

1 **Insights into glycan import by a prominent gut symbiont**

2
3 Declan A. Gray¹, Joshua B. R. White², Abraham O. Oluwole³, Parthasarathi Rath⁴, Amy J.
4 Glenwright¹, Adam Mazur⁴, Michael Zahn⁴, Arnaud Baslé¹, Carl Morland¹, Sasha L. Evans²,
5 Alan Cartmell⁵, Carol V. Robinson³, Sebastian Hiller⁴, Neil A. Ranson², David N. Bolam^{1#}
6 and Bert van den Berg^{1#}

7
8
9
10 ¹Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2
11 4HH, UK.

12
13 ²Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of
14 Leeds, Leeds, LS2 9JT, UK.

15
16 ³Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK.

17
18 ⁴Biozentrum, University of Basel, Basel, Switzerland

19 ⁵Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69
20 7ZB, UK.

21
22 # To whom correspondence should be addressed: bert.van-den-berg@ncl.ac.uk

23 david.bolam@ncl.ac.uk

24 **Abstract**

25 In Bacteroidetes, one of the dominant phyla of the mammalian gut, active uptake of large
26 nutrients across the outer membrane is mediated by SusCD protein complexes via a “pedal
27 bin” transport mechanism. However, many features of SusCD function in glycan uptake remain
28 unclear, including ligand binding, the role of the SusD lid and the size limit for substrate
29 transport. Here we characterise the β 2,6 fructo-oligosaccharide (FOS) importing SusCD from
30 *Bacteroides thetaiotaomicron* (Bt1762-Bt1763) to shed light on SusCD function. Co-crystal
31 structures reveal residues involved in glycan recognition and suggest that the large binding
32 cavity can accommodate several substrate molecules, each up to \sim 2.5 kDa in size, a finding
33 supported by native mass spectrometry and isothermal titration calorimetry. Mutational studies
34 *in vivo* provide functional insights into the key structural features of the SusCD apparatus and
35 cryo-EM of the intact dimeric SusCD complex reveals several distinct states of the transporter,
36 directly visualising the dynamics of the pedal bin transport mechanism.

37

38 **Introduction**

39 The human large intestine is home to a complex microbial community, known as the gut
40 microbiota, which plays a key role in host biology¹⁻³. One such role is to mediate the breakdown
41 of complex glycans which would otherwise be unavailable to the host because the human
42 digestive tract lacks the necessary enzymes⁴⁻⁷. The products of this anaerobic glycan
43 metabolism are short chain fatty acids which provide a range of both localised and systemic
44 health benefits to the host^{8,9}. In the colon, the microbiota is dominated by two bacterial phyla,
45 the Gram-negative *Bacteroidetes* and Gram-positive *Firmicutes*^{1,10}. The *Bacteroidetes* are
46 glycan generalists and individual species often have the capacity to utilise a wide diversity of
47 polysaccharides from plant, microbial and host sources^{7,11,12}. The glycan-degrading apparatus
48 in *Bacteroidetes* is encoded by co-regulated gene clusters known as polysaccharide utilisation
49 loci (PULs), with each PUL encoding all of the proteins required for the acquisition and
50 degradation of a specific glycan^{7,13}. For example, the model gut symbiont *Bacteroides*
51 *thetaiotaomicron* (*B. theta*) has 88 predicted PULs¹⁴, although only a limited number have
52 been characterised¹². Most glycan degradation occurs intracellularly, and import of the
53 substrate molecules across the OM is mediated by a class of PUL-encoded TonB-dependent
54 transporters (TBDTs) known as SusCs (we propose to re-purpose the term “Sus” for
55 saccharide uptake system rather than starch utilisation system)^{7,12,13,15}. SusC proteins are
56 unique amongst TBDTs in that they are tightly associated with a SusD substrate binding
57 lipoprotein¹⁵⁻¹⁷ (Fig. 1a). Recently we showed that SusCD complexes mediate substrate
58 uptake via a “pedal bin” mechanism^{15,17}. The SusC transporter forms the barrel of the bin,

59 while SusD sits on top of the barrel, opening and closing like a lid to facilitate substrate binding.
60 Previous structures of loaded SusCD complexes revealed a bound ligand which was
61 completely encapsulated by the closed pedal bin, indicating that SusCD transporters may
62 have a size limit for transport^{15,17}. An investigation on the prototypical SusCD system revealed
63 that a mutant strain lacking the surface endo-amylase preferentially utilised malto-
64 oligosaccharides with a degree of polymerisation (DP) of ~5-16¹⁸, suggesting this is the
65 preferred size range imported by the Bt3701-02 SusCD transporter. Direct evidence for this
66 notion is lacking, however, and this issue has not been explored for any other Sus systems¹².
67 Furthermore, many other key features of SusCD function remain unclear, including the role of
68 the SusD lid and other conserved structural elements, as well as the identity of the glycan
69 recognition elements of both SusC and SusD.

70

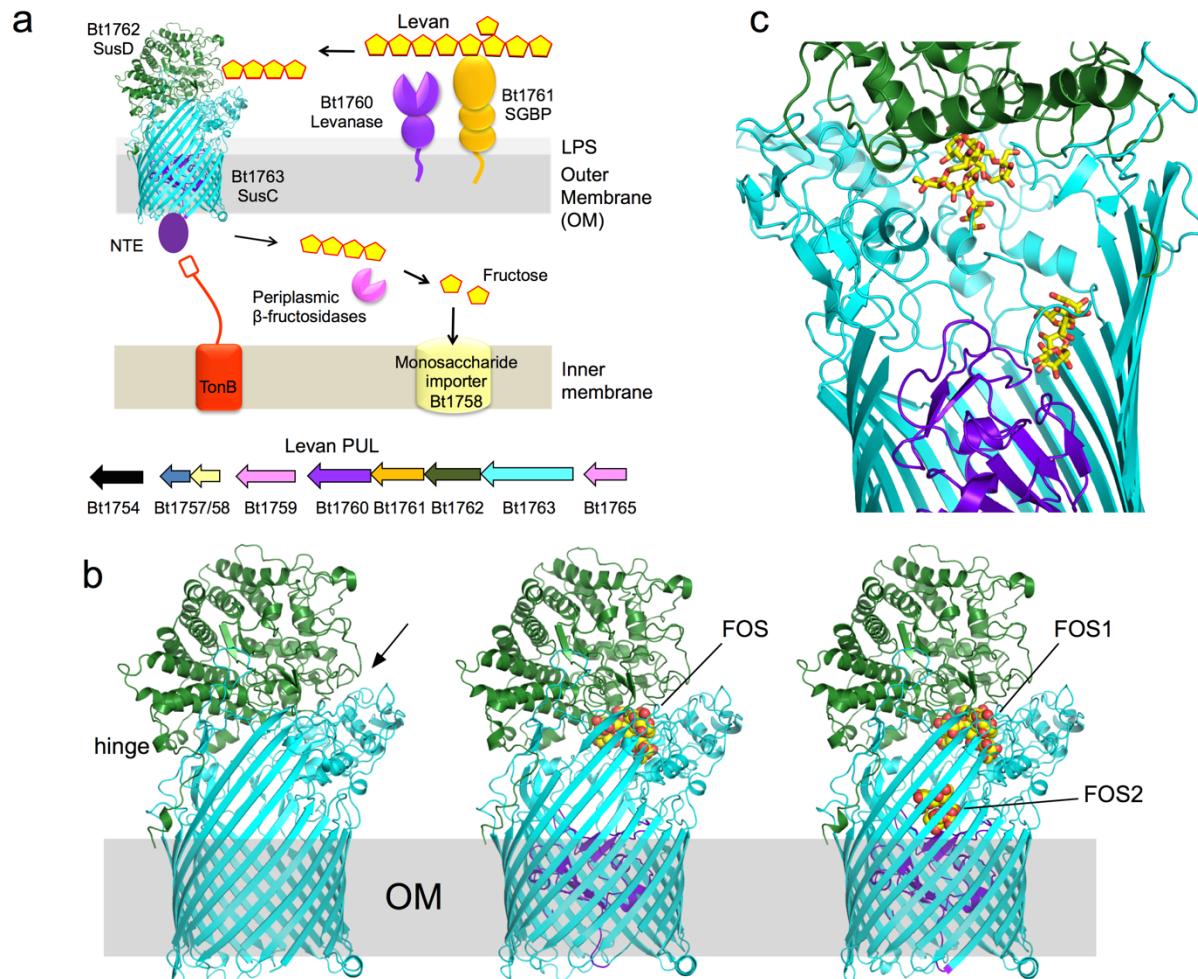
71 One example of a typical PUL is the *B. theta* levan utilisation locus, spanning Bt1754-Bt1765¹⁹.
72 Levan is a fructan polysaccharide comprised of β 2,6-linked fructose units, with occasional
73 β 2,1 fructose decorations and is produced mainly by bacteria as an exopolysaccharide, but
74 also by some cereal plants such as wheat^{20,21}. For the levan utilisation system, the cell-surface
75 components are Bt1760 (a GH32 endo-levanase), Bt1761 (a surface glycan binding protein;
76 SGBP), Bt1762 (SusD) and Bt1763 (SusC)^{15,19,22} (Fig. 1a). The cell surface levanase Bt1760
77 and glycan binding proteins (Bt1761 and Bt1762) have been shown to be specific for levan,
78 with no activity against, or binding to, β 2,1-linked inulin-type fructans that are common to many
79 plants^{19,23}.

80

81 In this study we characterise binding and uptake of β 2,6 fructo-oligosaccharides (FOS) by the
82 Bt1762-63 SusCD transporter. Co-crystal structures of the closed complex with bound glycans
83 reveal the residues involved in substrate recognition and suggest that the large binding cavity
84 can contain several substrate molecules, each up to ~2.5 kDa in size, a finding supported by
85 native mass spectrometry and isothermal titration calorimetry. Mutational studies *in vivo*
86 provide insights into the key structural features of the SusCD apparatus and cryo-EM of the
87 intact SusC₂D₂ complex reveals several distinct states of the transporter, *i.e.* open-open, open-
88 closed and closed-closed. These structures directly visualise the dynamics of the pedal bin
89 mechanism and suggest that the individual SusCD complexes function independently of each
90 other. Taken together, these results provide important insights into the mechanism of glycan
91 import by SusCD complexes of dominant gut bacteria.

92

93


94

95

96 **Results**

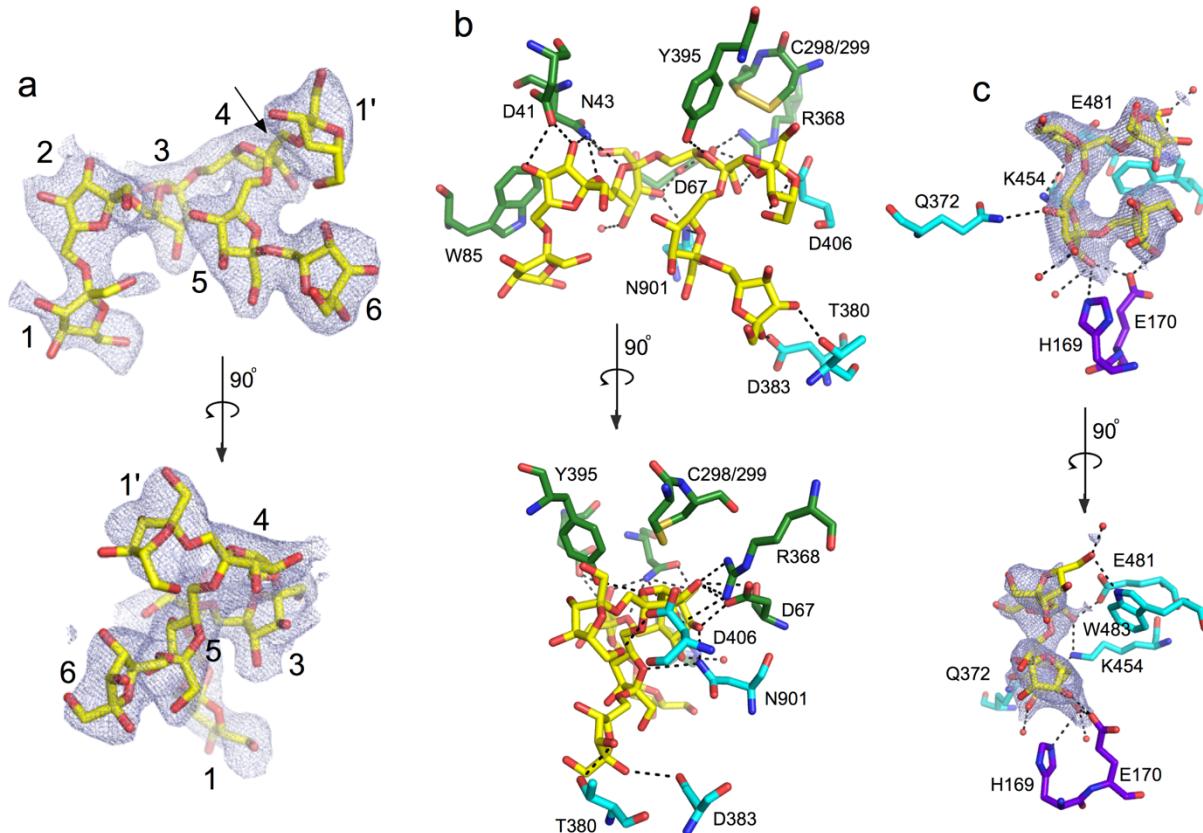
97 **A FOS co-crystal structure reveals SusCD residues involved in ligand binding**

98 In the *B. theta* levan PUL, the periplasmic enzymes are GH32 exo-acting fructosidases that
99 release fructose from the imported β 2,6 FOS (Fig. 1a)^{19,22}. The fructose is recognised by the
100 periplasmic domain of the PUL sensor-regulator BT1754, which upregulates expression of the
101 PUL¹⁹. Thus, by growing *B. theta* on fructose, large amounts of the Bt1762-63 transporter can
102 be obtained for structural work¹⁵.

103
104 **Figure 1 Structures of Bt1762-63 in the presence of β 2,6 FOS.** **a**, Schematic overview of
105 the *B. theta* levan Sus apparatus (top), encoded by the PUL spanning Bt1754-65 (bottom).
106 NTE is the N-terminal extension of Bt1763. **b**, Cartoon representations of Bt1762-63 without
107 ligand (left panel; PDB ID 6Z8I), and Bt1762-63 with longer (middle; PDB ID 6Z9A) and shorter
108 FOS (right; PDB ID 9ZAZ). Bt1762 (SusD) is coloured green and Bt1763 (SusC) cyan. The
109 plug domain of Bt1763 is coloured purple. The bound FOS molecules are shown as space-
110 filling models, with oxygens coloured red and carbons yellow. The N-terminal hinge at the back
111 of BT1762, allowing opening of the transporter at the front (arrow) is labelled. **c**, Close-up of
112 the two FOS binding sites inside the BT1762-63 binding cavity. FOS molecules are shown as
113 stick models. X-ray structural figures were made with Pymol (<https://pymol.org/2/>).

114
115
116 A previous crystal structure of Bt1762-63 obtained in the absence of levan substrate revealed
117 a dimeric (SusC_2D_2) closed state in which the SusC TonB-dependent transporter (Bt1763)

118 lacked the plug domain as a result of proteolytic cleavage¹⁵. We have now obtained a structure
119 without substrate using a preparation that did not suffer from proteolysis (Fig. 1b, left panel;
120 Supplementary Table 1). Interestingly, while this structure is very similar to that reported
121 earlier, density for the plug domain is weak but clearly present. While this suggests that the
122 plug has been ejected from the barrel in the majority of transporter molecules in the crystal,
123 the relatively poor fit of the density with the native plug domain suggests increased dynamics
124 of the *in situ* plug domain in the subset of transporters that contain a plug (Extended Data Fig.
125 1).

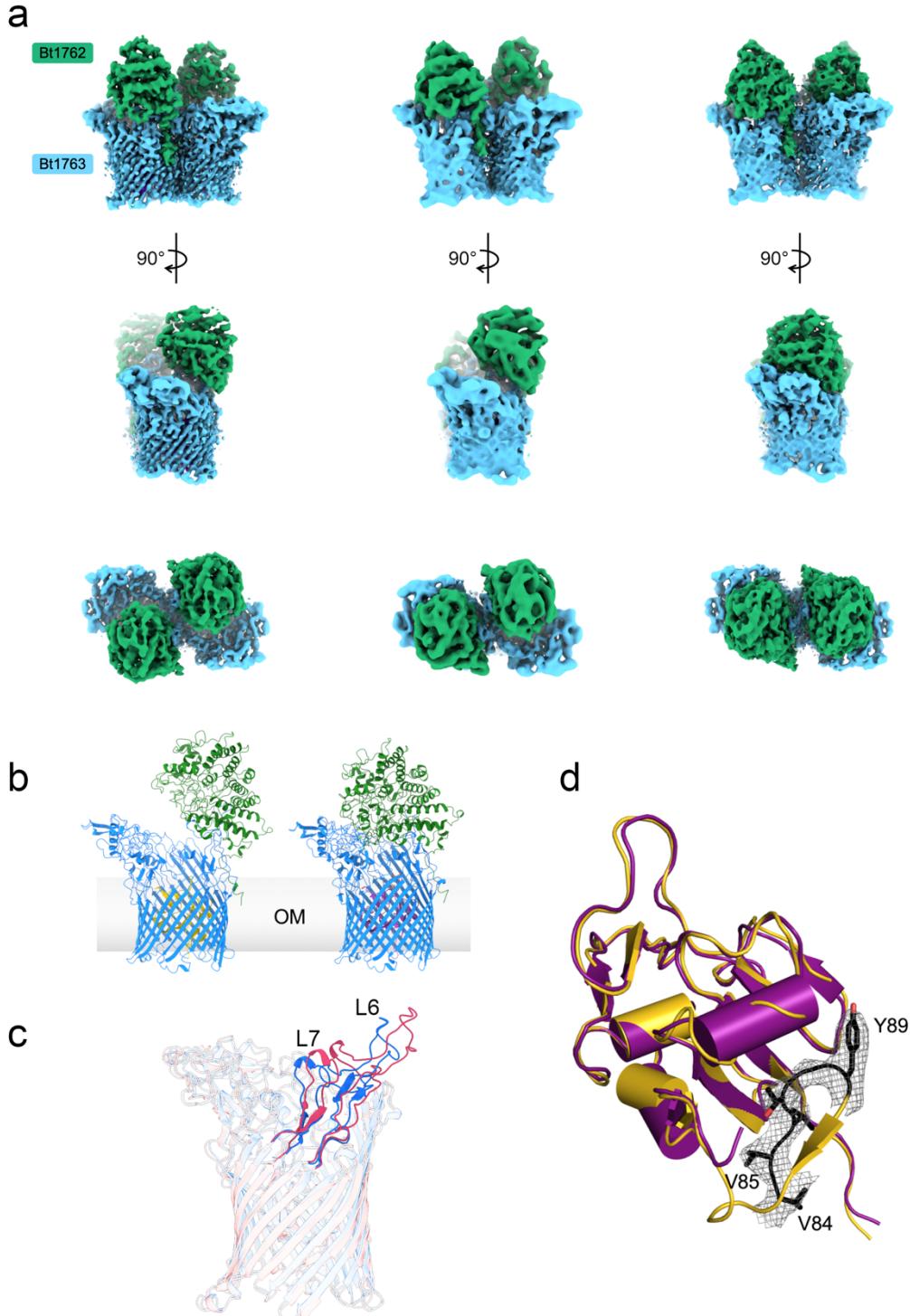

126

127 To provide further insight into glycan recognition and transport by SusCD complexes, we next
128 used the same protein preparation to determine a co-crystal structure using data to 3.1 Å
129 resolution with β 2,6-linked FOS. The FOS were generated by partial digestion of levan by
130 Bt1760 endo-levanase, followed by size exclusion chromatography (SEC) and analysis by
131 thin-layer chromatography (TLC) and mass spectrometry (MS; Methods). In this structure,
132 containing FOS with a wide range of sizes (~DP15-25), the plug domain is present with normal
133 occupancy, suggesting that it is more stable in the presence of substrate (Fig. 1b, middle panel
134 and Extended Data Fig. 1). Like the oligopeptide ligands in the RagAB and Bt2261-64
135 structures^{15,17}, the FOS is bound at the top of a large, solvent-excluded cavity formed by the
136 Bt1762-63 complex. Density for seven β 2,6-linked fructose units can unambiguously be
137 assigned in the structure and this was designated as the primary binding site (Fig. 2a). The
138 bound oligosaccharide is compact and has a twisted, somewhat helical conformation. The
139 ligand makes numerous polar contacts with side chains of residues in both Bt1762 and Bt1763
140 (Fig. 2b). For Bt1762 (SusD) these residues are D41, N43, D67, R368 and Y395, and for
141 Bt1763 (SusC) T380, D383, D406 and N901. In addition, prominent stacking interactions are
142 present between the ring of fructose 2 (Frc 2) and W85 of Bt1762. Interestingly, a β 2,1
143 decoration is present in the bound ligand at Frc 4, and the branch point interacts with the
144 extensive non-polar surface provided by the vicinal disulphide between Cys298 and Cys299
145 of Bt1762 (Fig. 2b).

146

147 We also determined a co-crystal structure of Bt1762-63 with shorter β 2,6 FOS (~DP6-12)
148 using data to 2.69 Å resolution (Supplementary Table 1). Strikingly, besides having very
149 similar density for glycan at the principal binding site (FOS1; Fig 1b, right panel), this structure
150 contains a second ligand molecule at the bottom of the SusC cavity, contacting the plug
151 (FOS2; Fig 1b, right panel, and Fig. 1c). Density for four fructose units can be seen in this
152 secondary binding site, and polar contacts are made with Bt1763 residues Q372, K454, E481
153 and W483 in the barrel wall, and with H169 and E170 in the plug domain (Fig. 2c). The fit to

154 the density is better for a 3-mer with a β 2,1 decoration compared to a β 2,6-linked 4-mer,
155 suggesting the transporter may have some specificity for FOS with a β 2,1 decoration, or
156 alternatively, that *Erwinia* levan contains extensive β 2,1 decorations such that most of the
157 levanase products are branched. The relatively small size of the co-crystallised FOS,
158 combined with the relative orientation and the large distance between FOS1 and FOS2 (> 20
159 Å; Fig. 1c), makes it highly plausible that there are two ligand molecules in the Bt1762-63
160 cavity. The co-crystal structure with the longer FOS also shows some density at the secondary
161 site, but it is of insufficient quality to allow model building, perhaps due to the lower resolution.



162
163
164 **Figure 2 FOS densities and interactions with the transporter.** **a**, 2Fo-Fc density (contoured
165 at 1.0 σ , carve = 2) of FOS1 bound in the primary binding site rotated by 90 degrees. The
166 glycan branch point is indicated with an arrow. **b**, Close-ups of the principal FOS binding site
167 with residues making polar interactions with the substrate shown as stick models and coloured
168 as in **b**. Polar interactions are shown as dashed lines, and water molecules as red spheres.
169 For both Bt1762 and Bt1763, residue numbering is for the mature protein without the signal
170 sequence, *i.e.* starting at C19 for Bt1762 and G26 for Bt1763. **c**, Close-ups of the FOS2
171 binding site with polar interactions indicated. Plug residues are coloured purple.
172

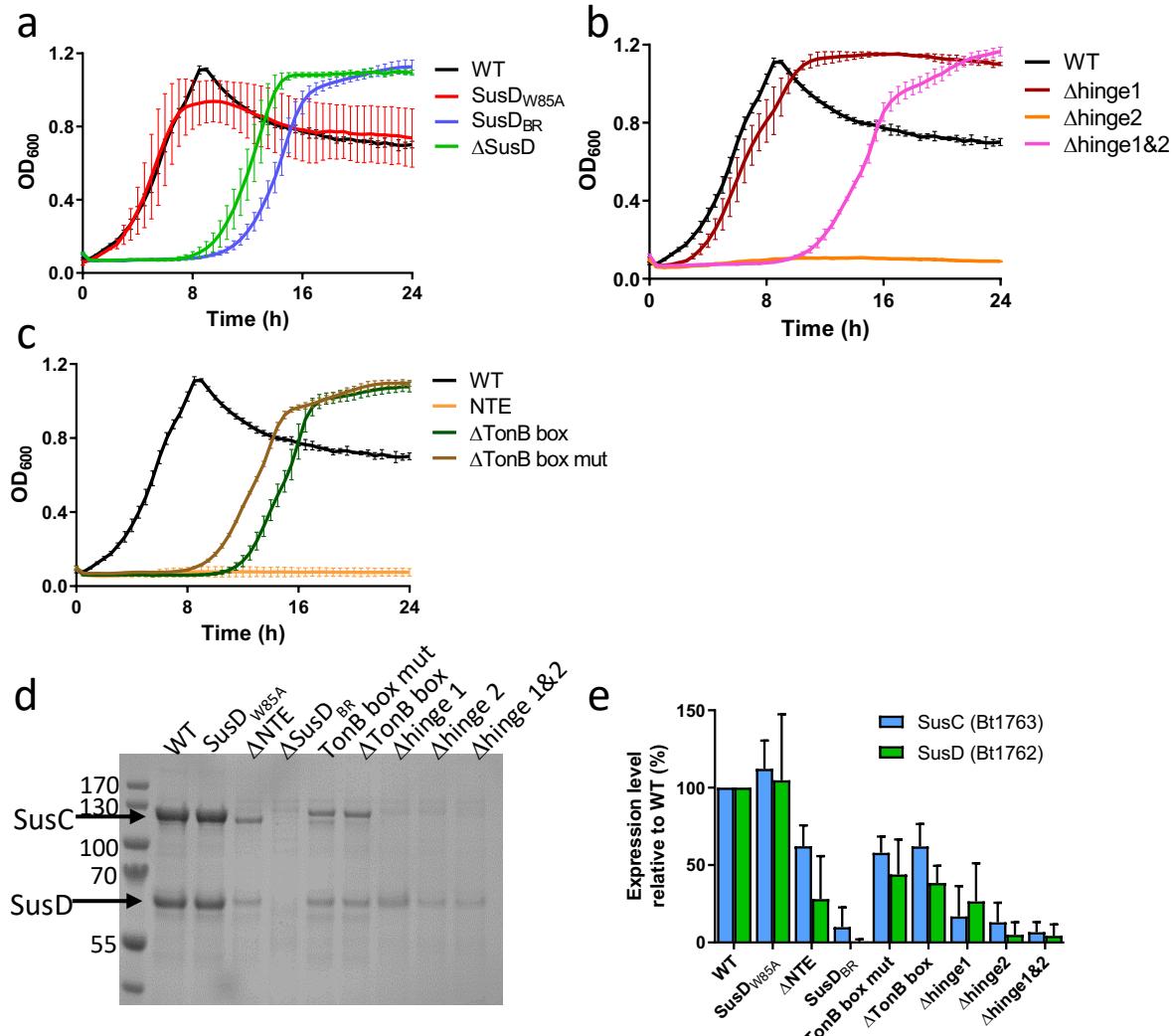
173 **Single-particle cryo-EM reveals different conformational states of Bt1762-63**

174 The very similar crystal structures of Bt1762-63 in the absence and presence of FOS appear
175 at odds with the dynamics proposed in the pedal bin transport model¹⁵, but are likely explained
176 by the fact that crystallisation selects for compact, stable states. To visualise potential different
177 conformational states, we used single-particle cryo-EM on detergent-solubilised apo-Bt1762-

178 63. Following initial 2D classification, it is clear that Bt1762-63 is dimeric in solution,
179 demonstrating that the dimers in the crystal structures¹⁵ are not artefacts. Strikingly, several
180 distinct conformations of the SusC₂D₂ complex are present in a single dataset, and after further
181 classification steps, three dominant states were identified. Following 3D reconstruction,
182 electron density maps were obtained at resolutions allowing rigid-body placement and
183 refinement of individual protomers. This yielded structures corresponding to the three possible
184 combinations of open and closed dimeric transporters: closed-closed (CC; 4.2 Å), open-closed
185 (OC; 4.7 Å) and open-open (OO; 3.9 Å) (Fig. 3 and Supplementary Table 2). With the
186 exception of a few Bt1763 loops (L6 and L7; Fig. 3c) and the Bt1762 segment following the
187 lipid anchor that serves as a pivot around which Bt1762 moves upon lid opening, the
188 conformational changes between the three states correspond to rigid body movements of
189 Bt1762. In contrast to the recently characterised RagAB peptide transporter from
190 *Porphyromonas gingivalis*¹⁷, the Bt1762-63 cryo-EM dataset shows evidence of intermediate
191 states of lid opening (Extended Data Fig. 2), suggesting the presence of a number of minima
192 in the energy landscape for opening and closing of the transporter. Interestingly, the presence
193 of the plug domain in the interior of the Bt1763 barrel in solution is strictly correlated with the
194 open vs. closed state of the transporter; only open states contain a plug domain, regardless
195 of the state of the SusC₂D₂ dimer (Extended Data Fig. 3). Given that there are no direct
196 contacts between Bt1762 and the Bt1763 plug domain, this suggests that the transition from
197 the open to the closed state generates conformational changes in the barrel of Bt1763, leading
198 to displacement of the plug domain from the barrel *in vitro*. Superposition of the crystal
199 structures of plug-less and complete transporters indeed show non-uniform displacements of
200 ~2-2.5 Å for C_α atoms of barrel wall residues, which is substantially more than the coordinate
201 errors of the structures (~0.5 Å), showing that the barrels have subtly different shapes
202 (Extended Data Fig. 4).

203

204 **Figure 3 Dynamics of pedal bin opening revealed by single particle cryo-EM. a,** Electron
205 density filtered by local-resolution for Bt1762-63 viewed from the OM plane for the OO state
206 (left panels), OC state (middle panels) and CC state (right panels). The bottom panels show
207 views from the extracellular environment. **b,** Cartoon models of the individual open (left) and
208 substrate-bound, closed (right) SusCD transporters structures derived by cryo-EM and X-ray
209 crystallography, respectively. For clarity, transporters are shown as monomers. **c,**
210 Superposition of open (red) and closed states (blue) of Bt1763, with both hinge loops L6 and
211 L7 highlighted. **d,** Overlay of plug domains from open (gold) and closed (purple), substrate-
212 bound forms of the transporter. The Ton box ($^{82}\text{DEVVVTG}^{88}$) is visible only in the open state


213 and is colored black, with sidechains displayed as sticks. The equivalent region in the closed
214 structure is not visible and is therefore assumed to be disordered and likely protrudes from the
215 barrel, leaving the Ton box accessible to TonB. The visible density for the N-terminus starts
216 at residue 96 of the "closed" plug and at residue 84 for the "open" plug. Cryo-EM figures were
217 made with ChimeraX⁵².

218
219 The established model of TonB-dependent transport²⁴ assumes that extracellular substrate
220 binding to a site that includes residues from the plug domain induces a conformational change
221 that is transmitted through the plug domain of the TBDT. This results in disordering of its N-
222 terminal Ton box and increased accessibility of the Ton box for interaction with the C-terminal
223 domain (CTD) of TonB. In the open, apo state of the SusCD transporter as observed via cryo-
224 EM, the Ton box of Bt1763 (82⁸²DEVVVTG⁸⁸) is visible, tucked away inside the barrel, and
225 interacts with the body of the plug (Fig. 3d). By contrast, the density in the crystal structure of
226 the FOS-bound BT1763 starts only at L97, indicating that the Ton box is disordered and would
227 likely be exposed to the periplasmic space. Thus, our structures for Bt1762-63 are consistent
228 with the proposed behaviour of the Ton box upon ligand binding by the transporter.

229
230 **Structure-function studies of Bt1762-63**

231 *SusD mutants*: The observed interactions of FOS1 with Bt1762 SusD in the co-crystal
232 structures are in excellent agreement with previous ITC studies of levan binding to
233 recombinant Bt1762 variants with single substitutions of aromatic residues and cysteines (Fig.
234 2b)¹⁵. The mutations W85A and C298A abolished *in vitro* levan binding by Bt1762, whereas
235 the affinity of Y395A was ~ 6-fold weaker than that of wild-type (WT). Single substitutions of
236 five other aromatic and cysteine residues remote from the ligand binding site did not affect
237 levan binding¹⁵. To assess how single substitutions that abolish levan binding to Bt1762 *in*
238 *vitro* affect the ability of *B. theta* to utilise levan *in vivo*, a W85A mutant strain was constructed
239 and growth was analysed using 0.5 % *Erwinia* levan as the sole carbon source. Surprisingly,
240 there was no growth defect observed for the W85A strain (Fig. 4a), which, combined with its
241 WT levels of expression (Figs. 4d,e), indicates this variant is fully functional and that care is
242 required in drawing conclusions from *in vitro* binding studies, especially of the SusD protein in
243 isolation. Clearly, the context of the intact transporter ensures that the effects of SusD point
244 mutations may be much less dramatic *in vivo*. When 7 residues in Bt1762 involved in direct
245 interaction with FOS1 (Fig. 2b; green sticks; D41, N43, D67, W85, C298, R368 and Y395)
246 were changed to alanine at the same time, the resulting strain (SusD_{BR}) grew only after a
247 prolonged lag phase of approximately 8 h, which is comparable to a strain lacking Bt1762
248 (Δ SusD; Fig. 4a). However, the OM levels of the SusD_{BR} mutant are much lower than that for
249 WT and W85A strains (Figs. 4d,e), providing an explanation for the observed growth defects.
250 Given these results for Bt1762 mutants, we opted not to investigate the effect of Bt1763

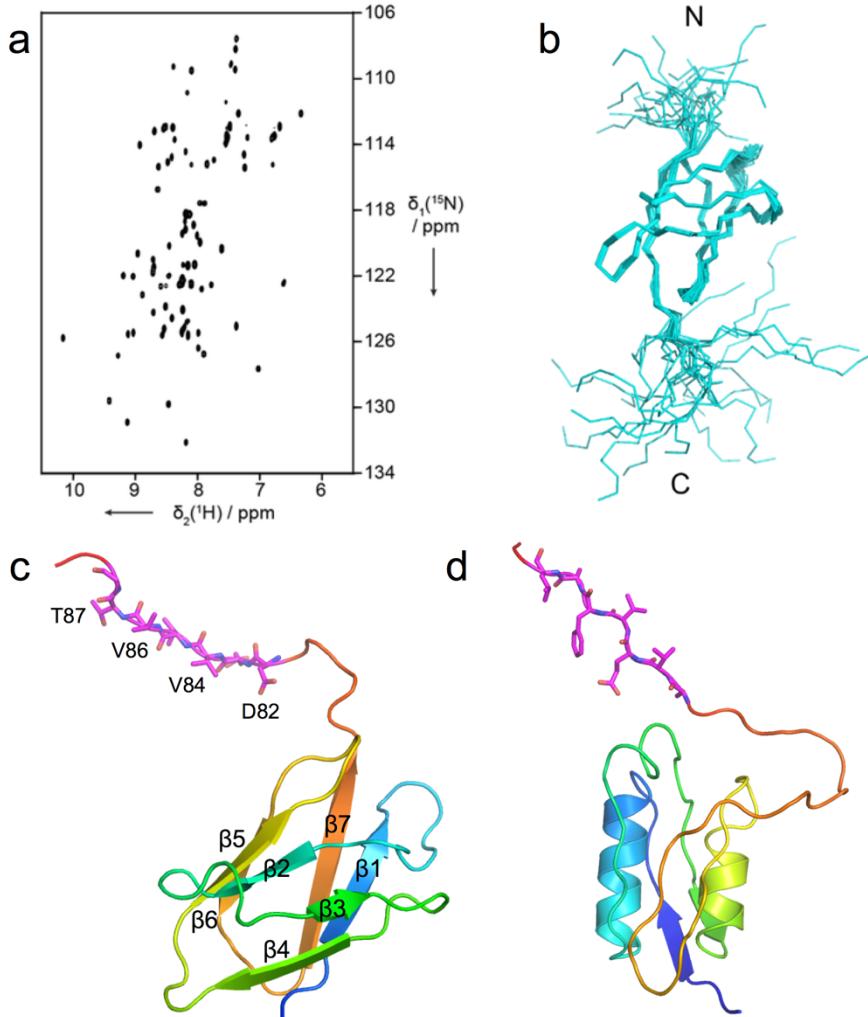
251 binding residue mutations but instead focused on other potentially important functional regions
252 of the transporter.

253
254 **Figure 4 Structure-function studies of the Bt1762-63 SusCD levan importer. a-c,** Growth
255 curves on levan of Bt1762-SusD mutant strains (a), Bt1763-SusC hinge loop mutant strains
256 (b), and Bt1763 Δ NTE and TonB box mutant strains (c). WT = wild type strain (with His6 tag
257 on C-terminus of Bt1762). Growths were performed in triplicate on at least two separate
258 occasions. d, Representative SDS-PAGE gel (n = 3) of IMAC-purified Bt1762-63 complexes
259 from OM fractions of WT (Bt1762-his strain) and mutant strains grown on MM-fructose. The
260 far left lane is MW marker with the sizes shown in kDa. e, Relative expression levels quantified
261 from band intensities on SDS-PAGE gels using ImageJ (n = 3; means \pm S.D are shown). Band
262 intensities of WT Bt1762 and Bt1763 were set to 100 %.

263
264 *Hinge region mutants:* Loop L7 of Bt1763, identified as a ‘hinge’ loop in previous simulations
265 of Bt2263-64¹⁶ and hereafter named hinge1, appears likely to be important for Bt1762 lid
266 opening (Fig. 1b and Fig. 3c). In addition, we identified from the cryo-EM structures a second
267 loop in Bt1763, L6 (Fig. 3c), as potentially important for lid opening (designated hinge2). Hinge
268 1 and 2 change conformation substantially during lid opening and are responsible for the

269 majority of interactions between Bt1762 and Bt1763 in the open state (Fig. 3c). The deletion
270 of hinge1 (Methods) caused little to no growth defect (Fig. 4b), which is surprising given that
271 Bt1762-63_{Δhinge1} expression is barely detectable (Figs. 4d,e). By contrast, the Δhinge2 strain
272 showed a complete lack of growth during the 24 h monitoring period, but expression of this
273 mutant was also very low (Figs. 4b,d,e). Surprisingly, a strain in which both hinges were
274 deleted (Δhinge1&2), grew similarly to the ΔSusD strain, *i.e.* after a ~8 hr lag phase (Fig. 3b).

275


276 *TonB box and N-terminal extension mutants:* SusC-like proteins are predicted to be TonB-
277 dependent transporters (TBDTs), but direct evidence for this is lacking. We therefore
278 examined the importance of the putative TonB box located at the N-terminus of Bt1763. In
279 addition, SusC proteins have an N-terminal extension (NTE) domain of ~9 kD (Pfam 13715,
280 Carboxypeptidase D regulatory-like domain) that is absent in other types of TBDTs and
281 precedes the TonB box, but has an unknown function (Fig. 1a)³². We constructed two mutant
282 *B. theta* strains in which the TonB box was either deleted (residues ⁸¹VDEVVV⁸⁶; ΔTonB box)
283 or mutated to all-Ala (TonB box mut; Methods), and a strain in which the complete NTE was
284 deleted (residues 3-76; ΔNTE), but with the Ton box intact. Growth of the mutants on levan as
285 the sole carbon source revealed that both TonB box mutant strains had similar growth defects
286 to that of ΔSusD, and were expressed at reasonable levels (~50% of WT; Figs. 4c-e),
287 demonstrating that Bt1763 is a bona-fide TBDT. Remarkably, the ΔNTE strain shows no
288 detectable growth, despite expression levels of ~25-50% that of WT, indicating an important
289 role for this domain in transporter function.

290

291 **Solution NMR structure shows an Ig-like fold for the NTE**

292 The striking, dominant-negative effect of the ΔNTE mutant on growth made it important to
293 determine the structure of the isolated NTE, since it is invisible in the X-ray structures and has
294 very weak density in the cryo-EM structures. Crystallisation trials proved unsuccessful, and
295 we therefore solved the structure by high-resolution NMR spectroscopy, using uniformly
296 ¹⁵N, ¹³C-labelled protein produced in *E. coli* (Extended Data Fig. 5). A 2D [¹⁵N, ¹H]-HSQC
297 spectrum of the NTE showed good chemical shift dispersion and the expected number of
298 resonances (Fig. 5a). Complete sequence-specific assignments for the backbone resonances
299 were then obtained using a combination of 2D and 3D experiments (Supplementary Tables 3
300 and 4, Extended Data Fig. 5). Backbone chemical shifts were compared to the random coil
301 values, resulting in the identification of 7 β-strands. A total of 964 distance constraints were
302 obtained from 3D NOESY spectra, and served as input for structure calculations in CYANA.
303 The final ensemble of 20 lowest energy structures had an r.m.s.d. of 0.52 Å for the backbone
304 heavy atoms (Fig. 5b, Extended Data Fig. 5 and Supplementary Tables 3 and 4). The NTE

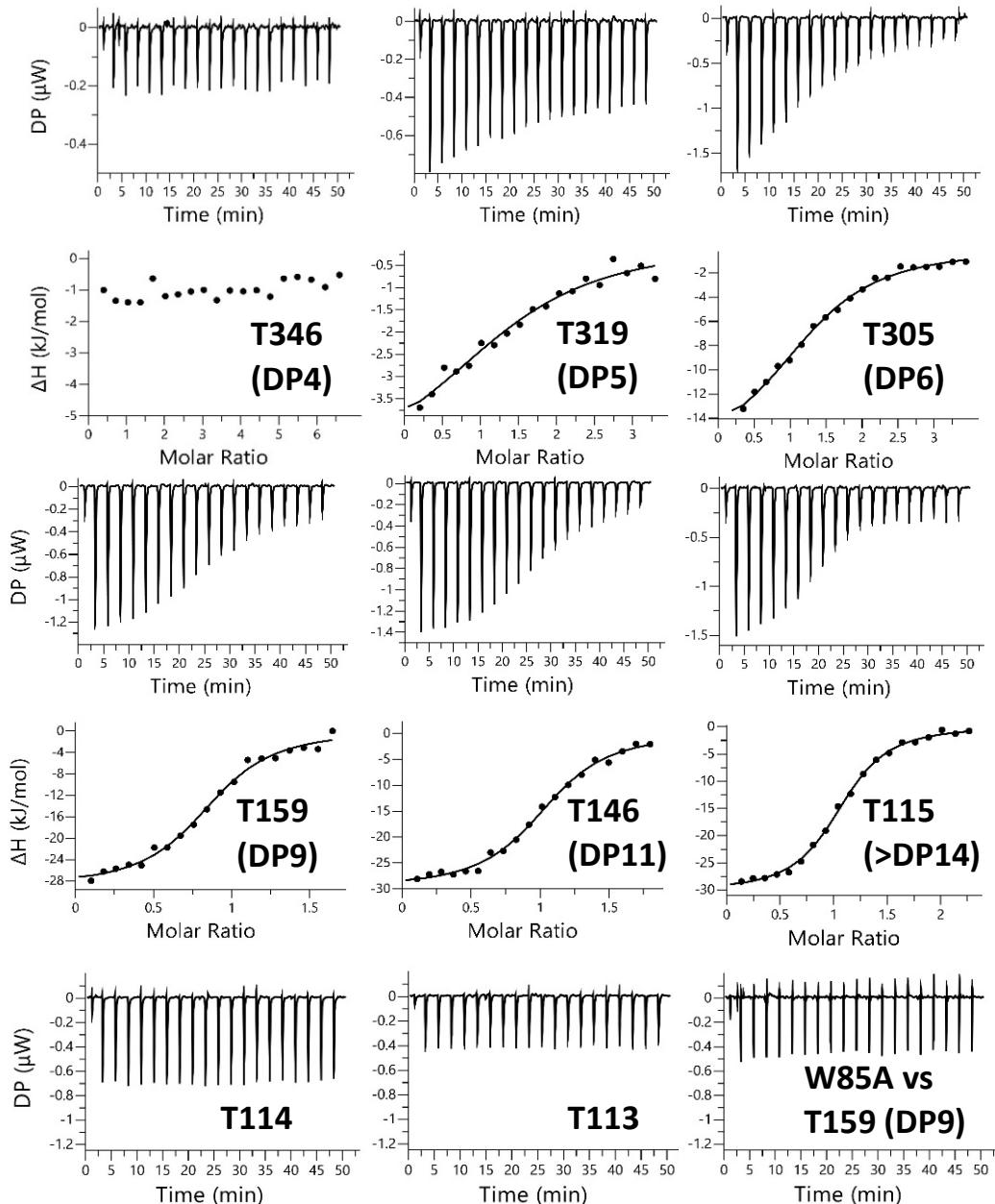
305 structure shows a well-defined core of an Ig-like fold with a 7-stranded barrel (Fig. 5c, left
306 panel). The N-terminus (including the His-tag) and the C-terminus, corresponding to the Ton
307 box, are flexibly unstructured, as evidenced from their random coil chemical shifts and the
308 absence of long-range NOEs (Fig. 5b and Fig. 5c, left panel).

309
310 **Figure 5 Solution NMR structure of the BT1763 NTE shows a 7-stranded barrel.** **a**, 2D
311 $^{15}\text{N}, {^1\text{H}}$ -HSQC spectrum of the NTE. **b**, Ensemble of the 20 lowest energy structures of the
312 NTE presented in stick view for the main chain. The N- and C-termini are labeled. **c**, Lowest-
313 energy NMR structure from the ensemble of **(b)** in ribbon representation, coloured in rainbow
314 mode (N-terminus; blue). **d**, STN domain of *Pseudomonas aeruginosa* FoxA (PDB ID 6I97) in
315 the same coloring mode, for comparison. The Ton boxes of each domain ($^{82}\text{D}\text{E}\text{V}\text{V}\text{V}\text{T}\text{G}^{88}$ in
316 BT1763; based on the alignment with FoxA) is coloured magenta.

317
318 A DALI analysis²⁵ returned a number of structures with significant similarity, the highest of
319 which had a Z-score of 10.2 (Transthyretin-like domain of Carboxypeptidase D, PDB ID 5aq0;
320 Extended Data Fig. 6). However, none of the DALI hits provided any insights into a potential
321 function of the NTE. In Proteobacteria, structures of TBDTs with a different N-terminal domain,
322 designated STN (Pfam 07660), have been reported. This STN domain has a similar size as
323 the NTE and has an established role in signalling, where it interacts directly with an anti-sigma

324 factor in the inner membrane to stimulate TBDT expression in response to the presence of
325 their cognate substrates²⁴. Notably, SusCs from ECF-sigma/anti-sigma controlled PULs also
326 contain STN domains in addition to an NTE domain, with the NTE preceding the STN in all
327 cases²⁶. STN domains in SusCs have also been shown to be involved in anti-sigma signalling,
328 indicating that the NTE domain in SusCs has a different role compared to the STN²⁶.
329 Interestingly, the structure of the FoxA STN in complex with the CTD of TonB shows that the
330 STN is also composed of a small barrel with seven elements, some of which are helical instead
331 of strands (Fig. 5c)²⁷. This similarity suggests that, like the STN, the NTE might interact with a
332 protein in the periplasmic space. In both domains, the Ton box is separated from the domain
333 body and will thus be accessible to binding by the C-terminal domain of TonB. One possibility
334 for a role for the NTE could be to provide interaction specificity for the multiple TonB orthologs
335 present in the *B. theta* genome.

336


337 **Investigation of the size range of FOS import by Bt1762-Bt1763**

338 The co-crystal structures of Bt1762-63 with FOS, as well as the previously published
339 structures of Bt2261-64¹⁵ and RagAB¹⁷, show that ligands are encapsulated within a large,
340 solvent-inaccessible cavity formed by the closure of the SusD lid, strongly suggesting there is
341 a size limit for substrate import. This hypothesis is further supported by previous studies
342 showing that surface endo-acting enzymes are required for growth on large polysaccharides
343 in several Sus^{28,29}. In addition, import of monosaccharides and even small oligosaccharides
344 does not appear to require a functional Sus apparatus, suggesting there may be also be a
345 minimum size limit for transport by SusCD complexes³⁰. To shed light on this issue we used
346 isothermal titration calorimetry (ITC) to investigate the size range of FOS recognised by
347 Bt1762-63. The β 2,6 FOS was produced by digestion of *Erwinia* levan with Bt1760 endo-
348 levanase, followed by separation via size exclusion chromatography (Methods). For
349 estimation of the DP of each oligosaccharide we used both thin-layer chromatography (TLC)
350 and mass spectrometry (MS; Extended Data Fig. 7). While this was effective for FOS with a
351 DP of 4 to ~12, FOS larger than ~DP14 do not move from the origin in TLC, and the MS
352 analysis of FOS larger than ~DP12 proved difficult because of poor ionisation efficiency of
353 longer oligosaccharides. It is however clear that the higher DP FOS fractions contain a wide
354 range of sizes.

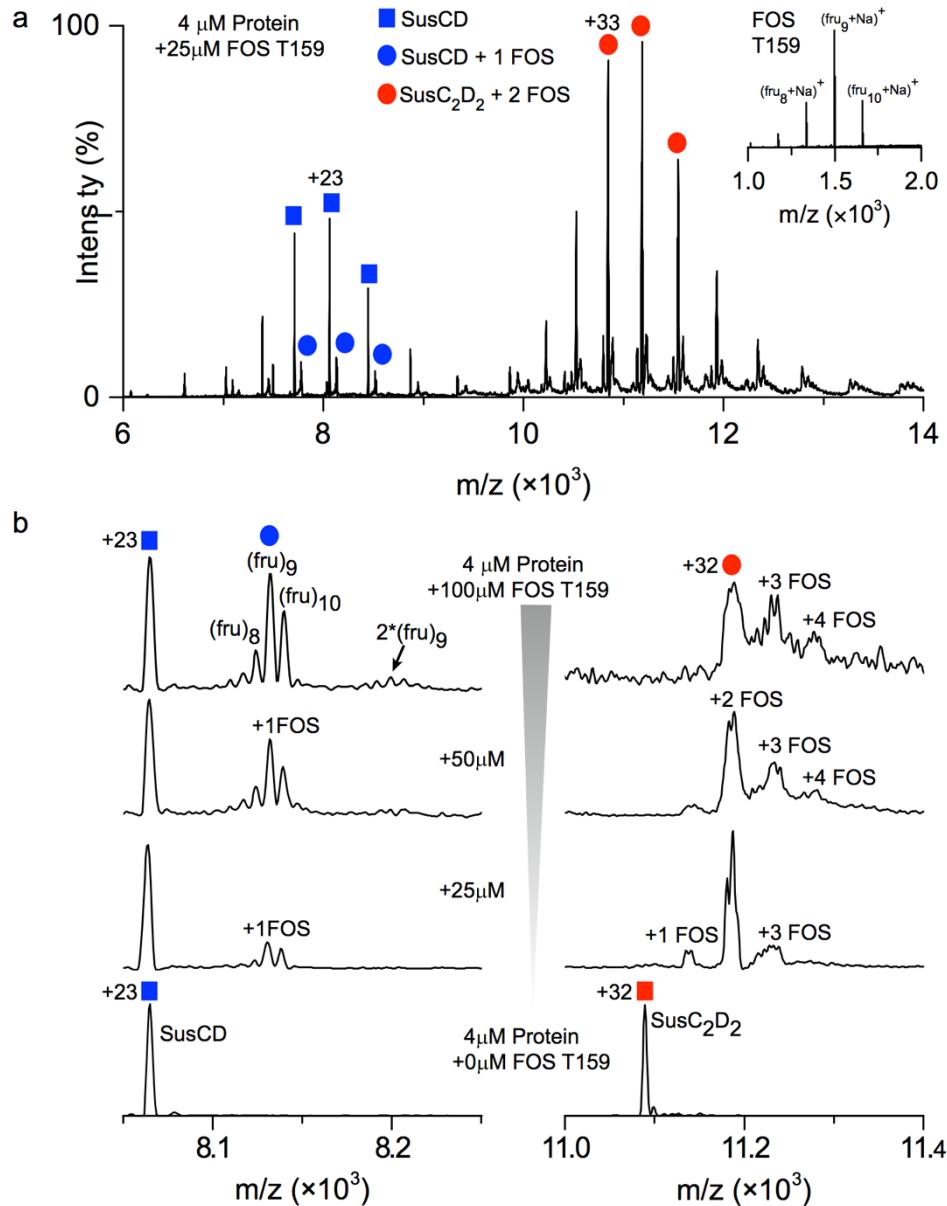
355

356 ITC revealed that Bt1762-63 binds to the majority of FOS examined, with only the tetra-
357 saccharide displaying no affinity for the transporter (Fig. 6, Extended Data Fig. 8 and
358 Supplementary Table 5). For the larger FOS, affinity increased from DP5 to 6 (K_d ~30 and 17
359 μ M, respectively) and plateaued at DP8 (tube 174, T174 K_d ~1 μ M), with Bt1762-63 binding

360 to all FOS between DP8 and at least DP13-14 (T115) with similar affinity. These data are in
361 broad agreement with the co-crystal structures, which show well-defined density for 7 fructose
362 units in the primary binding site, suggesting that these provide the bulk of the binding
363 interactions. Surprisingly, no binding was detected for the FOS in SEC fractions T114 and
364 T113, despite these fractions having similar MS profiles to T115 with a broad range of
365 oligosaccharides present (Fig. 6 and Extended Data Fig. 7). The average MW of the FOS in
366 tube T114 ($M_n > 2666$) is larger than that of T115 ($M_n > 2193$; Extended Data Fig. 7), and it may
367 be that this increase in average size is enough to preclude binding to the transporter.
368 Furthermore, based on the co-crystal structure we can see that at least some, and perhaps
369 all, of the bound *Erwinia* levan-derived FOS has a $\beta 2,1$ decoration, which may influence
370 binding to Bt1762-63. However, it was not possible to identify $\beta 2,1$ decorations in the TLC or
371 MS analysis. Thus, T115 FOS might contain significantly more branched species than T114
372 and this could explain a higher affinity for the T115 fraction. Taken together, however, these
373 data indicate there is both an upper and lower size limit for FOS binding to the Bt1762-63
374 transporter *in vitro*, with the lower limit being DP5 and the upper limit ~DP15. In addition to
375 wild-type Bt1762-63, we also measured binding of ~DP9 FOS to the Bt1762_(W85A)-63 variant
376 (Fig. 6). Surprisingly, no binding is observed for the mutant, even though the Bt1762_(W85A)-63
377 strain grows as well as wild type on levan (Fig. 3a), suggesting that FOS binding by Bt1762 is
378 not essential for Bt1762-63 function *in vivo*.

379

380 **Figure 6 FOS binding to Bt1762-63 analysed by ITC.** β 2,6 FOS fractions from SEC of
381 partially digested *Erwinia* levan were titrated into pure Bt1762-63 SusCD (25 μM or 50 μM) in
382 100 mM Hepes, pH 7.5 containing 0.05 % LDAO. The identity of the fraction used is indicated
383 as is the approximate DP of the main FOS species present in each fraction as determined by
384 MS. The upper parts of each titration show the raw heats of injection and the lower parts the
385 integrated heats fit to a one set of sites model if binding was observed.


386

387

388 We used native mass spectrometry to shed further light on the ligand binding property of the
389 Bt1762-63 complex. For the ligand-free protein, the mass spectrum revealed charge states
390 corresponding to the intact SusC₂D₂ dimeric complex and low intensity peaks assigned to
391 SusCD monomer (Extended Data Fig. 5a). Ligand binding appeared to induce considerable
392 destabilization of the SusC₂D₂ complex as reflected in the higher intensity of monomer peaks
393 in the presence of FOS molecules. Specifically, binding of FOS fractions characterised by

394 DP>14 (T115) and DP>16 (T114) yielded low intensity adducts to the intact SusC₂D₂,
395 consistent with substrate binding for both samples. While this appears surprising, it should be
396 noted that higher ratios of FOS : protein were used in MS compared to ITC (~6-fold vs ~2-fold
397 respectively), providing a possible explanation for the lack of observed binding in ITC for T114.
398 The complexity of the binding pattern in the spectrum is consistent with polydispersity of the
399 T114 and T115 fractions (Extended Data Fig. 9). More useful insights were obtained with the
400 T159 sample, which consists mainly of FOS with 8-10 fructose units (Fig. 7 and Extended
401 Data Fig. 7b). These medium-chain oligosaccharides bind preferentially to the intact SusC₂D₂
402 dimer rather than to the SusCD monomer such that no ligand-free dimer was evident in the
403 spectrum, potentially suggesting some kind of cooperativity for ligand binding in the dimer.
404 Interestingly, the relative proportions of protein-bound FOS mirrored their abundance in the
405 T159 sample (Fig. 7b), supporting the similar affinities of FOS with 8-10 fructose units for
406 Bt1762-63 as measured by ITC (Fig. 6 and Supplementary Table 5). At the higher FOS
407 concentrations, binding of more than one FOS molecule per SusCD transporter was observed
408 (Fig. 7b), confirming the observation from our co-crystal structure that more than one ligand
409 molecule can be present in the binding cavity, at least for the relatively small FOS.
410

411 Finally, we wanted to confirm the upper FOS size limit *in vivo* by using testing growth of a
412 strain lacking the surface endo-levanase BT1760 against FOS of different sizes as the sole
413 carbon source. The Δ 1760 strain was previously reported to lack the ability to grow on levan¹⁹,
414 which would provide another indication that the Bt1762-63 complex cannot import high
415 molecular weight substrates. Surprisingly, however, the growth rate of the Δ 1760 strain on
416 levan from several different sources was similar or only slightly slower than that of the wild
417 type strain (Extended Data Fig. 10). PCR of the Δ 1760 cells taken from stationary phase of
418 the cultures confirmed the deletion of the BT1760 gene from the cells, indicating the phenotype
419 was not due to contamination with wild-type strain (Extended Data Fig. 10). These data
420 suggest that all the levans tested contained enough low DP FOS to allow growth without
421 needing digestion by the surface endo-levanase. It was therefore not possible to determine
422 an upper FOS size limit of the Bt1762-63 importer *in vivo*.
423

424

425 **Figure 7 BT1762-63 binding to medium-chain fructo-oligosaccharide (FOS).** **a** Native
426 mass spectrum of BT1762-63 bound to FOS T159 fraction (~DP9) revealed the presence of
427 both bound and unbound SusCD monomers, but only FOS-bound SusC₂D₂ dimers. The insert
428 shows the spectrum of the FOS T159 fraction. **b**, Spectrum of BT1762-63 incubated with
429 different concentrations of FOS T159. Shown are individual charge states of the monomer
430 (+23) and of the dimer (+32). Up to two and four FOS molecules (mainly 8-10 fructose units)
431 were found to bind to SusCD and SusC₂D₂ respectively. Masses of all species observed are
432 listed in Supplementary Table 6.

433

434

435

436

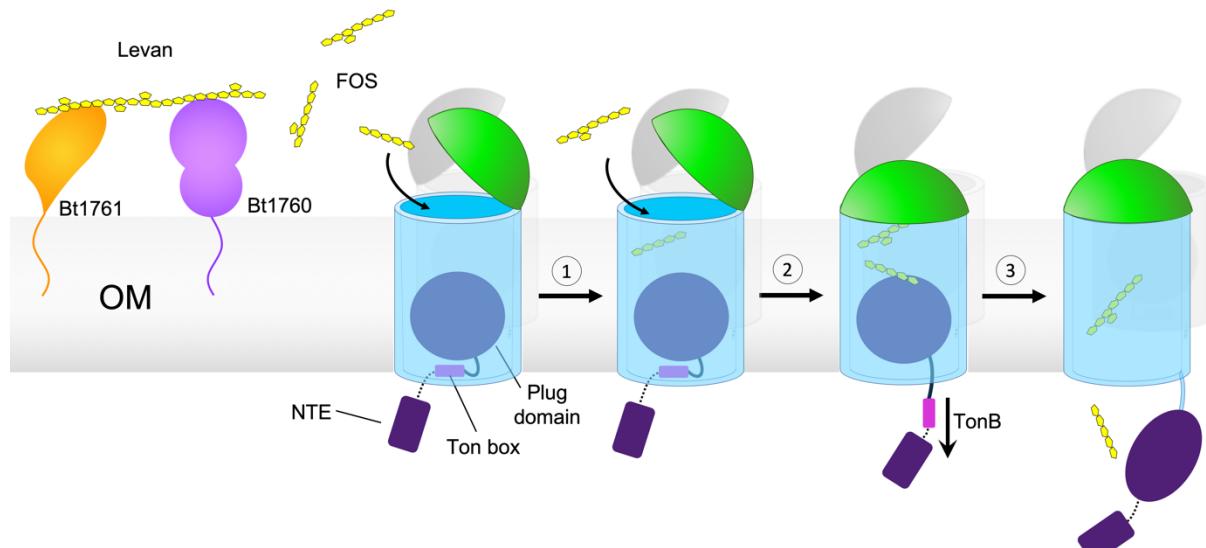
437

438

439

440 **Discussion**

441 The difficulty in ionising large oligosaccharides in the mass-spectrometer³¹ complicates
442 reliable experimental determination of an upper substrate size limit of SusCD-like systems.
443 Even if large oligosaccharides could be detected via mass spectrometry, the inability to
444 separate high DP FOS (>~DP12) by SEC precludes estimation of detection efficiency, and
445 consequently quantitation. Despite this, some important insights can be obtained via simple
446 structural considerations. The ligand binding cavity of Bt1762-63 has a volume of ~10,000 Å³
447 as determined via CASTp³², which is similar to that of the peptide importer RagAB¹⁷. While no
448 information is available for FOS, data for sucrose³³ allow an estimation of ~500 Å³ per fully
449 hydrated molecule, with 5 waters per sucrose. For one bound water per sucrose, the molar
450 volume is lowered by ~20%, leading to a value of 400 Å³ per sucrose. Thus, depending on
451 FOS hydration inside the Bt1762-63 cavity and assuming ideal packing, there would be space
452 for 20-25 sucrose molecules, *i.e.* 40-50 sugar monomers. Given that it is unlikely that the
453 twisted structures of levan FOS could pack very efficiently, we estimate that the maximum
454 number of fructose units occupying the Bt1762-63 cavity at any one time could be no more
455 than ~30-35, putting an upper limit on total bound FOS of ~5 kDa. Considering our ITC and
456 native MS data, it is likely that this total mass would comprise several individual molecules,
457 rather than one large molecule. As there are unlikely to be large structural differences among
458 SusCD-like systems, we suggest ~5 kDa as a general total size limit for these transporters,
459 which is consistent with recent data for the archetypal Sus¹⁸.


460

461 Our structures that show FOS in the principal binding site at the Bt1762-63 interface raise an
462 important question: how is ligand occupancy relayed to the plug domain, and how does this
463 lead to increased accessibility of the Ton box? This key issue is likely unique to SusCD
464 systems, in particular those SusCs without the long plug loop present in *e.g.* Bt2264¹⁵ that is
465 able to contact ligand in the principal binding site and relay binding site occupancy directly to
466 the plug domain (Extended Data Fig. 11). In Bt1763, the smallest distance between the visible
467 part of the substrate in the principal binding site and the plug is 15 Å, and so an optimal-sized
468 FOS (in terms of binding affinity) of ~DP8-12 could not contact the plug directly. The presence
469 of a second substrate molecule at the bottom of the binding cavity (Fig. 1b) might be a way to
470 overcome this problem, implying a mechanism in which the binding cavity "bin" is filled first via
471 two or more substrate binding-release cycles to provide plug contacts, that collectively
472 increase accessibility of the Ton box and binding to the CTD of TonB.

473

474 The substrates for the transporter are generated by the combined action of the Bt1760 endo-
475 levanase and the Bt1761 surface glycan binding protein (SGBP; Fig. 1a). It is not yet clear if,
476 and how, these two proteins are spatially and temporally connected to the Bt1762-63

477 transporter. For the archetypal Sus, data suggest that all five OM components of the PUL
478 (SusCDEFG) are arranged in one stable complex^{16,34}. Other, more recent studies paint a much
479 more dynamic picture, with the SGBPs (SusE and SusF) and the endo-amylase SusG
480 transiently associating with the SusCD core complex^{35,36}. Besides depending on the type of
481 levan²³, the FOS sizes delivered to Bt1762-63 will depend critically on the binding kinetics of
482 the Bt1760 levanase and on the proximity of Bt1761: a close association between the two
483 would most likely favour production of uniformly-sized FOS of relatively small size which, as
484 we have shown, are preferred substrates. Likewise, a close association between the enzyme
485 and Bt1762-63 will enhance capture of the generated FOS by SusD and subsequent delivery
486 to SusC. With regards to this last step, it is interesting to note that, in contrast to *in vitro*
487 conditions, the substrate binding function by Bt1762 is not necessary *in vivo* (Fig. 4 and Fig.
488 6), *i.e.* when all other OM components are present (Bt1760/61/63), and similar data have
489 recently been obtained for other Sus^{18,37}. These observations would suggest that the SGBP
490 can assume the substrate-delivery role of SusD and argues in favour of an intimate association
491 of all OM components of a PUL. This then raises the question of why the SusD lid has evolved
492 at all. The fact that the presence of SusD is important *in vivo* (Fig. 4) suggests that its function
493 as a lid that can open and close is vital.

494
495 **Figure 8 Model demonstrating the proposed mechanism of substrate capture and**
496 **translocation by Bt1762-63.** Levan polysaccharide is initially bound and hydrolysed at the
497 cell surface by the SGBP Bt1761 and GH32 endo-levanase Bt1760, respectively, although the
498 precise role of the SGBP is unclear. A lid-open state of the transporter permits binding of
499 transport-competent FOS. **1.** Contributions from both SusC and SusD to FOS binding elicits
500 closure of the lid. **2.** Multiple cycles of lid opening and closing occur until the SusC 'bin' is fully
501 loaded with substrate, forming the transport-ready state of the complex. Substrate loading is
502 communicated across the outer membrane by direct contact with the Bt1763 plug domain,
503 inducing perturbation of the Ton box region on the periplasmic side of the plug, rendering it
504 accessible to TonB. **3.** TonB-mediated disruption/extraction of the plug permits substrate
505 translocation. Details of the 'reset' mechanism are unclear but re-insertion of the plug is likely
506 a prerequisite to restoring the open state of the transporter.

507
508 Our structural data provide important clues about the function of SusD and about glycan import
509 in general (Fig. 8). The basis for these clues is the unprecedented observation that closed,
510 but empty transporters lack the entire plug domain. This spontaneous expulsion of the plug is
511 likely to be non-physiological and caused by a loss of lateral membrane pressure due to
512 detergent solubilisation. Nevertheless, it does suggest that Bt1762 lid closure causes
513 conformational changes within the Bt1763 barrel that decrease the "affinity" of the plug for the
514 barrel. This may facilitate the removal of the entire plug domain from the barrel by TonB action,
515 as opposed to local unfolding and formation of a relatively narrow channel as has been
516 proposed for non-Sus TBTDs³⁸⁻⁴⁰. To prevent plug removal in the absence of substrate
517 resulting in futile transport cycles, we postulate that only the direct contact of substrate with
518 the plug (as observed in the co-crystal structure with FOS2 and the in BT2263/64-peptide
519 complex¹⁵) leads to increased accessibility of the TonB box and interaction with TonB (Fig. 8).
520 In our model, the impermeability of the OM, which otherwise would be compromised due to
521 the formation of a very large channel of ~20-25 Å diameter, would be preserved by the seal
522 provided by the closed SusD lid. Upon reinsertion of the plug, the transporter would revert
523 back to its open state (Fig. 8). The most important function of SusD proteins during glycan
524 import may therefore be to provide a seal to preserve the OM permeability barrier.
525

526 **Author contributions**

527 D.A.G made *B. theta* mutants, expressed and purified proteins, performed growth assays,
528 generated FOS substrates and carried out ITC. J.B.R.W. and S.L.E. determined cryo-EM
529 structures, supervised by N.A.R. A.O.O. carried out native mass spectrometry, supervised by
530 C.V.R. P.R., A.M. and M.Z. determined the NTE structure, supervised by S.H. A.J.G.
531 contributed to all early stages of the project. C.M. made *B. theta* mutants. A.B. collected X-ray
532 crystallography data. A.C. helped analyse crystallography data. B.v.d.B. crystallised proteins
533 and determined crystal structures. The manuscript was written by B.v.d.B, D.N.B and D.A.G,
534 with input from J.B.R.W., N.R., C.V.R. and S.H.
535

536 **Acknowledgements**

537 D.A.G., D.N.B and B.v.d.B. were supported by a Biotechnology and Biological Sciences
538 Research Council grant (BB/P003192/1). J.B.R.W. was supported by a Wellcome Trust four-
539 year PhD studentship (215064/Z/18/Z). All electron microscopy was performed at the Astbury
540 Biostructure Laboratory which was funded by the University of Leeds and the Wellcome Trust
541 (108466/Z/15/Z). We thank R. Thompson, E. Hesketh and D. Maskell for electron microscopy
542 support. S.H. was supported by the Swiss National Science Foundation (grant 167125).

543 A.O.O. and C.V.R. are supported by a Medical Research Council grant (MR/N020413/1). We
544 would further like to thank personnel of the Diamond Light Source beamlines i03, i04 and i04-
545 1 for beam time (Block Allocation Group numbers mx-13587 and mx-18598) and assistance
546 with data collection.

547

548 **Ethics declarations**

549 **Competing interests**

550 The authors declare no competing interests.

551

552 **Materials and methods**

553 **Maintenance and growth of bacterial strains.** Brain heart infusion (BHI) media and agar,
554 supplemented with 1 µg/ml haematin, or where needed with gentamycin (0.2 µg/ml) and
555 erythromycin (0.025 µg/ml), was used for routine selection and maintenance of *Bacteroides*
556 *thetaiotaomicron* VPI-5482 (*B. theta*) wild type and mutant strains. Luria-Bertani (LB) media
557 and agar, supplemented where needed with kanamycin (50 µg/ml) or ampicillin (100 µg/ml),
558 was used for routine selection and maintenance of *E. coli* strains. Cultures for *B. theta* protein
559 purification were grown in a Chemically Defined Minimal Media (MM), NH₄SO₄ 1 mg/ml,
560 Na₂CO₃ 1 mg/ml, cysteine 0.5 mg/ml, KPO₄ 100 mM, vitamin K 1 µg/ml, FeSO₄ 4 µg/ml,
561 vitamin B12 5 ng/ml, mineral salts 50 µl/ml (NaCl 0.9 mg/ml, CaCl₂ 26.5 µg/ml, MgCl₂ 20 µg/ml,
562 MnCl₂ 10 µg/ml and CoCl₂ 10 µg/ml) and hematin 1 µg/ml. These cultures were supplemented
563 with D-fructose (0.5 % final) as the sole carbon source (MM-Frc). Frc activates the levan PUL,
564 but does not require Bt1762-63 for import. All *B. theta* growths were carried out under
565 anaerobic conditions at 37 °C (A35 Workstation, Don Whitley Scientific).

566

567 **Gene cloning and construction of *B. theta* mutants.** The desired genetic sequence
568 containing mutations or deletions was amplified through two rounds of PCR, including ~1000
569 bp upstream and downstream of the deletion or mutation. The primers used to generate these
570 PCR products are listed in Supplementary Table 7. Briefly, for the TonB deletion strain primers
571 TB-fwd, TBD-rev, and TBD-fwd, TB-rev respectively were used to make 1000 bp fragments
572 which underwent an additional PCR to construct the 2000 bp sequence. The same process
573 was used to make mutants TonB mutation (TB-fwd, TBM-rev and TBM-fwd, TB-rev), Δhinge1
574 (Hinge-fwd, H1D-rev and HD1-fwd, Hinge-rev), Δhinge2 (Hinge-fwd, HD2-rev and HD2-fwd,
575 hingerev), W85A (Trp1-fwd, Trp2-rev and Trp3-fwd, Trp4-rev), and ΔNTE (NTE1-fwd, NTE2-
576 rev and NTE3-fwd, NTE4-rev). The final PCR product was ligated into pExchange-tdk vector³⁰.

577

578 *B. theta* genetic deletions and mutations were created by allelic exchange using the
579 pExchange-tdk vector. Briefly, the constructed pExchange-tdk plasmids, containing the
580 mutations/deletions plus ~1000 bp flanking up- and downstream, were transformed into S17
581 λ pir *E. coli* cells, in order to achieve conjugation with the *B. theta* recipient strain³⁰. The
582 conjugation plates were scraped to generate a culture containing *B. theta* and *E. coli*. *B. theta*
583 cells undergoing a single recombination event were selected for by plating on BHI-hematin
584 agar plates containing gentamycin (200 µg/ml) and erythromycin (25 µg/ml), 8 – 12 colonies
585 were restreaked on fresh BHI-hematin-gent-ery plates. Single colonies were cultured in BHI-
586 hematin and pooled. To select for the second recombination event pooled cultures were plated
587 on BHI-hematin agar plates containing FUdR (200 µg/ml). FUdR resistant colonies, 8 – 12,
588 were restreaked on fresh BHI-hematin-FUdR. From these, single colonies were cultured in
589 BHI and genomic DNA was extracted and screened for the correct mutations using diagnostic
590 PCR and sequencing. DNA sequencing was performed by MWG-Eurofins.

591

592 **Expression and purification of native proteins.** The required strain of *B. theta* was
593 inoculated from -80 °C stocks into 5 ml brain heart infusion (BHI) media supplemented with
594 hematin, 1 µg/ml. These were cultured overnight and used to inoculate 500 ml Duran bottles
595 containing 500 ml minimal media (MM) supplemented with hematin and either fructose or
596 levan (0.5 %) as the sole carbon source and grown for 18-20 h. The following morning cells
597 were harvested by centrifugation at 11305 x g for 25 min, and the pellets resuspended in TSB
598 and stored at -20 °C.

599

600 One protease inhibitor tablet and DNase were added to the completely thawed cell samples
601 before being lysed using a cell disrupter (Constant Systems) at 23 kilopounds per square inch
602 (KPSI). The lysed cells were centrifuged for 1 h at 42,000 rpm (204,526 x g). The resultant
603 pellet, containing total membranes, was homogenised in 0.5 % Sodium Lauroyl Sarcosine
604 (sarkosyl), 20 mM Hepes. The sample was allowed to stir at room temperature for 20 min
605 before undergoing centrifugation for 30 min at 204,526 x g. The supernatant was discarded
606 and the pellet was homogenised into a Lauryldimethylamine-N-oxide (LDAO), 10 mM Hepes,
607 100 mM NaCl pH 7.5 buffer, and incubated at 4 °C stirring for 1 h. The sample underwent
608 centrifugation at 204,526 x g for 30 min and the supernatant, containing the outer membrane
609 proteins (OMP), was kept. The total protein concentration was determined using a BCA
610 Protein Assay Kit (Thermo Fisher Scientific).

611

612 Bt1762-63 was purified using an Immobilised Metal Affinity Chromatography (IMAC) Ni
613 column using the C-terminal Hisx6-tag on SusD (Bt1762)¹⁵. The OM fraction of MM-Frc grown
614 *B. theta* cells was passed through an IMAC Ni column equilibrated with 0.2 % LDAO TSB. The

615 column was washed with TSB 0.2 % LDAO 25 mM imidazole, and bound proteins were eluted
616 with TSB 0.2 % LDAO 200 mM imidazole. IMAC samples were visualised by SDS-PAGE.
617 Samples from IMAC were further purified by size exclusion chromatography (SEC). An ÄKTA
618 pure system (GE healthcare) was used in conjunction with a HiLoad 16/60 Superdex 200pg
619 120 ml gel filtration column (GE Healthcare). The column was equilibrated with the required
620 buffer containing the necessary detergent. The IMAC samples were concentrated to 3-5 ml
621 and loaded onto the column. Proteins were eluted at 1.2 ml/min and 3 ml fractions were
622 collected. Peak samples were also visualised by SDS-PAGE. Buffer exchange was used to
623 transfer the protein into the final desired buffer.

624

625 **Crystallisation and structure determination.** For crystallisation, the final SEC purification
626 step was carried out in 10 mM Hepes/100 mM NaCl/0.4% C₈E₄ pH 7.5. Fractions were pooled
627 and concentrated to ~15 mg/ml, aliquoted and flash-frozen in liquid nitrogen. Sitting drop
628 crystallisation trials were set up using a Mosquito crystallisation robot (TTP Labtech) with
629 commercial screens (Molecular Dimensions MemGold 1 and 2 and Morpheus). Optimisation
630 was performed with larger-volume hanging drops set up manually. Well-diffracting crystals for
631 apo-BT1762-63 were obtained from MemGold 2, condition 18 (0.15 M sodium formate, 0.1 M
632 Hepes pH 7-7.5, 16-20% w/v PEG 3350), and were cryoprotected by the addition of ~20-
633 25% PEG400 for ~5-10 s before being flash-frozen in liquid nitrogen. Diffraction data were
634 collected at 100 K at the Diamond Light Source (Didcot, UK) on beamline i03. Data were
635 processed via Xia2⁴¹ or Dials⁴². The structure was solved by molecular replacement with
636 Phaser⁴³, using data to 2.62 Å resolution. The previous structure of Bt1762-63 (PDB 5T3R)¹⁵
637 was used as search model. The model was built iteratively by manually building in COOT⁴⁴,
638 and was refined with Phenix⁴⁵ using TLS refinement with 1 group per chain. Structure
639 validation was carried out with MolProbity⁴⁶. The model has 94.0% of residues in the favoured
640 regions of the Ramachandran plot, and 0.7% outliers. The structures of Bt1762-63 with bound
641 FOS were obtained by incubation of purified complex with 2.5 mM of the appropriate FOS at
642 room temperature, followed by setting up crystal plates as above. Models of the bound FOS
643 were generated with JLigand within CCP4⁴⁷ and fit manually into the density in COOT.
644 Refinement was carried out within Phenix⁴⁵ as above. The FOS-bound structures have
645 90.5/1.0% (PDB ID 6Z9A) and 94.1/0.6% (PDB ID 6ZAZ) of residues in the
646 favourable/disallowed regions of the Ramachandran plot.

647

648 **CryoEM sample preparation and data collection.** A sample of purified BT1762-BT1763
649 solubilised in an LDAO-containing buffer (10 mM HEPES pH 7.5, 100 mM NaCl, 0.05% LDAO)
650 was prepared at 0.02 mg/ml. Lacy carbon 300-mesh copper grids coated with a <3 nm
651 continuous carbon film (Agar Scientific) were glow-discharged in air (10 mA, 30 seconds). A

652 sample volume of 3.5 μ L was applied to each grid. Blotting and plunge freezing were carried
653 out using a Vitrobot Mark IV (FEI) with the chamber conditions set at a temperature of 4 °C
654 and 100% relative humidity. A blot force of 6 and a blot time of 6 s were used prior to vitrification
655 in liquid nitrogen-cooled liquid ethane. Micrograph movies were collected on a Titan Krios
656 microscope (Thermo Fisher) operating at 300 kV with a GIF energy filter (Gatan) and K2
657 summit direct electron detector (Gatan) operating in counting mode. Data acquisition
658 parameters can be found in Supplementary Table 2.

659

660 **Image processing.** Following cryo-EM data collection, the RELION (v3.0) pipeline was used
661 for image processing^{48,49}. Drift correction was performed using MotionCor2⁵⁰ and contrast
662 transfer functions were estimated using gCTF⁵¹. Approximately 3000 particles were manually
663 picked, extracted and classified in 2D to provide templates for automated particle picking
664 within RELION. Particles were extracted in 264 x 264 pixel boxes binned to 132 x 132 for initial
665 rounds of 2D and 3D classification. The 3D starting model was generated *de novo* from the
666 EM data by stochastic gradient descent in RELION. The particle stack was cleaned using both
667 2D and 3D classification and the remaining particles were un-binned. Further rounds of 3D
668 classification revealed significant conformational heterogeneity in the data. Three predominant
669 conformational states of the levan transport system were identified: open-open (OO), open-
670 closed (OC) and closed-closed (CC). Additional classes, whilst less populated, revealed states
671 with the BT1762 ‘lid’ open to differing extents (Extended Data Fig. 2). Invariably, the closed
672 position of BT1762 was associated with an absence of density for the plug domain of BT1763.
673 Global 3D classification was unable to distinguish ‘true’ closed conformations from those
674 where BT1762 occupied a marginally open state. As a result, a masked 3D classification
675 approach was employed to achieve homogeneous particle stacks. The masked classification
676 was performed without image alignment and, since the region of interest is relatively small,
677 the regularization parameter, T, was set to 20. Intermediate results and further details are
678 provided in Extended Data Fig. 12. Clean particle stacks for the three principle conformational
679 states were subject to multiple rounds of CTF refinement and Bayesian polishing⁴⁹. C2
680 symmetry was applied to both the OO and CC reconstructions. Post-processing was
681 performed using soft masks and yielded reconstructions for the OO, OC, and CC states of 3.9,
682 4.7 and 4.2 Å respectively, as estimated by gold standard Fourier Shell correlations using the
683 0.143 criterion.

684

685 **Model building into cryoEM maps.** Comparing the maps to the crystal structure of BT1762-
686 BT1763 revealed that their handedness was incorrect. Maps were therefore Z-flipped in UCSF
687 Chimera^{52,53}. The reconstruction of the OO state was of sufficient resolution for model building

688 and refinement. Bt1762 and Bt1763 subunits from the crystal structure were independently
689 rigid-body fit to the local resolution filtered map and later subjected to several iterations of
690 manual refinement in COOT⁴⁴ and ‘real space refinement’ in Phenix⁴⁵. The asymmetric unit
691 was symmetrised in Chimera after each iteration. Molprobity⁴⁶ was used for model validation.
692 The reconstructions of the OC and CC states were of insufficient resolution to permit model
693 building and refinement owing to low particle numbers and a poor distribution of viewing angles
694 respectively. Instead, the crystal structure of Bt1762-Bt1763 was rigid-body fit to the CC state.
695 The ligand was removed from the model and an inspection in COOT showed that no density
696 extended past Lys213 in the direction of the N-terminus. All residues N-terminal of Lys213
697 were therefore removed from the model before rigid-body fitting. The open state from the OO
698 EM structure and the closed state from the crystal structure (modified as described above)
699 were rigid-body fit to their corresponding densities in the OC state. Rigid-body fitting was
700 performed in Phenix.

701

702 **Expression and purification of recombinant enzymes.** Recombinant pET vectors
703 (containing either BT1760 levanase¹⁹ or *Bacillus* levansucrase genes) were transformed into
704 *E. coli* Tuner cells (Novagen) with appropriate antibiotic selection. One-litre cultures in 2 l
705 flasks were grown to mid-exponential phase at 37 °C in an orbital shaker at 150 rpm, then
706 cooled to 16 °C and induced with 1 mM isopropyl β-D-thiogalactopyranoside (IPTG). These
707 cultures were then incubated for a further 16 h at 16 °C and 150 rpm. Cells were harvested by
708 centrifugation, lysed by sonication and the recombinant His-tagged protein purified from cell-
709 free extracts using IMAC (Talon resin, Clontech) as previously described¹⁹.

710

711 **Expression and purification of the NTE**

712 A pBAD24 vector carrying the Bt1763 NTE domain with an N-terminal His6 tag (Extended
713 Data Fig. 5d), arabinose promoter and ampicillin resistance was transformed into *E. coli* BL21
714 (DE3) Lemo cells for expression. Cells were grown in M9 minimal media containing ¹⁵NH₄Cl
715 and ¹³C-glucose as the source of nitrogen and carbon for protein labelling. Cells were grown
716 at 37 °C for protein expression. At the optical density of 0.7, cells were induced with 0.1% L-
717 arabinose for 3 h. Cells were then harvested by centrifugation at 5000 rpm for 15 min, and
718 resuspended in buffer A (20 mM HEPES, 150 mM NaCl, pH 7.5) containing lysozyme, DNase
719 and protease inhibitor. Homogenized cells were lysed by three rounds passing through a high-
720 pressure microfluidizer. The lysate was centrifuged at 12000 rpm for 30 min at 4 °C. The
721 supernatant was loaded on a Ni-NTA His-trap column (GE healthcare), washed with 10
722 column volume of buffer A containing 30 mM imidazole. ¹⁵N, ¹³C-labelled NTE was then eluted
723 with three column volume buffer A containing 200 mM imidazole. Eluted proteins were loaded
724 on Superdex S75 gel filtration column pre-equilibrated with NMR buffer containing 20 mM

725 sodium phosphate, 150 mM NaCl and pH 7.5. Fractions corresponding to pure NTE were
726 concentrated through a 5 kDa cut-off filter for NMR spectra acquisitions. The NMR sample
727 contained 250 μ l 1 mM U -¹⁵N, ¹³C-NTE in NMR buffer containing 5% ²H₂O.

728

729 **NMR experiments**

730 All NMR spectra were recorded at 20 °C on a Bruker Avance-700 spectrometer equipped with
731 a cryogenic triple-resonance probe and using Topspin 3.6. The proton chemical shifts were
732 referenced to water, and ¹⁵N and ¹³C were indirectly referenced. 2D [¹⁵N, ¹H]-HSQC, 2D
733 [¹³C, ¹H]-HSQC, 3D HNCACB, 3D CBCA(CO)NH, 3D ¹⁵N-resolved-[¹H, ¹H]-NOESY and 3D
734 ¹³C-resolved-[¹H, ¹H]-NOESY were acquired for backbone resonance assignment and
735 structure determination of NTE. The NMR experiments and respective acquisition parameters
736 are mentioned in Supplementary Tables 3 and 4.

737

738 **Calculation of the three-dimensional solution structure of NTE**

739 The side-chain chemical shifts were assigned automatically using FLYA algorithm with fixed
740 backbone chemical shifts⁵⁴. ¹H-¹⁵N and ¹H-¹³C NOE cross peaks were automatically assigned
741 followed by manual corrections resulting in total 964 unambiguously assigned peaks.
742 Backbone torsion angle constraints were derived from chemical shift values using the program
743 TALOS⁵⁵. Using these values, solution structure calculation was performed using the program
744 CYANA⁵⁶.

745

746 **Fructo-oligosaccharide (FOS) production and purification.** Two grams of *Erwinia*
747 *herbicola* levan (Sigma-Aldrich) were dissolved in 100 ml PBS (Oxoid) by autoclaving. The
748 solution was cooled to room temperature before the addition of 100 nM Bt1760 GH32 endo-
749 acting levanase was added incubated at 37 °C for 30 min to partially digest the levan to a
750 mixture of different size β2,6 FOS. The enzyme was then heat inactivated by boiling for 20
751 min. The resultant sample was freeze dried using a Christ Alpha 1-2 Freeze Drier at -45 °C.
752 The freeze dried FOS mixture was resuspended in 5 ml 50 mM acetic acid and loaded onto a
753 column (two 2.5 x 80 cm Glass Econo-Columns, connected in series with a flow adaptor; Bio-
754 Rad) packed with P2 Bio-gel size exclusion resin (Bio-Rad) and pre-equilibrated, with 50 mM
755 acetic acid. The column was run at 0.25 ml/min using a peristaltic pump (LKB Bromma 2132
756 microperpex) and 2 ml fractions were collected continuously for 48 h using a Bio-Rad model
757 2110 fraction collector. Fractions were initially analysed by TLC and any that contained sugar
758 were freeze-dried to remove acetic acid.

759

760 **Thin Layer Chromatography (TLC).** TLC plates (Silica gel 60, Sigma-Aldrich) were cut to
761 the required size, and samples were spotted 1 cm from the bottom of the plate. These were

762 dried using a hair dryer and placed into a tank containing 1 cm of running buffer (1-butanol,
763 acetic acid and water at 2:1:1). Once the running buffer migrated to 1 cm from the top of the
764 plate, the plate was then dried and run again. To visualise sugars the plates were completely
765 dried and submerged in developer solution (sulphuric acid, ethanol and water at 3:70:20 with
766 1% orcinol) for 5–10 s Finally the plate was dried using a hair dryer and incubated at 65 °C in
767 a drying oven until developed (usually ~1 h).

768

769 **Isothermal Titration Calorimetry (ITC).** SEC purified Bt1762-63-SusCD complex was
770 dialysed overnight at 4 °C with 50kD cut off dialysis tubing into 100 mM Hepes, pH 7.5
771 containing 0.05 % LDAO. The dialysis buffer was used to resuspend SEC purified FOS
772 fractions produced by partial digestion of *Erwinina* levan. ITC was performed using a MicroCal
773 PEAQ-ITC machine (Malvern). Briefly, pure SusCD complex (25-50 µM; concentration
774 determined by A_{280}) in a 200 µl reaction well was injected 20 times with 2 µl aliquots of FOS
775 (0.25 – 4.5 mg/ml) at 25 °C. Integrated heats were fit to a one set of sites model using the
776 Microcal PEAQ-ITC software (Malvern) to obtain K_d , ΔH and N . For most titrations, the molar
777 concentration of ligand used for the fits was based on the DP of the major FOS species present
778 as determined by the TLC and MS analysis. For fractions 118 to 115 the concentration of
779 ligand was varied such that $N = 1$.

780

781 **Native mass spectrometry.** Proteins were buffer exchanged into 0.5% C8E4, 0.2 M
782 ammonium acetate, pH6.9 using a micro biospin 6 column (Bio-Rad). The FOS sample was
783 diluted to ~500 µM with 0.5 M ammonium acetate, pH6.9. Mass spectra were acquired on a
784 Q-Exactive hybrid quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific,
785 Bremen, Germany) optimized for transmission and detection of high molecular weight protein
786 complexes. About 3 µl of aliquot of the sample was transferred into gold-coated borosilicate
787 capillary (Harvard Apparatus) prepared in-house and capillary and mounted on the nano ESI
788 source. The instrument settings were 1.2 kV capillary voltage, S-lens RF 200%, argon UHV
789 pressure 3.1×10^{-10} mbar, capillary temperature 100°C. Voltages of the ion transfer optics –
790 injection flatapole, inter-flatapole lens, bent flatapole, and transfer multipole were set to 5 V,
791 3 V, 2 V, and 30 V respectively. The noise level was set at 3. Protein ions were activated with
792 -120 V with the in-source trapping mode and a collisional activation voltage 300 V. Data were
793 visualized and exported for processing using the Qual browser of Xcalibur 4.2 (Thermo
794 Scientific).

795

796 **Growth curves.** Growth curves were performed in an Epoch microplate spectrometer (Biotek
797 Instruments Ltd.) with 96-well Costar culture plate (Sigma-Aldrich) inside an anaerobic cabinet
798 at 37 °C (Don Whitely Scientific, A35 workstation). Media was inoculated 1:10 with bacterial

799 cultures previously grown overnight in BHI. Final culture volumes of 200 μ l were used, and
800 each condition was performed in triplicate. Optical density at 600 nm was measured in each
801 well at 30 minute intervals.

802

803 **Sources of levan used.** In most cases the levan used was from *Erwinia herbicola* (Sigma).
804 For analysis of growth of the Δ 1760 strain, bacterial levans from *Bacillus* sp. (Montana
805 Polysaccharides) and *Zymomonas mobilis*⁵⁷ (a kind gift from Prof. Dr. Yekta Göksunger, Ege
806 University, Izmir, Turkey) were also used as well as levan from Timothy grass (Megazyme)
807 and *in vitro* synthesised levan. *In vitro* synthesised levan was made using *Bacillus subtilis*
808 levansucrase incubated with 20 % sucrose in PBS for 24 h at 37 °C. Proteinase K (100 μ g/ml)
809 was then added to remove the protein, before being precipitated out using 0.5% TCA final.
810 The levan was then extensively dialysed against water and freeze dried.

811

812 **Data availability**

813 The data supporting the findings of this study are available from the corresponding authors
814 upon reasonable request. Coordinates and structure factors that support the findings of this
815 study have been deposited in the Protein Data Bank with accession codes 6Z8I (Bt1762-63),
816 6Z9A (Bt1762-63 with longer FOS) and 6ZAZ (Bt1762-63 with shorter FOS). EM structure
817 coordinates have been deposited in the Electron Microscopy Data Bank with accession codes
818 xxx. The raw cryoEM movie mode micrographs for the primary dataset containing the CC, OC
819 and OO structures will be deposited in the EMPIAR database.

820

821 **References**

- 822 1. Human Microbiome Project, C. Structure, function and diversity of the healthy human
823 microbiome. *Nature* **486**, 207-14 (2012).
- 824 2. Marchesi, J.R. et al. The gut microbiota and host health: a new clinical frontier. *Gut* **65**, 330-
825 339 (2016).
- 826 3. Sommer, F. & Backhed, F. The gut microbiota--masters of host development and physiology.
827 *Nat Rev Microbiol* **11**, 227-38 (2013).
- 828 4. Cantarel, B.L., Lombard, V. & Henrissat, B. Complex carbohydrate utilization by the healthy
829 human microbiome. *PLoS One* **7**, e28742 (2012).
- 830 5. Hamaker, B.R. & Tuncil, Y.E. A Perspective on the Complexity of Dietary Fiber Structures and
831 Their Potential Effect on the Gut Microbiota. *Journal of Molecular Biology* **426**, 3838-3850
832 (2014).
- 833 6. Koropatkin, N.M., Cameron, E.A. & Martens, E.C. How glycan metabolism shapes the human
834 gut microbiota. *Nature Reviews Microbiology* **10**, 323-335 (2012).
- 835 7. Cockburn, D.W. & Koropatkin, N.M. Polysaccharide Degradation by the Intestinal Microbiota
836 and Its Influence on Human Health and Disease. *J Mol Biol* **428**, 3230-3252 (2016).
- 837 8. Makki, K., Deehan, E.C., Walter, J. & Backhed, F. The Impact of Dietary Fiber on Gut Microbiota
838 in Host Health and Disease. *Cell Host Microbe* **23**, 705-715 (2018).

839 9. Tan, J. et al. The role of short-chain fatty acids in health and disease. *Adv Immunol* **121**, 91-
840 119 (2014).

841 10. Wexler, A.G. & Goodman, A.L. An insider's perspective: *Bacteroides* as a window into the
842 microbiome. *Nature Microbiology* **2**(2017).

843 11. Martens, E.C. et al. Recognition and degradation of plant cell wall polysaccharides by two
844 human gut symbionts. *PLoS Biol* **9**, e1001221 (2011).

845 12. Ndeh, D. & Gilbert, H.J. Biochemistry of complex glycan depolymerisation by the human gut
846 microbiota. *FEMS Microbiol Rev* **42**, 146-164 (2018).

847 13. Martens, E.C., Koropatkin, N.M., Smith, T.J. & Gordon, J.I. Complex glycan catabolism by the
848 human gut microbiota: the *Bacteroidetes* Sus-like paradigm. *J Biol Chem* **284**, 24673-7 (2009).

849 14. Martens, E.C., Chiang, H.C. & Gordon, J.I. Mucosal glycan foraging enhances fitness and
850 transmission of a saccharolytic human gut bacterial symbiont. *Cell Host Microbe* **4**, 447-57
851 (2008).

852 15. Glenwright, A.J. et al. Structural basis for nutrient acquisition by dominant members of the
853 human gut microbiota. *Nature* **541**, 407-411 (2017).

854 16. Shipman, J.A., Berleman, J.E. & Salyers, A.A. Characterization of four outer membrane proteins
855 involved in binding starch to the cell surface of *Bacteroides thetaiotaomicron*. *J Bacteriol* **182**,
856 5365-72 (2000).

857 17. Madej, M. et al. Structural and functional insights into oligopeptide acquisition by the RagAB
858 transporter from *Porphyromonas gingivalis*. *Nature Microbiology* (2020).

859 18. Foley, M.H., Martens, E.C. & Koropatkin, N.M. SusE facilitates starch uptake independent of
860 starch binding in *B. thetaiotaomicron*. *Mol Microbiol* **108**, 551-566 (2018).

861 19. Sonnenburg, E.D. et al. Specificity of Polysaccharide Use in Intestinal *Bacteroides* Species
862 Determines Diet-Induced Microbiota Alterations. *Cell* **141**, 1241-U256 (2010).

863 20. Oner, E.T., Hernandez, L. & Combie, J. Review of Levan polysaccharide: From a century of past
864 experiences to future prospects. *Biotechnol Adv* **34**, 827-844 (2016).

865 21. Jalan, N. et al. Studies on production of fructo-oligosaccharides (FOS) by gamma radiation
866 processing of microbial levan. *Carbohydr Polym* **96**, 365-70 (2013).

867 22. Bolam, D.N. & Sonnenburg, J.L. Mechanistic insight into polysaccharide use within the
868 intestinal microbiota. *Gut Microbes* **2**, 86-90 (2011).

869 23. Mardo, K. et al. A Highly Active Endo-Levanase BT1760 of a Dominant Mammalian Gut
870 Commensal *Bacteroides thetaiotaomicron* Cleaves Not Only Various Bacterial Levans, but Also
871 Levan of Timothy Grass. *PLoS One* **12**, e0169989 (2017).

872 24. Noinaj, N., Guillier, M., Barnard, T.J. & Buchanan, S.K. TonB-dependent transporters:
873 regulation, structure, and function. *Annu Rev Microbiol* **64**, 43-60 (2010).

874 25. Holm, L. Benchmarking fold detection by DaliLite v.5. *Bioinformatics* **35**, 5326-5327 (2019).

875 26. Martens, E.C., Roth, R., Heuser, J.E. & Gordon, J.I. Coordinate regulation of glycan degradation
876 and polysaccharide capsule biosynthesis by a prominent human gut symbiont. *J Biol Chem*
877 **284**, 18445-57 (2009).

878 27. Josts, I., Veith, K. & Tidow, H. Ternary structure of the outer membrane transporter FoxA with
879 resolved signalling domain provides insights into TonB-mediated siderophore uptake. *Elife*
880 **8**(2019).

881 28. Rogowski, A. et al. Glycan complexity dictates microbial resource allocation in the large
882 intestine. *Nat Commun* **6**, 7481 (2015).

883 29. Shipman, J.A., Cho, K.H., Siegel, H.A. & Salyers, A.A. Physiological Characterization of SusG, an
884 Outer Membrane Protein Essential for Starch Utilization by *Bacteroides thetaiotaomicron*. *Journal of Bacteriology* **181**, 7206-7211 (1999).

885 30. Koropatkin, N.M., Martens, E.C., Gordon, J.I. & Smith, T.J. Starch catabolism by a prominent
886 human gut symbiont is directed by the recognition of amylose helices. *Structure* **16**, 1105-
887 1115 (2008).

889 31. Kailemia, M.J., Ruhaak, L.R., Lebrilla, C.B. & Amster, I.J. Oligosaccharide analysis by mass
890 spectrometry: a review of recent developments. *Anal Chem* **86**, 196-212 (2014).

891 32. Tian, W., Chen, C., Lei, X., Zhao, J. & Liang, J. CASTp 3.0: computed atlas of surface topography
892 of proteins. *Nucleic Acids Res* **46**, W363-W367 (2018).

893 33. Gharsallaoui, A., Barbara, R., Génotelle, J. & Mathlouthi, M. Relationships between hydration
894 number, water activity and density of aqueous sugar solutions. *Food Chemistry* **106**, 1443-
895 1453 (2008).

896 34. Cho, K.H. & Salyers, A.A. Biochemical analysis of interactions between outer membrane
897 proteins that contribute to starch utilization by *Bacteroides thetaiotaomicron*. *J Bacteriol* **183**,
898 7224-30 (2001).

899 35. Karunatilaka, K.S., Cameron, E.A., Martens, E.C., Koropatkin, N.M. & Bateen, J.S.
900 Superresolution imaging captures carbohydrate utilization dynamics in human gut symbionts.
901 *mBio* **5**, e02172 (2014).

902 36. Tuson, H.H., Foley, M.H., Koropatkin, N.M. & Bateen, J.S. The Starch Utilization System
903 Assembles around Stationary Starch-Binding Proteins. *Biophys J* **115**, 242-250 (2018).

904 37. Tazin, A.S. et al. Molecular Dissection of Xyloglucan Recognition in a Prominent Human Gut
905 Symbiont. *mBio* **7**, e02134-15 (2016).

906 38. Fanucci, G.E., Cadieux, N., Kadner, R.J. & Cafiso, D.S. Competing ligands stabilize alternate
907 conformations of the energy coupling motif of a TonB-dependent outer membrane
908 transporter. *Proc Natl Acad Sci U S A* **100**, 11382-7 (2003).

909 39. Pawelek, P.D. et al. Structure of TonB in complex with FhuA, *E. coli* outer membrane receptor.
910 *Science* **312**, 1399-402 (2006).

911 40. Shultis, D.D., Purdy, M.D., Banchs, C.N. & Wiener, M.C. Outer membrane active transport:
912 structure of the BtuB:TonB complex. *Science* **312**, 1396-9 (2006).

913 41. Winter, G., Lobley, C.M. & Prince, S.M. Decision making in xia2. *Acta Crystallogr D Biol
914 Crystallogr* **69**, 1260-73 (2013).

915 42. Winter, G. et al. DIALS: implementation and evaluation of a new integration package. *Acta
916 Crystallogr D Struct Biol* **74**, 85-97 (2018).

917 43. McCoy, A.J. et al. Phaser crystallographic software. *J Appl Crystallogr* **40**, 658-674 (2007).

918 44. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. *Acta Crystallogr D
919 Biol Crystallogr* **60**, 2126-32 (2004).

920 45. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular
921 structure solution. *Acta Crystallogr D Biol Crystallogr* **66**, 213-21 (2010).

922 46. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography.
923 *Acta Crystallogr D Biol Crystallogr* **66**, 12-21 (2010).

924 47. Lebedev, A.A. et al. JLigand: a graphical tool for the CCP4 template-restraint library. *Acta
925 Crystallogr D Biol Crystallogr* **68**, 431-40 (2012).

926 48. Scheres, S.H. RELION: implementation of a Bayesian approach to cryo-EM structure
927 determination. *J Struct Biol* **180**, 519-30 (2012).

928 49. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in
929 RELION-3. *Elife* **7** (2018).

930 50. Li, X., Zheng, S.Q., Egami, K., Agard, D.A. & Cheng, Y. Influence of electron dose rate on
931 electron counting images recorded with the K2 camera. *J Struct Biol* **184**, 251-60 (2013).

932 51. Zhang, K. Gctf: Real-time CTF determination and correction. *J Struct Biol* **193**, 1-12 (2016).

933 52. Pettersen, E.F. et al. UCSF Chimera--a visualization system for exploratory research and
934 analysis. *J Comput Chem* **25**, 1605-12 (2004).

935 53. Goddard, T.D. et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis.
936 *Protein Sci* **27**, 14-25 (2018).

937 54. Schmidt, E. & Guntert, P. A new algorithm for reliable and general NMR resonance
938 assignment. *J Am Chem Soc* **134**, 12817-29 (2012).

939 55. Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. TALOS+: a hybrid method for predicting protein
940 backbone torsion angles from NMR chemical shifts. *J Biomol NMR* **44**, 213-23 (2009).
941 56. Guntert, P. Automated NMR structure calculation with CYANA. *Methods Mol Biol* **278**, 353-78
942 (2004).
943 57. Silbir, S., Dagbagli, S., Yegin, S., Baysal, T. & Goksungur, Y. Levan production by Zymomonas
944 mobilis in batch and continuous fermentation systems. *Carbohydrate Polymers* **99**, 454-461
945 (2014).

946