFQ software by a clipping operation. For this reason, 
we called these AFQ and AFQ-clipped, respectively. Both of these 
methods resulted in 20 bundles. In total, we present 216 bundles in the 
atlas. A list of the bundles from each pipeline is given in Appendix A.  
 
Output from all algorithms were in the form of streamlines, tract-
density maps, or probability maps. In all cases, pathways were binarized 
at the subject level, indicating the voxel-wise existence or non-existence 
of the bundle in that subject, for that pathway. These binary maps were 
used to create the population atlases after deformation to standard 
space.   
 
Exhaustive manual quality assurance (QA) was performed on 
tractography results. QA included displaying overlays of binarized 
pathways over select slices for all subjects, inspecting and verifying 
appropriate shape and location of all bundles on all subjects. We note 
that not all methods were able to successfully reconstruct all pathways 
on all subjects, for this reason, some atlases contain information from 
slightly fewer than all 2443 subjects. Tractography scripts and 
singularity/dockerized containers as well as QA scripts are provided at 
(https://github.com/MASILab/Pandora-Methods). 

2.3 Subject-level processing: registration 
In order to create the atlases, all images were registered and transformed 
to a standard space (Figure 2, Subject-level processing). For this work, 
we chose the MNI standard space, a commonly used space in 
neuroimaging literature. To do this, the T1 image was intensity 
normalized using FreeSurfer’s mri_nu_correct, mni, and mri_normalize 
which perform N3 bias field correction and intensity normalization, 

Table 1. Meta-data information. Note that several inputs are not 
provided due to confidentiality and data release agreements.   
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respectively on the input T1 image[58].  Next, the diffusion b0 image 
was coregistered to the T1 using FSL’s epi_reg[59] (a rigid-body 6 
degrees of freedom transformation). The T1 was then nonlinearly 
registered using ANTS antsRegistrationSyn to a 1.0 mm isotropic MNI 
ICBM 152 asymmetric template[60]. The FSL transform from epi_reg 
was converted to ANTS format using the c3d_affine_tool. Afterwards, 
all data could be transferred from subject native diffusion space to MNI 
space (and vice-versa) through antsApplyTransforms tools. Thus, all 
binarized pathways for all subjects were transformed to MNI space 
using both linear and nonlinear transforms. Transforms were also 
applied to the normalized T1 images to transform these structural 
images to standard space. 
 
QA was performed to verify acceptable image registration. This again 
included generating and visualizing overlays of the b0 images, 
pathways, and T1 images in MNI spaces overlaid and/or adjacent to the 
MNI ICBM template image. Both normalization and registration scripts, 
as well as QA scripts, are provided at 
(https://github.com/MASILab/Pandora-Methods).     

2.4 Volumetric atlas creation 
Once all data were in MNI space, population-based atlases were created 
by following methods previously used to create tractography atlases[41, 
61, 62]. For each pathway, the binarized maps were summed and set to 
a probabilistic map between 0 and 100% population overlap (Figure 2, 
Volumetric Atlas). Thus, each pathway was represented as a 3D 
volume, and concatenation of all volumes results in the 4D volumetric 
atlas. Atlases were additionally separated based on the method used to 
create the atlas, as well as separated by dataset (BLSA, HCP, VU) if 
population-specific or method-specific analysis is required (see 
Technical Validation, below). Scripts for volumetric atlas generation are 
provided at (https://github.com/MASILab/Pandora-Methods).  

2.5 Surface-intersection atlas creation 
To overlay each pathway onto the MNI template surfaces, a standard 
FreeSurfer pipeline[58] was used to reconstruct the white/gray matter 
cortical surfaces directly from the MNI ICBM template image. Each of 
the probability maps overlaid over the volumetric atlas was then 
transferred to the reconstructed surfaces to create the surface atlas. 
However, the reconstructed cortical surfaces do not necessarily 
guarantee unique voxel-to-vertex matching (normally, more than one 
vertex belongs to a single voxel) even if they perfectly trace the white- 
and gray-matter boundary. This potentially degenerates vertex-to-voxel 
mapping without a voxel-wise resampling scheme. Therefore, the 
probability to a given vertex was obtained by tri-linear resampling of 
the associated voxel for sub-voxel accuracy. Scripts for surface atlas 
generation are provided at (https://github.com/MASILab/Pandora-
Methods). 

2.6 Data visualization and validation 
Qualitative validation of the atlases included pathway visualization as 
an overlay of the population probability on the MNI ICBM template 
image, or visualization of population-probability on the white 
matter/gray matter surface. These displays were used in QA during atlas 
creation, ensuring acceptable probability values, as well as agreement 
with expected anatomy, shape, and location.  
 
To quantify similarities and differences across pathways and methods, a 
pathway-correlation measure was used. The pathway-correlation was 
calculated between two pathways by taking the correlation coefficient 
of all voxels where either pathway has a probability > 0. This 

correlation coefficient ranged from -1 to 1, where a value of 1 indicates 
a perfect correlation of population densities. Thus, this metric measures 
the coherence between population maps obtained from the bundles and 
was used to assess if the distribution of population probabilities in space 
is similar. We used this measure to test similarities/differences between 
the pathways from different bundle dissection methods (to justify the 
use of different tractography methods) as well as between pathways 
generated from the different datasets (to justify making available atlases 
separated by dataset, as well as understand differences in results based 
on populations).  
 
Finally, a uniform manifold approximation and projection (UMAP)[63] 
was used for dimensionality reduction in order to further assess 
similarities and differences in pathways across methodologies. The 
UMAP is a general non-linear dimension reduction that is particularly 
well suited for visualizing high-dimensional datasets.   

3. Data Records 
All data records described in this manuscript are available through both 
NITRC and Github repositories 
(https://www.nitrc.org/projects/pandora_atlas; 
https://github.com/MASILab/Pandora-WhiteMatterAtlas). The data is 
composed of several file types, including GNU-zipped NifTi files, VTK 
files, and atlas meta-data CSV files. For each of the six methods used 
for WM parcellation (where the nomenclature <METHODS> represents 
“AFQ”, “AFQ-clipped”, “Recobundles”, “TractSeg”, “Tracula”, and 
“Xtract”) there are three primary file sub-divisions: (1) volumetric 
atlases, (2) surface atlas, and (3) meta-data information files.  

3.1 Volumetric Atlas 
The WM volumetric atlases created using the nonlinear registration to 
standard space are NifTi file formats. For each bundle segmentation 
method, there is one file which corresponds to the atlas composed of all 
data with the naming convention <METHOD>.nii.gz, and there are 
three supplementary files which designate the subset of data the atlas is 
composed of: “BLSA”, “HCP”, and “VU” with the naming convention 
<METHOD>_<DATASET>.nii.gz. Here <METHOD> and 
<DATASET> describe the segmentation method and population 
dataset.   
 
Each WM pathway corresponds to a single 3D volume of the 4D 
dataset, stored as double-precision floating-point format with values 
ranging from 0 to 1. For simplicity, and in line with the template used 
for data normalization, the image matrix is gridded at 1 mm3 isotropic 
resolution, but other resolutions can be calculated given an appropriate 
interpolation.  

3.2 Surface-Intersection Atlas 
The surface-intersection atlases created for each method are stored as a 
VTK file type. For each method and for each hemisphere, there is one 
file which corresponds to the atlas composed of all data with the name 
convention <HEMISPHERE>_<METHOD>.vtk.gz, and there are three 
supplementary files which designate the subset of data the atlas is 
composed of: “BLSA”, “HCP”, and “VU” with the naming convention 
<HEMISPHERE>_<METHOD>_<DATASET>.vtk.gz. Here 
<HEMISPHERE>, <METHOD>, and <DATASET> describe the left or 
right hemisphere (lh or rh), the segmentation method, and the 
population dataset. 
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VTK file contains polygonal data with graphics primitives including 
vertices, edges, and triangle strips defining the polygonal data. 
Although the surface mesh itself (i.e., vertices and triangles) is the same 
for all datasets and methods, each VTK file has a separate dataset 
attribute that consists of scalar values assigned to each vertex. Thus, 
within each VTK file there is a set of scalars for each WM pathway, as 
well as a lookup table name as a character string based on the name of 
the specific pathway. 

3.3 Meta-data 
Each <METHOD> has an associated meta-data file stored as a CSV 
file. This file contains a numerical index for every volume within the 
atlas. With every number there is also an associated anatomical label for 
the pathway, a “file-system” name using a label – typically an acronym 

– that is friendly for scripting (no spaces or special characters), as well 
as the number of subjects from each database that are included in the 
creation of the population-template for that pathway. 

3.4 Additional data: T1 template, linear atlases, gray matter atlases, 
and scripting 
In addition to the WM labels, a number of supplementary data are also 
provided with the atlas. First, we created the T1-averaged template 
derived from all datasets, as well as each dataset separately, and make 
these available for use as an alternative to the MNI ICBM template, if 
desired. Second, we also created WM volumetric atlases created using 
linear registration to MNI space and provide these as supplementary 
data within each method. Third, we created the population-average of 
several commonly used gray matter parcellations, including 

Figure 3. Visualization of data contained in example volumetric and surface atlases. Example visualization for 10 pathways in the TractSeg nonlinear 
atlas are shown as both overlays and surfaces.  
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brainCOLOR labels, and also the Desikan-Killany[26], Destrieux[55], 
and DKTatlas40[64] parcellation schemes from FreeSurfer. Every 
subjects T1 image was labeled in native space, and labels were warped 
to standard space where majority voting was applied to produce labels 
in atlas space. These gray matter labels may provide a reference for 
localizing the bundles within the WM atlas. Finally, several MATLAB 
and python scripts are provided to extract individual labels from a given 
atlas (because many software packages do not facilitate 4D analysis), as 
well as example normalization and label-propagation scripts. 
 

4. Technical Validation 
We begin with a qualitative validation of the data, thoroughly 
inspecting and visualizing all volumes and surfaces from each atlas. An 
example visualization for 10 selected pathways from the TractSeg sets 
of atlases is shown in Figure 3. All pathways overlay in the correct 
location, with the correct shape and trajectory, as expected. Population 
agreement is generally high in the core of the bundle (values ~1) with 
larger variability along the periphery of pathways. Through this 
qualitative validation process, differences in the methodologies were 
noted including some possessing high sensitivity (larger volumes, 

Figure 4. Data validation. (A) Matrix of correlation coefficient of pathways plotted against all others indicates similarities within and across 
methodologies for bundle dissection. Solid white lines are used to visually separate bundle segmentation methods. (B) UMAP dimensionality 
reduction projected onto un-scaled 2D plane shows that many WM pathways are similar, but not the same, across methods. Object colors represent 
specific atlas bundles, with shape indicating segmentation methods. (C) Correlation coefficient of atlases separated by dataset indicates small, but 
significant, differences between datasets. Together, these justify the inclusion of all tractography methods, as well as separation of atlases by datasets.  
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greater agreement across subjects) and those with higher specificity 
(smaller, well-defined pathways with lower population agreement).  
 
Next, to assess differences within and between tractography techniques, 
we show pathway-correlations against all other pathways as a large 
216x216 matrix of correlations (Figure 4, a) and also plotting the 
UMAP projection of each pathway on a 2D plane (Figure 4, b). As 
expected, most pathways are quite different from others (for example 
we do not expect the optic radiations to share any overlap whatsoever 
with the uncinate fasciculus, regardless of methodology), however there 
are clearly clusters of pathways sharing some similarity, due to both 
spatial overlap of pathways with comparable anatomies (for example 
inferior longitudinal fasciculus and inferior frontal occipital fasciculus), 
as well as methods representing the same pathway. We identified a core 
group of 20 pathways that are commonly dissected in all methods, and 
clusters of these pathways are apparent in the UMAP projection (for 
example, the corticospinal tracts, forceps major and minor, optic 
radiations, and inferior longitudinal fasciculi are quite similar across 
algorithms). Thus, certain pathways are similar, but not exactly the 
same, across methodologies, justifying the use of all six state-of-the art 
methods for bundle dissection.   
 
Finally, we quantify differences across datasets by showing boxplots of 
the pathway-correlations after separating by source of data (Figure 4, 
c). While all methods show quite high correlations, it is clear that BLSA 
and VU datasets and bundles are more similar to each other than to 
HCP datasets. This is expected as HCP data quality, SNR, resolution, 
and acquisitions are quite different from the more clinically feasible 
BLSA and VU sets. Thus, bundles are also different based on dataset 
source. Because of this, in addition to combining results from all 
subjects, we also supply atlases separated by dataset.   

5. Usage Notes 
 Here, we have created and made available the Pandora white matter 
bundle atlas, that addresses a number of limitations of current human 
brain atlases by providing a set of population-based volumetric and 
surface atlases in standard space, based on a large number of subjects, 
including many pathways from multiple diffusion MRI tractography 
bundle segmentation methods. We envision the use of these atlases for 
spatial normalization and label propagation in ways similar to standard 
usage of volumetric brain atlases. These labels can be used not only for 
statistical analysis across population and individuals, but also for priors 
for tractography, relating neuroimaging findings to structural pathways 
or to inform future methodologies for parcellating and segmenting 
white matter based on functional, molecular, or alternative contrasts. 
Similarly, although much less frequently used in the field, the surface-
based atlas can also be used to relate functional MRI findings (which 
are largely applied to cortex, with some evidence for signal contrast in 
white matter), as priors for cortico-cortical tractography and future 
bundle segmentations, as a tool for gray matter based spatial statistics, 
and again for relating alternative neuroimaging findings to structure.  
 
As a simple example workflow. An investigator may be interested in 
relating tumour localization on a structural image to specific white 
matter pathways hypothesized to be involved in some functional 
network. The investigator may choose to register their image to the 
MNI template, and can either warp their data to template space or apply 
the inverse transform to get white matter labels into the subject native 
space. The investigator could then relate tumour location to the 
probability of given pathways, or could simply threshold the 
probabilistic maps at a given threshold (for example 0.5) and relate 

these to the existence/non-existence of the bundle being displaced by 
the tumour.   
 
We currently recommend the use of the concatenation of all datasets for 
standard investigative studies unless a population-specific template is 
required. While differences between datasets are clear and expected, the 
increased population variability that results from including data from all 
sources is likely an advantage when investigators are using their own 
data with possible differences in acquisition, resolution, and subjects. 
However, future work will investigate creation and dissemination of 
age-specific white matter analysis, as well as including an age-adjusted 
surface mesh instead of using the MNI template to generate the surface.  
We have chosen to include a large number of algorithms for streamline 
generation and bundle dissection. Our results (Figure 4) show that even 
if the same white matter structure is segmented using different 
techniques, the results are not guaranteed to be the same. Thus, an 
investigator could use our atlas with the set of protocols that they agree 
with most, or alternatively, could relate findings to all white matter 
pathways across all methodologies in our atlas. We note that we have 
chosen six standard algorithms to create this atlas, although others exist 
and new ones are continually developed based on improvements in both 
our understanding of anatomical connections and our ability to 
reconstruct these connections with tractography. Inclusion of other 
tractography and/or segmentation methods are likely additions in future 
iterations of the atlas, and are easily integrated with existing 
deformation fields and data organization. Finally, future iterations can 
include variations and concatenations of gray matter and/or regional 
atlases in the same space, continually adding to the number of features 
to be investigated with a single dataset in standard space.   

Code Availability 
This atlas is freely available at 
https://www.nitrc.org/projects/pandora_atlas and 
https://github.com/MASILab/Pandora-WhiteMatterAtlas. All methods 
in atlas creation are available at https://github.com/MASILab/Pandora-
Methods, including subject-level processing of tractography and 
registration, volumetric and surface atlas creation, and all QA 
generation and visualizations.  
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Appendix A 
The bundles resulting from each bundle-segmentation pipeline are given 
as a list below. 
 
AFQ: Corpus Callosum Forceps Major; Corpus Callosum Forceps 
Minor; Arcuate Fasciculus left; Cingulum-Cingulate Gyrus left; 
Cingulum-Hippocampal Gyrus left; Corticospinal Tract left; Inferior 
Occipito-frontal Fasciculus left; Inferior Longitudinal Fasciculus left; 
Superior Longitudinal Fasciculus left; Thalamic Radiation left; 
Uncinate Fasciculus left; Arcuate Fasciculus right; Cingulum-Cingulate 
Gyrus right; Cingulum-Hippocampal Gyrus right; Corticospinal Tract 
right; Inferior Occipito-frontal Fasciculus right; Inferior Longitudinal 
Fasciculus right; Superior Longitudinal Fasciculus right; Thalamic 
Radiation right; Uncinate Fasciculus right 
 
AFQ-clipped: Corpus Callosum Forceps Major; Corpus Callosum 
Forceps Minor; Arcuate Fasciculus left; Cingulum-Cingulate Gyrus left; 
Cingulum-Hippocampal Gyrus left; Corticospinal Tract left; Inferior 
Occipito-frontal Fasciculus left; Inferior Longitudinal Fasciculus left; 
Superior Longitudinal Fasciculus left; Thalamic Radiation left; 
Uncinate Fasciculus left; Arcuate Fasciculus right; Cingulum-Cingulate 
Gyrus right; Cingulum-Hippocampal Gyrus right; Corticospinal Tract 
right; Inferior Occipito-frontal Fasciculus right; Inferior Longitudinal 
Fasciculus right; Superior Longitudinal Fasciculus right; Thalamic 
Radiation right; Uncinate Fasciculus right 
 
Recobundles: Arcuate Fasciculus left; Arcuate Fasciculus left; Frontal 
Aslant Tract left; Frontal Aslant Tract right; Cerebellum left; 
Cerebellum right; Corpus Callosum Major; Corpus Callosum Minor; 
Central Tegmental Tract left; Central Tegmental Tract right; Extreme 
Capsule left; Extreme Capsule right; Fronto-pontine tract left; Fronto-
pontine tract right; Inferior Fronto-occipital Fasciculus left; Inferior 
Fronto-occipital Fasciculus right; Inferior Longitudinal Fasciculus left; 
Inferior Longitudinal Fasciculus right; Middle Cerebellar Peduncle; 
Middle Longitudinal Fasciculus left; Middle Longitudinal Fasciculus 
right; Medial Longitudinal fasciculus left; Medial Longitudinal 
fasciculus right; Medial Lemniscus left; Medial Lemniscus right; 
Occipito Pontine Tract left; Occipito Pontine Tract right; Optic 
Radiation left; Optic Radiation right; Parieto Pontine Tract left; Parieto 
Pontine Tract right; Superior longitudinal fasciculus left; Superior 
longitudinal fasciculus right; Spinothalamic Tract left; Spinothalamic 
Tract right; Temporopontine Tract left; Temporopontine Tract right; 
Uncinate Fasciculus left; Uncinate Fasciculus right; Vermis 
 
TractSeg: Arcuate fascicle left; Arcuate fascicle right; Anterior 
Thalamic Radiation left; Thalamic Radiation right; Commissure 
Anterior; Rostrum; Genu; Rostral body (Premotor); Anterior midbody 
(Primary Motor); Posterior midbody (Primary Somatosensory); 
Isthmus; Splenium; Corpus Callosum – all; Cingulum left; Cingulum 
right; Corticospinal tract left; Corticospinal tract right;  Fronto-pontine 
tract left; Fronto-pontine tract right; Fornix left; Fornix right; Inferior 
cerebellar peduncle left; Inferior cerebellar peduncle right; Inferior 
occipito-frontal fascicle left; Inferior occipito-frontal fascicle right; 
Inferior longitudinal fascicle left; Inferior longitudinal fascicle right; 
Middle cerebellar peduncle; Middle longitudinal fascicle left; Middle 
longitudinal fascicle right; Optic radiation left; Optic radiation right; 

Parieto-occipital pontine left; Parieto-occipital pontine right; Superior 
cerebellar peduncle left; Superior cerebellar peduncle right; Superior 
longitudinal fascicle III left; Superior longitudinal fascicle III right; 
Superior longitudinal fascicle II left; Superior longitudinal fascicle II 
right; Superior longitudinal fascicle I left; Superior longitudinal fascicle 
I right;Striato-fronto-orbital left; Striato-fronto-orbital right; Striato-
occipital left; Striato-occipital right; Striato-parietal left; Striato-parietal 
right; Striato-postcentral left; Striato-postcentral right; Striato-precentral 
left; Striato-precentral right; Striato-prefrontal left; Striato-prefrontal 
right; Striato-premotor left; Striato-premotor right; Superior Thalamic 
Radiation left; Superior Thalamic Radiation right; Thalamo-occipital 
left; Thalamo-occipital right; Thalamo-parietal left; Thalamo-parietal 
right; Thalamo-postcentral left; Thalamo-postcentral right; Thalamo-
precentral left; Thalamo-precentral right; Thalamo-prefrontal left; 
Thalamo-prefrontal right; Thalamo-premotor left; Thalamo-premotor 
right; Uncinate fascicle left; Uncinate fascicle right 
 
Tracula: Corpus Callosum Forceps Major; Corpus Callosum Forceps 
Minor; Anterior Thalamic Radiation left; Cingulum - Angular Bundle 
left; Cingulum - Cingulate Gyrus left; Corticospinal Tract left; Inferior 
Longitudinal Fasciculus left; Superior Longitudinal Fasciculus - Parietal 
left; Superior Longitudinal Fasciculus - Temporal left; Uncinate 
Fasciculus left; Anterior Thalamic Radiation right; Cingulum - Angular 
Bundle right; Cingulum - Cingulate Gyrus right; Corticospinal Tract 
right; Inferior Longitudinal Fasciculus right; Superior Longitudinal 
Fasciculus - Parietal right; Superior Longitudinal Fasciculus - Temporal 
right; Uncinate Fasciculus right 
 
Xtract: Anterior Commissure; Arcuate Fascile left; Arcuate Fascile 
right; Acoustic Radiation left; Acoustic Radiation right; Anterior 
Thalamic Radiation left; Anterior Thalamic Radiation right; Cingulum 
Bundle Dorsal left; Cingulum Bundle Dorsal right; Cingulum Bundle 
Parahippocampal left; Cingulum Bundle Parahippocampal right; 
Cingulum Bundle Temporal left; Cingulum Bundle Temporal right; 
Corticospinal Tract left; Corticospinal Tract right; Frontal Aslant left; 
Frontal Aslant right; Forceps Major; Forceps Minor; Fornix left; Fornix 
right; Inferior Fronto-occipital Fasciculus left; Inferior Fronto-occipital 
Fasciculus right; Inferior Longitudinal Fasciculus left; Inferior 
Longitudinal Fasciculus right; Middle Cerebellar Peduncle; Medio-
Dorsal Longitudinal Fasciculus left; Medio-Dorsal Longitudinal 
Fasciculus right; Optic Radiation left; Optic Radiation right; Superior 
Longitudinal Fasciculus 1 left; Superior Longitudinal Fasciculus 1 right; 
Superior Longitudinal Fasciculus 2 left; Superior Longitudinal 
Fasciculus 2 right; Superior Longitudinal Fasciculus 3 left; Superior 
Longitudinal Fasciculus 3 right; Superior Thalamic Radiation left; 
Superior Thalamic Radiation right; Uncinate Fasciculus left; Uncinate 
Fasciculus right; Vertical Occipital Fasciculus left; Vertical Occipital 
Fasciculus right; 
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