

1 *Taenia* larvae possess distinct acetylcholinesterase profiles with implications for host
2 cholinergic signalling

3

4 Acetylcholinesterases in larvae of *Taenia solium* and *Taenia crassiceps*

5

6 Anja de Lange¹, Ulrich Fabien Prodjinotho², Hayley Tomes¹, Jana Hagen³, Brittany-Amber Jacobs^{4,5},
7 Katherine Smith^{4,6}, William Horsnell^{4,7,8}, Chummy Sikasunge⁹, Murray E. Selkirk³, Clarissa Prazeres
8 da Costa², Joseph Valentino Raimondo^{1,4}

9

10

11 ¹Division of Cell Biology, Department of Human Biology and Neuroscience Institute, Faculty of Health
12 Sciences, University of Cape Town, Cape Town, South Africa

13 ²Institute for Medical Microbiology, Immunology and Hygiene, Centre for Global Health, Technical University
14 Munich (TUM), Munich, Germany

15 ³Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom

16 ⁴Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular
17 Medicine and Division of Immunology, Faculty of Health Sciences, University of Cape Town, Cape Town, South
18 Africa

19 ⁵Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford,
20 United Kingdom

21 ⁶School of Biosciences, Cardiff University, United Kingdom

22 ⁷Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom

23 ⁸Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-
24 University of Orleans, Orleans, France

25 ⁹School of Veterinary Medicine, Department of Paraclinicals, University of Zambia, Lusaka, Zambia

26

27

28 Correspondence:

29 Joseph V. Raimondo

30 email: joseph.raimondo@uct.ac.za

31

32

33 *Keywords*

34 Cestode, acetylcholinesterase, acetylcholine, *Taenia crassiceps*, *Taenia solium*, neurocysticercosis, seizures,
35 epilepsy

36

37 *Funding and Competing interests*

38 The research leading to these results has received funding from a Royal Society Newton Advanced Fellowship

39 (NA140170) and a University of Cape Town Start-up Emerging Researcher Award to JVR, as well as grant

40 support from the Blue Brain Project, the National Research Foundation of South Africa, the Wellcome Trust

41 and the FLAIR Fellowship Programme (FLR\R1\190829): a partnership between the African Academy of
42 Sciences and the Royal Society funded by the UK Government's Global Challenges Research Fund. UFP, CS
43 and CPdC were supported by the Federal Ministry of Education and Research of Germany (BMBF), Project
44 title: "CYSTINET-Africa" (01KA1610, Germany II). AdL received financial support from the National Research
45 Foundation (110743), the Oppenheimer Memorial Trust (20787/02) and the University of Cape Town
46 (Doctoral Research Scholarship). BH is supported by a BBSRC grant: BB/R015856/1, a Royal Society
47 International Exchange grant: IES\R1\180108, a LeStudium-Marie Curie Fellowship and a NRF (SA)
48 Competitive Support for Rated Researchers grant: 111815. The funders had no role in study design, data
49 collection and analysis, decision to publish, or preparation of the manuscript. The authors have no competing
50 interests to report.

51

52 **Abstract**

53 Larvae of the cestodes *Taenia solium* and *Taenia crassiceps* infect the central nervous system of humans.
54 *Taenia solium* larvae in the brain cause neurocysticercosis, the leading cause of adult-acquired epilepsy
55 worldwide. Relatively little is understood about how cestode-derived products modulate host neural and
56 immune signalling. Acetylcholinesterases, a class of enzyme that degrade acetylcholine, are produced by a
57 host of parasitic worms to aid their survival in the host. Acetylcholine is an important signalling molecule in
58 both the human nervous and immune systems, with powerful modulatory effects on the excitability of
59 cortical networks. Therefore, it is important to establish whether cestode derived acetylcholinesterases may
60 alter host neuronal cholinergic signalling. Here we make use of multiple techniques to profile
61 acetylcholinesterase activity in different extracts of both *Taenia crassiceps* and *Taenia solium* larvae. We find
62 that the larvae of both species contain substantial acetylcholinesterase activity. However,
63 acetylcholinesterase activity is lower in *Taenia solium* as compared to *Taenia crassiceps* larvae. Further,
64 whilst we observed acetylcholinesterase activity in all fractions of *Taenia crassiceps* larvae, including on the
65 membrane surface and in the excreted/secreted extracts, we could not identify acetylcholinesterases on the
66 membrane surface or in the excreted/secreted extracts of *Taenia solium* larvae. Finally, using whole-cell

67 patch clamp recordings in rat hippocampal brain slice cultures, we demonstrate that *Taenia* larval derived
68 acetylcholinesterases can modify neuronal responses to acetylcholine. Together, these findings highlight the
69 possibility that *Taenia* larval acetylcholinesterases can interfere with cholinergic signalling in the host,
70 potentially contributing to pathogenesis in neurocysticercosis.

71

72 **Author summary**

73 Infection of the human nervous system with larvae of the parasite *Taenia solium* is a significant cause of
74 acquired epilepsy worldwide. Despite this, the precise cellular and molecular mechanisms underlying
75 epileptogenesis in neurocysticercosis remain unclear. Acetylcholinesterases are a family of enzymes widely
76 produced by helminthic parasites. These enzymes facilitate the breakdown of acetylcholine, which is also a
77 major neurotransmitter in the human nervous system. If *T. solium* larvae produce acetylcholinesterases, this
78 could potentially disrupt host cholinergic signalling, which may in turn contribute to seizures and epilepsy.
79 We therefore set out to investigate the presence and activity of acetylcholinesterases in *T. solium* larvae, as
80 well as in *Taenia crassiceps* larvae, a species commonly used as a model parasite in neurocysticercosis
81 research. We found that both *T. crassiceps* and *T. solium* larvae produce acetylcholinesterases with
82 substantial activity. We further demonstrate that the acetylcholinesterase activity in the products of these
83 parasites is sufficient to disrupt cholinergic signalling in an ex vivo brain slice model. This study provides
84 evidence that *Taenia* larvae produce acetylcholinesterases and that these can interfere with cholinergic
85 signalling in the host and potentially contribute to pathogenesis in neurocysticercosis.

86

87 **Introduction**

88 Neurocysticercosis is a human disease which arises when larvae of the cestode *Taenia solium* (*T. Solium*)
89 infect the central nervous system (1). The most common symptom of this infection is the development of
90 epileptic seizures, which occur in 70–90% of symptomatic neurocysticercosis cases (2). As a result,
91 neurocysticercosis is a major cause of adult-acquired epilepsy worldwide. Neurocysticercosis impacts heavily

92 on the quality of life of those infected, and is also a significant drain on the medical and economic resources
93 of endemic countries (3–5). Despite the global impact of neurocysticercosis, precisely how cerebral infection
94 with *T. solium* relates to the development of seizures remains unclear.

95 It has been well documented that many parasitic worms of the alimentary tract produce substances that aid
96 them in modulating host responses in ways that benefit the parasite (6–8). Acetylcholinesterases (AChEs),
97 which catalyse the breakdown of acetylcholine, are one family of enzymes that have been implicated in the
98 modulation of host responses. Helminths widely express membrane-bound forms of AChEs, which are
99 classically associated with the facilitation of rapid acetylcholine signalling to parasite muscle, sensory, and
100 neural structures (9,10). Some also produce surface-presenting membrane-bound AChEs (11–14), or can
101 actively excrete/secrete AChEs, which may modulate acetylcholine dependent components of the host
102 immune response, play a role in detoxification of ingested cholinesterase inhibitors, or inhibit smooth muscle
103 contraction, mucus and fluid secretion associated with clearance of intestinal parasites (10,15–17).

104 Acetylcholine is also a major neurotransmitter in the human brain, with powerful effects on the excitability
105 of cortical circuits (18,19). It is a critical component of multiple brain systems that are responsible for
106 functions such as attention, learning, memory, sleep and motor activity (20,21). Disruption of cholinergic
107 signalling is well known to lead to seizures. Amongst others, mutations of the nicotinic acetylcholine receptor
108 underlies a heritable form of epilepsy (22), and pilocarpine (an acetylcholine muscarinic receptor agonist) is
109 a well described proconvulsant agent (23). Further, blockade of endogenous brain AChEs by
110 organophosphate pesticides or poisons can also lead to seizures (24,25).

111 Since *T. solium* larvae invade the central nervous system in neurocysticercosis, it is important to determine
112 potential AChE activity expressed by these larvae, as such activity could conceivably interfere with
113 endogenous cholinergic signalling in the brain. *Taenia crassiceps* (*T. crassiceps*) is a related cestode, which
114 has also been known to invade the human nervous system, and is widely utilised as a model parasite for *T.*
115 *solium* in neurocysticercosis research (26,27). It is therefore also important to ascertain how AChE activity
116 might compare between the larvae of these two *Taenia* species.

117 AChEs have been reported in the adult forms of several members of the broader *Taeniidae* family (28–30)
118 as well as in larval stages (9,11,13,31,32). The presence of AChEs in metacestodes of *Echinococcus granulosus*
119 is particularly noteworthy, as these are known to infect the nervous system of children (33). The AChEs are
120 often associated with the neural structures and parasite tegument of Taeniids, and there is also some
121 suggestion that some Taeniid larvae may release AChEs into the host environment (31). Studies describing
122 cholinesterases in *T. crassiceps* larvae are scarce, with one report of AChEs in the bladder wall of *T. crassiceps*
123 (34), and one other study which refers to the presence of “unidentified esterases” in the cystic fluid of *T.*
124 *crassiceps* (35).

125 A histological study by Vasantha *et al.* (36) in *T. solium* larvae demonstrated AChE staining in neural structures
126 of the larvae. No obvious staining of AChEs on the surface of the larvae is described, apart from positive
127 staining in a few surface nerve endings. We further found one other report of cholinesterase activity in *T.*
128 *solium* larvae, with activity predominantly present in the isolated cyst bladder ((37) cited in (38)).

129 Therefore, there is an important need for a detailed characterization of AChE activity in the larvae of different
130 *Taenia* species, as well as an investigation into whether larval derived AChEs could conceivably disrupt host
131 neuronal cholinergic signalling. Here, we used multiple techniques to explore AChEs activity in different
132 extracts of both *T. crassiceps* and *T. solium* larvae. We find that both the larvae of *T. crassiceps* and *T. solium*
133 contain significant AChE activity, but it is broadly lower in *T. solium* as compared to *T. crassiceps* larvae. In
134 addition, whilst AChEs were present in all fractions of *T. crassiceps* larvae, including the membrane surface
135 and excreted/secreted extracts, we could not identify AChEs on the membrane surface or within the
136 excreted/secreted extracts of *T. solium* larvae. Finally, using whole-cell patch clamp recordings in rodent
137 hippocampal brain slice cultures we demonstrate that *Taenia* larval derived AChEs can modify neuronal
138 responses to acetylcholine.

139

140 **Materials and Methods**

141 **Ethics statement**

142 All animal handling, care and procedures were carried out in accordance with South African national
143 guidelines (South African National Standard: The care and use of animals for scientific purposes, 2008) and
144 with approval from the University of Cape Town Animal Ethics Committee (Protocol No: AEC 019/025, AEC
145 014/035).

146 ***Taenia* acquisition, maintenance, and preparation of cyst extracts**

147 *Acquisition and maintenance of T. crassiceps larvae.* Larvae (ORF strain) were donated by Dr Siddhartha
148 Mahanty (University of Melbourne, Melbourne, Australia) and propagated *in vivo* by serial intraperitoneal
149 infection of 5-8-week-old female C57BL/6 mice. Every 3 months parasites were harvested by peritoneal
150 lavage and washed 6 times in phosphate buffered saline (PBS, 1X, pH 7.4) before further processing.

151 *Preparation of T. crassiceps whole cyst homogenate.* Larvae were frozen at -80 °C immediately after
152 harvesting. Upon thawing, larvae were suspended in a volume of PBS threefold that of the larvae. A protease
153 inhibitor cocktail was added to this suspension (1% vol/vol, Sigma-Aldrich). The larvae were then
154 homogenised on ice using a glass tissue grinder. The resulting mixture was centrifuged at 3100 g for 20
155 minutes at 4 °C. The liquid supernatant (excluding the low density white floating layer) was collected and
156 sterile filtered through a 0.22 µm size filter (Millex-GV syringe filter, Merck). This supernatant was then
157 aliquoted and stored at -80 °C until use. This preparation is referred to as “*T. crassiceps* whole cyst
158 homogenate”.

159 *Preparation of T. crassiceps cyst membrane and cyst vesicular fluid extracts.* After harvesting, washed larvae
160 (+/- 10ml) were placed onto a piece of filter paper (which had been saturated with 1X PBS) in a metal sieve.
161 Cysts were then ruptured using a weighing spatula. The fluid from the ruptured cysts that passed through
162 the filter paper was collected in a beaker and was centrifuged at 3100 g for 20 minutes at 4 °C, and the
163 supernatant was collected, aliquoted and stored at -80 °C until use. This extract is referred to as “*T. crassiceps*
164 cyst vesicular fluid”. The fraction of the cysts that remained on the filter paper were scraped off with the
165 weighing spatula and suspended in an equal volume of PBS containing a protease inhibitor cocktail (1%
166 vol/vol, Sigma-Aldrich). This mixture was freeze-thawed once at -80 °C, homogenised on ice using a glass

167 tissue grinder, and centrifuged at 3100 *g* for 20 minutes at 4 °C. The liquid supernatant was collected,
168 aliquoted, and stored at -80 °C until use. This extract is referred to as "*T. crassiceps* cyst membrane".

169 *Preparation of T. crassiceps larval excretory/secretory extracts.* After harvesting, washed larvae (+/- 10 ml)
170 were placed in a 50 ml culture flask with 10 ml culture medium (Earle's Balanced Salt Solution with 5.3 g/L
171 glucose, 1X Glutamax, 50 U/ml penicillin, 50 µg/ml streptomycin, 100 µg/ml gentamicin sulphate and 11.4
172 U/ml nystatin). Larvae were maintained at 37 °C in 5 % CO₂. After 48 hrs the medium was discarded and
173 replaced with 10 ml fresh media. At 20 days *in vitro* (at which point larvae still displayed motility) the culture
174 media was collected, aliquoted, and stored at -80 °C until use. For electrophysiology experiments the
175 excretory/secretory extracts were dialysed/buffer exchanged to PBS using an Amicon stirred cell (Merck)
176 with a 3 kDa molecular weight cut-off membrane, in order to remove small molecules that could potentially
177 induce electrophysiological responses that would interfere with the acetylcholine effect (such as glutamate
178 - see Tomes *et al.*, 2020).

179 *Acquisition of T. solium larvae.* Larvae of *T. solium* were harvested from the muscles of a heavily infected,
180 freshly slaughtered pig in Lusaka, Zambia. Larvae were removed from the muscle by vigorous shaking and
181 collected in petri dishes containing sterile PBS (1X, pH 7.4).

182 *Preparation of T. solium whole cyst homogenate.* After extensive washing with sterile PBS (1X, pH 7.4), larvae
183 were suspended in a volume of PBS threefold that of the larvae, containing phenylmethyl-sulphonyl fluoride
184 (5 mM) and leupeptin (2.5 µM). Larvae were then homogenised using a sterile handheld homogenizer at 4
185 °C. The resulting homogenate was sonicated (4 x 60 s at 20 kHz, 1 mA, with 30 s intervals), gently stirred with
186 a magnetic stirrer (2 hrs at 4°C), and centrifuged at 15 000 *g* for 60 min at 4 °C. The liquid supernatant
187 (excluding the low density white floating layer) was collected and sterile filtered through 0.45 µm size filters
188 (Millex-GV syringe filter, Merck). This supernatant was then collected, aliquoted and stored at -80 °C until
189 use. This preparation is referred to as "*T. solium* whole cyst homogenate".

190 *Preparation of T. solium cyst vesicular fluid extracts and cyst membrane and scolex.* After extensive washing
191 with sterile PBS, larvae were placed in a petri dish and individually ruptured with a sterile needle. The
192 resulting fluid in the petri dish was collected and centrifuged at 15 000 *g* for 60 min at 4 °C. The supernatant

193 was then sonicated (4 x 60 s at 20 kHz, 1 mA, with 30 s intervals), phenylmethyl-sulphonyl fluoride (5 mM)
194 and leupeptin (2.5 μ M) were added, and the solution was centrifuged a second time at 15,000 g for 60 min
195 at 4 °C. The supernatant was collected, aliquoted and stored at -80 °C until use. This extract is referred to as
196 "*T. solium* cyst vesicular fluid". The remaining parts of the larvae were again extensively washed with PBS
197 and then suspended in an equal volume of PBS containing phenylmethyl-sulphonyl fluoride (5 mM) and
198 leupeptin (2.5 μ M). This suspension was again homogenised using a sterile handheld homogenizer at 4 °C.
199 The resulting homogenate was sonicated (4 x 60 s at 20 kHz, 1 mA, with 30 s intervals), gently stirred with a
200 magnetic stirrer (2h at 4°C), and centrifuged at 15,000 g for 60 min at 4 °C. The liquid supernatant (excluding
201 the low density white floating layer) was collected and sterile filtered through 0.45 μ m size filters (Millex-GV
202 syringe filter, Merck). This supernatant was then aliquoted and stored at -80 °C until use. This extract is
203 referred to as "*T. solium* cyst membrane and scolex".

204 *Preparation of T. solium excretory/secretory extracts.* After harvesting, washed larvae were placed into 6 well
205 plates (+/- 15 per well) with 2 ml culture medium (RPMI 1640 with 10 mM HEPES buffer, 100 U/ml penicillin,
206 100 μ g/ml streptomycin, 0.25 μ g/ml amphotericin B and 2 mM L-glutamine). Every 24 h, 1 ml of culture
207 medium was collected from each well and replaced with fresh culture medium. Medium from all wells was
208 pooled each day, aliquoted and stored at -80 °C. Media collected on days 1, 2, and 3 *in vitro* were pooled,
209 and are referred to as "*T. solium* excretory/secretory extracts".

210 All *T. crassiceps* and *T. solium* larval extracts were assessed for protein concentration using a BCA or Bradford
211 protein assay kit (Sigma-Aldrich), respectively.

212 **Acetylcholinesterase activity and inhibitor sensitivity**

213 AChE activity was determined by the method of Ellman *et al.* (40) at room temperature with 1 mM
214 acetylthiocholine iodide as substrate in the presence of 1 mM 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in
215 100 mM sodium phosphate (pH 7.0). The reaction was monitored by measuring the absorbance at 412 nm,
216 and hydrolysis of acetylthiocholine iodide calculated from the extinction coefficient of DTNB (40). Activity
217 was expressed as nanomoles of acetylthiocholine hydrolysed per minute per milligram of total protein in
218 each larval extract (nmol min⁻¹ mg⁻¹). To test the sensitivity of *Taenia* AChEs to different inhibitors, extracts

219 were preincubated with different concentrations of 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one
220 dibromide (BW 284c51), tetraisopropyl pyrophosphoramide (iso-OMPA) or eserine salicylate for 20 min at
221 room temperature in Ellman buffer, prior to the addition of 1 mM acetylthiocholine iodide and enzyme
222 activity determination. Each reaction was assayed a minimum of three times. Where AChE activity was
223 reduced to undetectable levels by inhibitors, a residual activity of 0 % was allocated on inhibition curves.

224 **Non-denaturing polyacrylamide gel electrophoresis (PAGE)**

225 Extracts were electrophoresed in Tris-glycine buffer, pH 8.3, through 7.5 % polyacrylamide gels in the absence
226 of denaturing and reducing agents. Electrophoresis was performed at 150 V for 3 hrs on ice. Protein staining
227 (Coomassie) was performed on one set of PAGE gels, and specific staining for AChE activity was performed
228 overnight as described by Selkirk and Hussein (41) adapted from the method of Karnovsky and Roots (42).
229 The maximum volume of each protein extract was loaded (20 μ l), to ensure maximal staining. Protein
230 concentrations of the different extracts varied (*T. crassiceps*: whole cyst homogenate = 1.9 mg/ml, cyst
231 membrane = 3.4 mg/ml, cyst vesicular fluid = 3.0 mg/ml and excretory/secretory extracts = 1.32 mg/ml; *T.*
232 *Solium*: all extracts = 1.5 mg/ml). Each stain was performed at least three times to confirm reproducibility.

233 ***In situ* localisation of acetylcholinesterases**

234 To localise *Taenia* AChEs, fresh *Taenia* larvae were submerged in 10 % formalin for 60 min, to fix the tissue.
235 Some of the larvae were then stained overnight for AChE activity as described by Selkirk and Hussein (41)
236 adapted from the method of Karnovsky and Roots (42), and mounted onto slides as whole mounts. A subset
237 of the fixed larvae was embedded in cryo embedding medium, frozen overnight at -80 °C, and cryo-sectioned
238 the following day at 50 μ m. The sections were then similarly stained overnight for AChE activity, placed on
239 positively charged slides and dehydrated in graded alcohols before mounting. To assess non-specific staining,
240 in a subset of the whole mount and cryo-section specimens, acetylthiocholine iodide (the substrate) was
241 omitted during the AChE staining procedure. Specimens were imaged using an upright light microscope.

242 **An ex vivo model to examine the effect of *Taenia* AChEs in the context of neurocysticercosis**

243 *Hippocampal brain slice preparation.* Organotypic brain slices were prepared using 6-8-day-old Wistar rats
244 following the protocol originally described by Stoppini *et al.* (43). Briefly, brains were extracted and swiftly
245 placed in cold (4°C) dissection media consisting of Earle's Balanced Salt Solution (Sigma-Aldrich)
246 supplemented with D-glucose (6.1 g/L) and HEPES (6.6 g/L). The hemispheres were separated, and individual
247 hippocampi were removed and immediately cut into 350 µm slices using a McIlwain tissue chopper (Mickle).
248 Cold dissection media was used to separate and rinse the slices before placing them onto Millicell-CM
249 membranes (Sigma-Aldrich). Slices were maintained in culture medium consisting of 25 % (vol/vol) Earle's
250 balanced salt solution; 49 % (vol/vol) minimum essential medium (Sigma-Aldrich); 25 % (vol/vol) heat-
251 inactivated horse serum (Sigma-Aldrich); 1 % (vol/vol) B27 (Invitrogen, Life Technologies) and 6.2 g/l D-
252 glucose (Sigma-Aldrich). Slices were incubated in a 5 % carbon dioxide (CO₂), humidified incubator at 37 °C.
253 Recordings were made after 6-14 days in culture.

254 *Electrophysiology.* Brain slices were transferred to a submerged recording chamber on a patch clamp rig,
255 which was maintained at a temperature between 28 and 34 °C, and were continuously superfused with
256 standard artificial cerebrospinal fluid (120 mM NaCl, 3 mM KCl, 2 mM MgCl₂, 2 mM CaCl₂, 1.2 mM NaH₂PO₄,
257 23 mM NaHCO₃ and 11 mM D-Glucose in deionised water with pH adjusted to between 7.35 - 7.40 using 0.1
258 mM NaOH) bubbled with carbogen gas (95 % O₂: 5 % CO₂) using peristaltic pumps (Watson-Marlow).
259 Micropipettes were prepared (tip resistance between 3 and 7 MΩ) from borosilicate glass capillaries (outer
260 diameter 1.2 mm, inner diameter 0.69 mm) (Harvard Apparatus Ltd) using a horizontal puller (Sutter).
261 Micropipettes utilised for whole cell patch clamping were filled with an artificial cell internal solution (126
262 mM K-gluconate, 4 mM KCl, 10 mM HEPES, 4 mM Na₂ATP, 0.3 mM NaGTP and 10 mM Na₂-phosphocreatine)
263 before being placed over the recording electrode.

264 Neurons in the CA3 region of the hippocampus were visualized using an upright microscope with a 20X water
265 immersion objective. Surface cells with a typical pyramidal cell body morphology were selected for whole
266 cell patching. To demonstrate the effect of acetylcholine on hippocampal CA3 pyramidal neurons a second
267 micropipette containing a solution of 200 µm acetylcholine was lowered to the cell surface once a cell had
268 been patched. Current was injected to hold the membrane potential of cells close to their action potential

269 firing threshold and then five 30 ms puffs (~20 psi) of the solution was applied to the cell's surface using an
270 OpenSpritzer (Forman *et al.*, 2017) and the neuron's response recorded for 26 s before a 94 s "recovery"
271 period was allowed. This cycle was performed 5 times.

272 To explore the ability of *Taenia* acetylcholinesterase activity to alter neuronal acetylcholine signalling,
273 another set of patch-clamp experiments were performed, this time with two "puffer" micropipettes being
274 lowered to the cell surface once a neuron had been patched. One of these micropipettes contained a solution
275 of 200 μ M acetylcholine with 1.3 mg/ml *T. crassiceps* excretory/secretory extracts, while the second
276 contained a solution of 200 μ M acetylcholine with 1.3 mg/ml *T. crassiceps* excretory/secretory extracts that
277 had been heated to 56 °C for 30 min to inactivate enzymes. Again, current was injected to hold the membrane
278 potential of cells close to their action potential firing threshold. Five 30 ms puffs (~20 psi) of one of the
279 solutions was then applied to the cell's surface and the neuron's response recorded for 26 s before a 94 s
280 "recovery" period was allowed. Thereafter an identical puff train of the other solution was applied, and the
281 neuron's response again recorded for 26 s. After another 94 s recovery period, the cycle was repeated.

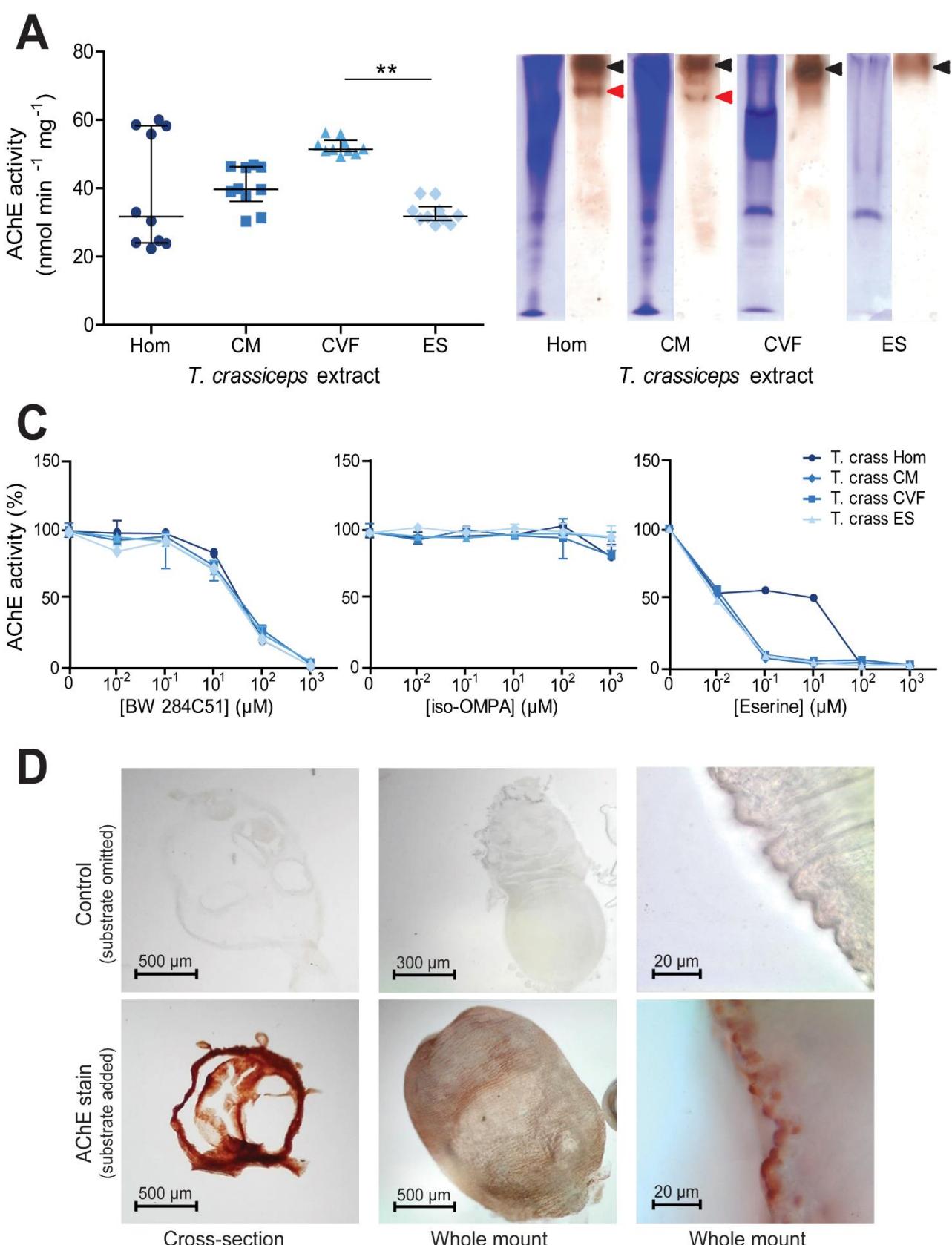
282 Post-recording analysis consisted of counting the number of action potentials induced by the application of
283 each solution within a 5 s period of the onset of the puff train. Only traces with a baseline membrane
284 potential prior to the puff application of between -60 mV and -45 mV were included. Each data point in the
285 puffing experiments represents the average of between 2 and 5 repeats of the puff cycle. Matlab
286 (MathWorks) was utilised for trace analysis.

287 **Data analysis and statistics**

288 Data was visualised and analysed using Matlab, Microsoft Excel and GraphPad Prism. Each dataset was
289 subjected to a Shapiro-Wilk test to determine whether it was normally distributed. Most datasets proved to
290 be non-normal and as such non-parametric analyses were utilised throughout. These included: Kruskal-Wallis
291 analyses with Dunn's multiple comparison post-hoc tests and Mann-Whitney tests. The confidence interval
292 for all tests was set at 95 %.

293

294 **Results**


295 **All *T. crassiceps* larval extracts display acetylcholinesterase activity**

296 In order to quantify AChE activity in *T. crassiceps* larvae, Ellman's assays were employed, using
297 acetylthiocholine as a substrate (40). These assays revealed that all *T. crassiceps* larval extracts had significant
298 AChE activity (**Table 1, Fig. 1A**). A Kruskal Wallis one-way ANOVA with post hoc Dunn's Multiple Comparison
299 tests revealed that the only statistically significant difference between the median activities of the different
300 *T. crassiceps* larval extracts was between that of the cyst vesicular fluid and that of the excretory/secretory
301 extracts ($P \leq 0.01$, **Fig. 1A**).

302 **Table 1: Acetylcholinesterase (AChE) activity of different larval extracts of *T. crassiceps* and *T. solium***

Larval species	Larval extract	# of assays	Median AChE activity (nmol min ⁻¹ mg ⁻¹)
<i>Taenia crassiceps</i>	Whole cyst homogenate	10	31.7 (IQR 24.0 – 58.3)
	Cyst membrane	10	39.7 (IQR 36.1 – 46.3)
	Cyst vesicular fluid	10	51.5 (IQR 50.9 – 54.1)
	Excretory/secretory extracts	10	31.8 (IQR 50.9 – 54.1)
<i>Taenia Solium</i>	Whole cyst homogenate	5	4.1 (IQR 4.1 – 5.1)
	Cyst membrane & scolex	5	14.0 (IQR 13.8 – 15.3)
	Cyst vesicular fluid	5	4.7 (IQR 3.37 – 5.03)
	Excretory/secretory extracts	4	Undetectable

303

304

305 **Figure 1: Identification and characterisation of acetylcholinesterases in *Taenia crassiceps* larval extracts.**

306 A) Quantification of acetylcholinesterase (AChE) activity in different *Taenia crassiceps* larval extracts. AChE

307 activity was quantified using the method of Ellman *et al.* (40) with 1 mM acetylthiocholine iodide as substrate

308 in the presence of 1 mM 5,5'-dithiobis(2-nitrobenzoic acid) in 100 mM sodium phosphate, pH 7.0, at room
309 temperature. The extracts assessed were: whole cyst homogenate (Hom); cyst membrane (CM), cyst
310 vesicular fluid (CVF) and larval excretory/secretory extracts (ES). Values with median \pm IQR, N = 10 for all
311 extracts assayed, **p \leq 0.01, Kruskal-Wallis test with Dunn's multiple comparison post-hoc tests B) Non-
312 denaturing polyacrylamide gel electrophoresis of *Taenia crassiceps* extracts. Extracts were electrophoresed
313 in Tris-glycine buffer, pH 8.3, through 7.5% polyacrylamide gels in the absence of denaturing and reducing
314 agents. Coomassie staining was performed on one set of gels (left tracks), and staining for AChE activity (42)
315 was performed on another set of gels for 16 hrs after incubation with the substrate (right tracks). The
316 maximum volume of each extract was loaded (20 μ l), to ensure maximal staining. Protein concentrations of
317 the different extracts varied: Hom = 1.9 mg ml $^{-1}$, CM = 3.4 mg ml $^{-1}$, CVF = 3.0 mg ml $^{-1}$ and ES = 1.32 mg ml $^{-1}$.
318 C) Inhibitor sensitivity of *Taenia crassiceps* AChEs. *Taenia crassiceps* extracts were preincubated with BW
319 284C51, iso-OMPA or eserine salicylate for 20 min at room temperature in Ellman buffer, prior to the addition
320 of 1 mM acetylthiocholine iodide and enzyme activity determination. Median \pm Range, N = 10 for all extracts
321 in absence of inhibitors, N = 3 for all extracts at all inhibitor concentrations. D) Localisation of larval AChEs.
322 Cryo-sections and whole mounts of *Taenia crassiceps* larvae were subjected to AChE staining (42) for 16 hrs
323 prior to dehydration and mounting. Images on the left show time-matched controls where acetylthiocholine
324 iodide was omitted from the staining solution.

325

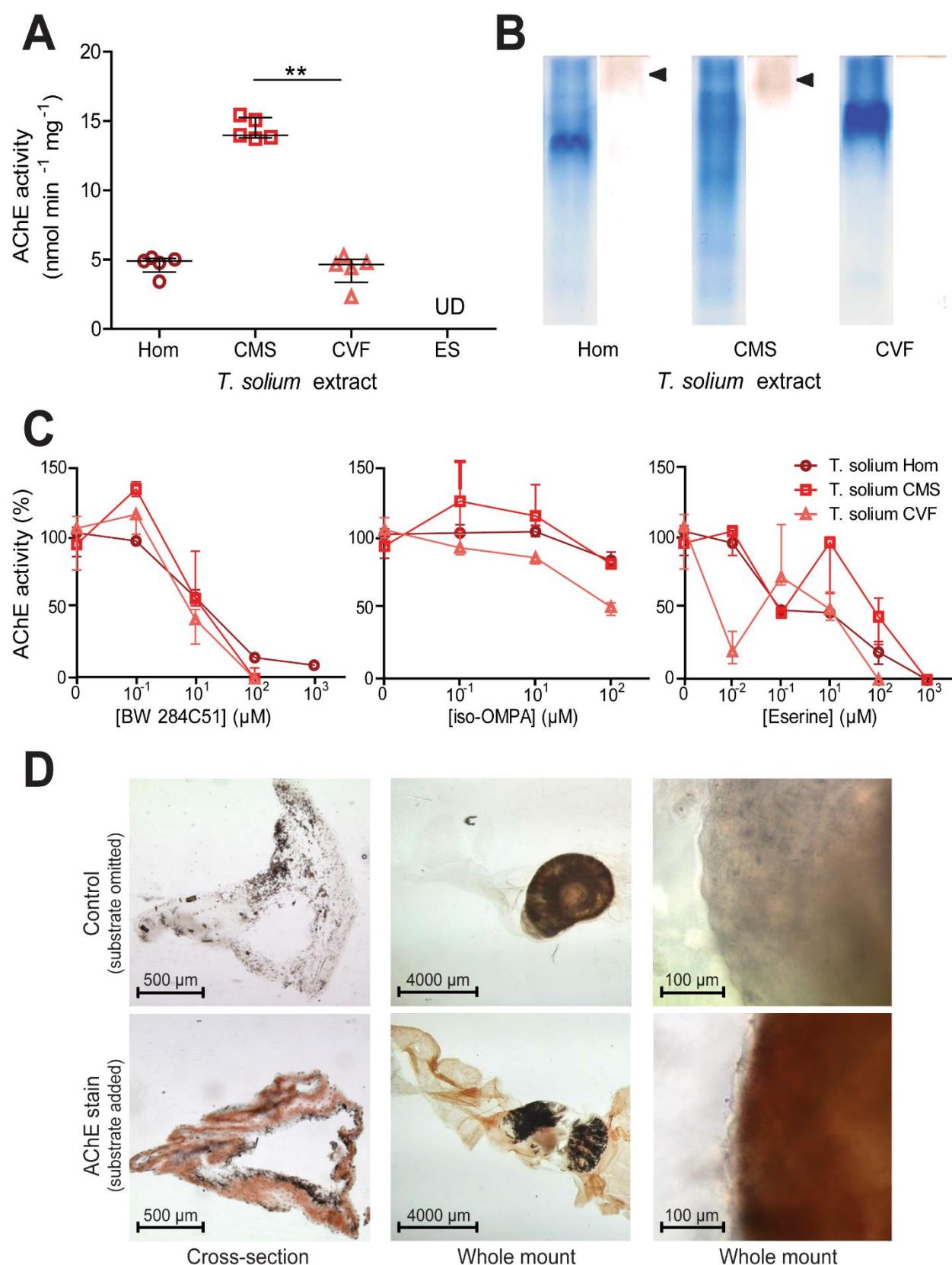
326 To visually confirm *T. crassiceps* AChE activity, and to assess whether there may be more than one AChE
327 isoform in *T. crassiceps* larval extracts, non-denaturing PAGE gels were run, and stained for AChE. A second
328 set of non-denaturing PAGE gels were run simultaneously and Coomassie stained. These demonstrated that
329 the different *T. crassiceps* larval extracts contained different protein compositions (left-hand tracks in **Fig.**
330 **1B**). The AChE stained gels (right-hand track for each larval extract in **Fig. 1B**) showed distinct dark bands
331 (indicated by black arrowheads) in the tracks of all the *T. crassiceps* larval extracts, thereby confirming that
332 all the *T. crassiceps* larval extracts show AChE activity. In the whole cyst homogenate and the cyst membrane

333 tracks of the AChE stained gels, there was an additional smaller band (indicated by the red arrowheads in **Fig. 1B**).
334 These results suggest that *T. crassiceps* larvae express more than one isoform of AChE.

335 **Inhibitor sensitivity of *T. crassiceps* larval acetylcholinesterases**

336 The sensitivity of AChE activity in *T. crassiceps* larval extracts to different inhibitors was tested by
337 preincubating them for 20 min with different concentrations of BW 284c51 (a selective AChE inhibitor), iso-
338 OMPA (a selective butyryl cholinesterase inhibitor) or eserine salicylate (a nonselective cholinesterase
339 inhibitor) before assaying AChE activity (40). All *T. crassiceps* extracts showed a similar dose-dependent
340 inhibitory response to BW 284c51, with AChE activity in all extracts being almost completely inhibited by the
341 presence of 1000 μ M BW 284c51 (**Fig. 1C, S1 Table**). Conversely, the AChE activity of *T. crassiceps* extracts
342 was not greatly inhibited by iso-OMPA, with only very small reductions in activity being observed even at
343 high (1 mM) inhibitor concentration (**Fig. 1C, S1 Table**). AChE activity in *T. crassiceps* cyst membrane, cyst
344 vesicular fluid and excretory/secretory extracts was highly sensitive to eserine inhibition, with strong
345 inhibition apparent at low (1 μ M) eserine concentration (**Fig. 1C, S1 Table**). The AChE activity of *T. crassiceps*
346 whole cyst homogenate was less sensitive to eserine inhibition, only displaying strong inhibition at a much
347 higher eserine concentration (100 μ M) (**Fig. 1C, S1 Table**). These inhibition patterns suggest that the
348 cholinesterase produced by *T. crassiceps* larvae can be classified as true AChEs, as opposed to
349 pseudocholinesterases (45).

350 ***T. crassiceps* acetylcholinesterases are ubiquitous within the tegument membrane and are present on the**
351 **larval surface**


352 To spatially localise AChEs within the larvae, both cross-sections of larvae and whole larvae were subjected
353 to AChE staining (42), (**Fig. 1D**). To evaluate non-specific staining, a second set of larval cross-sections and
354 whole larvae were subjected to the same staining procedure, with the exception that the substrate
355 (acetylthiocholine iodide) was omitted. Samples where the substrate was omitted (**top row, Fig. 1D**) showed
356 minimal staining. In contrast, cross sections stained for AChE activity displayed dense, uniform staining,
357 indicating that AChEs are localised ubiquitously throughout the tegument membrane (**bottom-left panel, Fig.**
358 **1D**). Whole larvae stained for AChE showed light surface staining at low magnification (**bottom-centre panel**,

359 **Fig, 1D)**, and high magnification revealed that staining localised to numerous small protrusions on the surface
360 of the cyst tegument membrane (**bottom-right panel, Fig, 1D**).

361 ***T. solium* larvae produce acetylcholinesterases but do not actively excrete/secrete them**

362 Next, we focussed on the major pathogenic cestode of humans; *T. solium*. Ellman's assays revealed that *T.*
363 *solium* whole cyst homogenate, cyst membrane and scolex, and cyst vesicular fluid had detectable AChE
364 activity, whilst the excretory/secretory extracts consistently displayed no detectable AChE activity (**Table 1,**
365 **Fig. 2A**). A Kruskal Wallis one-way ANOVA with post hoc Dunn's Multiple Comparison tests revealed that the
366 cyst membrane and scolex had a statistically significantly higher activity than that of the whole cyst
367 homogenate and the cyst vesicular fluid, whilst the median activity of two latter extracts did not differ
368 significantly from one another ($P \leq 0.01$, **Fig. 2A**).

369 To visually confirm AChE activity in *T. solium*, and to assess whether there may be more than one AChE
370 isoform in larval extracts, non-denaturing PAGE gels were resolved and stained for AChE (**Fig. 2B**). Again, a
371 second set of non-denaturing PAGE gels were run simultaneously and Coomassie stained. The Coomassie
372 stain showed that each extract has a distinct protein profile composition (left-hand tracks in **Fig. 2B**). The
373 AChE stained gels (right-hand track for each larval extract in **Fig. 1B**) revealed bands in the whole cyst
374 homogenate and in the cyst membrane and scolex preparations (indicated by black arrowheads), but no
375 apparent band in the cyst vesicular fluid track, likely due to insufficient enzyme concentration in the amount
376 of extract resolved.

377

378 **Figure 2: Identification and characterisation of acetylcholinesterases in *Taenia solium* extracts. A)**
379 Quantification of acetylcholinesterase (AChE) activity in different *Taenia solium* extracts as in Fig. 1. The
380 extracts assessed were: whole cyst homogenate (Hom); cyst membrane and scolex (CMS), cyst vesicular fluid

381 (CVF) and larval excretory/secretory extracts (ES). Values with median \pm IQR, N = 5 for all extracts assayed,
382 **p \leq 0.01, Kruskal-Wallis test with Dunn's multiple comparison post-hoc tests B) Non-denaturing
383 polyacrylamide gel electrophoresis of different *Taenia solium* extracts. Coomassie staining was performed
384 on one set of PAGE gels (left tracks), and staining for AChE activity (42) was performed on another set of gels
385 (right tracks). For each extract, 30 μ g of total protein was loaded. C) Inhibitor sensitivity of *Taenia solium*
386 AChEs. *Taenia solium* extracts were preincubated with BW 284C51, iso-OMPA or eserine for 20 min at room
387 temperature in Ellman buffer, prior to the addition of 1 mM acetylthiocholine iodide and enzyme activity
388 determination. Median \pm Range, N = 5 for all extracts in absence of inhibitors and at 10 μ M inhibitor
389 concentration, N = 3 for all extracts at all other inhibitor concentrations. D) Localisation of larval AChEs. Cryo-
390 sections and whole mounts of *Taenia solium* larvae were subjected to AChE staining (42). Images on the left
391 show time-matched controls where acetylthiocholine iodide was omitted from the staining solution.

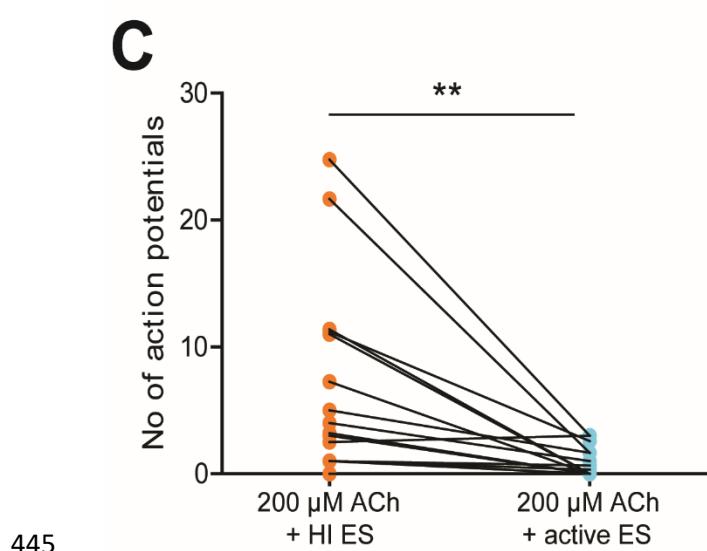
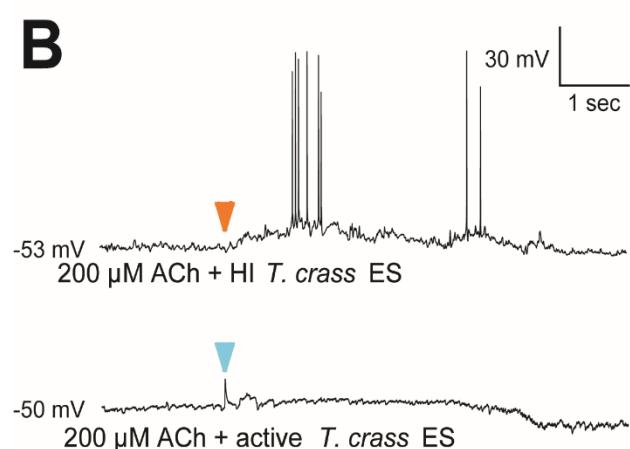
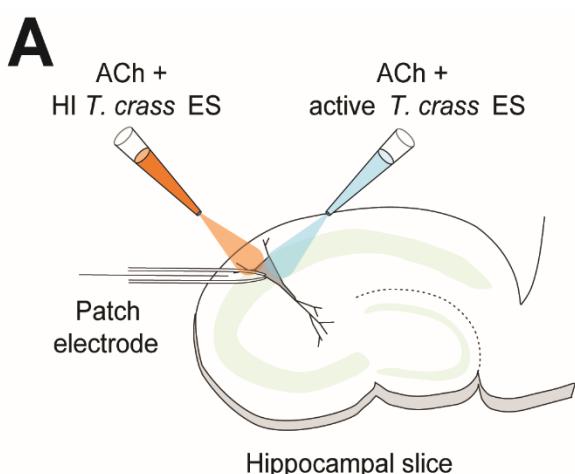
392

393 **Inhibitor sensitivity of *T. solium* larval acetylcholinesterases**

394 The sensitivity of AChE activity in *T. solium* larval extracts to different inhibitors was tested by preincubating
395 them for 20 min with different concentrations of BW 284c51, iso-OMPA or eserine salicylate, before assaying
396 AChE activity (40). All *T. solium* extracts showed a similar dose-dependent inhibitory response to BW 284c51,
397 although the *T. solium* whole cyst homogenate appears somewhat less sensitive to inhibition than the cyst
398 membrane and scolex and cyst vesicular fluid (Fig. 2C, S2 Table). *T. solium* extracts showed low sensitivity to
399 inhibition by iso-OMPA (Fig. 2C, S2 Table). *T. solium* whole cyst homogenate, cyst membrane and scolex,
400 and cyst vesicular fluid showed very variable sensitivities to inhibition by increasing concentrations of eserine,
401 but were ultimately all strongly inhibited at an eserine concentration of 1 mM or less (Fig. 2C, S2 Table).
402 These inhibition patterns suggest that the cholinesterases produced by *T. solium* larvae can be classified as
403 true AChEs, as opposed to pseudocholinesterases, although the fact that some inhibition is displayed at high
404 iso-OMPA concentrations may suggest a small pseudocholinesterase component (45).

405 ***T. solium* larval acetylcholinesterases are localised within the cyst tegument membrane, but do not appear**
406 **to present on the surface of the parasite**

407 Next, we set out to spatially localise AChEs within the larvae. To do so both cross-sections of larvae and whole
408 larvae were subjected to the same AChE staining as was applied to *T. crassiceps* larvae. Control samples
409 where the substrate was omitted to evaluate non-specific staining (**top row, Fig. 2D**), showed some patchy
410 black background staining. AChE stained cross-sections and whole mounts showed uniform, although not
411 very dense, AChE staining throughout the tegument membrane (in addition to the black background staining)
412 (**bottom-left and bottom-centre panel, Fig. 2D**). High magnification images of the surface of the tegument
413 membrane in whole-mounted AChE-stained larvae revealed that, unlike in *T. crassiceps*, AChEs in the
414 tegument membrane of *T. solium* are not surface-presenting (**bottom-right panel, Fig. 2D**).




415 **Larvae of *T. solium* have less acetylcholinesterase activity as compared to *T. crassiceps*, and *T. crassiceps***
416 **larvae excrete/secrete acetylcholinesterases, whilst *T. solium* larvae do not**

417 Comparison of AChE activity in the extracts of *T. crassiceps* versus the comparable *T. solium* extracts show
418 that *T. solium* extracts consistently have significantly lower AChE activities than those of *T. crassiceps* ($P \leq$
419 0.001, Mann Whitney tests, **Table 1**). Further, a different pattern of AChE distribution within the cyst is
420 observed between the two species – *T. solium* AChEs appear to be predominantly located in the cyst
421 membrane and scolex, whilst *T. crassiceps* AChEs appear abundant in both the cyst membrane and in the
422 cyst vesicular fluid and are additionally excreted/secreted (**Table 1**). *T. crassiceps* also displays surface
423 presenting AChEs, whilst *T. solium* do not, as revealed by AChE staining of whole larvae (**Fig. 1D & Fig. 2D**). It
424 is also noteworthy that *T. crassiceps* and *T. solium* larval extracts display different inhibitor sensitivities to
425 BW 284c51, iso-OMPA and particularly to eserine (**Fig. 1C** versus **Fig. 2C**). This suggests that the two parasites
426 produce different forms of AChE, although further investigation would be required to confirm this.

427 ***Taenia* larval acetylcholinesterases have sufficient activity to modify neuronal acetylcholine signalling *ex***
428 ***vivo***

429 In order to investigate what implications the presence of *Taenia* larval AChEs may have in the context of
430 neurocysticercosis, 200 μ M acetylcholine (known to induce depolarisation in hippocampal pyramidal
431 neurons (46) was applied to neurons in hippocampal organotypic cultures, together with either heat-
432 inactivated *T. crassiceps* excretory/secretory products, or active *T. crassiceps* excretory/secretory products.

433 The response of the membrane potential of the neurons was measured using whole-cell patch-clamp
434 recordings (see Materials and Methods, and **Fig. 3A, B**). When neurons were held at a voltage close to their
435 action potential threshold and picolitre volumes of 200 μ M acetylcholine with heat-inactivated
436 excretory/secretory products were puffed toward the soma of the neurons, they depolarised and fired action
437 potentials (APs) (median = 3.6 APs, IQR = 1.0 – 11.2 APs, N = 16, **Fig. 3B,C**). However, when 200 μ M
438 acetylcholine with active excretory/secretory products were applied to the same neurons just 2 min prior
439 to/after this, the neurons did not show the same response, often firing no action potentials despite still being
440 held at a voltage close to their action potential threshold (median = 0.2 APs, IQR = 0.0 – 1.7 APs, N = 16, P =
441 0.0017, Wilcoxon signed-rank test, **Fig. 3C**). This demonstrates that the AChEs in *T. crassiceps* larval
442 excretory/secretory products have sufficient activity to modify acetylcholine signalling in brain tissue. This
443 would hold true for *T. solium* cyst membrane and scolex AChEs, which break down acetylcholine at roughly
444 half the rate of *T. crassiceps* larval excretory/secretory extracts (**Table 1**).

446 **Figure 3: The functional effect of *Taenia* acetylcholinesterases on neuronal acetylcholine signalling. A)**

447 Schematic depicting the experimental setup where whole-cell patch-clamp recordings were made from rat
448 CA3 pyramidal neurons in organotypic hippocampal brain slice cultures. Whilst recording the electrical
449 activity from the neurons, two glass pipettes delivered picolitre volumes of either 200 μ M acetylcholine with

450 1.3 mg ml⁻¹ heat-inactivated *Taenia crassiceps* excretory/secretory extracts (orange pipette), or 200 μM
451 acetylcholine with 1.3 mg/ml of standard *Taenia crassiceps* excretory/secretory extracts (blue pipette). B)
452 The membrane potential responses of a pyramidal neuron when a solution of 200 μM acetylcholine with 1.3
453 mg ml⁻¹ *Taenia crassiceps* excretory/secretory extracts that had been heat-inactivated at 56°C for 30 min (top
454 trace) or 200 μM acetylcholine with 1.3 mg ml⁻¹ unheated/active *Taenia crassiceps* excretory/secretory
455 extracts (bottom trace) was puffed onto the cell body (arrowheads indicate moment of application). C)
456 Population data (median ± IQR) where each point represents the mean number of action potentials evoked
457 in 5 s after neurons were exposed to 5 x 30 ms puffs (2 – 5 cycles) of either a solution of 200 μM acetylcholine
458 with 1.3 mg ml⁻¹ heat-inactivated *Taenia crassiceps* excretory/secretory extracts (N = 13) or a solution of 200
459 μM acetylcholine with 1.3 mg ml⁻¹ active *Taenia crassiceps* excretory/secretory extracts (N = 13). **p ≤ 0.01,
460 Wilcoxon signed-rank test.

461

462 Discussion

463 Here we have used multiple methods to characterise the amount and spatial localization of AChE activity in
464 larvae of the cestodes *T. crassiceps* and *T. solium*. Previous studies have identified AChE activities in the larvae
465 of multiple species of the broader Taeniidae family including *Echinococcus granulosus* (dog tapeworm) and
466 *Taenia pisiformis* (rabbit tapeworm). To our knowledge our data represent the first definitive measurements
467 of AChE activity from larvae of *T. crassiceps*. The amount of AChE activity we report in *T. crassiceps* whole
468 cyst homogenate is similar to that previously reported for the larval homogenate of *T. pisiformis* (*T. crassiceps*
469 whole cyst homogenate median activity = 31.69 nmol min⁻¹ mg⁻¹, *T. pisiformis* homogenate mean activity =
470 24.8 nmol min⁻¹ mg⁻¹)(13). Interestingly we found that whilst *T. solium* larvae also exhibit substantial AChE
471 activity, this activity is broadly less than in extracts from *T. crassiceps*. Furthermore, the spatial profile of
472 larval AChE activity is different between these two species. Whilst AChEs were present in all fractions of *T.*
473 *crassiceps* larvae, and presented on the tegument membrane surface, we could not identify AChEs on the
474 tegument membrane surface or within the excreted/secreted extracts of *T. solium* larvae. The lack of surface
475 staining in *T. solium* larvae is in accordance with a previous study by Vasantha *et al.* (1992), which reports

476 AChEs in *T. solium* larvae to be associated with a sub- tegumental network of nerves in the strobila and
477 bladder wall.

478

479 Our findings have important implications in the context of *T. crassiceps* being utilised as a model organism
480 for neurocysticercosis research, with both larval extracts and whole early-stage cysts of *T. crassiceps* being
481 popular (47–50). The fact that *T. crassiceps* larvae have substantially higher AChE activity than *T. solium* larvae
482 means that their potential to alter brain acetylcholinergic signalling is likely greater. The same would be true
483 when utilising the tetrathyridia of *Mesocestoides corti* (another popular model parasite for
484 neurocysticercosis research) as the reported AChE activity of these larvae is far greater than that which we
485 report for both *T. crassiceps* and *T. solium* (51). The fact that *T. crassiceps* larvae express surface AChEs and
486 actively excrete/secrete AChEs also has implications for research where whole, viable *T. crassiceps* larvae are
487 utilised in neurocysticercosis models, as these *T. crassiceps* larvae may induce electrophysiological and
488 immunological changes via AChE extraction that *T. solium* larvae may not.

489

490 Our observation that *T. solium* larvae do not excrete/secrete AChEs is interesting, as many helminth species
491 have been observed to secrete these enzymes in substantial amounts, with proposed benefits to parasite
492 survival, such as protection against ingested AChE inhibitors and modulation of the host immune response
493 (7,10,16). Recently, a study by Vaux *et al.* (2016) demonstrated that *in vivo* exposure to secreted AChE from
494 *Nippostrongylus brasiliensis* promoted classical activation of macrophages (as opposed to alternative
495 activation), a state which is permissive to the survival of parasitic nematodes. In contrast, classically activated
496 macrophages appear to be deleterious to the survival of Taeniid larvae, occurring in the resistant Th1 acute
497 phase of infection, whilst their phenotype is shifted to an alternatively activated state during chronic Taeniid
498 infection (8,52). This could potentially explain why it may not be beneficial for Taeniids to secrete large
499 amounts of AChE.

500

501 Nonetheless, our findings demonstrate that both *T. solium* and *T. crassiceps* larvae do contain AChEs, and
502 using whole-cell patch clamp recordings in rodent hippocampal brain slice cultures, we show that *Taenia*
503 larval-derived AChEs have sufficient activity to modify neuronal responses to acetylcholine. This has
504 implications in the context of neurocysticercosis. Neurocysticercosis often presents with an extended
505 asymptomatic period while the cyst remains viable, and it is only when the cyst loses viability and
506 subsequently begins to disintegrate that symptom onset commonly occurs (53). It seems probable that
507 during this phase of cyst degeneration, components of the cyst vesicular fluid, cyst membrane, and scolex
508 that would otherwise be separated from the brain tissue by the tegumental membrane come into contact
509 with the brain parenchymal cells. The exposure of brain tissue to larval AChEs during cyst degradation could
510 interfere with endogenous cholinergic signalling. Here we have shown that AChEs reduced acetylcholine-
511 induced pyramidal cell depolarization, which is an inhibitory action. Interestingly however, Zimmerman *et al.*
512 (2008) have reported that in epileptic rats, there is a shift from membrane bound AChEs to soluble, unbound
513 AChEs, and that this is associated with an increased sensitivity to acetylcholine, which in turn results in
514 acetylcholine signalling inducing seizure activity in the epileptic animals. It seems conceivable, then, that an
515 increase in soluble AChEs in the extracellular brain environment as a result of cyst degeneration could
516 similarly induce greater acetylcholine sensitivity and could contribute to the generation of seizure activity in
517 neurocysticercosis, particularly if combined with other seizure-promoting processes.

518 Additional epileptogenic processes in neurocysticercosis very likely involve the neuroinflammatory response,
519 as there is mounting evidence that brain inflammatory processes contribute to the generation and
520 subsequent development of seizures and epilepsy (55,56). Furthermore, the degeneration of *T. solium* cysts
521 is associated with a strong pro-inflammatory host immune response, which is typically correlated with seizure
522 onset or an aggravation of symptoms (57,58). Microglia and astrocytes regulate inflammatory signalling in
523 the brain via, amongst others, acetylcholine receptor dependent signalling (59). Activation of acetylcholine
524 receptors can strikingly impair acute phase inflammation (60,61). This supports the presence of parasitic
525 AChEs driving exacerbated inflammation around the lesion by reducing acetylcholine receptor mediated anti-
526 inflammatory signalling. This could further contribute to perilesional gliosis which occurs in a subset of
527 neurocysticercosis cases, and is associated with seizure recurrence (62). Future work, possibly utilising *in vivo*

528 animal models, would be necessary to provide more definitive evidence implicating larval derived AChEs in
529 neurocysticercosis-associated epilepsy.

530 In summary, our findings describe distinct profiles of acetylcholinesterase activity in *T. crassiceps* and *T.*
531 *sodium* larvae. In so doing, we highlight the possibility of larval-derived enzymes interfering with both host
532 neural and immune signalling in the brain.

533

534 **Acknowledgements**

535 *T. crassiceps* larvae were generously donated to us by Dr Siddhartha Mahanty (University of Melbourne,
536 Melbourne, Australia).

537

538 **References**

- 539 1. Garcia HH, Gonzalez AE, Gilman RH. *Taenia solium* Cysticercosis and Its Impact in Neurological
540 Disease. *Clin Microbiol Rev.* 2020;33(3):1–23.
- 541 2. Carpio A, Romo ML. Multifactorial basis of epilepsy in patients with neurocysticercosis. *Epilepsia.*
542 2015;56(6):973–82.
- 543 3. Nash TE, Mahanty S, Garcia HH. Neurocysticercosis-More Than a Neglected Disease. *PLoS Negl Trop
544 Dis.* 2013;7(4):7–9.
- 545 4. Roman G, Sotelo J, Del Brutto O, Flisser A, Dumas M, Wadia N, et al. A proposal to declare
546 neurocysticercosis an international reportable disease. *Bull World Health Organ.* 2000;78(3):399–
547 406.
- 548 5. Bhattacharai R, Budke CM, Carabin H, Proaño J V., Flores-Rivera J, Corona T, et al. Quality of life in
549 patients with neurocysticercosis in Mexico. *Am J Trop Med Hyg.* 2011;84(5):782–6.
- 550 6. Dzik JM. Molecules released by helminth parasites involved in host colonization. *Acta Biochim Pol.*
551 2006;53(1):33–64.

552 7. Mcsorley HJ, Maizels RM. Helminth Infections and Host Immune Regulation. *Clin Microbiol Rev.*
553 2012;25(4):585–608.

554 8. Peon AN, Ledesma-Soto Y, Terrazas LI, Peón AN, Ledesma-Soto Y, Terrazas LI, et al. Regulation of
555 immunity by Taeniids : lessons from animal models and in vitro studies. *Parasite Immunol.*
556 2016;38(October 2015):124–35.

557 9. Leflore WB, Smith BF. The Histochemical Localization of Esterases in Whole Mounts of *Cysticercus*
558 *fasciolaris*. *Trans Am Microsc Soc.* 1976;95(1):73–9.

559 10. Selkirk ME, Lazari O, Matthews JB. Functional genomics of nematode acetylcholinesterases.
560 *Parasitology.* 2005;131:S3–18.

561 11. Schwabe CW, Koussa M, Acra AN. Host-parasite relationships in echinococcosis - IV.
562 Acetylcholinesterase and permeability regulation in the Hydatid cyst wall. *Comp Biochem Physiol.*
563 1961;2:161–72.

564 12. Espinoza B, Tarrab-Hazdai R, Himmeloch S, Arnon R. Acetylcholinesterase from *Schistosoma*
565 *mansonii*: immunological characterization. *Immunol Lett.* 1991;28(2):167–74.

566 13. Gimenez-Pardo C, Martinez-Grueiro MM, Gomez-Barrio A, Martinez-Fernandez AR, Rodriguez-
567 Caabeiro F. Phosphomonoesterases and cholinesterases from *Taenia pisiformis* cysticerci.
568 *Helminthologia.* 2004;3:115–20.

569 14. Camacho M, Tarrab-Hazdai R, Espinoza B, Arnon R, Agnew A. The amount of acetylcholinesterase on
570 the parasite surface reflects the differential sensitivity of schistosome species to metrifonate.
571 *Parasitology.* 1994;108:153–60.

572 15. Vaux R, Schnoeller C, Berkachy R, Roberts LB, Hagen J, Gounaris K, et al. Modulation of the Immune
573 Response by Nematode Secreted Acetylcholinesterase Revealed by Heterologous Expression in
574 *Trypanosoma musculi*. *PLoS Pathog.* 2016;12(11: e1005998.):1–18.

575 16. Tedla BA, Sotillo J, Pickering D, Eichenberger RM, Ryan S, Becker L, et al. Novel cholinesterase

576 paralogs of *Schistosoma mansoni* have perceived roles in cholinergic signaling and drug

577 detoxification and are essential for parasite survival [Internet]. Vol. 15, PLoS Pathogens. 2019. 1–32

578 p. Available from: <http://dx.doi.org/10.1371/journal.ppat.1008213>

579 17. Darby M, Schnoeller C, Vira A, Culley F, Bobat S, Logan E, et al. The M3 Muscarinic Receptor Is

580 Required for Optimal Adaptive Immunity to Helminth and Bacterial Infection. PLoS Pathog.

581 2015;11(1):1–15.

582 18. Friedman A, Behrens CJ, Heinemann U. Pathophysiology of Chronic Epilepsy: Cholinergic Dysfunction

583 in Temporal Lobe Epilepsy. Epilepsia. 2007;48(Suppl.):126–30.

584 19. Colangelo C, Shichkova P, Keller D, Markram H, Ramaswamy S. Cellular, Synaptic and Network

585 Effects of Acetylcholine in the Neocortex. Front Neural Circuits. 2019;13(April):Article 24.

586 20. Gotti C, Zoli M, Clementi F. Brain nicotinic acetylcholine receptors: native subtypes and their

587 relevance. Trends Pharmacol Sci. 2006;27(9):482–91.

588 21. Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a Neuromodulator: Cholinergic Signaling

589 Shapes Nervous System Function and Behavior. Neuron [Internet]. 2012;76(1):116–29. Available

590 from: <http://dx.doi.org/10.1016/j.neuron.2012.08.036>

591 22. Raggenbass M, Bertrand D. Nicotinic Receptors in Circuit Excitability and Epilepsy. Wiley Intersci.

592 2002;(May):580–9.

593 23. Curia G, Longo D, Biagini G, Jones RSG, Avoli M. The pilocarpine model of temporal lobe epilepsy. J

594 Neurosci Methods. 2008;172:143–57.

595 24. Cordner SM, Fysh RR, Gordon H. Deaths of two hospital inpatients poisoned by pilocarpine. Br Med

596 J. 1986;293(November):1285–7.

597 25. Tattersall J. Seizure activity post organophosphate exposure. Front Biosci. 2009;14:3688–711.

598 26. Ntoukas V, Tappe D, Pfütze D, Simon M, Holzmann T. Cerebellar Cysticercosis Caused by Larval

599 Taenia crassiceps Tapeworm in Immunocompetent Woman, Germany. Emerg Infect Dis.

600 2013;19(12):2008–11.

601 27. de Lange A, Mahanty S, Raimondo J V. Model systems for investigating disease processes in
602 neurocysticercosis. *Parasitology* [Internet]. 2018;146(5):553–62. Available from:
603 https://www.cambridge.org/core/product/identifier/S0031182018001932/type/journal_article

604 28. Shield JM. *Dipylidium caninum*, *Echinococcus granulosus* and *Hydatigera taeniaeformis*:
605 Histochemical Identification of Cholinesterases. *Exp Parasitol.* 1969;231:217–31.

606 29. Eranko O, Kouvalainen K, Mattila M, Takki S. Histochemical and Biochemical Observations on
607 Cholinesterases of Cat's Tapeworm *Taenia Taeniaformis*. *Acta Physiol Scand.* 1968;73:226–33.

608 30. Lee DL, Rothman AH, Senturia JB. Esterases in *Hymenolepis* and in *Hydatigera*. *Exp Parasitol.*
609 1963;14:285–95.

610 31. Cumino AC, Nicolao MC, Loos JA, Denegri G, Elisondono MC. *Echinococcus granulosus* tegumental
611 enzymes as in vitro markers of pharmacological damage: A biochemical and molecular approach.
612 *Parasitol Int* [Internet]. 2012;61(4):579–85. Available from:
613 <http://dx.doi.org/10.1016/j.parint.2012.05.007>

614 32. Gimenez-Pardo C, Ros Moreno RM, de Armas-Serra C, Rodriguez-Caabeiro F. Presence of
615 cholinesterase in *Echinococcus Granulosis* protoscolices. *Parasite.* 2000;7:47–50.

616 33. Ciurea A V, Fountas KN, Coman TC, Machinis TG, Kapsalaki EZ, Fezoulidis NI, et al. Long-term surgical
617 outcome in patients with intracranial hydatid cyst. *Acta Neurochir (Wien).* 2006;148:421–6.

618 34. Koziol U, Krohne G, Brehm K. Anatomy and development of the larval nervous system in
619 *Echinococcus multilocularis*. *Front Zool.* 2013;10(1):1–17.

620 35. Trejo-Chávez H, García-Vilchis D, Reynoso-Ducoing O, Ambrosio JR. In vitro evaluation of the effects
621 of cysticidal drugs in the *Taenia crassiceps* cysticerci ORF strain using the fluorescent CellTracker
622 CMFDA. *Exp Parasitol.* 2011;127:294–9.

623 36. Vasantha S, Ravi Kumar B V, Roopashree SD, Das S, Shankar SK. Neuroanatomy of *Cysticercus*

624 cellulosae (Cestoda) as revealed by acetylcholinesterase and nonspecific esterase histochemistry.

625 Parasitol Res. 1992;78:581–6.

626 37. Martínez-Zedillo G, González-Barranco, D González-Angulo A. Presence of esterases and peptidases

627 in the intact tegument of vesicles of *Cysticercus cellulosae*. Arch Invest Med. 1983;14:367–77.

628 38. Parija SC, Ar G. *Cysticercus cellulosae* antigens in the serodiagnosis of neurocysticercosis. Trop

629 Parasitol. 2011;1(2):64–72.

630 39. Tomes H, de Lange A, Prodjinotho UF, Mahanty S, Smith K, Horsnell W, et al. Cestode larvae excite

631 host neuronal circuits via glutamatergic signaling - preprint. bioRxiv. 2020;

632 40. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of

633 acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95.

634 41. Selkirk ME, Hussein AS. Acetylcholinesterases of gastrointestinal nematodes. In: Chudi C, Pearce EJ,

635 editors. *Biology of parasitism: A modern approach*. Kluwer Academic Publishers; 2000. p. 121–42.

636 42. Karnovsky MJ, Roots L. A “direct-coloring” thiocholine method for cholinesterases. J Histochem

637 Cytochem. 1964;12:219–21.

638 43. Stoppini L, Buchs P-A, Muller D. A simple method for organotypic cultures of nervous tissue. J

639 Neurosci Methods. 1991;37:173–82.

640 44. Forman CJ, Tomes H, Mbobo B, Burman RJ, Jacobs M, Baden T, et al. Openspritzer: An open

641 hardware pressure ejection system for reliably delivering picolitre volumes. Sci Rep. 2017;7(2188).

642 45. Austin L, Berry WK. Two selective inhibitors of cholinesterase. Biochem J. 1953;54(4):695–700.

643 46. Cole BYAE, Nicoll RA. Characterization of a slow cholinergic post-synaptic potential recorded in vitro

644 from rat hippocampal pyramidal cells. J Physiol. 1984;352:173–88.

645 47. Robinson P, Garza A, Weinstock J, Serpa JA, Goodman JC, Eckols KT, et al. Substance P Causes

646 Seizures in Neurocysticercosis. PLoS Pathog. 2012;8(2):e1002489.

647 48. Stringer JL, Marks LM, White, Jr. AC, Robinson P. Epileptogenic activity of granulomas associated
648 with murine cysticercosis. *Exp Neurol.* 2003;183:532–6.

649 49. Matos-Silva H, Reciputti BP, De Paula ÉC, Oliveira AL, Moura VBL, Vinaud MC, et al. Experimental
650 encephalitis caused by *Taenia crassiceps* cysticerci in mice. *Arq Neuropsiquiatr.* 2012;70(4):287–92.

651 50. Leandro LDA, Fraga CM, de Souza Lino Jr R, Vinaud MC. Partial reverse of the TCA cycle is enhanced
652 in *Taenia crassiceps* experimental neurocysticercosis after in vivo treatment with anthelmintic
653 drugs. *Parasitol Res.* 2014;113:1313–7.

654 51. Kemmerling U, Cabrera G, Campos EO, Inestrosa NC, Galanti N. Localization, specific activity, and
655 molecular forms of acetylcholinesterase in developmental stages of the cestode *Mesocestoides*
656 corti. *J Cell Physiol.* 2006;206(2):503–9.

657 52. Prodjinotho UF, Lema J, Lacorgia M, Schmidt V, Vejzagic N, Sikasunge C, et al. Host immune
658 responses during *Taenia solium* Neurocysticercosis infection and treatment. *PLoS Negl Trop Dis*
659 [Internet]. 2020;14(4):e0008005. Available from: <http://dx.doi.org/10.1371/journal.pntd.0008005>

660 53. White, Jr. AC. Neurocysticercosis: Updates on Epidemiology, Pathogenesis, Diagnosis, and
661 Management. *Annu Rev Med.* 2000;51:187–206.

662 54. Zimmerman G, Njunting M, Ivens S, Tolner E, Behrens CJ, Gross M, et al. Acetylcholine-induced
663 seizure-like activity and modified cholinergic gene expression in chronically epileptic rats. *Eur J*
664 *Neurosci.* 2008;27(4):965–75.

665 55. Vezzani A. Epilepsy and Inflammation in the Brain: Overview and Pathophysiology. *Epilepsy Curr.*
666 2014;14(1):3–7.

667 56. de Vries EE, van den Munckhof B, Braun KPJ, van Royen-Kerkhof A, de Jager W, Jansen FE.
668 Inflammatory mediators in human epilepsy: A systematic review and meta-analysis. *Neurosci*
669 *Biobehav Rev* [Internet]. 2016;63:177–90. Available from:
670 <http://dx.doi.org/10.1016/j.neubiorev.2016.02.007>

671 57. Uddin J, Gonzalez AE, Gilman RH, Thomas LH, Rodriguez S, Evans CAW, et al. Mechanisms Regulating
672 Monocyte CXCL8 Secretion in Neurocysticercosis and the Effect of Antiparasitic Therapy. *J Immunol.*
673 2010;185(7):4478–84.

674 58. Singh AK, Prasad KN, Prasad A, Tripathi M, Gupta RK, Husain N. Immune responses to viable and
675 degenerative metacestodes of *Taenia solium* in naturally infected swine. *Int J Parasitol* [Internet].
676 2013;43(14):1101–7. Available from: <http://dx.doi.org/10.1016/j.ijpara.2013.07.009>

677 59. Carnevale D, De Simone R, Minghetti L. Microglia-Neuron Interaction in Inflammatory and Diseases :
678 Role of Cholinergic and Noradrenergic Systems. *CNS Neurol Disord - Drug Targets.* 2007;6:388–97.

679 60. Patel H, McIntire J, Ryan S, Dunah A, Loring R. Anti-inflammatory effects of astroglial α 7 nicotinic
680 acetylcholine receptors are mediated by inhibition of the NF- κ B pathway and activation of the Nrf2
681 pathway. *J Neuroinflammation.* 2017;14(192):1–15.

682 61. Binning W, Hogan-Cann AE, Sakae DY, Maksoud M, Ostapchenko V, Al-Onaizi M, et al. Chronic
683 hM3Dq signaling in microglia ameliorates neuroinflammation in male mice - preprint. bioRxiv. 2020;

684 62. Pradhan S, Kathuria MK, Gupta RK. Perilesional Gliosis and Seizure Outcome : A Study Based on
685 Magnetization Transfer Magnetic Resonance Imaging in Patients with Neurocysticercosis. *Ann
686 Neurol.* 2000;48(2):181–7.

687

688