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Abstract

Seasonal influenza virus A/H3N2 is a major cause of death globally. Vaccination
remains the most effective preventative. Rapid mutation of hemagglutinin allows viruses
to escape adaptive immunity. This antigenic drift necessitates regular vaccine updates.
Effective vaccine strains need to represent H3N2 populations circulating one year after
strain selection. Experts select strains based on experimental measurements of antigenic
drift and predictions made by models from hemagglutinin sequences. We developed a novel
influenza forecasting framework that integrates phenotypic measures of antigenic drift and
functional constraint with previously published sequence-only fitness estimates. Forecasts
informed by phenotypic measures of antigenic drift consistently outperformed previous
sequence-only estimates, while sequence-only estimates of functional constraint surpassed
more comprehensive experimentally-informed estimates. Importantly, the best models
integrated estimates of both functional constraint and either antigenic drift phenotypes or
recent population growth.
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Introduction

Seasonal influenza virus infects 5-15% of the global population every year causing an estimated
250,000 to 500,000 deaths annually with the majority of infections caused by influenza A /H3N2 [1].
Vaccination remains the most effective public health response available. However, frequent viral
mutation results in viruses that escape previously acquired human immunity. The World Health
Organization (WHO) Global Influenza Surveillance and Response System (GISRS) selects
vaccine viruses to represent circulating viruses, but because the process of vaccine development
and distribution requires several months to complete, optimal vaccine design requires an accurate
prediction of which viruses will predominate approximately one year after vaccine viruses are
selected. Current vaccine predictions focus on the hemagglutinin (HA) protein, which acts as
the primary target of human immunity. Until recently, the hemagglutination inhibition (HI)
assay has been the primary experimental measure of antigenic cross-reactivity between pairs
of circulating viruses [2]. Most modern H3N2 strains carry a glycosylation motif that reduces
their binding efficiency in HI assays [3,4], prompting the increased use of virus neutralization
assays including the neutralization-based focus reduction assay (FRA) [5]. Together, these two
assays are the gold standard in virus antigenic characterizations for vaccine strain selection,
but they are laborious and low-throughput compared to genome sequencing [6]. As a result,
researchers have developed computational methods to predict influenza evolution from sequence
data alone [7-9].

Despite the promise of these sequence-only models, they explicitly omit experimental measure-
ments of antigenic or functional phenotypes. Recent developments in computational methods
and influenza virology have made it feasible to integrate these important metrics of influenza
fitness into a single predictive model. For example, phenotypic measurements of antigenic drift
are now accessible through phylogenetic models |10] and functional phenotypes for HA are
available from deep mutational scanning (DMS) experiments [11]. We describe an approach to
integrate previously disparate sequence-only models of influenza evolution with high-quality
experimental measurements of antigenic drift and functional constraint.

The influenza community has long recognized the importance of incorporating HI phenotypes
and other experimental measurements of viral phenotypes with existing forecasting methods
to inform the vaccine design process [12-14]. Although several distinct efforts have made
progress in using HI phenotypes to evaluate the evolution of seasonal influenza [8}10], published
methods stop short of developing a complete forecasting framework wherein the evolutionary
contribution of HI phenotypes can be compared and contrasted with new and existing fitness
metrics. However, unpublished work by Luksza and Lassig submitted to the WHO GISRS
network incorporates antigenic phenotypes into fitness-based predictions [13,/15|. Here, we
provide an open source framework for forecasting the genetic composition of future seasonal
influenza populations using genotypic and phenotypic fitness estimates. We apply this framework
to HA sequence data shared via the GISAID EpiFlu database |16] and to HI and FRA titer
data shared by WHO GISRS Collaborating Centers in London, Melbourne, Atlanta and Tokyo.
We systematically compare potential predictors and show that HI phenotypes enable more
accurate long-term forecasts of H3N2 populations compared to previous metrics based on epitope
mutations alone. We also find that composite models based on phenotypic measures of antigenic
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drift and genotypic measures of functional constraint consistently outperform any fitness models
based on individual genotypic or phenotypic metrics.

Results

A distance-based model of seasonal influenza evolution

We developed a framework to forecast seasonal influenza evolution inspired by the Malthusian
growth fitness model of Luksza and Lassig [7]. As with this original model, we forecasted
the frequencies of viral populations one year in advance by applying to each virus strain an
exponential growth factor scaled by an estimate of the strain’s fitness (Fig. [l and Eq. . We
estimated the frequency of virus strains every six months using kernel density estimation (KDE).

We estimated viral fitness with biologically-informed metrics including those originally defined by
Luksza and Léssig [7] of epitope antigenic novelty and mutational load (non-epitope mutations) as
well as four more recent metrics including hemagglutination inhibition (HI) antigenic novelty [10],
deep mutational scanning (DMS) mutational effects [11], local branching index (LBI) [9], and
change in clade frequency over time (delta frequency). All of these metrics except for HI antigenic
novelty and DMS mutational effects rely only on HA sequences. The antigenic novelty metrics
estimate how antigenically distinct each strain at time ¢ is from previously circulating strains
based on either genetic distance at epitope sites or log, titer distance from HI measurements.
Increased antigenic drift relative to previously circulating strains is expected to correspond to
increased viral fitness. Mutational load estimates functional constraint by measuring the number
of putatively deleterious mutations that have accumulated in each strain since their ancestor in
the previous season. DMS mutational effects provide a more comprehensive biophysical model
of functional constraint by measuring the beneficial or deleterious effect of each possible single
amino acid mutation in HA from the background of a previous vaccine strain, A /Perth/16/2009.
The growth metrics estimate how successful populations of strains have been in the last six
months based on either rapid branching in the phylogeny (LBI) or the change in clade frequencies
over time (delta frequency).

We fit models for individual fitness metrics and combinations of metrics that we anticipated
would be mutually beneficial. For each model, we learned coefficient(s) that minimized the earth
mover’s distance between HA amino acid sequences from the observed population one year in
the future and the estimated population produced by the fitness model (Fig. 1| and Eq. . We
evaluated model performance with time-series cross-validation such that better models reduced
the earth mover’s distance to the future on validation or test data (Supplemental Figs [S1| and
. The earth mover’s distance to the future can never be zero, because each model makes
predictions based on sequences available at the time of prediction and cannot account for new
mutations that occur during the prediction interval. We calculated the lower bound for each
model’s performance as the optimal distance to the future possible given the current sequences
at each timepoint. As an additional reference, we evaluated the performance of a “naive” model
that predicted the future population would be identical to the current population. We expected
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Figure 1. Schematic representation of the fitness model for simulated H3N2-like populations wherein
the fitness of strains at timepoint ¢ determines the estimated frequency of strains with similar sequences
one year in the future at timepoint u. Strains are colored by their amino acid sequence composition
such that genetically similar strains have similar colors (Methods). A) Strains at timepoint ¢, x(t), are
shown in their phylogenetic context and sized by their frequency at that timepoint. The estimated
future population at timepoint u, X(u), is projected to the right with strains scaled in size by their
projected frequency based on the known fitness of each simulated strain. B) The frequency trajectories
of strains at timepoint ¢ to u represent the predicted the growth of the dark blue strains to the detriment
of the pink strains. C) Strains at timepoint u, x(u), are shown in the corresponding phylogeny for that
timepoint and scaled by their frequency at that time. D) The observed frequency trajectories of strains
at timepoint v broadly recapitulate the model’s forecasts while also revealing increased diversity of
sequences at the future timepoint that the model could not anticipate, e.g. the emergence of the light
blue cluster from within the successful dark blue cluster. Model coefficients minimize the earth mover’s
distance between amino acid sequences in the observed, x(u), and estimated, %(u), future populations
across all training windows.

u3  that the best models would consistently outperform the naive model and perform as close as
us  possible to the lower bound.
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Models accurately forecast evolution of simulated H3N2-like viruses

The long-term evolution of influenza H3N2 hemagglutinin has been previously described as a
balance between positive selection for substitutions that enable escape from adaptive immunity
by modifying existing epitopes and purifying selection on domains that are required to maintain
the protein’s primary functions of binding and membrane fusion [7,[17-H19]. To test the ability
of our models to accurately detect these evolutionary patterns under controlled conditions, we
simulated the long-term evolution of H3N2-like viruses under positive and purifying selection for
40 years (Methods, Supplemental Fig. . These selective constraints produced phylogenetic
structures and accumulation of epitope and non-epitope mutations that were consistent with
phylogenies of natural H3N2 HA (Supplemental Fig. Supplemental Tables |[S1|f and . We
fit models to these simulated populations using all sequence-only fitness metrics. As a positive
control for our model framework, we also fit a model based on the true fitness of each strain as
measured by the simulator.

A

w

—eo— ftrue fitness: 9.37 +/- 0.92 —e— validation: 6.82 +/- 1.52 —6— test: 7.38 +/- 1.89

25 28 31 34 37 40 43 46 49 25 28 31 34 37 4

Date Date

-
o N

Coefficient
(6]

Distance to

future (AAs)

A O ©

0 43 46 49

Figure 2. Simulated population model coefficients and distances between projected and observed
future populations as measured in amino acids (AAs). A) Coefficients are shown per validation
timepoint (solid circles, N=33) with the mean + standard deviation in the top-left corner. For model
testing, coefficients were fixed to their mean values from training/validation and applied to out-of-
sample test data (open circles, N=18). B) Distances between projected and observed populations are
shown per validation timepoint (solid black circles) or test timepoint (open black circles). The mean
+ standard deviation of distances per validation timepoint are shown in the top-left of each panel.
Corresponding values per test timepoint are in the top-right. The naive model’s distances to the future
for validation and test timepoints (light gray) were 8.97 + 1.35 AAs and 9.07 £ 1.70 AAs, respectively.
The corresponding lower bounds on the estimated distance to the future (dark gray) were 4.57 + 0.61
AAs and 4.85 + 0.82 AAs.

We hypothesized that fitness metrics associated with viral success such as true fitness, epitope
antigenic novelty, LBI, and delta frequency would be assigned positive coefficients, while metrics
associated with fitness penalties, like mutational load, would receive negative coefficients. We
reasoned that both LBI and delta frequency would individually outperform the mechanistic
metrics as both of these growth metrics estimate recent clade success regardless of the mechanistic
basis for that success. Correspondingly, we expected that a composite model of epitope antigenic
novelty and mutational load would perform as well as or better than the growth metrics, as this
model would include both primary fitness constraints acting on our simulated populations.

As expected, the true fitness model outperformed all other models, estimating a future population
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Distance to future (AAs) Model > naive
Model Coefficients Validation Test Validation Test
true fitness 0.37 +/-0.92 6.82 +/- 1.52% 7.38 +/- 1.89% 32 (97%) 16 (89%)
LBI 1.31 +/- 0.33 7.24 +/- 1.66* 7.10 +/- 1.19* 32 (97%) 18 (100%)
+ mutational load -1.77 4+/- 0.49
LBI 2.26 /- 1.06 T.57 +/- 1.85% T.51 +/- 1.20% 29 (88%) 17 (94%)
delta frequency 1.46 +/- 0.44 8.13 +/- 1.44* 8.65 +/- 1.99* 26 (79%) 13 (72%)
epitope ancestor 0.35 4+/-0.07 8.20 +/- 1.39* 8.17 +/- 1.52* 29 (88%) 17 (94%)
+ mutational load -1.57 +/- 0.13
mutational load 149 +/- 012 8.27 +/- 1.35% 820 +/- L50* 20 (88%) 17 (94%)
epitope antigenic novelty ~ 0.03 +/- 0.19 8.33 +/- 1.35% 822 +/- 1.51* 28 (85%) 17 (94%)
+ mutational load -1.38 4+/- 0.39
epitope ancestor 0.14 +/- 0.11 896 +/- 1.35  9.03 +/- 1.68* 20 (61%) 13 (72%)
naive 0.00 +/- 0.00 8.97 +/- 1.35  9.07 +/- 1.70 0(0%) 0 (0%)

epitope antigenic novelty -0.03 4+/- 0.19 9.03 +/- 1.37  9.07 +/- 1.69 14 (42%) 7 (39%)

Table 1. Simulated population model coefficients and performance on validation and test data ordered
from best to worst by distance to the future in the validation analysis. Coefficients are the mean +
standard deviation for each metric in a given model across 33 training windows. Distance to the future
(mean =+ standard deviation) measures the distance in amino acids between estimated and observed
future populations. Distances annotated with asterisks (*) were significantly closer to the future than
the naive model as measured by bootstrap tests (see Methods and Supplemental Fig. . The number
of times (and percentage of total times) each model outperformed the naive model measures the benefit
of each model over a model than estimates no change between current and future populations. Test
results are based on 18 timepoints not observed during model training and validation.

within 6.82 £+ 1.52 amino acids (AAs) of the observed future and surpassing the naive model in
32 (97%) of 33 timepoints (Fig. 2| Table[1). Although the true fitness model performed better
than the naive model’s average distance of 8.97 + 1.35 AAs, it did not reach the closest possible
distance between populations of 4.57 + 0.61 AAs. With the exception of epitope antigenic
novelty, all biologically-informed models consistently outperformed the naive model (Fig. ,
Table . LBI was the best of these models, with a distance to the future of 7.57 £+ 1.85 AAs.
This result is consistent with the fact that the LBI is a correlate of fitness in models of rapidly
adapting populations [9]. Indeed, both growth-based models received positive coefficients and
outperformed the mechanistic models. The mutational load metric received a consistently
negative coefficient with an average distance of 8.27 + 1.35 AAs.

Surprisingly, the composite model of epitope antigenic novelty and mutational load did not
perform better than the individual mutational load model (Supplemental Fig. . The antigenic
novelty fitness metric assumes that antigenic drift is driven by nonlinear effects of previous
host exposure [7] that are not explicitly present in our simulations. To understand whether
positive selection at epitope sites might be better represented by a linear model, we fit an
additional model based on an “epitope ancestor” metric that counted the number of epitope
mutations since each strain’s ancestor in the previous season. This linear fitness metric slightly
outperformed the antigenic novelty metric (Table . Importantly, a composite model of the
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Figure 3. Simulated population model coefficients and distances to the future for individual biologically-
informed fitness metrics and the best composite model. A) Coefficients and B) distances are shown per
validation and test timepoint as in Fig.

epitope ancestor and mutational load metrics outperformed all other epitope-based models and
the individual mutational load model (Supplemental Fig. . From these results, we concluded
that our method can accurately estimate the evolution of simulated populations, but that the
fitness of simulated strains was dominated by purifying selection and only weakly affected by a
linear effect of positive selection at epitope sites.

We hypothesized that a composite model of mutually beneficial metrics could better approximate
the true fitness of simulated viruses than models based on individual metrics. To this end, we fit
an additional model including the best metrics from the mechanistic and clade growth categories:
mutational load and LBI. This composite model outperformed both of its corresponding
individual metric models with an average distance to the future of 7.24 + 1.66 AAs and
outperformed the naive model as often as the true fitness metric (Fig. |3, Table [1, Supplemental

7
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Table . The coefficients for mutational load and LBI remained relatively consistent across all
validation timepoints, indicating that these fitness metrics were stable approximations of the
simulator’s underlying evolutionary processes. This small gain supports our hypothesis that
multiple complementary metrics can produce more accurate models.

We validated the best performing model (true fitness) using two metrics that are relevant for
practical influenza forecasting and vaccine design efforts. First, we measured the ability of the
true fitness model to accurately estimate dynamics of large clades (initial frequency > 15%) by
comparing observed fold change in clade frequencies, log,, x(?(rt?t) and estimated fold change,

log;, i(i—’(—t?t)' The model’s estimated fold changes correlated well with observed fold changes

(Pearson’s R? = (.52, Supplemental Fig. ) The model also accurately predicted the growth
of 87% of growing clades and the decline of 58% of declining clades. Model forecasts were
increasingly more accurate with increasing initial clade frequencies (Supplemental Fig. )
Next, we counted how often the estimated closest strain to the future population at any given
timepoint ranked among the observed top closest strains to the future. The estimated best strain
was in the top first percentile of observed closest strains for half of the validation timepoints
and in the top 20th percentile for 100% of timepoints (Supplemental Fig. ) Percentile ranks
per strain based on their observed and estimated distances to the future correlated strongly
across all strains and timepoints (Spearman’s p* = 0.87, Supplemental Fig. )

Finally, we tested all of our models on out-of-sample data. Specifically, we fixed the coefficients
of each model to the average values across the validation period and applied the resulting
models to the next 9 years of previously unobserved simulated data. A standard expectation
from machine learning is that models will perform worse on test data due to overfitting to
training data. Despite this expectation, we found that all models except for the individual
epitope mutation models consistently outperformed the naive model across the out-of-sample
data (Fig. [2} Fig.[3] Supplemental Fig. [S3] Table[1)). The composite model of mutational load
and LBI appeared to outperform the true fitness metric with average distance to the future
of 7.10 + 1.19 compared to 7.38 £+ 1.89, respectively. However, we did not find a significant
difference between these models by bootstrap testing (Supplemental Table and could not
rule out fluctuations in model performance across a relatively small number of data points.

As with our validation dataset, we tested the true fitness model’s ability to recapitulate clade
dynamics and select optimal individual strains from the test data. While observed and estimated
clade frequency fold changes correlated more weakly for test data (Pearson’s R? = 0.14), the
accuracies of clade growth and decline predictions remained similar at 82% and 53%, respectively
(Fig. ) We observed higher absolute forecast errors in the test data with higher errors for clades
between 40% and 60% initial frequencies (Supplemental Fig. [4JC). The estimated best strain was
higher than the top first percentile of observed closest strains for half of the test timepoints and in
the top 20th percentile for 16 (89%) of 18 of timepoints (Fig. [4B). Observed and estimated strain
ranks remained strongly correlated across all strains and timepoints (Spearman’s p* = 0.80,
Fig. D). These results confirm that our approach of minimizing the distance between yearly
populations can simultaneously capture clade-level dynamics of simulated influenza populations
and identify individual strains that are most representative of future populations.
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Figure 4. Test of best model for simulated populations (true fitness) using 9 years previously

unobserved test data and fixed model coefficients. A) The correlation of log estimated clade frequency

fold change, log; %, and log observed clade frequency fold change, log;, x(’:(rt? t), shows the model’s

ability to capture clade-level dynamics without explicitly optimizing for clade frequency targets. B)
The rank of the estimated best strain based on its distance to the future in the best model was in
the top 20th percentile for 89% of 18 timepoints, confirming that the model makes a good choice
when forced to select a single representative strain for the future population. C) Absolute forecast
error for clades shown in A by their initial frequency with a mean LOESS fit (solid black line) and
95% confidence intervals (gray shading) based on 100 bootstraps. D) The correlation of all strains
at all timepoints by the percentile rank of their observed and estimated distances to the future. The
corresponding results for the naive model are shown in Supplemental Fig. @
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. Models reflect historical patterns of H3N2 evolution

Distance to future (AAs) Model > naive
Model Coefficients Validation Test Validation ~— Test
mutational load L0.68 /- 0.34 544 /- 1.80% 7.70 +/- 353 18 (18%) 4 (50%)
+ LBI 1.03 +/- 0.40
LBI 112 +/- 051 5.68 +/- 1.91% 840 +/-3.97 17 (T4%) 2 (25%)
HI antigenic novelty 0.89 +/-0.23 5.82 +/- 1.50* 5.97 +/- 1.47* 17 (74%) 6 (75%)
+ mutational load -1.01 +/- 0.42
HI antigenic novelty 0.90 +/- 0.23 5.84 +/- 1.51% 599 +/- 1.46* 16 (70%) 6 (75%)
+ mutational load -1.00 +/- 0.44
+ LBI 0.04 +/- 0.09
HI antigenic novelty 0.83 +/-0.20 6.01 +/- 1.50* 6.21 +/- 1.44* 16 (70%) 7 (88%)
delta frequency 0.79 +/- 047 6.13 +/- 1.71* 6.90 +/- 2.30 16 (70%) 5 (62%)
mutational load 20.99 /- 0.30 6.14 +/- 1.37% 6.53 +/-1.39 17 (74%) 6 (75%)
naive 0.00 +/- 0.00 6.40 +/- 1.36  6.82 +/- 1.74 0(0%) 0 (0%)

DMS mutational effects ~ 1.25 +/-0.84 6.75 +/- 1.95  7.80 +/- 2.97 11 (48%) 4 (50%)
epitope antigenic novelty — 0.52 +/- 0.73 7.13 +/- 1.47  6.70 +/- 1.51 7 (30%) 5 (62%)

Table 2. Natural population model coefficients and performance on validation and test data ordered
from best to worst by distance to the future in the validation analysis, as in Table Distances
annotated with asterisks (*) were significantly closer to the future than the naive model as measured by
bootstrap tests (see Methods and Supplemental Fig. . Validation results are based on 23 timepoints.
Test results are based on eight timepoints not observed during model training and validation.

28  Next, we trained and validated models for individual fitness predictors using 25 years of natural
200 H3N2 populations spanning from October 1, 1990 to October 1, 2015. We held out strains
20 collected after October 1, 2015 up through October 1, 2019 for model testing (Supplemental
o Fig. . In addition to the sequence-only models we tested on simulated populations, we also
212 fit models for our new fitness metrics based on experimental phenotypes including HI antigenic
213 novelty and DMS mutational effects. We hypothesized that both HI and DMS metrics would be
a1 assigned positive coefficients, as they estimate increased antigenic drift and beneficial mutations,
a5 respectively. As antigenic drift is generally considered to be the primary evolutionary pressure
26 on natural H3N2 populations [7,20,121], we expected that epitope and HI antigenic novelty
217 would be individually more predictive than mutational load or DMS mutational effects. Previous
zs research [9] and our simulation results also led us to expect that LBI and delta frequency would
219 outperform other individual mechanistic metrics. As the earliest measurements from focus
20 reduction assays (FRAs) date back to 2012, we could not train, validate, and test FRA antigenic
21 novelty models in parallel with the HI antigenic novelty models.

22 Biologically-informed metrics generally performed better than the naive model with the excep-
23 tions of the epitope antigenic novelty and DMS mutational effects (Fig. [§ and Table [2). The
224 naive model estimated an average distance between natural H3N2 populations of 6.40 4+ 1.36
25 AAs. The lower bound for how well any model could perform, 2.60 £+ 0.89 AAs, was considerably
26 lower than the corresponding bounds for simulated populations. The average improvement of
227 the sequence-only models over the naive model was consistently lower than the same models in
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Figure 5. Natural population model coefficients and distances to the future for individual biologically-
informed fitness metrics. A) Coefficients and B) distances are shown per validation timepoint (N=23)
and test timepoint (N=8) as in Fig. [2l The naive model’s distance to the future (light gray) was 6.40
+ 1.36 AAs for validation timepoints and 6.82 4+ 1.74 A As for test timepoints. The corresponding
lower bounds on the estimated distance to the future (dark gray) were 2.60 + 0.89 AAs and 2.28 +
0.61 AAs.

simulated populations. This reduced performance may have been caused by both the relatively
reduced diversity between years in natural populations and the fact that our simple models do
not capture all drivers of evolution in natural H3N2 populations.

Of the two metrics for antigenic drift, HI antigenic novelty consistently outperformed epitope
antigenic novelty (Table . HI antigenic novelty estimated an average distance to the future
of 6.01 £+ 1.50 AAs and outperformed the naive model at 16 of 23 timepoints (70%). The
coefficient for HI antigenic novelty remained stable across all timepoints (Fig. . In contrast,
epitope antigenic novelty estimated a distance of 7.13 + 1.47 AAs and only outperformed the
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naive model at seven timepoints (30%). Epitope antigenic novelty was also the only metric
whose coefficient started at a positive value (1.17 4+ 0.03 on average prior to October 2009)
and transitioned to a negative value through the validation period (-0.19 4 0.34 on average for
October 2009 and after). This strong coefficient for the first half of training windows indicated
that, unlike the results for simulated populations, the nonlinear antigenic novelty metric was
historically an effective measure of antigenic drift. The historical importance of the epitope sites
used for this metric was further supported by the relative enrichment of mutations at these
sites for the most successful “trunk” lineages of natural populations compared to side branch
lineages (Supplemental Table [S2)).

These results led us to hypothesize that the contribution of these specific epitope sites to
antigenic drift has weakened over time. Importantly, these 49 epitope sites were originally
selected by Luksza and Léssig |7] from a previous historical survey of sites with beneficial
mutations between 1968-2005 [22]. If the beneficial effects of mutations at these sites were due
to historical contingency rather than a constant contribution to antigenic drift, we would expect
models based on these sites to perform well until 2005 and then overfit relative to future data.
Indeed, the epitope antigenic novelty model outperforms the naive model for the first three
validation timepoints until it has to predict to April 2006. To test this hypothesis, we identified
a new set of beneficial sites across our entire validation period of October 1990 through October
2015. Inspired by the original approach of Shih et al. [22], we identified 25 sites in HA1 where
mutations rapidly swept through the global population, including 12 that were also present
in the original set of 49 sites. We fit an antigenic novelty model to these 25 sites across the
complete validation period and dubbed this the “oracle antigenic novelty” model, as it benefited
from knowledge of the future in its forecasts. The oracle model produced a consistently positive
coefficient across all training windows (0.80 £ 0.21) and consistently outperformed the original
epitope model with an average distance to the future of 5.71 & 1.27 AAs (Supplemental Fig. .
These results support our hypothesis that the fitness benefit of mutations at the original 49 sites
was due to historical contingency and that the success of previous epitope models based on these
sites was partly due to “borrowing from the future”. We suspect that our HI antigenic novelty
model benefits from its ability to constantly update its antigenic model at each timepoint with
recent experimental phenotypes, while the epitope antigenic novelty metric is forced to give a
constant weight to the same 49 sites throughout time.

Of the two metrics for functional constraint, mutational load outperformed DMS mutational
effects, with an average distance to the future of 6.14 + 1.37 AAs compared to 6.75 + 1.95 AAs,
respectively. In contrast to the original Luksza and Léssig [7] model, where the coefficient of the
mutational load metric was fixed at -0.5, our model learned a consistently stronger coefficient of
-0.99 £ 0.30. Notably, the best performance of the DMS mutational effects model was forecasting
from April 2007 to April 2008 when the major clade containing A /Perth/16/2009 was first
emerging. This result is consistent with the DMS model overfitting to the evolutionary history
of the background strain used to perform the DMS experiments. Alternate implementations
of less background-dependent DMS metrics never performed better than the mutational load
metric (Supplemental Table Methods). Thus, we find that a simple model where any
mutation at non-epitope sites is deleterious is more predictive of global viral success than a
more comprehensive biophysical model based on measured mutational effects of a single strain.
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LBI was the best individual metric by average distance to the future (Fig. [5)) and tied mutational
load by outperforming the naive model at 17 (74%) timepoints (Table 2). Delta frequency
performed worse than LBI and HI antigenic novelty and was comparable to mutational load.
While delta frequency should, in principle, measure the same aspect of viral fitness as LBI, these
results show that the current implementations of these metrics represent qualitatively different
fitness components. The LBI and mutational load might also be predictive for reasons other
than correlation with fitness, see Discussion.
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Figure 6. Natural population model coefficients and distances to the future for composite fitness
metrics. A) Coefficients and B) distances are shown per validation timepoint (N=23) and test timepoint

(N=8) as in Fig.

To test whether composite models could outperform individual fitness metrics for natural
populations, we fit models based on combinations of best individual metrics representing
antigenic drift, functional constraint, and clade growth. Specifically, we fit models based on HI
antigenic novelty and mutational load, mutational load and LBI, and all three of these metrics
together. We anticipated that if these metrics all represented distinct, mutually beneficial
components of viral fitness, these composite models should perform better than individual
models with consistent coefficients for each metric.

Both two-metric composite models modestly outperformed their corresponding individual models

(Table |2, Fig. |§|, and Supplemental Table . The composite of mutational load and LBI
performed the best overall with an average distance to the future of 5.44 + 1.80 AAs. The
relative stability of the coefficients for the metrics in the two-metric models suggested that these
metrics represented complementary components of viral fitness. In contrast, the three-metric
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model strongly preferred the HI antigenic novelty and mutational load metrics over LBI for the
entire validation period, producing an average LBI coefficient of -0.04 4+ 0.09. Overall, the gain
by combining multiple predictors was limited and the sensitivity of coefficients to the set of
metrics included in the model suggests that there is substantial overlap in predictive value of
different metrics.

As with the simulated populations, we validated the performance of the best model for natural
populations using estimated and observed clade frequency fold changes and the ranking of
estimated best strains compared to the observed closest strains to future populations. The
composite model of mutational load and LBI effectively captured clade dynamics with a fold
change correlation of R? = 0.35 and growth and decline accuracies of 87% and 89%, respectively
(Supplemental Fig. ) Absolute forecasting error declined noticeably for clades with initial
frequencies above 60%, but generally this error remained below 20% on average (Supplemental
Fig. ) The estimated best strain from this model was in the top first percentile of observed
closest strains for half of the validation timepoints and in the top 20th percentile for 20 (87%)
of 23 timepoints (Supplemental Fig. [SI1B). This pattern held across all strains and timepoints
with a strong correlation between observed and estimated strain ranks (Spearman’s p* = 0.66,

Supplemental Fig. [S11D).

Finally, we tested the performance of all models on out-of-sample data collected from October
1, 2015 through October 1, 2019. We anticipated that most models would perform worse on
truly out-of-sample data than on validation data. Correspondingly, only the three models with
the HI antigenic novelty metric significantly outperformed the naive model on the test data
(Table [2). The composite of HI antigenic novelty and mutational load performed modestly,
although not significantly, better than the individual HI antigenic novelty model (Supplemental
Table . Surprisingly, the best model for the validation data — mutational load and LBI —
was one of the worst models for the test data with an average distance to the future of 7.70 +
3.53 AAs. The individual LBI model was the worst model, while mutational load continued to
perform well with test data. LBI performed especially poorly in the last two test timepoints of
April and October 2018 (Fig. . These timepoints correspond to the dominance and sudden
decline of a reassortant clade named A2/re [23]. By April 2018, the A2/re clade had risen to a
global frequency over 50% from less than 15% the previous year, despite an absence of antigenic
drift. By October 2018, this clade had declined in frequency to approximately 30% and, by
October 2019, it had gone extinct. That LBI incorrectly predicted the success of this reassortant
clade highlights a major limitation of growth-based fitness metrics and a corresponding benefit
of more mechanistic metrics that explicitly measure antigenic drift and functional constraint.
However, we cannot rule out the alternate possibility that the LBI model was overfit to the
training data.

After identifying the composite HI antigenic novelty and mutational load model as the best
model on out-of-sample data, we tested this model’s ability to detect clade dynamics and select
individual best strains for vaccine composition. The composite model partially captured clade
dynamics with a Pearson’s correlation of R? = 0.46 between observed and estimated growth
ratios and growth and decline accuracies of 52% and 58%, respectively (Fig.[7A). The mean
absolute forecasting error with this model was consistently less than 20%, regardless of the
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Figure 7. Test of best model for natural populations of H3N2 viruses, the composite model of HI
antigenic novelty and mutational load. A) The correlation of estimated and observed clade frequency
fold changes shows the model’s ability to capture clade-level dynamics without explicitly optimizing for
clade frequency targets. B) The rank of the estimated best strain based on its distance to the future for
eight timepoints. The estimated best strain was in the top 20th percentile of observed closest strains
for 100% of timepoints. C) Absolute forecast error for clades shown in A by their initial frequency
with a mean LOESS fit (solid black line) and 95% confidence intervals (gray shading) based on 100
bootstraps. D) The correlation of all strains at all timepoints by the percentile rank of their observed
and estimated distances to the future. The corresponding results for the naive model are shown in

Supplemental Fig.

15


https://doi.org/10.1101/2020.06.12.145151
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.12.145151; this version posted June 13, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

available under aCC-BY 4.0 International license.

initial clade frequency (Fig. ) The estimated best strain from this model was in the top first
percentile of observed closest strains for half of the validation timepoints and in the top 20th
percentile for 100% of timepoints (Fig. ) Similarly, the observed and estimated strain ranks
strongly correlated (Spearman’s p? = 0.72) across all strains and test timepoints (Fig. )
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Figure 8. Observed distance to natural H3N2 populations one year into the future for each vaccine
strain (green) and the observed (blue) and estimated closest strains to the future by the mutational
load and LBI model (orange) and the HI antigenic novelty and mutational load model (purple). Vaccine
strains were assigned to the validation or test timepoint closest to the date they were selected by
the WHO. The weighted distance to the future for each strain was calculated from their amino acid
sequences and the frequencies and sequences of the corresponding population one year in the future.

We further evaluated our models’ ability to estimate the closest strain to the next season’s H3N2
population by comparing our best models’ selections to the WHO’s vaccine strain selection. For
each season when the WHO selected a new vaccine strain and one year of future data existed in
our validation or test periods, we measured the observed distance of that strain’s sequence to
the future and the corresponding distances to the future for the observed closest strains. We
compared these distances to those of the closest strains to the future as estimated by our best
models for the validation period (mutational load and LBI) and the test period (HI antigenic
novelty and mutational load). The mutational load and LBI model selected strains that were as
close or closer to the future than the corresponding vaccine strain for 10 (83%) of the 12 seasons
with vaccine updates (Fig. . For the two seasons that the model selected more distant strains
than the vaccine strain, the mean distance relative to the vaccine strain was 1.58 AAs. The HI
antigenic novelty and mutational load model performed similarly by identifying strains as close
or closer to the future for 11 (92%) seasons. For the one season that the model selected a more
distant strain, that selected strain was 0.75 AAs farther from the future than the vaccine strain.

16


https://doi.org/10.1101/2020.06.12.145151
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.12.145151; this version posted June 13, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

available under aCC-BY 4.0 International license.

Historically-trained models enable real-time, actionable forecasts

To enable real-time forecasts, we integrated our forecasting framework into our existing open
source pathogen surveillance application, Nextstrain . Prior to finalizing our model coefficients
for use in Nextstrain, we tested whether our three best composite models could be improved
by learning new coefficients per timepoint from the test data. Additionally, we evaluated a
composite of FRA antigenic novelty and mutational load. Since the earliest FRA data were from
2012, we anticipated that there were enough measurements to fit a model across the test data
time interval. If modern H3N2 strains continue to perform poorly in HI assays, the FRA-based
assay will be critical for future forecasting efforts.

Two of three models performed worse after refitting coefficients to the test data than their
original fixed coefficient implementations (Supplemental Fig. . While, the mutational load
and LBI model improved considerably over its original performance, it still performed worse
than the naive model on average. These results confirmed that the coefficients for our selected
best model would be most accurate for live forecasts. Interestingly, the FRA antigenic novelty
metric received a consistently positive coefficient of 1.40 £ 0.24 in its composite with mutational
load. Unfortunately, this model performed considerably worse than the corresponding HI-based
model. These results suggest that we may need more FRA data across a longer historical
timespan to train a model that could replace the HI-based model.

After confirming the coefficients for our best model of HI antigenic novelty and mutational
load, we inspected forecasts of H3N2 clades using all data available up through June 6, 2020.
Consistent with an average two-month lag between data collection and submission, the most
recent data were collected up to April 1, 2020 and made our forecasts from this timepoint to
April 1, 2021. Of the five major currently circulating clades, our model predicted growth of the
clades 3¢3.A and A1b/94N and decline of clades A1b/135K, Alb/137F, and Alb/197R (Fig. [9).
To aid with identification of potential vaccine candidates for the next season, we annotated
strains in the phylogeny by their estimated distance to the future based on our best model

(Fig. [10).
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Figure 9. Snapshot of live forecasts on nextstrain.org from our best model (HI antigenic novelty and
mutational load) for April 1, 2021. The observed frequency trajectories for currently circulating clades
are shown up to April 1, 2020. Our model forecasts growth of the clades 3¢3.A and A1b/94N and
decline of all other major clades.
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Figure 10. Snapshot of the last two years of seasonal influenza H3N2 evolution on nextstrain.org
showing the estimated distance per strain to the future population. Distance to the future is calculated
for each strain as the Hamming distance of HA amino acid sequences to all other circulating strains
weighted by the other strain’s projected frequencies under the best fitness model (HI antigenic novelty
and mutational load).

Discussion

We have developed and rigorously tested a novel, open source framework for forecasting the
long-term evolution of seasonal influenza H3N2 by estimating the sequence composition of
future populations. A key innovation of this framework is its ability to directly compare
viral populations between seasons using the earth mover’s distance metric and eliminate
unavoidably stochastic clade definitions from phylogenies. The best models from this framework
still effectively capture clade dynamics and accurately identify optimal vaccine candidates
from simulated and natural H3N2 populations without relying on clades as model targets. We
have further introduced novel fitness metrics based on experimental measurements of antigenic
drift and functional constraint. We demonstrated that the integration of these phenotypic
metrics with previously published sequence-only metrics produces more accurate forecasts than
sequence-only models. We have added this framework as a component of seasonal influenza
analyses on nextstrain.org where it provides real-time forecasts for influenza researchers, decision
makers, and the public.

18


https://nextstrain.org/flu
https://doi.org/10.1101/2020.06.12.145151
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.12.145151; this version posted June 13, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

399

400

401

402

403

404

405

406

407

408

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

available under aCC-BY 4.0 International license.

Integration of genotypic and phenotypic metrics minimizes overfitting

Our evaluation of models by time-series cross-validation and true out-of-sample forecasts
revealed substantial potential for model overfitting. We observed overfitting to both specific
genetic backgrounds and general historical contexts. A clear example of the former was the
poor performance of our DMS-based fitness metric compared to a simpler mutational load
metric. Although the DMS experiments provided detailed estimates of which amino acids
were preferred at which positions in HA, these measurements were specific to a single strain,
A /Perth/16/2009 [11]. When we applied these measurements to predict the success of global
populations, they were less informative on average than the naive model. To benefit from the
more comprehensive fitness costs measured by DMS data, future models will need to synthesize
DMS measurements across multiple H3N2 strains from distinct genetic contexts. We anticipate
that these measurements could be used to define and continually update a modern set of sites
contributing to mutational load in natural populations. This set of sites could replace the
statically defined set of “non-epitope” sites we use to estimate mutational load here.

We observed overfitting to historical context in sequence-based models of antigenic drift. The
fitness benefit of mutations that led to antigenic drift in H3N2 in the past is well-documented
[20,26(-28]. Although the antigenic importance of seven specific sites in HA were experimentally
validated by Koel et al. 2013 |2§], these sites do not explain all antigenic drift observed in
natural populations [10]. Other attempts to define these so-called “epitope sites” have relied on
either aggregation of results from antigenic escape assays |27] or retrospective computational
analyses of sites with beneficial mutations [7,22]. We found that models based on all of these
definitions except for the seven Koel epitope sites overfit to the historical context from which
they were identified (Supplemental Table . These results suggest that the set of sites that
contribute to antigenic drift at any given time may depend on both the fitness landscape of
currently circulating strains and the immune landscape of the hosts these strains need to infect.
Recent experimental mapping of antigenic escape mutations in H3N2 HA with human sera show
that the specific sites that confer antigenic escape can vary dramatically between individuals
based on their exposure history [29]. In contrast to models based on predefined “epitope sites”,
our model based on experimental measurements of antigenic drift did not suffer from overfitting
in the validation or test periods. We suspect that this model was able to minimize overfitting by
continuously updating its antigenic model with recent experimental data and assigning antigenic
weight to branches of a phylogeny rather than specific positions in HA.

Even the most accurate models with few parameters will sometimes fail due to the probabilistic
nature of evolution. For example, the model with the best performance across our validation data
— mutational load and LBI — was also one of the worst models across our test data. Specifically,
we found that this model failed to predict the sudden decline of a dominant reassortant clade,
A2/re, in 2019. Despite this model’s excellent performance historically, it was unable to account
for rare yet important events such as reassortment.

Finally, we observed that composite models of multiple orthogonal fitness metrics often out-
performed models based on their individual components. These results are consistent with
previous work that found improved performance by integrating components of antigenic drift,
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functional constraint, and clade growth [7]. However, the effective elimination of LBI from
our three-metric model during the validation period (Fig. @ reveals the limitations of our
current additive approach to composite models. The recent success of weighted ensembles for
short-term influenza forecasting [30] suggests that long-term forecasting may benefit from a
similar approach.

Forecasting framework aids practical forecasts

By forecasting the composition of future H3N2 populations with biologically-informed fitness
metrics, our best models consistently outperformed a naive model (Table . While this
performance confirms previously demonstrated potential for long-term influenza forecasting [7],
the average gain from these models over the naive model appears low at 0.96 AAs per year for
validation data and 0.85 AAs per year for test data. However, these results are consistent with
the observed dynamics of H3N2. First, the one-year forecast horizon is a fraction of the average
coalescence time for H3N2 populations of about 3-8 years [31]. Hence, we expect the diversity
of circulating strains to persist between seasons. Second, H3N2 hemagglutinin accumulates 3.6
amino acid changes per year [20]. This accumulation of amino acid substitutions contributes
to the distance between annual populations observed by the naive model. In this context, our
model gains of 0.96 and 0.85 AAs per year correspond to an explanation of 27% and 24% of the
expected additional distance between annual populations, respectively.

Several clear opportunities to improve forecasts still remain. Integration of more recent experi-
mental data may improve estimates of antigenic drift. Despite the weak performance of our FRA
antigenic novelty model on recent data, continued accumulation of FRA measurements over
time should eventually enable models as accurate as the current Hl-based models. In addition
to these FRA data based on ferret antisera, recent high-throughput antigenic escape assays
with human sera promise to improve existing definitions of epitope sites [29]. These assays
reveal the specific sites and residues that confer antigenic escape from polyclonal sera obtained
from individual humans. A sufficiently broad geographic and temporal sample of human sera
with these assays could reveal consistent patterns of the immune landscape H3N2 strains must
navigate to be globally successful. Models should also integrate information from multiple
segments of the influenza genome and will need to balance the fitness benefits of evolution in
genes such as neuraminidase [32] with the costs of reassortment [33]. Finally, forecasting models
need to account for the geographic distribution of viruses and the vastly different sampling
intensities across the globe. Most influenza sequence data come from highly developed countries
that account for a small fraction of the global population, while globally successful clades of
influenza H3N2 often emerge in less well-sampled regions [31,134.35]. Explicitly accounting for
these sampling biases and the associated migration dynamics would allow models to weight
forecasts based on both viral fitness and transmission.
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The nature of the predictive power of individual metrics remains
unclear

Prediction of future influenza virus populations is intrinsically limited by the small number of
data points available to train and test models. Increasingly more complex models are therefore
prone to overfitting. Across the validation and test periods, we found that antigenic drift and
mutational load were the most robust predictors of future success for seasonal influenza H3N2
populations.

Several metrics like the rate of frequency change or epitope mutations are naively expected to
have predictive power but do not. Others metrics like the mutational load are not expected to
measure adaptation but are predictive. These results point to one aspect that often overlooked
when comparing the genetic make-up of an asexual population at two time points: the future
population is unlikely to descend from any of the sampled tips but ancestral lineages of the future
population merge with those of the present population in the past. Optimal representatives of
the future therefore tend to be tips in the present that tend to be basal and less evolved. The
LBI and the mutational load metric have the tendency to assign low fitness to evolved tips. The
LBI in particular assigns high fitness to the base of large clades. Much of the predictive power,
in the sense of a reduced distance between the predicted and observed populations, might be
due to putting more weight on less evolved strains rather than bona fide prediction of fitness.
In a companion manuscript, Barrat-Charlaix et al. show that LBI has little predictive power for
fixation probabilities of mutations in H3N2.

Our framework enables real-time practical forecasts of these populations by leveraging historical
and modern experimental assays and gene sequences. By releasing our framework as an open
source tool based on modern data science standards like tidy data frames, we hope to encourage
continued development of this tool by the influenza research community. We additionally
anticipate that the ability to forecast the sequence composition of populations with earth
mover’s distance will enable future forecasting research with pathogens whose genomes cannot
be analyzed by traditional phylogenetic methods including recombinant viruses, bacteria, and
fungi.

Model sharing and extensions

The entire workflow for our analyses was implemented with Snakemake [36]. We have provided
all source code, configuration files, and datasets at https://github.com/blab/flu-forecasting.
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. Materials and methods

5i

o

0 Simulation of influenza H3N2-like populations

s0  We simulated the long-term evolution of H3N2-like viruses with SANTA-SIM [37] for 10,000
s generations or H0 years where 200 generations was equivalent to 1 year. We discarded the first
su 10 years as a burn-in period, selected the next 30 years for model fitting and validation, and held
s out the last 9 years as out-of-sample data for model testing. Each simulated population was
si3 seeded with the full length HA from A/Beijing/32/1992 (NCBI accession: U26830.1) such that
sia - all simulated sequences contained signal peptide, HA1, and HA2 domains. We defined purifying
si5 selection across all three domains, allowing the preferred amino acid at each site to change at a
si6  fixed rate over time. We additionally defined exposure-dependent selection for 49 putative epitope
sz sites in HA1 [7] to impose an effect of antigenic novelty that would allow mutations at those sites
si8 1O increase viral fitness despite underlying purifying selection. We modified the SANTA-SIM
s19 source code to enable the inclusion of true fitness values for each strain in the FASTA header of
s20 the sampled sequences from each generation. This modified implementation has been integrated
sz into the official SANTA-SIM code repository at https://github.com/santa-dev/santa-sim
s as of commit e2b3ead. For our full analysis of model performance, we sampled 90 viruses per
523 month to match the sampling density of natural populations. For tuning of hyperparameters,
s« we sampled 10 viruses per month to enable rapid exploration of hyperparameter space.

» Hyperparameter tuning with simulated populations

s26 1o avoid overfitting our models to the relatively limited data from natural populations, we used
sz simulated H3N2-like populations to tune hyperparameters including the KDE bandwidth for
ss8 frequency estimates and the L1 penalty for model coefficients. We simulated populations, as
s20 described above, and fit models for each parameter value using the true fitness of strains from
s the simulator.

51 We identified the optimal KDE bandwidth for frequencies as the value that minimized the
s difference between the mean distances to the future from the true fitness model and the naive
53 model. We set the L1 lambda penalty to zero, to reduce variables in the analysis and avoid
s interactions between the coefficients and the KDE bandwidths. Higher bandwidths completely
s wash out dynamics of populations by making all strains appear to exist for long time periods.
s3 This flattening of frequency trajectories means that as bandwidths increase, the naive model
s gets more accurate and less informative. Given this behavior, we found the bandwidth that
s33  produced the minimum difference between distances to the future for the true fitness and naive
s models instead of the bandwidth that produced the minimum mean model distance. Based on
ss0  this analysis, we identified an optimal bandwidth of % or the equivalent of 2-months for floating
s point dates. Next, we identified an L1 penalty of 0.1 for model coefficients that minimized the
s.2 mean distance to the future for the true fitness model.
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Antigenic data

Hemagglutination inhibition (HI) measurements were provided by WHO Global Influenza
Surveillance and Response System (GISRS) Collaborating Centers in London, Melbourne,
Atlanta and Tokyo. We converted these raw two-fold dilution measurements to logs titer drops
normalized by the corresponding logs autologous measurements as previously described [10].

Strain selection for natural populations

Prior to our analyses, we downloaded all HA sequences and metadata from GISAID [16]. For
model training and validation, we selected 15,583 HA sequences >900 nucleotides that were
sampled between October 1, 1990 and October 1, 2015. To account for known variation in
sequence availability by region, we subsampled the selected sequences to a representative set
of 90 viruses per month with even sampling across 10 global regions including Africa, Europe,
North America, China, South Asia, Japan and Korea, Oceania, South America, Southeast Asia,
and West Asia. We excluded all egg-passaged strains and all strains with ambiguous year,
month, and day annotations. We prioritized strains with more available HI titer measurements.
For model testing, we selected an additional 7,171 HA sequences corresponding to 90 viruses per
month sampled between October 1, 2015 and October 1, 2019. We used these test sequences
to evaluate the out-of-sample error of fixed model parameters learned during training and
validation. Supplemental File S1 describes contributing laboratories for all 22,754 validation
and test strains.

Phylogenetic inference

For each timepoint in model training, validation, and testing, we selected the subsampled HA
sequences with collection dates up to that timepoint. We aligned sequences with the augur
align command [24] and MAFFT v7.407 [38]. We inferred initial phylogenies for HA sequences
at each timepoint with IQ-TREE v1.6.10 [39]. To reconstruct time-resolved phylogenies, we
applied TreeTime v0.5.6 [40] with the augur refine command.

Frequency estimation

To account for uncertainty in collection date and sampling error, we applied a kernel density
estimation (KDE) approach to calculate global strain frequencies. Specifically, we constructed a
Gaussian kernel for each strain with the mean at the reported collection date and a variance
(or KDE bandwidth) of two months. The bandwidth was identified by cross-validation, as
described above. This bandwidth also roughly corresponds to the median lag time between
strain collection and submission to the GISAID database. We estimated the frequency of each
strain at each timepoint by calculating the probability density function of each KDE at that
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timepoint and normalizing the resulting values to sum to one. We implemented this frequency
estimation logic in the augur frequencies command.

Model fitting and evaluation
Fitness model

We assumed that the evolution seasonal influenza H3N2 populations can be represented by a

Malthusian growth fitness model, as previously described [7]. Under this model, we estimated

the future frequency, z;(t + At), of each strain i from the strain’s current frequency, z;(t), and
1

fitness, fi(t), as follows where the resulting future frequencies were normalized to one by 70

. 1
Zi(t + At) = ——x;(t) exp(fi(t)At) (1)
Z(t)

We defined the fitness of each strain at time ¢ as the additive combination of one or more fitness
metrics, f;m, scaled by fitness coefficients, 3,,. For example, Equation [2| estimates fitness per

strain by mutational load (ml) and local branching index (1bi).
fi(t) = Buefim(t) + Buwi fii(t) (2)

Model target

For a model based on any given combination of fitness metrics, we found the fitness coefficients
that minimized the earth mover’s distance (EMD) [25,|41] between amino acid sequences from
the observed future population at time u = ¢t + At and the estimated future population created
by projecting frequencies of strains at time ¢ by their estimated fitnesses. Solving for EMD
identifies the minimum about of “earth” that must be moved from a source population to a
sink population to make those populations as similar as possible. This solution requires both a
“oround distance” between pairs of strains from both populations and weights assigned to each
strain that determine how much that strain contributes to the overall distance.

For each timepoint ¢ and corresponding timepoint © = t 4+ 1, we defined the ground distance
as the Hamming distance between HA amino acid sequences for all pairs of strains between
timepoints. For strains with less than full length nucleotide sequences, we inferred missing
nucleotides through TreeTime’s ancestral sequence reconstruction analysis. We defined weights
for strains at timepoint ¢ based on their projected future frequencies. We defined weights
for strains at timepoint u based on their observed frequencies. We then identified the fitness
coefficients that provided projected future frequencies that minimized the EMD between the
estimated and observed future populations. With this metric, a perfect estimate of the future’s
strain sequence composition and frequencies would produce a distance of zero. However, the
inevitable accumulation of substitutions between the two populations prevents this outcome.

24


https://doi.org/10.1101/2020.06.12.145151
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.12.145151; this version posted June 13, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

available under aCC-BY 4.0 International license.

We calculated EMD with the Python bindings for the OpenCV 3.4.1 implementation [42]. We
applied the Nelder-Mead minimization algorithm as implemented in SciPy [43] to learn fitness
coefficients that minimize the average of this distance metric over all timepoints in a given
training window.

Lower bound on earth mover’s distance

The minimum distance to the future between any two timepoints cannot be zero due to the
accumulation of mutations between populations. We estimated the lower bound on earth mover’s
distance between timepoints using the following greedy solution to the optimal transport problem.
For each timepoint ¢, we initialized the optimal frequency of each current strain to zero. For
each strain in the future timepoint u, we identified the closest strain in the current timepoint by
Hamming distance and added the frequency of the future strain to the optimal frequency of the
corresponding current strain. This approach allows each strain from timepoint ¢ to accumulate
frequencies from multiple strains at timepoint u. We calculated the minimum distance between
populations as the earth mover’s distance between the resulting optimal frequencies for current
strains, the observed frequencies of future strains, and the original distance matrix between
those two populations.

Strain-specific distance to the future

We calculated the weighted Hamming distance to the future of each strain from the strain’s HA
amino acid sequence and the frequencies and sequences of the corresponding population one
year in the future. Specifically, the distance between any strain ¢ from timepoint ¢ to the future
timepoint v was the Hamming distance, h, between strain i’s amino acid sequence, s;, each
future strain j’s amino acid sequence, s;, and the frequency of strain j in the future timepoint,

xj(u).

di(w) = 3 @ (w)h(si,s;) 3)

j€s(u)

We calculated the estimated distance to the future for live forecasts with the same approach,
replacing the observed future population frequencies and sequences with the estimated population
based on our models.

di(@) = > x;(@)h(si; 5;) (4)

jes(a)

Time-series cross-validation

To obtain unbiased estimates for the out-of-sample errors of our models, we adopted the standard
cross-validation strategy of training, validation, and testing. We divided our available data into
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an initial training and validation set spanning October 1990 to October 2015 and an additional
testing set spanning October 2015 to October 2019. We partitioned our training and validation
data into six month seasons corresponding to winter in the Northern Hemisphere (October—April)
and the Southern Hemisphere (April-October) and trained models to estimate frequencies of
populations one year into the future from each season in six-year sliding windows. To calculate
validation error for each training window, we applied the resulting model coefficients to estimate
the future frequencies for the year after the last timepoint in the training window. These
validation errors informed our tuning of hyperparameters. Finally, we fixed the coefficients for
each model at the mean values across all training windows and applied these fixed models to
the test data to estimate the true forecasting accuracy of each model on previously unobserved
data.

Model comparison by bootstrap tests

We compared the performance of different pairs of models using bootstrap tests. For each
timepoint, we calculated the difference between one model’s earth mover’s distance to the future
and the other model’s distance. Values less than zero in the resulting empirical distribution
represent when the first model outperformed the second model. To determine whether the
first model generally outperformed the second model, we bootstrapped the empirical difference
distributions for n=10,000 samples and calculated the mean difference of each bootstrap sample.
We calculated an empirical p value for the first model as the proportion of bootstrap samples
with mean values greater than or equal to zero. This p value represents how likely the mean
difference between the models’ distances to the future is to be zero or greater. We measured
the effect size of each comparison as the mean + the standard deviation of the bootstrap
distributions. We performed pairwise model comparisons for all biologically-informed models
against the naive model (Supplemental Figs. and . We also compared a subset of
composite models to their respective individual models (Supplemental Table .

Fitness metrics

We defined the following fitness metrics per strain and timepoint.

Antigenic drift

We estimated antigenic drift for each strain using either genetic or HI data. To estimate
antigenic drift with genetic data, we implemented an antigenic novelty metric based on the
“cross-immunity” metric originally defined by Luksza and Léssig [7]. Briefly, for each pair of
strains in adjacent seasons, we counted the number of amino acid differences between the strains’
HA sequences at 49 epitope sites. The one-based coordinates of these sites relative to the start
of the HA1 segment were 50, 53, 54, 121, 122, 124, 126, 131, 133, 135, 137, 142, 143, 144,
145, 146, 155, 156, 157, 158, 159, 160, 163, 164, 172, 173, 174, 186, 188, 189, 190, 192, 193,
196, 197, 201, 207, 213, 217, 226, 227, 242, 244, 248, 275, 276, 278, 299, and 307. We limited
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pairwise comparisons to all strains sampled within the last five years from each timepoint.
For each individual strain ¢ at each timepoint ¢, we estimated that strain’s ability to escape
cross-immunity by summing the exponentially-scaled epitope distances between previously
circulating strains and the given strain as in Equation [J] We defined the constant Dy = 14,
as in the original definition of cross-immunity [7]. To compare these epitope sites with other
previously published sites, we fit epitope antigenic novelty models based on sites defined by
Wolf et al. 2006 [27] and Koel et al. 2013 [28].

fiep(t) = 3 —max(z;) exp (= Dep(ai, a;)/ Do) ()

j:t]' <ti

To test the historical contingency of the epitope sites defined above, we additionally identified a
new set of sites with beneficial mutations across the training/validation period of October 1990
through October 2015. Following the general approach of Shih et al. [22], we manually identified
25 sites in HA1 where mutations rapidly swept through the global population. We required
mutations to emerge from below 5% global frequency and reach >90% frequency. Although we
did not require sweeps to complete within a fixed amount of time, we observed that they required
no longer than one to three years to complete. To minimize false positives, we eliminated any
sites where one or more mutations rose above 20% frequency and subsequently died out. If
two or more sites had redundant sweep dynamics (mutations emerging and fixing at the same
times), we retained the site with the most mutational sweeps. Based on this requirements, we
defined our final collection of “oracle” sites in HA1 coordinates as 3, 45, 48, 50, 75, 140, 145,
156, 158, 159, 173, 186, 189, 193, 198, 202, 212, 222, 223, 225, 226, 227, 278, 311, and 312.

To estimate antigenic drift with HI data, we first applied the titer tree model to the phylogeny
at a given timepoint and the corresponding HI data for its strains, as previously described by
Neher et al. 2016 [10]. This method effectively estimates the antigenic drift per branch in units
of logs titer change. We selected all strains with nonzero frequencies in the last six months
as “current strains” and all strains sampled five years prior to that threshold as “past strains”.
Next, we calculated the pairwise antigenic distance between all current and past strains as the
sum of antigenic drift weights per branch on the phylogenetic path between each pair of strains.
Finally, we calculated each strain’s ability to escape cross-immunity using Equation [5| with the
pairwise distances between epitope sequences replaced with pairwise antigenic distance from HI
data. As with the original epitope antigenic novelty described above, this HI antigenic novelty
metric produces higher values for strains that are more antigenically distinct from previously
circulating strains.

Functional constraint

We estimated functional constraint for each strain using either genetic or deep mutational
scanning (DMS) data. To estimate functional constraint with genetic data, we implemented the
non-epitope mutation metric originally defined by Luksza and Léssig [7]. This metric counts
the number of amino acid differences at 517 non-epitope sites in HA sequences between each
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strain ¢ at timepoint ¢ and that strain’s most recent inferred ancestral sequence in the previous
season (t — 1).

We estimated functional constraint using mutational preferences from DMS data as previously
defined [11]. Briefly, mutational effects were defined as the log ratio of DMS preferences, 7, at
site r for the derived amino acid, a;, and the ancestral amino acid, a;. As with the non-epitope
mutation metric above, we considered only substitutions in HA between each strain ¢ and that
strain’s most recent inferred ancestral sequence in the previous season. We calculated the total
effect of these substitutions as the sum of the mutational preferences for each substitution, as in
Equation [6]

fious(t) = 30 log, —n (6)

rer,a;!=r,a; T,a;

To determine whether DMS preferences could be used to define fitness metrics that were less
dependent on the historical context of the background strain, we implemented two additional
DMS-based metrics: “DMS entropy” and “DMS mutational load”. For both metrics, we
calculated the distance between HA amino acid sequences of each strain and its ancestral
sequence in the previous season, to enable comparison of these metrics with the DMS mutational
effects and mutational load metrics. For the “DMS entropy” metric, we calculated the distance
between sequences such that each mismatch was weighted by the inverse entropy of DMS
preferences at the site of the mismatch. We expected this metric to produce a negative
coefficient similar to the mutational load metric, as higher values will result from mutations at
sites with lower entropy and, thus, lower tolerance for mutations. For the “DMS mutational
load” metric, we defined a novel set of non-epitope sites corresponding to each position in
HA with a standardized entropy less than zero. With this metric, we sought to identify more
highly conserved sites without weighting any one site differently from others. We anticipated
that this lack of site-specific weighting would make the DMS mutational load metric even less
background-dependent than the DMS entropy and DMS mutational effect metrics.

Clade growth

We estimated clade growth for each strain using local branching index (LBI) and the change in
frequency over time (delta frequency). To calculate LBI for each strain at each timepoint, we
applied the LBI heuristic algorithm as originally described |9] to the phylogenetic tree constructed
at each timepoint. We set the neighborhood parameter, 7, to 0.3 and only considered viruses
sampled in the last 6 months of each phylogeny as contributing to recent clade growth.

We estimated the change in frequency over time by calculating clade frequencies under a
Brownian motion diffusion process as previously described [11]. These frequency calculations
allowed us to assign a partial clade frequency to each strain within nested clades. We calculated
the delta frequency as the change in frequency for each strain between the most recent timepoint
in a given phylogeny and six months prior to that timepoint divided by 0.5 years.
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Clustering of amino acid sequences for visualization

For the purpose of visualizing related amino acid sequences in Fig. [I} we applied dimensionality
reduction to pairwise amino acid distances followed by hierarchical clustering. Specifically, we
selected a representative tree from our simulated population of viruses at month 10 of year
30. From this tree, we selected all strains with a collection date in the previous two years. We
calculated the pairwise Hamming distance between the full-length HA amino acid sequences for
all selected strains and applied t-SNE dimensionality reduction [44] to the resulting distance
matrix (n=2 components, perplexity=30.0, and learning rate=400). We assigned each strain to
a cluster based on its two-dimensional t-SNE embedding using DBSCAN [45] with a maximum
neighborhood distance of 10 AAs and a minimum of 20 strains per cluster. Despite known
limitations of applying hierarchical clustering to manifold projections that do not preserve
sample density, this approach allowed us to effectively assign strains to qualitative genetic
clusters for the purposes of visualization.

Data and software availability

All source code, configuration files, and datasets are available at https://github.com/blab/flu-
forecasting.

Acknowledgments

We thank the Influenza Division at the US Centers for Disease Control and Prevention, the
Victorian Infectious Diseases Reference Laboratory at the Australian Peter Doherty Institute for
Infection and Immunity, the Influenza Virus Research Center at the Japan National Institute of
Infectious Diseases, the Crick Worldwide Influenza Centre at the UK Francis Crick Institute for
sharing HI and FRA data.

We gratefully acknowledge the authors, originating and submitting laboratories of the sequences
from the GISAID EpiFlu Database |16] on which this research is based. The list is detailed in
the Supplemental Material.

We thank Jesse Bloom, Erick Matsen, Bing Brunton, Harmit Malik, Sidney Bell, Allison Black,
Lola Arakaki, Duncan Ralph, and members of the Bedford lab for useful advice and discussions.
JH is a Graduate Research Fellow and is supported by the NIH grant NIAID F31A1140714.
The work done at the Crick Worldwide Influenza Centre was supported by the Francis Crick
Institute receiving core funding from Cancer Research UK (FC001030), the Medical Research
Council (FC001030) and the Wellcome Trust (FC001030). SF, KN, KN, SW and HH were
supported by the Ministry of Health, Labour and Welfare, Japan (10110400). SW was supported
by the Japan Agency for Medical Research and Development (JPtk0108118). The Melbourne
WHO Collaborating Centre for Reference and Research on Influenza is supported by the
Australian Government Department of Health. RAN is supported by NIAID R0O1 AI127893-01

29


https://doi.org/10.1101/2020.06.12.145151
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.12.145151; this version posted June 13, 2020. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

T

778

779

780

781

782

783

784

786

787

788

available under aCC-BY 4.0 International license.

and institutional core funding. TB is a Pew Biomedical Scholar and is supported by NIH grants
NIGMS R35 GM119774-01, NIAID U19 AI117891-01 and NTAID RO1 AI127893-01.

The findings and conclusions in this report are those of the author(s) and do not necessarily
represent the official position of the Centers for Disease Control and Prevention.

Author contributions

JH planned experiments, implemented the final forecasting framework, analyzed results, and
wrote the manuscript. JB, TR, XX, RK, DEW, LW, BE, RSD, JWM, SF, KN, NK, SW, HH,
IB, and KS performed and provided data from serological assays. RAN planned experiments and
edited the manuscript. TB planned experiments, implemented the initial forecasting framework,
and edited the manuscript.

Competing interests

The authors declare that no competing interests exist.

30


https://doi.org/10.1101/2020.06.12.145151
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.12.145151; this version posted June 13, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

., References

7

®

w0 . [1] World Health Organization (2014) Seasonal influenza fact sheet. Available at http:

701 //www.who.int/mediacentre/factsheets/fs211/en/.

2 [2] Hirst GK (1943) Studies of antigenic differences among strains of influenza A by means of
703 red cell agglutination. J Exp Med 78: 407-423.

794 [3] Chambers BS, Parkhouse K, Ross TM, Alby K, Hensley SE (2015) Identification of
795 hemagglutinin residues responsible for H3N2 antigenic drift during the 2014-2015 influenza
796 season. CellReports 12: 1-6.

w7 [4] Zost SJ, Parkhouse K, Gumina ME, Kim K, Diaz Perez S, Wilson PC, Treanor JJ, Sant AJ,
708 Cobey S, Hensley SE (2017) Contemporary H3N2 influenza viruses have a glycosylation
799 site that alters binding of antibodies elicited by egg-adapted vaccine strains. Proceedings
800 of the National Academy of Sciences 114: 12578-12583.

s [b] Okuno Y, Tanaka K, Baba K, Maeda A, Kunita N, Ueda S (1990) Rapid focus reduction
802 neutralization test of influenza A and B viruses in microtiter system. J Clin Microbiol 28:
803 1308-1313.

se  [6] Wood JM, Major D, Heath A, Newman RW, Hoschler K, Stephenson I, Clark T, Katz
805 JM, Zambon MC (2012) Reproducibility of serology assays for pandemic influenza HIN1:
806 Collaborative study to evaluate a candidate WHO International Standard. Vaccine 30:
807 210-217.

sos |7] Luksza M, Lassig M (2014) A predictive fitness model for influenza. Nature 507: 57—61.

so  [8] Steinbriick L, Klingen TR, McHardy AC (2014) Computational prediction of vaccine strains
810 for human influenza A (H3N2) viruses. J Virol 88: 12123-12132.

su  [9] Neher RA, Russell CA, Shraiman BI (2014) Predicting evolution from the shape of ge-
812 nealogical trees. Elife 3: e03568.

a3 [10] Neher RA, Bedford T, Daniels RS, Russell CA, Shraiman BI (2016) Prediction, dynamics,

814 and visualization of antigenic phenotypes of seasonal influenza viruses. Proc Natl Acad Sci
815 USA 113: E1701-9.

s [11] Lee JM, Huddleston J, Doud MB, Hooper KA, Wu NC, Bedford T, Bloom JD (2018) Deep
817 mutational scanning of hemagglutinin helps predict evolutionary fates of human H3N2
818 influenza variants. Proceedings of the National Academy of Sciences 115: E8276-E8285.
so [12] Gandon S, Day T, Metcalf CJE, Grenfell BT (2016) Forecasting epidemiological and
820 evolutionary dynamics of infectious diseases. Trends Ecol Evol (Amst) 31: 776-788.

g1 [13] Morris DH, Gostic KM, Pompei S, Bedford T, Luksza M, Neher RA, Grenfell BT, Léassig
822 M, McCauley JW (2017) Predictive modeling of influenza shows the promise of applied
823 evolutionary biology. Trends Microbiol .

s [14] Léssig M, Mustonen V, Walczak AM (2017) Predicting evolution. Nat Ecol Evol 1: 77.

31


http://www.who.int/mediacentre/factsheets/fs211/en/
http://www.who.int/mediacentre/factsheets/fs211/en/
http://www.who.int/mediacentre/factsheets/fs211/en/
https://doi.org/10.1101/2020.06.12.145151
http://creativecommons.org/licenses/by/4.0/

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.12.145151; this version posted June 13, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

[15]
[16]

[17]

available under aCC-BY 4.0 International license.

Luksza M (2020). Personal Communication.

Shu Y, McCauley J (2017) Gisaid: Global initiative on sharing all influenza data — from
vision to reality. Eurosurveillance 22.

Bush RM, Bender CA, Subbarao K, Cox NJ, Fitch WM (1999) Predicting the evolution of
human influenza A. Science 286: 1921-1925.

Neher RA (2013) Genetic draft, selective interference, and population genetics of rapid
adaptation. Annual Review of Ecology, Evolution, and Systematics 44: 195-215.

Koelle K, Rasmussen DA (2015) The effects of a deleterious mutation load on patterns of
influenza A/H3N2’s antigenic evolution in humans. Elife 4: e07361.

Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, Osterhaus ADME,
Fouchier RAM (2004) Mapping the antigenic and genetic evolution of influenza virus.
Science 305: 371-376.

Bedford T, Suchard MA, Lemey P, Dudas G, Gregory V, Hay AJ, McCauley JW, Russell
CA, Smith DJ, Rambaut A (2014) Integrating influenza antigenic dynamics with molecular
evolution. Elife 3: e01914.

Shih ACC, Hsiao TC, Ho MS, Li WH (2007) Simultaneous amino acid substitutions at
antigenic sites drive influenza A hemagglutinin evolution. Proceedings of the National
Academy of Sciences 104: 6283-6288.

Potter BI, Kondor R, Hadfield J, Huddleston J, Barnes J, Rowe T, Guo L, Xu X, Neher RA,
Bedford T, Wentworth DE (2019) Evolution and rapid spread of a reassortant A(H3N2)
virus that predominated the 20172018 influenza season. Virus Evolution 5.

Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, Sagulenko P, Bedford
T, Neher RA (2018) Nextstrain: real-time tracking of pathogen evolution. Bioinformatics :
bty407.

Rubner Y, Tomasi C, Guibas LJ (1998) A metric for distributions with applications to
image databases. In: Sixth International Conference on Computer Vision (IEEE Cat.
No0.98CH36271). pp. 59-66. doi:10.1109/ICCV.1998.710701.

Wiley DC, Wilson TA, Skehel JJ (1981) Structural identification of the antibody-binding
sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation.
Nature 289: 373-378.

Wolf YI, Viboud C, Holmes EC, Koonin EV, Lipman DJ (2006) Long intervals of stasis
punctuated by bursts of positive selection in the seasonal evolution of influenza A virus.
Biol Direct 1: 34.

Koel BF, Burke DF, Bestebroer TM, van der Vliet S, Zondag GCM, Vervaet G, Skepner
E, Lewis NS, Spronken MIJ, Russell CA, Eropkin MY, Hurt AC, Barr IG, de Jong JC,
Rimmelzwaan GF, Osterhaus ADME, Fouchier RAM, Smith DJ (2013) Substitutions near

32


https://doi.org/10.1101/2020.06.12.145151
http://creativecommons.org/licenses/by/4.0/

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.12.145151; this version posted June 13, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

[29]

[30]

[31]

[32]

[35]

available under aCC-BY 4.0 International license.

the receptor binding site determine major antigenic change during influenza virus evolution.
Science 342: 976-979.

Lee JM, Eguia R, Zost SJ, Choudhary S, Wilson PC, Bedford T, Stevens-Ayers T, Boeckh
M, Hurt AC, Lakdawala SS, Hensley SE, Bloom JD (2019) Mapping person-to-person
variation in viral mutations that escape polyclonal serum targeting influenza hemagglutinin.

Elife 8.

Reich NG, Brooks LC, Fox SJ, Kandula S, McGowan CJ, Moore E, Osthus D, Ray EL,
Tushar A, Yamana TK, Biggerstaff M, Johansson MA, Rosenfeld R, Shaman J (2019) A

collaborative multiyear, multimodel assessment of seasonal influenza forecasting in the
United States. Proc Natl Acad Sci USA 116: 3146-3154.

Rambaut A, Pybus OG, Nelson MI, Viboud C, Taubenberger JK, Holmes EC (2008) The
genomic and epidemiological dynamics of human influenza A virus. Nature 453: 615-619.

Chen YQ, Wohlbold TJ, Zheng NY, Huang M, Huang Y, Neu KE, Lee J, Wan H, Rojas
KT, Kirkpatrick E, Henry C, Palm AKE, Stamper CT, Lan LYL, Topham DJ, Treanor J,
Wrammert J, Ahmed R, Eichelberger MC, Georgiou G, Krammer F, Wilson PC (2018)
Influenza infection in humans induces broadly cross-reactive and protective neuraminidase-
reactive antibodies. Cell 173: 417-429.e10.

Villa M, Léssig M (2017) Fitness cost of reassortment in human influenza. PLoS Pathog
13: €1006685.

Russell CA, Jones TC, Barr IG, Cox NJ, Garten RJ, Gregory V, Gust ID, Hampson AW,
Hay AJ, Hurt AC, de Jong JC, Kelso A, Klimov Al, Kageyama T, Komadina N, Lapedes
AS, Lin YP, Mosterin A, Obuchi M, Odagiri T, Osterhaus ADME, Rimmelzwaan GF,
Shaw MW, Skepner E, Stohr K, Tashiro M, Fouchier RAM, Smith DJ (2008) The global

circulation of seasonal influenza A (H3N2) viruses. Science 320: 340-346.

Bedford T, Riley S, Barr IG, Broor S, Chadha M, Cox NJ, Daniels RS, Gunasekaran
CP, Hurt AC, Kelso A, Klimov A, Lewis NS, Li X, McCauley JW, Odagiri T, Potdar V,
Rambaut A, Shu Y, Skepner E, Smith DJ, Suchard MA, Tashiro M, Wang D, Xu X, Lemey
P, Russell CA (2015) Global circulation patterns of seasonal influenza viruses vary with
antigenic drift. Nature 523: 217-220.

Koster J, Rahmann S (2012) Snakemake—a scalable bioinformatics workflow engine. Bioin-
formatics 28: 2520-2522.

Jariani A, Warth C, Deforche K, Libin P, Drummond AJ, Rambaut A, Matsen IV FA,
Theys K (2019) SANTA-SIM: simulating viral sequence evolution dynamics under selection
and recombination. Virus Evolution 5.

Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple
sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059-3066.

33


https://doi.org/10.1101/2020.06.12.145151
http://creativecommons.org/licenses/by/4.0/

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.12.145151; this version posted June 13, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

[39]

[40]

[41]

[42]
[43]

[44]

[45]

available under aCC-BY 4.0 International license.

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2014) IQ-TREE: A Fast and Effective
Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology
and Evolution 32: 268-274.

Sagulenko P, Puller V, Neher RA (2018) TreeTime: Maximum-likelihood phylodynamic
analysis. Virus Evolution 4.

Kusner MJ, Sun Y, Kolkin NI, Weinberger KQ (2015) From word embeddings to document
distances. In: Proceedings of the 32Nd International Conference on International Conference
on Machine Learning - Volume 37. JMLR.org, ICML’15, pp. 957-966. URL http://d1.

acm.org/citation.cfm?id=3045118.3045221.
Bradski G (2000) The OpenCV Library. Dr Dobb’s Journal of Software Tools .

Jones E, Oliphant T, Peterson P, et al. (2001-). SciPy: Open source scientific tools for
Python. URL http://www.scipy.org/. [Online; accessed July 16, 2019].

van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. Journal of Machine
Learning Research 9: 2579-2605.

Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering
clusters a density-based algorithm for discovering clusters in large spatial databases with
noise. In: Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining. AAAI Press, KDD’96, pp. 226-231. URL http://dl.acm.org/citation.
cfm?1d=3001460.3001507.

34


http://dl.acm.org/citation.cfm?id=3045118.3045221
http://dl.acm.org/citation.cfm?id=3045118.3045221
http://dl.acm.org/citation.cfm?id=3045118.3045221
http://www.scipy.org/
http://dl.acm.org/citation.cfm?id=3001460.3001507
http://dl.acm.org/citation.cfm?id=3001460.3001507
http://dl.acm.org/citation.cfm?id=3001460.3001507
https://doi.org/10.1101/2020.06.12.145151
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.12.145151; this version posted June 13, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

2 Supplemental Material

a7 Supplemental Figures
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Figure S1. Time-series cross-validation scheme for simulated populations. Models were trained in six-
year sliding windows (gray lines) and validated on out-of-sample data from validation timepoints (filled
circles). Validation results from 30 years of data were used to iteratively tune model hyperparameters.
After fixing hyperparameters, model coefficients were fixed at the mean values across all training
windows. Fixed coefficients were applied to 9 years of new out-of-sample test data (open circles) to

estimate true forecast errors.
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Figure S2. Phylogeny of H3N2-like HA sequences sampled between the 24th and 30th years of
simulated evolution. The phylogenetic structure and rate of accumulated epitope and non-epitope
mutations match patterns observed in phylogenies of natural sequences. Sample dates were annotated
as the generation in the simulation divided by 200 and added to 2000, to acquire realistic date ranges
that were compatible with our modeling machinery.
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Figure S3. Composite model coefficients and distances to the future for models fit to simulated
populations. A) Coefficients and B) distances are shown per validation timepoint and test timepoint

as in Fig.
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Figure S4. Bootstrap distributions of the mean difference of distances to the future between
biologically-informed and naive models for simulated populations. Empirical differences in distances to
the future were sampled with replacement and mean values for each bootstrap sample were calculated
across n=10,000 bootstrap iterations. The horizontal gray line indicates a difference of zero between a
given model and its corresponding naive model. Each model is annotated by the mean + the standard
deviation of the bootstrap distribution. Models are also annotated by the p-value representing the
proportion of bootstrap samples with values less than zero (see Methods).
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Figure S5. Validation of best model for simulated populations of H3N2-like viruses. A) The correlation
of estimated and observed clade frequency fold changes shows the model’s ability to capture clade-level
dynamics without explicitly optimizing for clade frequency targets. B) The rank of the estimated best
strain based on its distance to the future for 33 timepoints. The estimated best strain was in the top
20th percentile of observed closest strains for 100% of timepoints, confirming that the model makes a
good choice when forced to select a single representative strain for the future population. C) Absolute
forecast error for clades shown in A by their initial frequency with a mean LOESS fit (solid black line)
and 95% confidence intervals (gray shading) based on 100 bootstraps. D) The correlation of all strains
at all timepoints by the percentile rank of their observed and estimated distances to the future. The
corresponding results for the naive model are shown in Supplemental Fig. @
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Figure S6. Validation of naive model for simulated populations of H3N2-like viruses as in Supplemental
Fig. Note that the naive model sets future frequencies to current frequencies such that there is no
estimated fold change in frequencies for the first panel.
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Figure S7. Test of naive model for simulated populations of H3N2-like viruses as in Supplemental
Fig. Note that the naive model sets future frequencies to current frequencies such that there is no
estimated fold change in frequencies for the first panel.
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Figure S8. Time-series cross-validation scheme for natural populations. Models were trained in six-
year sliding windows (gray lines) and validated on out-of-sample data from validation timepoints (filled
circles). Validation results from 25 years of data were used to iteratively tune model hyperparameters.
After fixing hyperparameters, model coefficients were fixed at the mean values across all training
windows. Fixed coefficients were applied to four years of new out-of-sample test data (open circles) to

estimate true forecast errors.
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Figure S9. Model coefficients and distances to the future for antigenic novelty models fit to natural
populations. A) Coefficients and B) distances are shown per validation timepoint and test timepoint
as in Fig. [2l The epitope antigenic novelty model relies on previously published epitope sites [7]. The
“oracle” antigenic novelty model relies on sites of beneficial mutations that were manually identified
from the entire training and validation time period (Methods). The improved performance of the
“oracle” model indicates that the sequence-based antigenic novelty metric can be effective when sites of
beneficial mutations are known prior to forecasting.
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Figure S10. Bootstrap distributions of the mean difference of distances to the future between
biologically-informed and naive models for natural populations. Empirical differences in distances to
the future were sampled with replacement and mean values for each bootstrap sample were calculated
across n=10,000 bootstrap iterations. The horizontal gray line indicates a difference of zero between a
given model and its corresponding naive model. Each model is annotated by the mean 4+ the standard
deviation of the bootstrap distribution. Models are also annotated by the p-value representing the
proportion of bootstrap samples with values less than zero (see Methods).
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Figure S11. Validation of best model for natural populations of H3N2 viruses, the composite model
of mutational load and LBI. A) The correlation of estimated and observed clade frequency fold changes
shows the model’s ability to capture clade-level dynamics without explicitly optimizing for clade
frequency targets. B) The rank of the estimated best strain based on its distance to the future for
23 timepoints. The estimated best strain was in the top 20th percentile of observed closest strains
for 87% of timepoints, confirming that the model makes a good choice when forced to select a single
representative strain for the future population. C) Absolute forecast error for clades shown in A by
their initial frequency with a mean LOESS fit (solid black line) and 95% confidence intervals (gray
shading) based on 100 bootstraps. D) The correlation of all strains at all timepoints by the percentile
rank of their observed and estimated distances to the future. The corresponding results for the naive
model are shown in Supplemental Fig.
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Figure S12. Validation of naive model for natural populations of H3N2 viruses as in Supplemental
Fig. Note that the naive model sets future frequencies to current frequencies such that there is no
estimated fold change in frequencies for the first panel.
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Figure S13. Test of naive model for natural populations of H3N2 viruses as in Supplemental Fig.
Note that the naive model sets future frequencies to current frequencies such that there is no estimated
fold change in frequencies for the first panel.
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Figure S14. Model coefficients and distances to the future for best composite models and a FRA-
based composite fit to recent data from natural populations as in Fig. A) Coefficients and B)
distances are shown per test timepoint (N=8). In contrast to the results for these models based on
fixed coefficients from training/validation, these coefficients were learned for each six-year window
prior to the corresponding test timepoint. The corresponding distances reflect the model’s performance
with updated coefficients on what is effectively new validation data. The naive model’s distance to the
future was 6.82 £+ 1.74 AAs for these timepoints.

Supplemental Tables

epitope mutations non-epitope mutations epitope-to-non-epitope ratio
branch type

side branch 590 1327 0.44
trunk 23 12 1.92

Table S1. Number of epitope and non-epitope mutations per branch by trunk or side branch status
for simulated populations. Epitope sites were defined previously described [7]. Annotation of trunk
and side branch was performed as previously described [35]. Mutations were calculated for the full
validation tree for simulated sequences samples between October of years 10 and 40.
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epitope mutations non-epitope mutations epitope-to-non-epitope ratio

branch type

side branch 485 1177
trunk 50 32

0.41
1.56

Table S2. Number of epitope and non-epitope mutations per branch by trunk or side branch status
for natural populations. Epitope sites were defined previously described [7]. Annotation of trunk
and side branch was performed as previously described [35]. Mutations were calculated for the full
validation tree for natural sequences samples between 1990 and 2015.

Distance to future (AAs) Model > naive

Model Coeflicients Validation Test Validation =~ Test

mutational load L0.68 +/-0.34 544 1/- 1.80% 7.70 +/-353 18 (78%) 4 (50%)
+ LBI 1.03 +/- 0.40

LBI 112 4/- 051 5.68 +/- 1.91¥ 840 +/-3.97 17 (T4%) 2 (25%)

oracle antigenic novelty 0.80 +/- 0.21 5.71 +/- 1.27" 8.06 +/- 2.49" 18 (78%) 2 (25%)

HI antigenic novelty 0.89 +/-0.23 5.82 +/- 1.50% 5.97 +/- 1.47* 17 (74%) 6 (75%)
+ mutational load -1.01 +/- 0.42

HI antigenic novelty 0.90 +/- 0.23 5.84 +/- 1.51* 5.99 +/- 1.46* 16 (70%) 6 (75%)
-+ mutational load -1.00 +/- 0.44
+ LBI -0.04 +/- 0.09

HI antigenic novelty 0.83 +/- 0.20 6.01 +/- 1.50* 6.21 +/- 1.44* 16 (70%) 7 (88%)

delta frequency 0.79 +/- 047 6.13 +/- 1.71% 6.90 +/- 2.30 16 (70%) 5 (62%)

mutational load 20.99 +/-0.30 6.14 1/- 1.37% 6.53 +/-1.39 17 (74%) 6 (75%)

Koel epitope antigenic novelty — 0.28 +/- 0.36 6.22 +/- 1.26" 6.72 +/- 1.51" 18 (78%) 4 (50%)

naive 0.00 +/- 0.00 6.40 +/-1.36  6.82 +/- 1.74 0 (0%) 0 (0%)

DMS entropy 20.03 +/-0.10 6.40 /- 1.36" 6.81 +/-1.73° 9 (39%) 6 (75%)

DMS mutational load 20.02 4/- 013 6.45 /- 142" 6.82 +/-1.73° 7 (30%) 5 (62%)

epitope ancestor 0.53 +/- 0.52 6.60 +/- 1.34  6.53 +/- 1.51 12 (52%) 4 (50%)
+ mutational load -0.77 +/- 0.32

DMS mutational effects 1.25 +/- 0.84 6.75 +/- 1.95  7.80 +/- 2.97 11 (48%) 4 (50%)

Wolf epitope antigenic novelty — 0.31 4+/- 0.51 6.83 +/- 1.30" 6.97 /- 1.41" 4 (17%) 3 (38%)

epitope ancestor 0.23 +/-0.51 6.89 +/- 1.39" 6.82 4 /- 1.67" 8 (35%) 4 (50%)

epitope antigenic novelty 0.57 +/- 0.77 6.89 +/- 1.42  6.46 +/- 1.31 7 (30%) 4 (50%)
+ mutational load -0.77 +/- 0.27

epitope antigenic novelty 0.52 +/-0.73 7.13 +/- 1.47  6.70 +/- 1.51 7 (30%) 5 (62%)

Table S3. All model coefficients and performance on validation and test data for natural populations
ordered from best to worst by distance to the future, as in Table Distances annotated with
asterisks (*) were significantly closer to the future than the naive model as measured by bootstrap
tests (see Methods and Supplemental Fig. [S10]). Distances annotated with carets (A) were not tested
for significance relative to the naive model. Validation results are based on 23 timepoints. Test results
are based on eight timepoints not observed during model training and validation. Model results for
additional variants of fitness metrics including those based on epitope mutations and DMS preferences
are included for reference.
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sample error_type individual model composite_model bootstrap-mean bootstrap_std p_value
simulated validation true fitness mutational load + LBI 0.42 0.23 0.9644
simulated validation mutational load mutational load + LBI -1.03 0.21 <0.0001
simulated validation LBI mutational load + LBI -0.33 0.14 0.0091
simulated test true fitness mutational load + LBI -0.28 0.26 0.1392
simulated test mutational load mutational load + LBI -1.11 0.25 <0.0001
simulated test LBI mutational load + LBI -0.42 0.16  0.0001
natural validation mutational load mutational load + LBI -0.69 0.28 0.0036
natural validation LBI mutational load + LBI -0.23 0.09 0.0025
natural validation mutational load mutational load + HI antigenic novelty -0.31 0.18 0.0417
natural validation HI antigenic novelty mutational load + HI antigenic novelty -0.18 0.11 0.0513
natural test mutational load mutational load + LBI 1.19 0.79 0.9432
natural test LBI mutational load + LBI -0.70 0.24 <0.0001
natural test mutational load mutational load + HI antigenic novelty -0.56 0.33 0.0133
natural test HI antigenic novelty mutational load + HI antigenic novelty -0.24 0.18 0.0999

Table S4. Comparison of composite and individual model distances to the future by bootstrap test
(see Methods). The effect size of differences between models in amino acids is given by the mean and
standard deviation of the bootstrap distributions. The p values represent the proportion of n=10,000
bootstrap samples where the mean difference was greater than or equal to zero.
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Health Lab, United States; Connecticut Department. of Public Health, United States; Contiguo
a Hospital Rosales, El Salvador; Croatian Institute of Public Health , Croatia; CRR virus
Influenza region Sud, France; CRR virus Influenza region Sud, Guyana; CSL Ltd, United
States; Dallas County Health and Human Services, United States; DC Public Health Lab,
United States; Delaware Public Health Lab, United States; Departamento de Laboratorio de
Salud Publica, Uruguay; Department of Virology, Medical University Vienna, Austria; Disease
Investigation Centre Wates (BBVW), Australia; Drammen Hospital / Vestreviken HF, Norway;
Ehime Prefecture Institute of Public Health and Environmental Science, Japan; Erasmus Medical
Center, Netherlands; Erasmus University of Rotterdam, Netherlands; Ethiopian Health and
Nutrition Research Institute (EHNRI), Ethiopia; Evanston Hospital and NorthShore University,
United States; Facultad de Medicina, Spain; Fiji Centre for Communicable Disease Control,
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w1 Fiji; Florida Department of Health, United States; Fukui Prefectural Institute of Public Health,
w2 Japan; Fukuoka City Institute for Hygiene and the Environment, Japan; Fukuoka Institute
w3 of Public Health and Environmental Sciences, Japan; Fukushima Prefectural Institute of
ws Public Health, Japan; Gart Naval General Hospital, United Kingdom; Georgia Public Health
ws Laboratory, United States; Gifu Municipal Institute of Public Health, Japan; Gifu Prefectural
ws Institute of Health and Environmental Sciences, Japan; Government Virus Unit, Hong Kong;
o7 Gunma Prefectural Institute of Public Health and Environmental Sciences, Japan; Hamamatsu
ws City Health Environment Research Center, Japan; Haukeland University Hospital, Dept. of
w0 Microbiology , Norway; Headquarters British Gurkhas Nepal, Nepal; Health Forde, Department
oo of Microbiology, Norway; Health Protection Agency, United Kingdom; Health Protection
o1 Inspectorate, Estonia; Hellenic Pasteur Institute, Greece; Hiroshima City Institute of Public
o2 Health, Japan; Hokkaido Institute of Public Health, Japan; Hopital Cantonal Universitaire de
a3 Geneves, Switzerland; Hopital Charles Nicolle, Tunisia; Hospital Clinic de Barcelona, Spain;
ora  Hospital Universitari Vall d’"Hebron, Spain; Houston Department of Health and Human Services,
a5  United States; Hyogo Prefectural Institute of Public Health and Consumer Sciences, Japan;
as Ibaraki Prefectural Institute of Public Health, Japan; Illinois Department of Public Health,
o7 United States; Indiana State Department of Health Laboratories, United States; Infectology
as  Center of Latvia, Latvia; Innlandet Hospital Trust, Division Lillehammer, Department for
aro  Microbiology, Norway; INSA National Institute of Health Portugal, Portugal; Institut National
o d’Hygiene, Morocco; Institut Pasteur d’Algerie, Algeria; Institut Pasteur de Dakar, Senegal;
se1 Institut Pasteur de Madagascar, Madagascar; Institut Pasteur in Cambodia, Cambodia; Institut
w2 Pasteur New Caledonia, New Caledonia; Institut Pasteur, France; Institut Pasteur, Saudi Arabia;
se3 Institut Penyelidikan Perubatan, Malaysia; Institute National D’Hygiene, Togo; Institute
ss Of Environmental Science and Research, New Zealand; Institute of Environmental Science
s and Research, Tonga; Institute of Epidemiology and Infectious Diseases, Ukraine; Institute
s Oof Epidemiology Disease Control and Research, Bangladesh; Institute of Immunology and
7 Virology Torlak, Serbia; Institute of Medical and Veterinary Science (IMVS), Australia; Institute
s of Public Health, Serbia; Institute of Public Health, Albania; Institute of Public Health,
w0 Montenegro; Institute Pasteur du Cambodia, Cambodia; Instituto Adolfo Lutz, Brazil; Instituto
w0 Conmemorativo Gorgas de Estudios de la Salud, Panama; Instituto de Salud Carlos III, Spain;
o1 Instituto de Salud Publica de Chile, Chile; Instituto Nacional de Enfermedades Infecciosas,
o2 Argentina; Instituto Nacional de Higiene Rafael Rangel, Venezuela, Bolivia; Instituto Nacional
o3 de Laboratoriosde Salud (INLASA), Bolivia; Instituto Nacional de Salud de Columbia, Colombia;
ss Instituto Nacional de Saude, Portugal; lowa State Hygienic Laboratory, United States; IRSS,
ws Burkina Faso; Ishikawa Prefectural Institute of Public Health and Environmental Science, Japan;
ws 1SS, Italy; Istanbul University, Turkey; Istituto Superiore di Sanit, Italy; Ivanovsky Research
o7 Institute of Virology RAMS, Russian Federation; Jiangsu Provincial Center for Disease Control
ws and Prevention, China; John Hunter Hospital, Australia; Kagawa Prefectural Research Institute
wo for Environmental Sciences and Public Health, Japan; Kagoshima Prefectural Institute for
wo Environmental Research and Public Health, Japan; Kanagawa Prefectural Institute of Public
wn  Health, Japan; Kansas Department of Health and Environment, United States; Kawasaki City
w2 Institute of Public Health , Japan; Kentucky Division of Laboratory Services, United States;
w3 Kitakyusyu City Institute of Enviromental Sciences, Japan; Kobe Institute of Health, Japan;
ws  Kochi Public Health and Sanitation Institute, Japan; Kumamoto City Environmental Research
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ws  Center, Japan; Kumamoto Prefectural Institute of Public Health and Environmental Science,
ws  Japan; Kyoto City Institute of Health and Environmental Sciences, Japan; Kyoto Prefectural
wor  Institute of Public Health and Environment, Japan; Laboratoire National de Sante Publique,
ws Haiti; Laboratoire National de Sante, Luxembourg; Laboratrio Central do Estado do Paran,
e Brazil; Laboratorio Central do Estado do Rio de Janeiro, Brazil; Laboratorio de Investigacion /
0 Centro de Educacion Medica y Amistad Dominico Japones (CEMADOJA), Dominican Republic;
wn Laboratorio De Saude Publico, Macao; Laboratorio de Virologia, Direccion de Microbiologia,
w2 Nicaragua; Laboratorio de Virus Respiratorio, Mexico; Laboratorio Nacional de Influenza,
w3 Costa Rica; Laboratorio Nacional De Salud Guatemala, Guatemala; Laboratorio Nacional
w4 de Virologia, Honduras; Laboratory Directorate, Jordan; Laboratory for Virology, National
s Institute of Public Health, Slovenia; Laboratory of Influenza and ILI, Belarus; LACEN/RS -
s Laboratrio Central de Sade Pblica do Rio Grande do Sul, Brazil; Landspitali - University Hospital,
w7 Iceland; Lithuanian AIDS Center Laboratory, Lithuania; Los Angeles Quarantine Station, CDC
s Quarantine Epidemiology and Surveillance Team, United States; Louisiana Department of Health
o and Hospitals, United States; Maine Health and Environmental Testing Laboratory, United
0 States; Malbran, Argentina; Marshfield Clinic Research Foundation, United States; Maryland
w2 Department of Health and Mental Hygiene, United States; Massachusetts Department of Public
w2 Health, United States; Mater Dei Hospital, Malta; Medical Research Institute, Sri Lanka;
123  Medical University Vienna, Austria; Melbourne Pathology, Australia; Michigan Department of
124  Community Health, United States; Mie Prefecture Health and Environment Research Institute,
ws  Japan; Mikrobiologisk laboratorium, Sykehuset i Vestfold, Norway; Ministry of Health and
w6 Population, Egypt; Ministry of Health of Ukraine, Ukraine; Ministry of Health, Bahrain; Ministry
w2 of Health, Kiribati; Ministry of Health, Lao, People’s Democratic Republic; Ministry of Health,
s NIHRD, Indonesia; Ministry of Health, Oman; Minnesota Department of Health, United States;
20 Mississippi Public Health Laboratory, United States; Missouri Department. of Health and
w0 Senior Services, United States; Miyagi Prefectural Institute of Public Health and Environment,
wn  Japan; Miyazaki Prefectural Institute for Public Health and Environment, Japan; Molde
w2  Hospital, Laboratory for Medical Microbiology, Norway; Molecular Diagnostics Unit , United
w3 Kingdom; Monash Medical Centre, Australia; Montana Laboratory Services Bureau, United
34 States; Montana Public Health Laboratory, United States; Nagano City Health Center, Japan;
s Nagano Environmental Conservation Research Institute, Japan; Nagoya City Public Health
w6 Research Institute, Japan; Nara Prefectural Institute for Hygiene and Environment, Japan;
w7 National Center for Communicable Diseases, Mongolia; National Center for Laboratory and
10 Epidemiology, Laos; National Centre for Disease Control (NCDC), Mongolia; National Centre for
30 Disease Control and Public Health, Georgia; National Centre for Preventive Medicine, Moldova,
w0 Republic of; National Centre for Scientific Services for Virology and Vector Borne Diseases, Fiji;
wa  National Health Laboratory, Japan; National Health Laboratory, Myanmar; National Influenza
w2 Center French Guiana and French Indies, French Guiana; National Influenza Center, Brazil;
w3 National Influenza Center, Mongolia; National Influenza Centre for Northern Greece, Greece;
1w National Influenza Centre of Iraq, Iraq; National Influenza Lab, Tanzania, United Republic
s of; National Influenza Reference Laboratory, Nigeria; National Insitut of Hygien, Morocco;
s National Institute for Biological Standards and Control (NIBSC), United States; National
w7 Institute for Communicable Disease, South Africa; National Institute for Health and Welfare,
ws  Finland; National Institute of Health Research and Development, Indonesia; National Institute
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w9 of Health, Korea, Republic of; National Institute of Health, Pakistan; National Institute of
wso  Hygien, Morocco; National Institute of Hygiene and Epidemiology, Vietnam; National Institute
ws1  of Public Health - National Institute of Hygiene, Poland; National Institute of Public Health,
w2 Czech Republic; National Institute of Virology, India; National Microbiology Laboratory, Health
w3 Canada, Canada; National Public Health Institute of Slovakia, Slovakia; National Public Health
wsa  Laboratory, Cambodia; National Public Health Laboratory, Ministry of Health, Singapore,
wss  Singapore; National Public Health Laboratory, Nepal; National Public Health Laboratory,
wse Singapore; National Reference Laboratory, Kazakhstan; National University Hospital, Singapore;
sz National Virology Laboratory, Center Microbiological Investigations, Kyrgyzstan; National Virus
wss  Reference Laboratory, Ireland; Naval Health Research Center, United States; Nebraska Public
wso  Health Lab, United States; Nevada State Health Laboratory, United States; New Hampshire
weo Public Health Laboratories, United States; New Jersey Department of Health and Senior
wer  Services, United States; New Mexico Department of Health, United States; New York City
we2  Department of Health, United States; New York Medical College, United States; New York State
wss Department of Health, United States; Nicosia General Hospital, Cyprus; Niigata City Institute
wes Of Public Health and Environment, Japan; Niigata Prefectural Institute of Public Health and
wes Environmental Sciences, Japan; Niigata University, Japan; Nordlandssykehuset, Norway; North
wes Carolina State Laboratory of Public Health, United States; North Dakota Department of
wer  Health, United States; Norwegian Institute of Public Health, Norway; Norwegian Institute of
wes Public Health, Svalbard and Jan Mayen; Ohio Department of Health Laboratories, United
weo  States; Oita Prefectural Institute of Health and Environment, Japan; Okayama Prefectural
wo Institute for Environmental Science and Public Health, Japan; Okinawa Prefectural Institute
wn  of Health and Environment, Japan; Oklahoma State Department of Health, United States;
w2 Ontario Agency for Health Protection and Promotion (OAHPP), Canada; Oregon Public
w3 Health Laboratory, United States; Osaka City Institute of Public Health and Environmental
s Sciences, Japan; Osaka Prefectural Institute of Public Health, Japan; Oslo University Hospital,
wrs  Ulleval Hospital, Dept. of Microbiology, Norway; Ostfold Hospital - Fredrikstad, Dept. of
we  Microbiology, Norway; Oswaldo Cruz Institute - FIOCRUZ - Laboratory of Respiratory Viruses
w7 and Measles (LVRS), Brazil; Papua New Guinea Institute of Medical Research, Papua New
ws  Guinea; Pasteur Institut of Cote d’Ivoire, Cote d’Ivoire; Pasteur Institute, Influenza Laboratory,
wo  Vietnam; Pathwest QE II Medical Centre, Australia; Pennsylvania Department of Health,
w0 United States; Prince of Wales Hospital, Australia; Princess Margaret Hospital for Children,
ws1  Australia; Public Health Laboratory Services Branch, Centre for Health Protection, Hong Kong;
w2 Public Health Laboratory, Barbados; Puerto Rico Department of Health, Puerto Rico; Qasya
g3  Diagnostic Services Sdn Bhd, Brunei; Queensland Health Scientific Services, Australia; Refik
e Saydam National Public Health Agency, Turkey; Regent Seven Seas Cruises, United States;
wss Royal Victoria Hospital, United Kingdom; Republic Institute for Health Protection, Macedonia,
wss the former Yogoslav Republic of; Republic of Nauru Hospital, Nauru; Research Institute for
wez  Environmental Sciences and Public Health of Iwate Prefecture, Japan; Research Institute of
wss 'Tropical Medicine, Philippines; Rhode Island Department of Health, United States; RIVM
wss National Institute for Public Health and Environment, Netherlands; Robert-Koch-Institute,
wo Germany; Royal Chidrens Hospital, Australia; Royal Darwin Hospital, Australia; Royal Hobart
wn  Hospital, Australia; Royal Melbourne Hospital, Australia; Russian Academy of Medical Sciences,
w2 Russian Federation; Rwanda Biomedical Center, National Reference Laboratory, Rwanda; Saga
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w03 Prefectural Institute of Public Health and Pharmaceutical Research, Japan; Sagamihara City
wu Laboratory of Public Health, Japan; Saitama City Institute of Health Science and Research,
wes Japan; Saitama Institute of Public Health, Japan; Sakai City Institute of Public Health,
ws Japan; San Antonio Metropolitan Health, United States; Sandringham, National Institute for
1wz Communicable D, South Africa; Sapporo City Institute of Public Health, Japan; Scientific
wes Institute of Public Health, Belgium; Seattle and King County Public Health Lab, United States;
we Sendai City Institute of Public Health, Japan; Servicio de Microbiologa Clnica Universidad de
noo  Navarra, Spain; Servicio de Microbiologa Complejo Hospitalario de Navarra, Spain; Servicio de
nn Microbiologa Hospital Central Universitario de Asturias, Spain; Servicio de Microbiologa Hospital
no2  Donostia, Spain; Servicio de Microbiologa Hospital Meixoeiro, Spain; Servicio de Microbiologa
nos  Hospital Miguel Servet, Spain; Servicio de Microbiologa Hospital Ramn y Cajal, Spain; Servicio
e de Microbiologa Hospital San Pedro de Alentara, Spain; Servicio de Microbiologa Hospital
nos Santa Mara Nai, Spain; Servicio de Microbiologa Hospital Universitario de Gran Canaria Doctor
nos  Negrn, Spain; Servicio de Microbiologa Hospital Universitario Son Espases, Spain; Servicio
nor  de Microbiologa Hospital Virgen de la Arrixaca, Spain; Servicio de Microbiologa Hospital
s Virgen de las Nieves, Spain; Servicio de Virosis Respiratorias INEI-ANLIS Carlos G. Malbran,
oo Argentina; Shiga Prefectural Institute of Public Health, Japan; Shimane Prefectural Institute of
mo Public Health and Environmental Science, Japan; Shizuoka City Institute of Environmental
unn Sciences and Public Health | Japan; Shizuoka Institute of Environment and Hygiene, Japan;
uz  Singapore General Hospital, Singapore; Sorlandet Sykehus HF, Dept. of Medical Microbiology,
mz Norway; South Carolina Department of Health, United States; South Dakota Public Health
ms  Lab, United States; Southern Nevada Public Health Lab, United States; Spokane Regional
ms Health District, United States; St. Judes Childrens Research Hospital, United States; St. Olavs
me Hospital HF, Dept. of Medical Microbiology, Norway; State Agency, Infectology Center of
ur  Latvia, Latvia; State of Hawaii Department of Health, United States; State of Idaho Bureau
uis  of Laboratories, United States; State Research Center of Virology and Biotechnology Vector,
mo Russian Federation; Statens Serum Institute, Denmark; Stavanger Universitetssykehus, Avd. for
m20  Medisinsk Mikrobiologi, Norway; Subdireccion General de Epidemiologia y Vigilancia de la Salud,
uz  Spain; Subdireccin General de Epidemiologa y Vigilancia de la Salud, Spain; Swedish Institute
uz for Infectious Disease Control, Sweden; Swedish National Institute for Communicable Disease
23 Control, Sweden; Taiwan CDC, Taiwan; Tan Tock Seng Hospital, Singapore; Tehran University
2 of Medical Sciences, Iran; Tennessee Department of Health Laboratory-Nashville, United States;
u2s  Texas Childrens Hospital, United States; Texas Department of State Health Services, United
ue  States; Thai National Influenza Center, Thailand; Thailand MOPH-U.S. CDC Collaboration
uz (IEIP), Thailand; The Nebraska Medical Center, United States; Tochigi Prefectural Institute
s of Public Health and Environmental Science, Japan; Tokushima Prefectural Centre for Public
m9  Health and Environmental Sciences, Japan; Tokyo Metropolitan Institute of Public Health,
up Japan; Tottori Prefectural Institute of Public Health and Environmental Science, Japan; Toyama
un  Institute of Health, Japan; U.S. Air Force School of Aerospace Medicine, United States; U.S.
uz2  Naval Medical Research Unit No.3, Egypt; Uganda Virus Research Institute (UVRI), National
u3  Influenza Center, Uganda; Universidad de Valladolid, Spain; Universit Cattolica del Sacro
us  Cuore, Italy; Universitetssykehuset Nord-Norge HF, Norway; University Malaya, Malaysia;
uss  University of Florence, Italy; University of Genoa, Italy; University of Ghana, Ghana; University
uss  of Michigan SPH EPID, United States; University of Parma, Italy; University of Perugia, Italy;
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u  University of Pittsburgh Medical Center Microbiology Lab, United States; University of Sarajevo,
ms  Bosnia and Herzegovina; University of Sassari, Italy; University of the West Indies, Jamaica;
use  University of Vienna, Austria; University of Virginia, Medical Labs/Microbiology, United
o States; University Teaching Hospital, Zambia; UPMC-CLB Dept of Microbiology, United States;
una US Army Medical Research Unit - Kenya (USAMRU-K), GEIS Human Influenza Program,
ne  Kenya; USAMC-AFRIMS Department of Virology, Cambodia; Utah Department of Health,
a3 United States; Utah Public Health Laboratory, United States; Utsunomiya City Institute of
mas  Public Health and Environment Science, Japan; VACSERA, Egypt; Vermont Department of
s Health Laboratory, United States; Victorian Infectious Diseases Reference Laboratory, Australia;
e Virginia Division of Consolidated Laboratories, United States; Wakayama City Institute of
ne  Public Health, Japan; Wakayama Prefectural Research Center of Environment and Public
ue  Health, Japan; Washington State Public Health Laboratory, United States; West Virginia
mg  Office of Laboratory Services, United States; Westchester County Department of Laboratories
uso  and Research, United States; Westmead Hospital, Australia; WHO National Influenza Centre
usi  Russian Federation, Russian Federation; WHO National Influenza Centre, National Institute
sz of Medical Research (NIMR), Thailand; WHO National Influenza Centre, Norway; Wisconsin
us3  State Laboratory of Hygiene, United States; Wyoming Public Health Laboratory, United States;
uss  Yamagata Prefectural Institute of Public Health, Japan; Yamaguchi Prefectural Institute of
uss  Public Health and Environment, Japan; Yamanashi Institute for Public Health, Japan; Yap
uss  State Hospital, Micronesia; Yokohama City Institute of Health, Japan; Yokosuka Institute of
usz - Public Health, Japan
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