

1 Dissociable control of unconditioned responses and 2 associative fear learning by parabrachial CGRP neurons

3

4 Anna J. Bowen^{1,2,3}, Jane Y. Chen^{1,2}, Y. Waterlily Huang^{1,2}, Nathan A. Baertsch⁴, Sekun
5 Park^{1,2}, Richard D. Palmiter^{1,2,*}

6 ¹Department of Biochemistry, ²Howard Hughes Medical Institute, ³Graduate Program in Neuroscience, University
7 of Washington, Seattle, WA 98195 USA; ⁴Center for Integrative Brain Research, Seattle Children's Research
8 Institute, Seattle, WA 98101 USA

9 *To whom correspondence should be addressed. palmiter@uw.edu

10 Abstract

11 Parabrachial CGRP neurons receive diverse threat-related signals and contribute to multiple
12 phases of adaptive threat responses, with their inactivation attenuating both unconditioned
13 behavioral responses to somatic pain and fear-memory formation. Because CGRP^{PBN} neurons
14 respond broadly to multi-modal threats, it remains unknown how these distinct adaptive
15 processes are individually engaged. We show that while three partially separable subsets of
16 CGRP^{PBN} neurons broadly collateralize to their respective downstream partners, individual
17 projections accomplish distinct functions: hypothalamic and extended amygdalar projections
18 elicit assorted unconditioned threat responses including autonomic arousal, anxiety, and
19 freezing behavior, while thalamic and basal forebrain projections generate freezing behavior
20 and, unexpectedly, contribute to associative fear learning. Moreover, the unconditioned
21 responses generated by individual projections are complementary, with simultaneous
22 activation of multiple sites driving profound freezing behavior and bradycardia that are not
23 elicited by any individual projection. This semi-parallel, scalable connectivity schema likely
24 contributes to flexible control of threat responses in unpredictable environments.

25

26 Introduction

27
28 Imminent threats such as somatic pain rapidly shape ongoing behavior and alter physiology to
29 prioritize immediate threat remediation (LeDoux, 2000). This cascade of activity, which in
30 rodents can include bouts of active escape or freezing behavior (Blanchard and Blanchard,
31 1969; Fanselow, 1982; Roelofs, 2017) and autonomic changes, including both enhanced
32 sympathetic and parasympathetic outflow (Fitzgerald and Teyler, 1970; Iwata and LeDoux,
33 1988), comprise the unconditioned response. A later phase of threat response includes
34 enhanced arousal, wariness and anxiety (Wang et al., 2015). In tandem to these innate
35 adaptive responses, the aversive threat signal is transmitted to forebrain nuclei that receive
36 convergent information about ongoing environmental stimuli, and associations are formed
37 allowing prediction of future threats based on environmental information (Blair et al., 2001;
38 Bolles and Collier, 1976; LeDoux, 2000; Maren, 2001; Romanski et al., 1993; Tovote et al.,
39 2015). Upon re-exposure to pain-predictive cues (e.g., an auditory conditioning stimulus (CS)),
40 nuclei storing the associative memory are reactivated and through downstream partners trigger
41 responses previously hallmarks of the unconditioned response (e.g., freezing behavior and
42 autonomic arousal) (Goosens and Maren, 2001; Iwata and LeDoux, 1988; Maren, 2001;
43 Tovote et al., 2015). Hence, while the systems controlling unconditioned responses and
44 associative learning have dissociable processes, they have highly convergent behavioral and
45 physiological readouts. Due in part to this inherently entangled arrangement, dissection of
46 these affective processes prior to the level of the amygdala has remained elusive.

47 The parabrachial nucleus (PBN), located at the junction of the midbrain and pons, is
48 implicated in relaying aversive threat information to the forebrain (Bernard and Besson, 1988;
49 Chiang et al., 2019; Gauriau and Bernard, 2002). A recently identified population of neurons
50 expressing calcitonin gene-related peptide (CGRP, encoded by the *Calca* gene) resides in the
51 external lateral PBN and is robustly activated by threats of diverse origin (Campos et al., 2017,
52 2018; Carter et al., 2013; Chen et al., 2018), including somatic pain (Han et al., 2015). In
53 addition to contributing to affective and behavioral responses to pain, CGRP^{PBN} neurons are
54 necessary for associative fear learning (Han et al., 2015). While neurons across the entire
55 population appear to broadly respond to multi-modal threats (Campos et al., 2018), it remains
56 possible that subpopulations are preferentially activated by distinct stimuli and project to
57 designated partners to drive appropriate responses. The alternative extreme is that CGRP^{PBN}
58 neurons are a homogeneous population with broadly distributed projections, whose distinct
59 phenotypes are elaborated entirely by downstream partners with activity shaped by additional
60 sensory inputs.

61 We sought to disentangle the organization of CGRP^{PBN} to forebrain circuitry by
62 delineating their distribution of projections and then determining whether they originate from
63 distinct CGRP^{PBN} neuron subgroups or arise by collateralization. To interrogate the underlying
64 logic by which unconditioned responses and associative learning are simultaneously driven
65 from this single population, we selectively activated individual terminal fields in downstream
66 targets and measured their individual capacity to elicit behavioral and physiological changes
67 and/or contribute to associative fear learning. We found that many distinct phenotypes were
68 produced by discrete projections, while a select few contributed to associative fear learning.

69 Results

70 **CGRP^{PBN} neurons generate learned and innate defensive responses and connect to** 71 **diverse forebrain targets**

72 To determine whether activation of CGRP^{PBN} neurons is sufficient to induce both the
73 behavioral and physiological correlates of the unconditioned response in addition to fostering
74 associative fear learning (Han et al., 2015), we bilaterally injected an adeno-associated virus
75 carrying Cre-dependent channelrhodopsin (AAV1-DIO-ChR2:YFP) and implanted fiber-optic
76 cannulae over the PBN of *Calca*^{Cre/+} mice, while control mice received AAV1-DIO-YFP (**Figure**
77 **1A; Figure S1A**). Repeated high-frequency (30 Hz) activation of CGRP^{PBN} neurons induced
78 profound freezing behavior (**Figure 1B, Supplementary Video 1**), as indicated by rigid,
79 uninterrupted immobility. In addition to eliciting robust freezing behavior, we confirmed that
80 pairing photostimulation with an auditory CS rapidly induced conditioned freezing responses to
81 the CS (**Figure 1C**) (Han et al., 2015). To test whether CGRP^{PBN} neurons can recapitulate
82 physiological aspects of the unconditioned response, we photostimulated the neurons while
83 monitoring heart rate with a pulse oximeter (**Figure 1D**). Interestingly, while modest activation
84 (15 Hz, subthreshold for eliciting freezing behavior) resulted in moderate tachycardia (**Figure**
85 **S1B**), high-frequency activation (30 Hz) led to profound bradycardia and decreased respiration
86 followed by dramatic post-stimulation rebound tachycardia and mild hyperventilation (**Figure**
87 **1E-F**, respiration measured in plethysmography chamber); it also produced vasoconstriction
88 (**Figure 1—figure supplement 1F**) (Vianna and Carrive, 2005). Hence, CGRP^{PBN} neurons are
89 capable of exerting opposing effects on autonomic physiology depending on their activation
90 frequency. To test whether CGRP^{PBN} neurons can also elicit behavioral alterations associated
91 with late-phase responses to threat exposure, we subjected mice to an elevated-plus-maze
92 test (Martin, 1961; Pellow et al., 1985) while activating CGRP^{PBN} neurons; this treatment
93 attenuated open-arm exploration consistent with an anxiogenic effect (**Figure 1G**).

94 To map the forebrain connections from CGRP^{PBN} neurons that underlie their wide
95 physiological and behavioral repertoire, we sectioned the forebrain of mice expressing a
96 fluorescent tracer (AAV1-DIO-YFP) in CGRP^{PBN} neurons and identified axon terminals in
97 various downstream sites (**Figure 1H**). Comparing individual targets to cumulative projection
98 intensity, we found major projections to the central amygdala (CeA, ~40%, primarily targeting
99 the capsular sub-nucleus), substantia innominata (SI, ~20%), and oval sub-nucleus of the bed
100 nucleus of stria terminalis (ovBNST, ~15%), with weaker projections to the parasubthalamic
101 nucleus, thalamus (PSTN and VPMpc, ~10% each), and visceral insular cortex (IC, ~5%)
102 (**Figure 1I**). With the exception of the IC, CGRP^{PBN} neurons also target the contralateral
103 hemisphere for all of their downstream partners, markedly to the contralateral PSTN and
104 VPMpc, with ~75% and 50% of the ipsilateral projection strength, respectively (**Figure 1—**
105 **figure supplement 1F-G**). To confirm that downstream neurons receive monosynaptic
106 excitation from CGRP^{PBN} neurons and also to compare synaptic strength across targets, we
107 expressed channelrhodopsin (ChR2) in CGRP^{PBN} neurons and photostimulated terminals in
108 downstream regions while recording from putative postsynaptic neurons in a slice preparation
109 (**Figure 1J**). Interestingly, we found that while all of the major downstream targets were
110 recipients of reliable excitatory input from CGRP^{PBN} neurons (**Figure 1J**, IC not tested), the

111 VPMpc, while not receiving the strongest input based on fiber density, exhibited significantly
112 greater excitation from terminal activation than any other recording site (**Figure 1K**).

113 The heterogeneity of behavioral and physiological outcomes elicited by activation of
114 CGRP^{PBN} neurons raises questions about the underlying circuit organization responsible for
115 their generation. We envisioned several potential circuit structures underlying CGRP^{PBN}
116 neuron connectivity to the forebrain: while distributed, one-to-all connectivity involving
117 extensive collateralization from each CGRP neuron to every target structure would be well
118 suited for simultaneous, parallel activation of diverse regions, a one-to-one, segregated
119 organization would better support separable generation of distinct functions via activation of
120 designated partners. To reveal the structure underlying CGRP^{PBN}-neuron connectivity to the
121 forebrain, we devised a method to selectively isolate subsets of CGRP^{PBN} neurons as defined
122 by their target-projecting behavior. By injecting AAV expressing retrogradely-transported Flp-
123 recombinase (rAAV2-retro-Flp) into a downstream site and a fluorescent tracer requiring both
124 Cre and Flp for expression (Fenno et al., 2014) (AAV-Cre_{on}-Flp_{on}-YFP; Target +), or that is
125 turned on by Cre but off by Flp (Fenno et al., 2014) (AAV-Cre_{on}-Flp_{off}-YFP; Target -) into the
126 PBN of *Calca*^{Cre/+} mice (**Figure 2A**), we were able to isolate fluorescent expression to neuronal
127 subpopulations defined by whether or not they targeted a region of interest (**Figure 2B, figure**
128 **supplement 1A**). Normalizing the resulting projection intensity in each downstream region
129 under each condition to the maximal signal given by transducing all CGRP^{PBN} neurons, we
130 determined the proportion of terminal density in each downstream partner supplied by target-
131 projecting CGRP^{PBN} neurons for the VPMpc, PSTN, CeA, and ovBNST (**Figure 2C**). This
132 analysis revealed that CeA-projectors contributed substantially to PSTN, SI, VPMpc and
133 ovBNST projections, but not IC. VPMpc-projectors, interestingly, while also projecting to the
134 CeA, contributed more substantially to the SI and IC, while PSTN-projectors had limited
135 secondary output to the CeA and SI, and ovBNST-projectors had only a weak secondary
136 projection to the CeA (**Figure 2C**), shown schematically in **Figure 2E**. Quantifying the number
137 and location of the different projecting subpopulations within the PBN revealed that neurons
138 projecting to the CeA made up the largest proportion of CGRP^{PBN} neurons residing within the
139 external lateral PBN, while neurons projecting to VPMpc accounted for most of the CGRP^{PBN}
140 neurons residing in the medial and waist regions; neurons projecting to ovBNST, the smallest
141 group, were restricted to the external lateral PBN (**Figure 2—figure supplement 1B-F**).
142 Comparing projection distributions for the Target + or Target - expression conditions, we found
143 that regardless of the downstream target used to drive expression, the CeA was the primary
144 downstream partner in terms of projection intensity (**Figure 2D**). Excluding CeA-projecting
145 CGRP^{PBN} neurons flattened the distribution, with the ovBNST narrowly making up the largest
146 projection contribution. As a summary statistic to directly compare the collateralization
147 tendencies across subpopulations, we calculated a collateralization coefficient defined as the
148 difference between projection strength for each downstream partner in the Target + and Target
149 - conditions, for each target, where a value of 50% corresponds to half of the signal in the area
150 of interest being supplied by target-site projectors (**Figure 2F, figure supplement 1G**).
151 Looking at the distribution of these coefficients across secondary downstream partners for
152 each target site, we found that VPMpc projectors had the greatest tendency to collateralize,
153 while ovBNST projectors collateralized primarily to the CeA (**Figure 2G, figure supplement**

154 **1G).** In summary, there is extensive collateralization by CGRP^{PBN} neurons with no one-to-one
155 projections; rather, CGRP^{PBN} neurons tend to distribute their projections among large groups
156 of downstream targets, composing a one-to-many distributed projection arrangement (**Figure**
157 **2E**).

158
159 **Individual downstream targets of CGRP^{PBN} neurons exert diverse effects on physiology**
160 **and behavior**

161 To assess the contribution of CGRP^{PBN} neurons individual downstream partners to discrete
162 behavioral and physiological processes associated with unconditioned responses to aversive
163 stimuli, we used ChR2 to stimulate terminals within specific target regions (**Figure3—figure**
164 **supplement 1A-C**, for fiber placement summary). Because of the high degree of
165 collateralization, it is possible that stimulating one region will result in antidromic activation and
166 neurotransmitter release in all areas with shared innervation. If that occurred, then stimulating
167 in one area that shares strong co-innervation with another should yield similar phenotypic
168 outcomes. Surprisingly, given the broad collateralization of CGRP^{PBN} neurons, that was not the
169 case. Only photostimulating terminals in the VPMpc or PSTN led to reliable initiation of
170 freezing behavior (**Figure 3A-B**, ~40% time-spent freezing), while photostimulating the caudal
171 CeA (cCeA), SI, or ovBNST had more subtle effects (~25% time-spent freezing, **Figure 3C-F**),
172 and the rostral CeA (rCeA) actually led to a non-significant increase in locomotion (**Figure 3—**
173 **figure supplement 2B**; for cross-area mean freezing response comparisons see **figure**
174 **supplement 2A**). Notably, activating no individual projection was able to match cell-body
175 activation in generating robust freezing behavior (**Figure 3—figure supplement 2A**).

176 Measuring the effect of photostimulating different terminal fields on multiple
177 physiological measures, we found that activating the PSTN, rCeA, SI or ovBNST led to
178 tachycardia, while activating the VPMpc or cCeA had no effect (**Figure 3F-L**). In addition to
179 eliciting tachycardia, photostimulating terminals in the PSTN, rCeA or SI caused
180 vasoconstriction (**Figure 3S-X**), while activating only the rCeA, SI, or ovBNST elicited
181 hyperventilation (**Figure 3M-R**). Lower frequency (15 Hz) led to similar, less robust
182 physiological effects across regions (**Figure 3—figure supplement 2D-I**), while light delivery
183 alone in control animals had no effect on any of these measures (**Figure 3—figure**
184 **supplement 2J-O**). Compellingly, the most co-innervated downstream regions – the VPMpc
185 and SI, CeA and ovBNST, and PSTN and CeA, each had distinct effects on physiology and
186 behavior, with some (VPMpc, PSTN) preferentially inducing freezing behavior, and others (SI,
187 CeA, ovBNST) robustly eliciting autonomic responses, suggesting that terminal stimulation
188 does not produce robust antidromic activation that homogeneously activates all co-innervated
189 regions. In support of this conclusion, we observed that photostimulation of terminals in each
190 downstream target did not generate antidromic activation of cell bodies sufficiently robust to
191 induce Fos expression in the PBN (**Figure 3—figure supplement 2C**). Taken together, these
192 behavioral and physiological data suggest that the projections to thalamic (VPMpc) and
193 hypothalamic (PSTN) downstream partners elicit freezing behavior the best, while activating
194 extended amygdalar structures (rCeA, SI, ovBNST) robustly elicits sympathetic autonomic
195 responses, implying a specialization in function across downstream partners.

196 **CGRP^{PBN}-neuron downstream targets differentially influence associative learning and**
197 **affect**

198 To measure alterations in anxiety state, potentially indicative of enhanced arousal or vigilance
199 in response to threats (Martin, 1961; Mestanik et al., 2015), we photostimulated terminals in
200 downstream targets while mice explored an elevated-plus maze (**Figure 4A**). Only
201 photostimulation of terminals in the ovBNST significantly reduced open-arm exploration,
202 consistent with an anxiogenic effect, while photostimulating terminals in the rCeA paradoxically
203 increased open-arm exploration (**Figure 4B-C**).

204 To interrogate the affective state generated by activation of each downstream partner
205 we utilized a real-time, place-preference (RTPP) assay to assess whether mice would choose
206 to seek out or avoid terminal photostimulation (**Figure 4D**). Mice with photostimulation of either
207 CGRP^{PBN} somata or their terminals in the VPMpc, PSTN, rCeA, or SI robustly avoided
208 photostimulation (**Figure 4E-K, figure supplement 1E-K**), whereas mice with photostimulation
209 of terminals in the cCeA or ovBNST had no preference. Considering aversive valence in
210 combination with the observation that photostimulation of terminals in the rCeA robustly
211 potentiated escape attempts during exposure to noxious heat (**Figure 4—figure supplement**
212 **1A-C**) (Espejo and Mir, 1993) without affecting spinal analgesia (**Figure 4—figure**
213 **supplement 1D**) (D'amour and Smith, 1941), implies that activating the rCeA may not be
214 anxiolytic *per se*, but shift behavior towards active coping strategies during threatening
215 situations.

216 We subjected mice to an associative fear-learning paradigm where an auditory CS
217 precedes and co-terminates with terminal photostimulation as an unconditioned stimulus (US)
218 to assess the ability of activating each individual projection target to generate a fear memory
219 (**Figure 5A**). Photostimulation of CGRP^{PBN}-neuron terminals in the VPMpc, PSTN, or SI
220 resulted in significant freezing to the auditory CS after 6 CS-US pairings (**Figure 5B-G**), with
221 only activation of terminals in the VPMpc or SI generating a significant association as indicated
222 by area under the curve exceeding that of control animals (**Figure 5H**) and robust conditioned
223 freezing to the CS in novel context 24 h following conditioning (**Figure 5B-G**). While
224 photostimulation of CGRP^{PBN} neuron terminals in either the SI or VPMpc was sufficient to drive
225 associative fear learning, the association formed is weaker than that driven by photostimulating
226 CGRP^{PBN} neuron cell bodies (**Figure 5H**), suggesting they play complementary roles.

227
228 **Emergent properties of combined activation in multiple downstream targets**

229 Activation of no single projection from CGRP^{PBN} neurons was sufficient to elicit profound
230 freezing behavior or bradycardia; therefore, we devised a method to simultaneously activate
231 multiple terminal fields by implanting 3 fiber-optic cannulae in a single hemisphere over
232 multiple areas of interest to determine the threshold of downstream activity necessary to elicit
233 these phenotypes (**Figure 6A**). We placed one cannula over the SI, one over the cCeA and
234 one over the VPMpc. Then, we determined the strength of freezing responses capable of
235 being generated by each individual projection field by varying the light power. Maintaining
236 stimulation frequency at 30 Hz and increasing laser power from 10 to 40 mW, we found that
237 activation of CGRP^{PBN} neuron terminals in the cCeA or VPMpc led to a gradual increase in
238 freezing but activating terminals in the SI was maximal at 10 mW (**Figure 6B**). Combining

239 photostimulation of terminals in the VPMpc and SI (10 mW) led to rapidly entrainment of
240 freezing behavior to an auditory CS, and the resulting association strength, though not
241 significantly greater than either projection individually generated, was no longer significantly
242 weaker than that generated by the entire population even though our dual-stimulation
243 arrangement was unilateral and all other groups were bilateral (**Figure 6C**).

244 We then combined activation of multiple projection fields using 20-mW power to
245 determine which combination of CGRP^{PBN} neuron projections could elicit profound freezing
246 behavior. Activating the cCeA and SI projection fields resulted in moderate freezing behavior
247 that did not appear to be additive (cCeA 23.2±0.5% freezing; SI 26.9±2.5; Combined 30.4±1.3
248 (mean±sem), **Figure 6D; Supplementary Video 2**), while simultaneous activation of terminals
249 in the VPMpc and cCeA elicited robust freezing behavior exceeding that produced individually
250 (VPMpc 37.1±2.3% freezing; cCeA 23.2±0.5; Combined 68.9±3.6 (mean±sem), **Figure 6B and**
251 **E-F; Supplementary Video 3**), comparable to freezing behavior elicited by activating all
252 CGRP^{PBN} neurons (93.0±2.9% freezing (mean±sem), **Figure 1B; Supplementary Video 1**).
253 These phenotypes were enhanced by driving photostimulation with a red light-activated opsin
254 (Yizhar et al., 2011) (VPMpc+cCeA 94.5±3.0% freezing (mean±sem), **Figure 6—figure**
255 **supplement 1A-I**), suggesting that a combination of light-spread and faithfulness of activation
256 underlies reliable freezing generation. Importantly, simultaneous photostimulation of terminal
257 fields did not dramatically induce Fos in CGRP^{PBN} neurons (<10% compared to 80% for soma
258 activation sufficient to generate freezing behavior) (**Figure 6—figure supplement 1J-L**). We
259 also tested whether simultaneous photostimulation of terminals in the cCeA and VPMpc would
260 affect autonomic physiology by measuring heart rate using a pulse oximeter. While activating
261 neither projection alone affected heart rate (**Figure 3**), simultaneous photostimulation robustly
262 elicited bradycardia (**Figure 6G**). These results imply that combinations of projections from
263 CGRP^{PBN} neurons are capable of generating phenotypes beyond the spectrum of their
264 individual capacity, suggesting a mechanism by which responses can be enhanced or
265 diminished depending on the situation.

266 **Pain-induced activation of the VPMpc and SI by CGRP^{PBN} neurons contributes to**
267 **associative fear learning**

268 While previous studies that permanently silenced CGRP^{PBN} neurons demonstrated that their
269 activity contributes to conditioned-fear responses (Han et al., 2015), we asked whether
270 photoinhibition restricted to the peri-foot shock period during conditioning would be sufficient to
271 attenuate conditioned responses to the CS, as post-shock recurrent activity, stress-induced
272 activation, or recall-driven reactivation could also potentially affect association formation,
273 memory consolidation, or recall. Using AAV-mediated expression of a red-light activated
274 chloride pump (Chuong et al., 2014) (JAWS) to inhibit CGRP^{PBN} neurons during 0.5-mA foot-
275 shock delivery (**Figure 7A, figure supplement 1A**), we found that selective inhibition of
276 CGRP^{PBN} neurons during the foot shock significantly attenuated both conditioned responses
277 during training and in a CS-probe trial 24 h later, while also reducing freezing behavior
278 conditioned to the training context (**Figure 7B**). These findings affirm that the signal relayed by
279 CGRP^{PBN} neurons to downstream partners during the foot shock directly contributes to
280 associative memory formation.

281 To determine whether individual projections contribute to associative fear learning, we
282 used JAWS to inhibit CGRP^{PBN}-neuron terminals in the VPMpc, CeA, or SI during the foot
283 shock (**Figure 7C**). We first confirmed that JAWS-mediated inhibition of CGRP^{PBN}-neuron
284 terminals significantly reduced EPSC frequency in post-synaptic neurons (**Figure 7D**) (Mahn et
285 al., 2016). Inhibiting synaptic release during the foot shock at CGRP^{PBN}-neuron terminals in the
286 VPMpc or SI, but not CeA, significantly attenuated both memory formation (**Figure 7E-G**) and
287 association strength (**Figure 7H**), without affecting contextual-fear learning. While inhibiting
288 CGRP^{PBN} neurons non-significantly reduced foot shock-induced locomotion (**Figure 7I**), no
289 individual projection tested was necessary for this response. In addition, transiently inhibiting
290 either CGRP^{PBN} cell bodies or their individual projections did not significantly affect behavioral
291 responses to noxious heat (Espejo and Mir, 1993) (**Figure 7—figure supplement 1B-E**), nor
292 did it lead to a place preference in a RTPP paradigm (**Figure 7—figure supplement 1F-I**),
293 suggesting that basal activity of CGRP^{PBN} neurons is insufficient for their inhibition to generate
294 a salient shift in affective state. Taken together, these data reveal an unexpected role for the SI
295 and VPMpc, two regions respectively implicated in arousal (Kaur et al., 2017; Mogenson et al.,
296 1985) and taste processing (Liu and Fontanini, 2015), in contributing to an affective pain signal
297 that drives associative fear learning.

298 Discussion

299 Disentangling the interacting neural substrates responsible for generating affective, behavioral,
300 and physiological responses to environmental threats is a necessary endeavor for
301 understanding and eventually treating the alterations in threat processing that underlie
302 affective disorders such as PTSD (Flandreau and Toth, 2018; Mikics et al., 2008) and anxiety
303 (Davis and Whalen, 2001; Lissek et al., 2014). Leveraging what is known about the circuits
304 ascending from the spinal cord to drive affective, motivational responses to pain (Bernard and
305 Besson, 1988; Campos et al., 2018; Gauriau and Bernard, 2002; Han et al., 2015), we aimed
306 to dissect at the level of the PBN the multi-faceted system that simultaneously generates
307 diverse innate unconditioned responses and drives learned associations to aversive stimuli.

308 Generation of unconditioned behavioral and physiological responses

309 Early studies silencing CGRP^{PBN} neurons implicated them in contributing to both affective
310 responses to somatic pain, including nocifensive behavior, post-shock freezing behavior (Han
311 et al., 2015), and illness-induced increases in anxiety state (Campos et al., 2017). We found
312 that photostimulation of CGRP^{PBN} neurons, in addition to driving profound freezing behavior,
313 can also generate either tachycardia or parasympathetic responses depending on stimulation
314 frequency, and elicit anxiety-like behavior. These findings collectively suggest that activation of
315 CGRP^{PBN} neurons during somatic pain has the potential to contribute to many aspects of the
316 unconditioned response cascade, from shock-induced locomotion to post-shock freezing
317 behavior, autonomic responses including simultaneous enhancement of parasympathetic and
318 sympathetic outflow, and post-insult anxiogenesis. A complication of this arrangement is that
319 neither freezing behavior (Blanchard and Blanchard, 1969), parasympathetic responses (Iwata
320 and LeDoux, 1988), nor anxiety occur during the shock. Hence, the role played by CGRP^{PBN}

321 neurons in these phenotypes would necessarily result from recurrent reactivation, rather than a
322 direct ascending signal.

323 By selectively activating CGRP^{PBN} -neuron terminals in their various downstream targets,
324 we distinguished the potential of individual downstream partners to contribute to distinct
325 components of the behavioral and physiological alterations that comprise the unconditioned-
326 response cascade. We found that with the exception of the rCeA, all projections generated
327 some amount of freezing behavior, with the most robust responses elicited by the PSTN and
328 VPMpc, two projections that were overlooked in previous work. We also found a marked
329 disparity in function across the CeA, with activation of terminals in the cCeA eliciting only mild
330 freezing behavior, while activating the rCeA had no effect on freezing behavior but did produce
331 robust sympathetic responses, avoidance, and nocifensive behaviors on a hot plate. In
332 general, our results suggest that CGRP^{PBN} -neuron connections to extended amygdalar
333 structures (i.e., the CeA, SI, and ovBNST) influence freezing behavior, affective processing
334 including negative valence and anxiety state, and physiological responses, while thalamic and
335 hypothalamic connections transmit a negative-valence signal and elicit freezing behavior.
336 These results are supported by the fact that extended amygdalar structures are richly
337 interconnected with hindbrain nuclei controlling autonomic outflow (Dong and Swanson, 2004;
338 Rizvi et al., 1991; Veening et al., 1984), while the VPMpc is not (Cechetto and Saper, 1987).

339 Our collateral-tracing experiments revealed that, in contrast to the distinct phenotypes
340 generated by terminal photostimulation, CGRP^{PBN} neurons form a broadly distributed network
341 with their downstream partners in which no forebrain target receives solitary innervation. There
342 was some bias in the connectivity groupings, with neurons projecting to the CeA tending to
343 also strongly innervate the PSTN, neurons projecting to the VPMpc also innervating the SI and
344 IC and avoiding the ovBNST, and neurons projecting to the ovBNST also targeting the CeA.
345 This distributed collateralization organization may be important for generating highly
346 coordinated actions and associations by simultaneously driving activity in downstream sites
347 that have related or complementary functions. An example in support of this arrangement is
348 that stimulation of terminals in the SI and VPMpc generated disparate effects on physiology,
349 but collaboratively supported associative fear learning.

350 While activating some individual terminal fields from CGRP^{PBN} neurons in different
351 downstream sites recapitulated – in a scaled-down fashion – most of the phenotypes driven by
352 photostimulating the cell bodies, we found that profound freezing behavior and bradycardia
353 were not produced by stimulation of any individual projection, suggesting they instead arise
354 from additive interactions between downstream structures and their respective circuits. We
355 tested this hypothesis by simultaneously activating terminals in the VPMpc and cCeA, two
356 targets that generated reliable freezing behavior, and observed not only a robust potentiation
357 of the freezing behavior but also profound bradycardia. Interestingly, neither of these
358 populations generated autonomic responses when activated individually. One explanation for
359 this shift to bradycardia is that they were both equally enhancing sympathetic and
360 parasympathetic outflow when individually activated, effectively cancelling out the physiological
361 readout (Iwata and LeDoux, 1988), but activating them in combination shifted the balance
362 towards greater parasympathetic outflow. Another possibility is that their concurrent activation
363 gates activity in secondary structures that drive parasympathetic responses.

364 An important consideration in implicating individual downstream partners in generating
365 distinct aspects of behavioral and physiological response is the inherent limitation of terminal
366 photostimulation. It is difficult, if not impossible, to ensure that antidromic activity does not
367 activate secondary targets, an especially important possibility given the broad collateralization
368 of CGRP^{PBN} neurons. However, secondary techniques aimed at accounting for this situation
369 also have their shortcomings: axons may bifurcate near the sites of interest rather than at the
370 cell body, hence silencing cell bodies may not prevent antidromic activation. Moreover, since
371 many of the forebrain structures contributing to threat processing are interconnected, silencing
372 other portions of the downstream circuit to attempt to isolate the effect of the target of interest
373 on the measured phenotype may affect phenotype generation if the populations are
374 interconnected. We argue that the very fact that terminal stimulation in different downstream
375 targets generates distinct phenotypes supports the fact that at minimum, preferential activation
376 of the site of interest is occurring. If photostimulation of terminals was efficiently activating cell
377 bodies within the PBN then the same phenotypes should be observed regardless of fiber
378 location. Perhaps most compelling is that CeA-projecting CGRP^{PBN} neurons make up the bulk
379 of the population yet photostimulation of terminals in the CeA does not efficiently produce
380 either freezing behavior or anxiety, two of the distinct phenotypes produced by activating other
381 downstream targets that receive collateral innervation with the CeA.

382 **Associative fear learning**

383 Associative learning is a highly tractable and informative process because it reliably depends
384 on the salience of the CS and US, and the innate associability of these stimuli (Garcia et al.,
385 1968; Sigmundi et al., 1980). The interplay of these factors on the association is indicated by
386 the learning rate and asymptote – the maximal conditioned response for a particular CS-US
387 pair (Rescorla, 1972; Sigmundi et al., 1980). Here, we maintained a constant CS and varied
388 the US by activating specific projections from CGRP^{PBN} neurons to condition predictive
389 freezing to an auditory CS, or by silencing either CGRP^{PBN} neurons or individual projections
390 during foot-shock delivery. Activation of CGRP^{PBN} neurons elicited the most robust association,
391 followed by stimulation of terminals in the VPMpc or SI. No individual projection was sufficient
392 to recapitulate the learning asymptote generated by stimulating all CGRP^{PBN} neurons; hence,
393 some combination of projections relays salient aspects of the US, generating complementary
394 signals that eventually reach the basolateral amygdala (BLA) to potentiate synapses receiving
395 coincident CS information (Blair et al., 2001; Maren, 2001; Romanski et al., 1993). In support
396 of this hypothesis, inhibiting CGRP^{PBN}-neuron terminals in either the VPMpc or SI during the
397 US attenuated the association strength to the same degree as inhibiting the entire population,
398 suggesting that preventing activation of either downstream partner impairs associative
399 learning. We also observed that a substantial degree (~50%) of the conditioned response was
400 maintained when inhibiting CGRP^{PBN} neurons, indicating that they are part of a distributed
401 network that collectively relays the affective, motivational signal to forebrain neurons that form
402 and store the associative memory (Lanuza et al., 2004, 2008; Shi and Davis, 1999).
403 Interestingly, work examining the ability of the CGRP^{PBN} neuron projection to the VPMpc to
404 generate an associative memory using taste as a CS indicated no conditioned taste aversion
405 formation (Chen et al., 2018), suggesting that either the relayed signal is the wrong modality

406 for combining with CS taste information, or that a specific temporal activation pattern different
407 from that tested is required to form an association. Hence, it is surprising that associative
408 learning to a tone generated conditioned freezing behavior, while association with a taste did
409 not alter preference, even though the VPMpc is an integral part of the ascending taste network
410 (Liu and Fontanini, 2015). More work assessing the response patterns of individual VPMpc
411 neurons to diverse sensory modalities and their contribution to conditioned taste aversion is
412 required to resolve these interesting paradoxes.

413 Previous work indicates that activation of CGRP-receptor neurons in the CeA is
414 sufficient to act as a US to drive associative fear learning, and that silencing these neurons
415 prior to conditioning attenuates conditioned-fear responses (Han et al., 2015). We activated
416 both the rostral and caudal CeA terminal fields and were surprised that neither was individually
417 capable of generating a fear memory, suggesting that either CGRP-receptor neurons in the
418 CeA make up a larger population than are activated by CGRP^{PBN}-neuron terminal stimulation,
419 or that direct activation of these neurons is more efficient than terminal stimulation and is thus
420 able to drive associative learning. In support of the former, when we inhibited CGRP^{PBN} neuron
421 terminals in the CeA during foot-shock delivery we saw no effect on associative-fear learning,
422 suggesting that the relayed activity during the foot shock does not underlie the CS-US
423 association. This is in apparent contrast to previous work demonstrating that silencing CGRP-
424 receptor neurons in the CeA prior to conditioning attenuates conditioned responses to the CS
425 (Han et al., 2015). However, this manipulation was permanent and failed to distinguish
426 between association formation and recall, which our US-only inhibition did, suggesting that
427 reactivation of the CeA after conditioning may underlie the observed reductions in conditioned
428 responding. Based on these observations and our data implicating the CeA in robust
429 unconditioned-response generation, we propose an alternate model wherein CGRP^{PBN} neuron
430 connections to the CeA, PSTN, SI, and ovBNST drive unconditioned responses to the US,
431 post-conditioning activation of BLA neurons by the CS reactivates the CeA to generate
432 conditioned responses (Kim et al., 2017), and CGRP^{PBN} neuron connections to the SI and
433 VPMpc primarily mediate the role of CGRP^{PBN} neurons in associative-fear learning, a
434 compelling arrangement given that these two downstream partners are the most directly
435 invested in cortical circuits (Cechetto and Saper, 1987; Wenk, 1997). Our data establish
436 partially separable ascending routes from CGRP^{PBN} neurons for generating unconditioned
437 responses and forming associative memories to aversive stimuli.

438
439

References

440 Bernard, J.F., and Besson, J.M. (1988). Convergence of nociceptive information on the
441 parabrachio-amygda neurons in the rat. *C. R. Acad. Sci. III.* 307, 841–847.

442 Blair, H.T., Schafe, G.E., Bauer, E.P., Rodrigues, S.M., and LeDoux, J.E. (2001). Synaptic
443 plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. *Learn. Mem.* 8,
444 229–242.

445 Blanchard, R.J., and Blanchard, D.C. (1969). Crouching as an index of fear. *J. Comp. Physiol.*
446 *Psychol.* 67, 370–375.

447 Bolles, R.C., and Collier, A.C. (1976). The effect of predictive cues on freezing in rats. *Anim. Learn. Behav.* 4, 6–8.

449 Campos, C.A., Bowen, A.J., Han, S., Wisse, B.E., Palmiter, R.D., and Schwartz, M.W. (2017).
450 Cancer-induced anorexia and malaise are mediated by CGRP neurons in the parabrachial
451 nucleus. *Nat. Neurosci.* 20, 934–942.

452 Campos, C.A., Bowen, A.J., Roman, C.W., and Palmiter, R.D. (2018). Encoding of danger by
453 parabrachial CGRP neurons. *Nature* 555, 617–622.

454 Carter, M.E., Soden, M.E., Zweifel, L.S., and Palmiter, R.D. (2013). Genetic identification of a
455 neural circuit that suppresses appetite. *Nature* 503, 111–114.

456 Cechetto, D.F., and Saper, C.B. (1987). Evidence for a viscerotopic sensory representation in
457 the cortex and thalamus in the rat. *J. Comp. Neurol.* 262, 27–45.

458 Chen, J.Y., Campos, C.A., Jarvie, B.C., and Palmiter, R.D. (2018). Parabrachial CGRP
459 neurons establish and sustain aversive taste memories. *Neuron* 100, 891–899.e5.

460 Chiang, M.C., Bowen, A., Schier, L.A., Tupone, D., Uddin, O., and Heinricher, M.M. (2019).
461 Parabrachial Complex: A Hub for Pain and Aversion. *J. Neurosci.* 39, 8225–8230.

462 Chuong, A.S., Miri, M.L., Busskamp, V., Matthews, G.A.C., Acker, L.C., Sørensen, A.T.,
463 Young, A., Klapoetke, N.C., Henninger, M.A., Kodandaramaiah, S.B., et al. (2014).
464 Noninvasive optical inhibition with a red-shifted microbial rhodopsin. *Nat. Neurosci.* 17, 1123–
465 1129.

466 D'amour, F.E., and Smith, D.L. (1941). A method for determining loss of pain sensation. *J.*
467 *Pharmacol. Exp. Ther.* 72, 74–79.

468 Davis, M., and Whalen, P.J. (2001). The amygdala: Vigilance and emotion. *Mol. Psychiatry* 6,
469 13–34.

470 Dong, H.-W., and Swanson, L.W. (2004). Organization of axonal projections from the
471 anterolateral area of the bed nuclei of the stria terminalis. *J. Comp. Neurol.* 468, 277–298.

472 Espejo, E.F., and Mir, D. (1993). Structure of the rat's behaviour in the hot plate test. *Behav.*
473 *Brain Res.* 56, 171–176.

474 Fanselow, M.S. (1982). The postshock activity burst. *Anim. Learn. Behav.* 10, 448–454.

475 Fenno, L.E., Mattis, J., Ramakrishnan, C., Hyun, M., Lee, S.Y., He, M., Tucciarone, J.,
476 Selimbeyoglu, A., Berndt, A., Grosenick, L., et al. (2014). Targeting cells with single vectors
477 using multiple-feature Boolean logic. *Nat. Methods* 11, 763–772.

478 Fitzgerald, R.D., and Teyler, T.J. (1970). Trace and delayed heart-rate conditioning in rats as a
479 function of US intensity. *J. Comp. Physiol. Psychol.* 70, 242–253.

480 Flandreau, E.I., and Toth, M. (2018). Animal models of PTSD: A critical review. In *Current*
481 *Topics in Behavioral Neurosciences*, (Springer Verlag), pp. 47–68.

482 Garcia, J., McGowan, B.K., Ervin, F.R., and Koelling, R.A. (1968). Cues: their relative
483 effectiveness as a function of the reinforcer. *Science* (80-). 160, 794–795.

484 Gauriau, C., and Bernard, J.-F. (2002). Pain pathways and parabrachial circuits in the rat. *Pain*
485 87, 251–258.

486 Goosens, K.A., and Maren, S. (2001). Contextual and auditory fear conditioning are mediated
487 by the lateral, basal, and central amygdaloid nuclei in rats. *Learn. Mem.* 8, 148–155.

488 Han, S., Soleiman, M.T., Soden, M.E., Zweifel, L.S., and Palmiter, R.D. (2015). Elucidating an
489 affective pain circuit that creates a threat memory. *Cell* 162, 363–374.

490 Iwata, J., and LeDoux, J.E. (1988). Dissociation of associative and nonassociative
491 concomitants of classical fear conditioning in the freely behaving rat. *Behav. Neurosci.* 102,
492 66–76.

493 Kaur, S., Wang, J.L., Ferrari, L., Thankachan, S., Kroeger, D., Venner, A., Lazarus, M.,
494 Wellman, A., Arrigoni, E., Fuller, P.M., et al. (2017). A Genetically Defined Circuit for Arousal
495 from Sleep during Hypercapnia. *Neuron* 96, 1153–1167.e5.

496 Kim, J., Zhang, X., Muralidhar, S., LeBlanc, S.A., and Tonegawa, S. (2017). Basolateral to
497 central amygdala neural circuits for appetitive behaviors. *Neuron* 93, 1464–1479.e5.

498 Lanuza, E., Nader, K., and LeDoux, J.E. (2004). Unconditioned stimulus pathways to the
499 amygdala: Effects of posterior thalamic and cortical lesions on fear conditioning. *Neuroscience*
500 125, 305–315.

501 Lanuza, E., Moncho-Bogani, J., and LeDoux, J.E. (2008). Unconditioned stimulus pathways to
502 the amygdala: Effects of lesions of the posterior intralaminar thalamus on foot-shock-induced
503 c-Fos expression in the subdivisions of the lateral amygdala. *Neuroscience* 155, 959–968.

504 LeDoux, J.E. (2000). Emotion circuits in the brain. *Annu. Rev. Neurosci.* 23, 155–184.

505 Lissek, S., Kaczkurkin, A.N., Rabin, S., Geraci, M., Pine, D.S., and Grillon, C. (2014).
506 Generalized anxiety disorder is associated with overgeneralization of classically conditioned
507 fear. *Biol. Psychiatry* 75, 909–915.

508 Liu, H., and Fontanini, A. (2015). State dependency of chemosensory coding in the gustatory
509 thalamus (VPMpc) of alert rats. *J. Neurosci.* 35, 15479–15491.

510 Mahn, M., Prigge, M., Ron, S., Levy, R., and Yizhar, O. (2016). Biophysical constraints of
511 optogenetic inhibition at presynaptic terminals. *Nat. Neurosci.* 19, 554–556.

512 Maren, S. (2001). Neurobiology of Pavlovian Fear Conditioning. *Annu. Rev. Neurosci.* 24,
513 897–931.

514 Martin, B. (1961). The assessment of anxiety by physiological behavioral measures. *Psychol.*
515 *Bull.* 58, 234–255.

516 Mestanik, M., Mestanikova, A., Visnovcova, Z., Calkovska, A., and Tonhajzerova, I. (2015).
517 Cardiovascular sympathetic arousal in response to different mental stressors. *Psychol. Bull.* 64
518 *Suppl* 5, S585–594.

519 Mikics, É., Tóth, M., Varjú, P., Gereben, B., Liposits, Z., Ashaber, M., Halász, J., Barna, I.,
520 Farkas, I., and Haller, J. (2008). Lasting changes in social behavior and amygdala function
521 following traumatic experience induced by a single series of foot-shocks.
522 *Psychoneuroendocrinology* 33, 1198–1210.

523 Mogenson, G.J., Swanson, L.W., and Wu, M. (1985). Evidence that projections from
524 substantia innominata to zona incerta and mesencephalic locomotor region contribute to
525 locomotor activity. *Brain Res.* 334, 65–76.

526 Pellow, S., Chopin, P., File, S.E., and Briley, M. (1985). Validation of open:closed arm entries
527 in an elevated plus-maze as a measure of anxiety in the rat. *J. Neurosci. Methods* 14, 149–
528 167.

529 Rescorla, R.A. (1972). Informational Variables in Pavlovian Conditioning. In *Psychology of*
530 *Learning and Motivation*, G.H. Bower, ed. (Academic Press), pp. 1–46.

531 Rizvi, T.A., Ennis, M., Behbehani, M.M., and Shipley, M.T. (1991). Connections between the
532 central nucleus of the amygdala and the midbrain periaqueductal gray: topography and
533 reciprocity. *J. Comp. Neurol.* 303, 121–131.

534 Roelofs, K. (2017). Freeze for action: neurobiological mechanisms in animal and human
535 freezing. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* 372.

536 Romanski, L.M., Clugnet, M.C., Bordi, F., and LeDoux, J.E. (1993). Somatosensory and
537 Auditory Convergence in the Lateral Nucleus of the Amygdala. *Behav. Neurosci.* 107, 444–
538 450.

539 Shi, C., and Davis, M. (1999). Pain pathways involved in fear conditioning measured with fear-
540 potentiated startle: Lesion studies. *J. Neurosci.* 19, 420–430.

541 Sigmundi, R.A., Bouton, M.E., and Bolles, R.C. (1980). Conditioned freezing in the rat as a
542 function of shock intensity and CS modality. *Bull. Psychon. Soc.* 15, 254–256.

543 Tovote, P., Fadok, J.P., and Lüthi, A. (2015). Neuronal circuits for fear and anxiety. *Nat. Rev.*
544 *Neurosci.* 16, 317–331.

545 Veening, J.G., Swanson, L.W., and Sawchenko, P.E. (1984). The organization of projections
546 from the central nucleus of the amygdala to brainstem sites involved in central autonomic
547 regulation: A combined retrograde transport-immunohistochemical study. *Brain Res.* 303, 337–
548 357.

549 Vianna, D.M.L., and Carrive, P. (2005). Changes in cutaneous and body temperature during
550 and after conditioned fear to context in the rat. *Eur. J. Neurosci.* 21, 2505–2512.

551 Wang, H., Li, S., and Kirouac, G.J. (2015). Effects of footshocks on anxiety-like behavior and
552 mRNA levels of precursor peptides for corticotropin releasing factor and opioids in the
553 forebrain of the rat. *Neuropeptides* 54, 1–7.

554 Wenk, G.L. (1997). The nucleus basalis magnocellularis cholinergic system: One hundred
555 years of progress. *Neurobiol. Learn. Mem.*

556 Yizhar, O., Fenno, L.E., Davidson, T.J., Mogri, M., and Deisseroth, K. (2011). Optogenetics in
557 Neural Systems. *Neuron* 71, 9–34.

558

559 **Acknowledgments**

560 We thank G. Stuber, L. Zweifel, C. Campos, A. Dhaka, and J. Kim for insightful discussions, B.
561 Land for guidance with analgesia assays and manuscript feedback, J. Ramirez for access to
562 plethysmography chambers, G. Stuber for use of electrophysiology rig, and J. Allen for
563 production of AAV viruses. A.J.B was supported by a National Institutes of Health T32

564 Graduate Training grant (T32NS099578). R.D.P. received support from a National Institutes of
565 Health grant (R01-DA24908).

566 **Author contributions**

567 A.J.B. and R.D.P. conceived the study, A.J.B. designed the study and performed and analyzed
568 behavioral experiments. A.J.B. and N.A.B. performed and analyzed physiological tests. J.Y.C
569 performed and analyzed electrophysiological experiments. Y.W.H. and A.J.B. performed and
570 analyzed histological experiments. R.D.P. provided equipment and reagents. A.J.B. wrote the
571 manuscript with input from all authors.

572 **Declaration of interests**

573 The authors declare no competing interests.

574

575 **Materials and Methods**

576 **Animals**

577 *Calca*^{Cre/+} mice (C57Bl/6 background) were generated and maintained as described (Carter et
578 al., 2013). Male and female *Calca*^{Cre/+} mice were used for all studies. Following stereotaxic
579 surgery, mice were singly housed for at least 3 wk prior to and during experimentation with *ad*
580 *libitum* access (unless noted otherwise) to standard chow diet (LabDiet 5053) in temperature-
581 and humidity-controlled facilities with 12-h light/dark cycles. All animal care and experimental
582 procedures were approved by the Institutional Animal Care and Use Committee at the
583 University of Washington.

584

585 **Virus production**

586 AAV9-Flex-ChrimsonR:tdTomato was purchased from UNC GTC Vector Core (AV6556B;
587 4.5x10¹² viral particles/mL). AAV1-DIO-ChR2:YFP, AAV1-DIO-JAWS:GFP, rAAV2-retro-Flp,
588 AAV1-Cre_{on}-Flp_{off}-ChR2-YFP, AAV1-Cre_{on}-Flp_{on}-ChR2-YFP and AAV1-DIO-YFP viral vectors
589 were produced in-house by transfecting HEK cells with each of these plasmids plus pDG1
590 (AAV1 coat stereotype) helper plasmid; viruses were purified by sucrose and CsCl gradient
591 centrifugation steps, and re-suspended in 0.1 M phosphate-buffered saline (PBS) at about 10¹³
592 viral particles/mL.

593

594 **Stereotaxic surgery**

595 Bilateral stereotaxic injections of virus (0.28 μ l per side) into the PBN of *Calca*^{Cre/+} mice were
596 achieved as described (Carter et al., 2013). In mice used for ChR2-optogenetic experiments,
597 two custom-made fiber-optic cannulas were implanted bilaterally above the PBN (AP 4.70 mm,
598 ML \pm 1.50 mm, DV 2.90 mm), VPMpc (AP 1.90 mm, ML \pm 1.25 mm, DV 3.65 mm), PSTN (AP -
599 1.80 mm, ML \pm 1.50 mm, DV 4.60 mm), cCeA (AP 1.50 mm, ML \pm 3.10 mm, DV 4.30 mm),
600 rCeA (AP 0.70 mm, ML \pm 2.85 mm, DV 4.50 mm), SI (AP 0.30 mm, ML \pm 1.80 mm, DV 4.40
601 mm), or BNST (AP +0.20 mm, ML \pm 1.20 mm, DV 4.00 mm). For three-fiber, dual-stimulation
602 experiments, three custom-made fiber-optic cannulae were implanted in the left hemisphere,

603 one above the rCeA/SI (AP 0.60 mm, ML – 2.50 mm, DV 4.40 mm), one above the cCeA
604 (head inclined at a 10° angle; AP 2.15 mm, ML – 3.30 mm, DV 4.10 mm), and one above the
605 VPMpc (AP 1.95 mm, ML – 1.00 mm, DV 3.80 mm). For JAWS-photoinhibition experiments,
606 fiber placement was same for PBN, VPMpc and SI; fibers for CeA were placed at AP 1.10 mm,
607 ML ± 3.00 mm, DV 3.85 mm. For all experimental mice, fiber-optic cannulae were affixed to the
608 skull with C&B Metabond (Parkell) and dental acrylic. Mice were allowed to recover for 3 wk
609 before the start of behavioral tests. For collateralization-tracing experiments rAAV2-retro Flp
610 virus was injected (0.48 μ l unilaterally) into the VPMpc (AP 1.92 mm, ML ± 1.00 mm, DV 3.85
611 mm), PSTN (AP -1.90 mm, ML ± 1.50 mm, DV 4.70 mm), CeA (AP 1.10 mm, ML ± 3.10 mm,
612 DV 4.10 mm), or ovBNST (AP +0.20 mm, ML ± 1.00 mm, DV 4.00 mm) and INTRSECT virus
613 (0.35 μ l unilaterally) was injected into the PBN. Tracing mice were sacrificed 4-wk after virus
614 injection.

615

616 **Photostimulation and inhibition**

617 *ChR2* - After recovery from surgery, mice were acclimated to dummy cables attached to the
618 implanted fiber-optic cannulas. For behavioral and autonomic studies, bilateral branching fiber-
619 optic cables (200- μ m diameter, Doric Lenses) were attached to the head of each mouse before
620 experimentation. Light-pulse trains (10 ms) were delivered at 15 Hz, or 30 Hz as described
621 below. Stimulation paradigms were programmed using a Master8 (AMPI) pulse stimulator that
622 controlled a blue-light laser (473 nm; LaserGlow). The power of light exiting each side of the
623 branching fiberoptic cable was adjusted to 15 ± 0.5 mW. *ChrimsonR* – Same as above, except
624 stimulation was kept to 30 Hz, and the pulse stimulator controlled a red-light laser (660 nm;
625 LaserGlow). The power of light exiting the single fiberoptic (for single-projection terminal
626 stimulation) was adjusted to 5, 12, or 20 mW as described below. For dual-projection terminal
627 stimulation, the light exiting each side of the branching fiberoptic cable was adjusted to 12 ± 0.5
628 mW. *JAWS* – acclimation same as above, except light was delivered (634-nm, Shanghai
629 Lasers) as 2-s on 1-s ramp 1-s off for continuous inhibition during behavior (e.g. hot-plate test,
630 RTPP), or 3.5-s on 1-s ramp beginning 0.5-s before each 2-s foot shock during foot-shock
631 conditioning. The power of light exiting each side of the branching fiberoptic cable was
632 adjusted to 8 ± 0.5 mW.

633

634 **Criteria for exclusion from analysis**

635 Mice were excluded from individual test data if 1) they became immobilized due to tangled
636 fiber-optic patch cords during the behavioral tests, 2) they escaped the arena during
637 photostimulation, or 3) there was limited error-free data collected in pulse-oximeter
638 physiological measurements (this only occurred with respiratory measures). Mice were
639 excluded from all analysis if post-hoc histological examination revealed that viral expression
640 was weak or unilateral, or that fiber-optic cannulae were not appropriately targeted over the
641 projection-site of interest. Locations of fiber tips for all animals that passed the expression and
642 placement criteria are summarized in Figure S3. There was also progressive dropout due to
643 headcap loss requiring animal sacrifice during the study; all data were included up to that point
644 pending histological analysis.

645

646 **Slice electrophysiology**

647 Mice were anesthetized with Euthasol (0.2 ml, i.p.) and intracardially perfused with 4-6 °C
648 cutting solution containing (in mM): 92 N-methyl-D-glucamine, 2.5 KCl, 1.25 NaH₂PO₄, 30
649 NaHCO₃, 20 HEPES, 25 D-glucose, 2 thiourea, 5 Na-ascorbate, 3 Na-pyruvate, 0.5 CaCl₂, 10
650 MgSO₄. Coronal slices (300 µm) were cut with a vibratome (Leica VT1200) and kept in the
651 same cutting solution at 33 °C for 12 min. Slices were transferred to a 25°C recovery solution
652 containing (in mM): 124 NaCl, 2.5 KCl, 1.25 NaH₂PO₄, 24 NaHCO₃, 5 HEPES, 13 D-glucose, 2
653 CaCl₂, 2 MgSO₄. Recordings were made in artificial cerebral spinal fluid (aCSF) containing (in
654 mM) 126 NaCl, 2.5 KCl, 1.2 NaH₂PO₄, 26 NaHCO₃, 11 D-glucose, 2.4 CaCl₂, 1.2 MgCl₂
655 continuously perfused at 33 °C. All solutions were continuously bubbled with 95%:5% O₂:CO₂
656 (pH 7.3-7.4, 300-310 mOsm). Patch-clamp recordings were obtained with a MultiClamp 700B
657 amplifier (Molecular Devices) and filtered at 2 kHz.

658 *JAWS Photoinhibition* – CGRP^{PBN} neurons expressing AAV1-DIO-JAWS-GFP were identified
659 via epifluorescence and action potentials were recorded in current clamp with patch electrodes
660 (3-5 MΩ) containing (in mM): 135 K-gluconate, 10 HEPES, 4 KCl, 4 Mg-ATP, 0.3 NA-GTP (pH
661 7.35, 280 mOsm). To assess the effects of CGRP terminal inhibition, excitatory-post synaptic
662 currents (EPSCs) were recorded in voltage clamp at -70 mV from neurons in the CeA
663 surrounded by JAWS:GFP-positive fibers. Patch electrodes (3-5 MΩ) contained (in mM): 117
664 Cs- MeSO₃, 20 HEPES, 0.4 EGTA, 2.8 NaCl, 5 TEA, 4.92 Mg-ATP, 0.47 Na-GTP (pH 7.35,
665 280 mOsm). Red light (634 nm, Shanghai Laser) was delivered with a fiber optic placed in the
666 bath above the slice (3 s for action potential recordings and 30 s for EPSCs with 1 s ramp
667 down). EPSCs were analyzed with an automated detection protocol in Mini Analysis Program
668 v.6.0.7 (Synaptosoft) software and manually checked for accuracy.

669 *Postsynaptic EPSCs* – To verify CGRP connectivity to post-synaptic neurons, light-evoked
670 EPSCs were recorded from cells surrounded by ChR2:YFP-positive fibers in each downstream
671 site. Neurons were held in voltage clamp at -70 mV and EPSCs were evoked by 10-ms pulses
672 of blue light delivered through the objective via a 470 nm LED (ThorLabs). Events were
673 analyzed in Clampfit v.11.0.3 (Molecular Devices).

674 **Behavioral measures**

675 *Order of experiments* – Mice were acclimated to handling and attachment of fiber-optic patch
676 cords for 1 wk, followed by auditory fear conditioning, elevated-plus-maze test, RTPP,
677 unconditioned freezing responses to stimulation in open field, hot-plate test, tail-flick latency
678 test, tail-skin temperature test, autonomic measurements. All replicates were biological (test
679 repetition in biologically distinct samples), not technical (test repetition in same biological
680 sample). Not all cohorts of mice were exposed to all experimental tests – there were biological
681 replicates of mice for PBN photostimulation, and cCeA, SI, and ovBNST terminal
682 photostimulation. The second groups were added for auditory fear conditioning (n=3,1 (ChR2,
683 YFP) SI only), unconditioned freezing (n=3,1 ovBNST and SI), and EPM behavioral data
684 (ovBNST and SI), and for the PBN only, plethysmography measurements of respiratory rate
685 (n=6). Some early groups of PBN stimulation were only tested for unconditioned freezing
686 responses (n=3). Other variances in group numbers are due to exclusion from individual tests

687 due to adverse events during the test or drop-out due to damaged fiber-optic cannulae (see
688 exclusion criteria, above).

689 *Auditory fear conditioning* – The fear-conditioning chamber was a square arena (25 x 25 cm)
690 with metal walls, two speakers attached on opposite walls, and a metal grid floor that consisted
691 of a circuit board that delivers electrical shock (Coulbourn Instruments). A USB camera was
692 connected to the personal computer and video tracking software (EthoVision XT 10, Noldus
693 Technology) controlled the circuit and recorded the data. Day 1: Mice were attached to
694 fiberoptic patch cords and allowed to habituate for 5 min in their home cage prior to
695 introduction to conditioning context. After free exploration of the context for 1 min, 6 CS tones
696 (tone: 10 kHz 20 s, 60 dB) were played at random intervals, with an average inter-trial interval
697 (ITI) of 2 min. Day 2: Mice were attached and allowed to explore for 1 min; then 6 CS
698 presentations (20 s, 60 dB, 10 kHz) were played at random intervals, with an average ITI of 2
699 min and each co-terminated with a 2-s light train (30 Hz, 15 mW). Following the sixth CS-US
700 pairing, mice remained in the context for 1 min before being returned to their home cage. Day
701 3: Mice were attached to fiberoptic patch cords and habituated as before, but then they were
702 placed in a novel context (25 x 25 cm, semitransparent plexiglass). After 2 min of free
703 exploration, one tone CS was played. All the trials were recorded by a USB camera attached
704 to the personal computer and the time spent freezing (during the tone), defined as immobility
705 up until any movement of the head or body, was manually scored with a stopwatch
706 (experimenter was blind to treatments). *With photoinhibition* – same as above, except 2-s light
707 train was replaced with a 2-s 0.5-mA footshock with red light delivery for photoinhibition (8
708 mW, 3.5-s on, 1-s ramp off, turned on 0.5-s before the shock and ending 2.5 s later).

709 *Elevated-plus maze (EPM)* – The custom-made EPM consisted of 2 sets of crossed arms (2
710 arms enclosed by 30-cm tall transparent plexiglass, 2 arms open), each 50 cm long and 8 cm
711 wide, set 65 cm above floor. Mice were attached to fiber optic patch cords and allowed to
712 habituate for 10 min in their home cage prior to introduction to the EPM. Mice were placed in
713 an open arm, 10 cm out, facing the center, with the fiber optic patchcord (4 m long) secured to
714 the ceiling above the center of the maze. Mice were allowed to explore the arena for 10 min
715 with optogenetic stimulation (15 Hz, 2 s on/2 s off). The sessions were recorded by a USB
716 camera attached to a personal computer and were analyzed using video-tracking software
717 (EthoVision XT 10).

718 *Real-time place preference (RTPP)* – The testing apparatus was a custom-made, three-
719 chambered box (two 18 x 20 cm chambers joined by a 10 x 20 cm start chamber) constructed
720 of opaque black plexiglass with a cement floor. One chamber had walls with vertical pink
721 stripes (2 cm wide), the other had horizontal pink stripes (2 cm wide), and the start chamber
722 had no stripes. Mice were attached to fiber-optic patch cords and allowed to habituate for 10
723 min in their home cage prior to introduction to the test box. Mice were then introduced to the
724 start chamber and allowed to explore freely during the 15-min trial. One chamber of the box
725 was assigned as the light-paired side. Each time the mouse crossed into the stimulation
726 chamber it received 15-Hz photostimulation or 2-s on 1-s ramp 1-s off trains of photoinhibition
727 until it left the light-paired side. Behavioral data were recorded via a USB camera interfaced
728 with EthoVision software (Noldus Information Technologies).

729 *Stimulation in open field* – Mice were attached to fiber-optic patch cords and allowed to
730 habituate for 5 min in their home cage prior to placement in the arena (40 x 40 cm, white
731 plexiglass walls). One minute after introduction to the arena it received 30-s photostimulation
732 (30 Hz, 15 mW) 3 times with 60-s inter-stimulation intervals. The sessions were recorded with
733 a USB camera attached to a personal computer and the time spent freezing, defined as
734 immobility up until any movement of the head or body, was manually scored with a stopwatch
735 (experimenter was blind to treatments). Locomotor data was collected using video-tracking
736 software (EthoVision XT 10).

737 *Hot-plate test – Photostimulation*: Mice were attached to fiber-optic patch cords and allowed to
738 habituate for 10 min in their home cage prior to stimulation. Following habituation, mice
739 received photostimulation (30 Hz, 8 s on/5 s off, 15 mW) for 7 min prior to exposure to the hot
740 plate. After terminating photostimulation, to prevent freezing interfering with responses to heat,
741 mice were placed on the pre-heated aluminum plate (15 x 15 cm, set to 52 °C) of the Hot/Cold
742 Plate Analgesia Meter (Coulbourn Instruments). The transparent Plexiglas chamber (15 x 15 x
743 20 cm) prevented the mouse from escaping. The latency of the responses to the heat (paw
744 lick, or jump) was measured manually by the experimenter with a stopwatch during the 60-s
745 trials. Trials were recorded with a USB camera attached to a personal computer, and later
746 jump number (jump counted when all 4 limbs left floor) and the latency to the first jump were
747 manually scored with a stopwatch. *Photoinhibition* – same as above, except the hot plate was
748 set to 57 °C, and photoinhibition (2-s on 1-s ramp 1-s off throughout trial) began immediately
749 prior to placing the subject on the plate. Trial was terminated at 30 s.

750 *Tail-flick-latency test* – Mice were attached to fiber-optic patch cords and allowed to habituate
751 for 10 min in their home cage prior to stimulation. Following habituation, mice received
752 photostimulation (30 Hz, 8 s on/5 s off, 15 mW) for 7 min. After ending photostimulation (to
753 prevent freezing interfering with tail-flick reflex), the mouse was restrained within a thick cloth,
754 with only its tail protruding, and its tail was partially submerged (1/2 of its length) into water
755 maintained at 52.5 °C (\pm 0.2 °C). The tail-flick latency in response to heat was manually scored
756 with a stopwatch. Trials were cut-off at 15-s if no response occurred.

757 *ChrimsonR or ChR2, single-fiber, freezing responses* – Mice were attached to a single, fiber-
758 optic patch cord and allowed to habituate in their home cage for 5 min. After habituation, they
759 were placed into an empty, clean, standard cage, and allowed to explore for 2 min, then they
760 received 10-s photostimulation (30 Hz, 5, 12, or 20 mW). The sessions were recorded with a
761 USB camera attached to a personal computer and the time spent freezing, defined as
762 immobility up until any movement of the head or body, was manually scored with a stopwatch
763 (experimenter was blind to treatments).

764 **Autonomic measurements**

765 *Tail-skin temperature measurements* – Mice were attached to fiber-optic patch cords and
766 allowed to habituate for 10 min in their home cage prior to stimulation. Following habituation, a
767 baseline thermal image of the tail was taken using an infrared camera (FLIR E4; FLIR
768 Instruments). After 2 min of photostimulation (30 Hz, 8 s on/5 s off), a second thermal image

769 was taken. Images were uploaded and analyzed using the software provided (FLIR Tools).
770 Temperature data were taken from 1/3 of length below the base of the tail.

771 *Pulse-oximeter measurements* – Mice were habituated to dummy collar sensors (Starr Life
772 Sciences) for 12 h overnight prior to secondary habituation to collar sensors and attached
773 cables (Starr Life Sciences). After a full day of habituation, hair was removed from the sensor
774 areas (circumference of neck) to allow trans-dermal infrared penetration, and mice were
775 switched to dummy collar sensors overnight. The next morning, collar sensors and attached
776 cables were placed on the mice, which habituated for at least 30 min prior to patch-cord
777 attachment. Mice were then attached to fiber-optic patch cords and returned to their home
778 cage and allowed to habituate for 1-2 h, until heart rate and respiration became stable. The
779 collar sensors were attached to a pulse oximeter (MouseOx Plus, Starr Life Sciences) via 3-m
780 cables, and the pulse oximeter was attached to a personal computer via USB. Eventually 5
781 min of baseline was recorded using the software (Conscious Software Module, Starr Life
782 Sciences), after which the mouse received 3 min of photostimulation (15 or 30 Hz) followed by
783 1 min of post-stimulation measurements. Recordings were exported and analyzed in Excel.

784 *Plethysmography measurements* – A new cohort of mice (n=6) was generated to stimulate
785 CGRP^{PBN} neuron somata to measure respiration rate by plethysmography because pulse-
786 oximeter measurements were unable to resolve respiratory rate during somata stimulation.
787 Animals were briefly anesthetized, attached to a bilateral fiber optic patch cord with a rotary
788 joint, and placed in a barometric chamber supplied with room air (21% O₂, 200 ml/min). The
789 chamber was sealed for each recording session, which consisted of 5 recording blocks, 30 s
790 each, centered around 10 s of stimulation (30 Hz) during which the pressure difference was
791 measured between the experimental and reference chamber with a differential pressure
792 transducer. Signals were amplified, digitized, and low-pass filtered (0.1 Hz). Data were
793 collected and analyzed using pCLAMP 9.0 software (Molecular Devices).

794 **Histology**

795 *Stimulation prior to euthanasia* – Mice were attached to fiber-optic patch cords and allowed to
796 habituate for 10 min in their home cage, after which they received 25 min of photostimulation
797 (30 Hz, 3 s on/2 s off). Then they were detached from the patch cords and left in their home
798 cage for 70 min until euthanasia.

799 *Histology and microscopy* – Mice were anesthetized with Beuthansia (0.2 ml, i.p.; Merck) and
800 perfused transcardially with PBS followed by 4% PFA in PBS. Brains were post-fixed overnight
801 in 4% PFA at 4 °C, cryoprotected in 30% sucrose, frozen in OCT compound (ThermoFisher),
802 and stored at -80 °C. Coronal sections (30 µm) were cut on a cryostat (Leica Microsystems)
803 and collected in cold PBS. For immunohistochemistry experiments, sections were washed
804 three times in PBS with 0.2% Triton X-100 (PBST) for 5 min and incubated in blocking solution
805 (3% normal donkey serum in PBST) for 1 h at room temperature. Sections were incubated
806 overnight at 4 °C in PBST with primary antibodies including: rabbit anti-c-Fos (1:2000, Abcam,
807 ab190289), goat anti-c-Fos (1:500, Santa Cruz Biotechnology, sc-52), chicken-anti-GFP
808 (1:10000, Abcam, ab13970). After 3 washes in PBS, sections were incubated for 1 h in PBS
809 with secondary antibodies: Alexa Fluor 488 donkey anti-chicken, Alexa Fluor Cy5 donkey anti-
810 chicken, Alexa Fluor 594 donkey anti-mouse, Cy5 donkey anti-goat, and/or Cy5 donkey anti-

811 rabbit (1:500, Jackson ImmunoResearch). Tissue was washed 3 times in PBS, mounted onto
812 glass slides, and coverslipped with Fluoromount-G (Southern Biotech). Fluorescent images
813 were acquired using a confocal microscope. All digital images were processed in the same
814 way between experimental conditions to avoid artificial manipulation between different
815 datasets.

816 *Collaterals tracing quantification* – Coronal sections (30 μ m) were collected in 180- μ m series
817 and stained for YFP (chicken-anti-GFP; Alexa Fluor Cy5 donkey anti-chicken). Fluorescent
818 images (20X magnification) of each projection target were acquired using a confocal
819 microscope, with the same settings used across all samples and subjects. Across subjects, on
820 average 6 PBN images, 3 VPMpc images, 5 PSTN images, 6 CeA images, 5 SI images, 4
821 ovBNST images, and 8 IC images were collected from each brain. Area-specific, pixel-intensity
822 measures for each image/projection target were analyzed in Image-J. Background was
823 subtracted for each image using the average fluorescence from a region of the image outside
824 the projection target analyzed. Pixel-intensity values were summed across individual sections
825 to give the total for each projection target. This value was normalized to either 1) the total pixel
826 intensity values for all areas within subject for % total projection strength, a measure of the
827 contribution of the individual projection to the total projection distribution for the subject or 2)
828 the area-specific pixel intensity in control mice expressing tracer in all CGRP neurons for %
829 maximal pixel intensity, a measure of the projection strength relative to the control condition.

830 *Collateralization coefficient* – To calculate the relative importance of a target structure for
831 contributing the signal in other projection regions we calculated the difference between the
832 normalized $F_{\text{lp}_{\text{on}}}$ and $F_{\text{lp}_{\text{off}}}$ fluorescent signal conditions within each downstream region. This
833 value, which ranges between -1 and +1, equals 0 when fluorescence in the downstream
834 structure is equal when driven only by target-projectors and when only target-projectors are
835 excluded. We set this 0 value to equal 50% by making 50% the y-intercept, then scaled by
836 50% so that when values are at their maximal (at either +1 or -1), the value reaches either 0 or
837 100%.

$$CC_a = \frac{([F_a]_{\text{FlpON}_b} - [F_a]_{\text{FlpOFF}_b})}{[F_a]_{\text{YFP}}} \times 50\% + 50\%$$

838 Here the target structure of interest is b , and the collateralization coefficient is being calculated
839 for its relationship with area a . Each target structure (i.e. the VPMpc, PSTN, CeA, ovBNST) will
840 have a number of collateralization coefficients for its relationship with other downstream
841 structures (n=6 structures -1 target = 5). We then averaged across subjects to get the mean
842 collateralization coefficient for each target-area combination and compared the distribution of
843 these values across target areas to assess their relative collateralization tendencies.

844 **Quantification and statistical analysis**

845 All data were analyzed using Prism 8.0 (GraphPad Software) as described in Supplemental
846 Information. In brief, no tests were used to determine normality of data distributions or to pre-
847 determine sample size; sample size was chosen based on past experience with expected
848 effect sizes. Within-subject data was analyzed using two-sided, paired t-tests; across subject

849 analysis was done with a combination of Welch's t tests (unpaired, correction for no
850 assumption of equal standard deviations), ordinary one-way ANOVA (with Tukey's or
851 Dunnett's correction for multiple comparisons), and ordinary or repeated measure two-way
852 ANOVAs (with Sidak's correction for multiple comparisons). For two-way ANOVAs, P-value for
853 Treatment (i.e. ChR2 vs YFP) <0.05 is indicated to the right of each graph, and post-hoc row
854 analyses' P-values <0.05 are listed above individual data points.
855

856 **Data availability**

857 The data that support the findings of this study are available from the corresponding author
858 upon reasonable request.
859

860 **Figure Legends**

861 **Figure 1. CGRP^{PBN} neurons potentiate fear behavior, drive associative learning and 862 robustly activate forebrain targets**

863 (A) Bilateral injections of AAV1-DIO-ChR2:YFP or AAV1-DIO-YFP and fiberoptic cannula
864 implants above the PBN of Calca^{Cre/+} mice. (B) Photostimulation (30 Hz) of CGRP^{PBN} neurons
865 generated robust freezing behavior (n=8,6 (n=ChR2, YFP); significant group x time interaction
866 in a two-way ANOVA, $F_{10,120} = 83.53$, $p < 0.0001$; subsequent Sidak pairwise comparisons,
867 ****p < 0.0001). (C) Optogenetic stimulation of CGRP^{PBN} neurons conditioned freezing
868 behavior when preceded by a 10-kHz auditory CS (n=4,4 (n=ChR2, YFP); significant group x
869 time interaction in a two-way ANOVA, $F_{5,36} = 5.62$, $p = 0.0006$; subsequent Sidak pairwise
870 comparisons, **p < 0.01; ***p < 0.001; and Welch's unpaired t-test for probe trial, $t(3.47) =$
871 5.62, *p = 0.016). (D) Schematic and timeline for pulse-oximetry measurements of autonomic
872 responses to optogenetic stimulation. (E) Representative and mean bradycardia caused by 30-
873 Hz photostimulation of CGRP^{PBN} neurons (n=5, one-way ANOVA, $F_{2,12} = 39.66$, $p < 0.0001$;
874 subsequent Dunnett correction for multiple comparisons). (F) Respiratory rate was also
875 reduced during photostimulation (n=6, one-way ANOVA, $F_{2,15} = 5.12$, $p = 0.0196$; subsequent
876 Dunnett correction for multiple comparisons, $p = 0.011$). (G) Stimulation of CGRP^{PBN} neurons
877 was anxiogenic (n=4,4, Welch's unpaired t-test, $t(5.93) = 3.78$, $p = 0.009$). (H) Expression of a
878 fluorescent protein in CGRP^{PBN} neurons to identify efferent projections. Scale bar: 100 μ m. (I)
879 Fluorescence in downstream targets relative to cumulative projection intensity; inset is
880 fluorescence in CeA subnuclei relative to total CeA fluorescence. (J) Representative light-
881 evoked EPSCs from cells downstream of CGRP^{PBN} neurons. (K) Average amplitudes of
882 EPSCs from responsive cells (5 cells for each site from 4 mice; 30/33 cells responded,
883 significance for one-way ANOVA, $F_{5,24} = 38.75$, $p < 0.0001$; subsequent Tukey correction for
884 multiple comparisons). Data are represented as mean \pm SEM. For full statistical information see
885 Supplementary Table 1.
886

887 **Figure 2. CGRP^{PBN} neurons broadly collateralize to forebrain targets**

888 (A) Injections of rAAV2-retro-Flp into projection targets and INTRSECT viruses into the PBN of
889 Calca^{Cre/+} mice to isolate target-projecting (Target +, Cre-on Flp-on) or non-projecting (Target -,

890 Cre-on Flp-off) populations. **(B)** Fluorescent images of projection targets in mice expressing
891 tracer in either all CGRP^{PBN} neurons, CeA-projectors (CeA-on), or non-CeA-projectors (CeA-
892 off). Scale bar: 100 μ m. **(C)** Heat maps of averaged fluorescent intensity in downstream sites
893 for Target + or Target - viral expression conditions for the VPMpc, PSTN, CeA, and ovBNST;
894 values normalized to maximal target projection intensity given by expression of DIO-YFP (n=3
895 per condition). **(D)** Overview of target-projecting projection distributions for VPMpc, PSTN,
896 CeA, and ovBNST in Target + and Target – conditions (mean \pm SEM). **(E)** Schematic of relative
897 population size and collateralization distribution from each target-projecting subset. Collaterals
898 were indicated if collateralization coefficient was >50% (see below), or if structure made up
899 >35% projection distribution in **(D)** from Target + condition. **(F)** Collateralization coefficient
900 calculated as difference between normalized fluorescence intensity in projection site in Flp-on
901 condition – Flp-off condition, averaged across all sites, scaled by 50% and forced through 0 for
902 y-intercept. Example calculation for VPMpc-projector to CeA collateralization coefficient:
903 $([CeA\ fluorescence]_{VPMpc-ON} - [CeA\ fluorescence]_{VPMpcOFF})/[CeA\ fluorescence]_{DIOYFP} \times 50\% + 50\%$. Center line, mean; box limits, upper and lower quartiles; whiskers, min to max.

905 **Figure 3. Photostimulation of CGRP^{PBN} neuron terminals in individual downstream**
906 **targets exerts diverse effects on physiology and behavior**

907 **(A)** Activating terminals in the VPMpc (n=8,5 (ChR2, YFP) elicited freezing behavior but had
908 no effect on **(G)** heart rate **(M)** respiration or **(S)** vasoconstriction. **(B)** Photostimulating
909 terminals in the PSTN (n=6,5) elicited freezing behavior, **(H)** caused mild tachycardia, **(N)** had
910 no effect on respiration but **(T)** caused vasoconstriction. **(C)** Photostimulating terminals in the
911 cCeA (n=6,5) increased freezing behavior but had no effect on **(I)** heart rate **(O)** respiration or
912 **(U)** vasoconstriction. **(D)** Photostimulating terminals in the rCeA (n=6,5) had no effect on
913 freezing behavior **(J)** elicited robust tachycardia **(P)** hyperventilation and **(V)** vasoconstriction.
914 **(E)** Photostimulating terminals in the SI (n=8,6) increased freezing behavior, **(K)** caused
915 tachycardia (n=5), **(Q)** had no effect on respiration and **(W)** caused vasoconstriction. **(F)**
916 Photostimulating terminals in the ovBNST (n=9,5) increased freezing behavior, **(L)** caused
917 tachycardia and **(R)** hyperventilation but **(X)** did not affect vasoconstriction. **(A-F)** Significance
918 for effect of group in a two-way ANOVA with subsequent Sidak pairwise comparisons. **(G-R)**
919 Significance for one-way ANOVA with subsequent Dunnett correction for multiple
920 comparisons. **(S-X)** Significance for Welch's unpaired t-test. Data are represented as
921 mean \pm SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. For full statistical information
922 see Supplementary Table 1.

923 **Figure 4. Stimulating CGRP^{PBN} neuron terminals in ovBNST is anxiogenic while**
924 **stimulating most other projections is aversive**

925 **(A)** Experimental timeline and example responses to stimulation of CGRP^{PBN} neuron terminals
926 or somata during measurements of anxiety-like behavior. **(B)** Activation of CGRP^{PBN} neurons
927 reduced time spent in open arms, as did stimulation of terminals in the ovBNST. Activation of
928 terminals in the rCeA increased open-arm exploration time. Significance for Welch's unpaired
929 t-test (PBN $t(5.93) = 3.77$, **p = 0.009, n=4,4 (ChR2, YFP); rCeA $t(9.42) = 2.59$, *p = 0.028,
930 n=7,5; ovBNST $t(8.85) = 2.65$, *p = 0.034, n=9,6). **(C)** Activation of CGRP^{PBN} neurons or their
931 projection to the ovBNST reduced open-arm entry preference; activation of the projection to

932 the rCeA increased open-arm entries. Significance for Welch's unpaired t-test (PBN $t(6.90) =$
933 4.87, ** $p = 0.002$, $n=4,4$; rCeA $t(5.59) = 2.51$, * $p = 0.049$, $n=7,5$; ovBNST $t(6.87) = 2.89$, * $p =$
934 0.018, $n=9,6$). (D) Illustration of RTPP paradigm and example trace of control mouse maze
935 exploration. (E) Activation of CGRP^{PBN} neurons led to avoidance of light-paired side (Welch's
936 unpaired t-test, $t(6.31) = 6.27$, *** $p < 0.001$, $n=6,4$). (F) Mice avoid photostimulation of
937 CGRP^{PBN} neuron terminals in the VPMpc (Welch's unpaired t-test, $t(8.75) = 4.28$, $p = 0.002$,
938 $n=7,5$). (G) Mice avoid photostimulation of CGRP^{PBN} neuron terminals in the PSTN (Welch's
939 unpaired t-test, $t(9.71) = 4.11$, $p = 0.002$, $n=9,5$). (H) Photostimulation of CGRP^{PBN} neuron
940 terminals in the cCeA does not affect place-preference (Welch's unpaired t-test, $t(8.99) = 1.00$,
941 $p > 0.05$, $n=6,5$). (I) Mice avoid photostimulation of CGRP^{PBN} neuron terminals in the rCeA
942 (Welch's unpaired t-test, $t(5.92) = 3.38$, $p = 0.015$, $n=7,5$). (J) Mice avoid photostimulation of
943 CGRP^{PBN} neuron terminals in the SI (Welch's unpaired t-test, $t(7.87) = 3.02$, $p = 0.017$, $n=6,5$).
944 (K) Photostimulation of CGRP^{PBN} neuron terminals in the ovBNST does not affect place-
945 preference (Welch's unpaired t-test, $t(9.99) = 0.35$, $p > 0.05$, $n=7,5$). Data are represented as
946 mean \pm SEM. For full statistical information see Supplementary Table 1.

947 **Figure 5. Photostimulating terminals in the VPMpc or SI can promote associative fear
948 learning**

949 (A) Illustration of experimental paradigm for cue-dependent optogenetic conditioning. (B)
950 Conditioned-freezing responses to CS paired with CGRP^{PBN} terminal stimulation in the VPMpc
951 during training ($n=8,5$; ChR2, YFP; significant effect of group in two-way ANOVA, $F_{1,66} = 115.4$,
952 $p < 0.0001$; subsequent Sidak pairwise comparisons, ** $p < 0.01$; *** $p < 0.001$) and in probe
953 test 24-h following conditioning (Welch's unpaired t-test, $t(8.93) = 7.29$, **** $p < 0.0001$). (C)
954 Conditioned freezing responses to PSTN ($n=5,4$) terminal stimulation (significant effect of
955 group in two-way ANOVA, $F_{1,42} = 6.99$, $p = 0.012$; subsequent Sidak pairwise comparisons).
956 (D) Conditioned freezing responses to cCeA ($n=7,5$) terminal stimulation (significant group
957 effect in two-way ANOVA during training, $F_{1,60} = 4.69$, $p = 0.0343$; and probe test, Welch's
958 unpaired t-test, $t(8.15) = 4.40$, ** $p = 0.0022$). (E) Conditioned freezing responses to rCeA
959 ($n=8,5$) terminal stimulation (two-way ANOVA effect of group, $F_{1,60} = 2.74$, $p = 0.1032$). (F)
960 Conditioned freezing responses to SI ($n=8,6$) terminal stimulation. Significant group effect in
961 two-way ANOVA during training, $F_{1,60} = 23.45$, $p = 0.0004$; subsequent Sidak pairwise
962 comparisons; and in probe test 24-h following conditioning (Welch's unpaired t-test, $t(11.15) =$
963 3.86, ** $p = 0.0026$). (G) Conditioned freezing responses to ovBNST ($n=5,4$) terminal
964 stimulation (two-way ANOVA effect of group, $F_{1,66} = 2.764$, $p = 0.1011$). (H) Area under the
965 curve for conditioning in each ChR2 fiber-placement group, including PBN-stimulation ($n=8$)
966 and control groups ($n=6$, averaged for each YFP fiber-placement group). Significance for one-
967 way ANOVA, $F_{7,40} = 19.44$, $p < 0.0001$; subsequent Tukey correction for multiple comparisons,
968 differences indicated by dissimilar letters above data columns. Bar graphs are represented as
969 mean \pm SEM. For full statistical information see Supplementary Table 1.

970 **Figure 6. Combined activation of CGRP^{PBN} neuron terminals in the VPMpc and cCeA
971 scales freezing responses and produces bradycardia**

972 (A) Schematic showing configuration for implantation of 3 fiberoptic cannulae into one
973 hemisphere allowing simultaneous photostimulation of multiple CGRP^{PBN}-neuron terminal

974 fields. **(B)** Freezing behavior during 30-Hz photostimulation with increasing power of CGRP^{PBN}
975 neuron terminal fields in the cCeA (n=4, one-way ANOVA, $F_{4,15} = 18.08$, p < 0.0001), SI (n=4,
976 $F_{4,15} = 19.21$, p < 0.0001), or VPMpc (n=4, $F_{4,15} = 12.09$, p = 0.0001). Subsequent Tukey
977 correction for multiple comparisons, *p < 0.05; **p < 0.01; ***p < 0.01; ****p < 0.0001. **(C)**
978 Freezing behavior to auditory CS co-terminating with simultaneous photostimulation of
979 terminals in the VPMpc and SI (left) (significant group effect in two-way ANOVA, $F_{1,6} = 21.57$, p
980 = 0.0035; subsequent Sidak pairwise comparisons) or probe test with CS presented in novel
981 context 24 h after conditioning (Welch's unpaired t-test, $t(3.414) = 4.90$, p = 0.012).
982 Comparison of area-under-curve for associative learning generated by CS paired with
983 CGRP^{PBN} neuron or terminal activation (right) (one-way ANOVA, $F_{4,27} = 19.73$, p < 0.0001;
984 subsequent Tukey correction for multiple comparisons. Center line, mean; box limits, upper
985 and lower quartiles; whiskers, min to max. **(D)** Freezing behavior in response to simultaneous
986 activation of CGRP^{PBN} neuron terminals in the cCeA and SI (n=4,4 (Chr2, control), significant
987 group effect in two-way ANOVA, $F_{1,78} = 213.5$, p < 0.0001; subsequent Sidak pairwise
988 comparisons). **(E)** Freezing behavior in response to simultaneous activation of CGRP^{PBN}
989 neuron terminals in the caudal CeA and VPMpc (n=4,4; significant group effect in two-way
990 ANOVA, $F_{1,84} = 631.5$, p < 0.0001; subsequent Sidak pairwise comparisons). **(F)** Comparison
991 of averaged freezing behavior for each stimulation combination during the stimulation epoch
992 (left) (n=4,4; one-way ANOVA, $F_{2,9} = 218.9$, p < 0.0001), and during the post-stimulation epoch
993 (right) (n=4,4; one-way ANOVA, $F_{2,9} = 17.67$, p = 0.0008; subsequent Tukey correction for
994 multiple comparisons). **(G)** Representative (left) and mean bradycardia elicited by
995 simultaneous photostimulation of CGRP^{PBN}-neuron terminals in the cCeA and VPMpc (n=5;
996 one-way ANOVA, $F_{2,12} = 7.38$, p = 0.0081; subsequent Dunnett correction for multiple
997 comparisons, p = 0.0058). Bar graphs represented as mean±SEM. See also Supplementary
998 Videos 2-3. For full statistical information see Supplementary Table 1.

999 **Figure 7. Pain-induced activation of the VPMpc and SI by CGRP^{PBN} neurons contributes
1000 to associative fear learning**

1001 **(A)** Bilateral injections of AAV1-DIO-JAWS:GFP or AAV1-DIO-YFP and fiber-optic cannula
1002 implants above the PBN of Calca^{Cre/+} mice for photoinhibition of CGRP^{PBN} neurons. **(B)**
1003 Photoinhibition of CGRP^{PBN} neurons (n=8,5; JAWS, GFP) during foot shock delivery
1004 attenuated freezing responses both to CS and context (significant group effect in two-way
1005 ANOVA for training, $F_{1,55} = 21.66$, p = 0.0007; subsequent Sidak pairwise comparisons, *p <
1006 0.05; **p < 0.01; Welch's unpaired t-test for probe and context, probe $t(10.88) = 6.45$, ****p <
1007 0.0001; context $t(8.93) = 4.43$, p = 0.002). **(C)** Placement of fiber-optics over projection sites
1008 for projection-specific photoinhibition. **(D)** Representative recording of EPSCs in a CeA neuron
1009 surrounded by JAWS:GFP-positive fibers from CGRP^{PBN} neurons. Red light decreased
1010 frequency of EPSCs in downstream cells (6 cells from 2 mice, paired t-test, $t(5) = 4.84$, **p =
1011 0.0047). **(E)** Photoinhibition of CGRP^{PBN} neuron terminals in the VPMpc (n=8,12) during
1012 footshock attenuated freezing responses to CS (significant group effect in two-way ANOVA for
1013 training, $F_{1,18} = 28.78$, p < 0.0001; subsequent Sidak pairwise comparisons; probe test Welch's
1014 unpaired t-test, $t(14.41) = 4.58$, ***p = 0.0004) but not context (Welch's unpaired t-test, $t(11.72)$
1015 = 1.27, p > 0.05). **(F)** Effect of photoinhibition of CGRP^{PBN} neuron terminals in the CeA

1016 (n=8,12) during foot shock on conditioned freezing responses to cue (two-way ANOVA for
1017 training, group effect $F_{1,18} = 2.08$, p = 0.167; Welch's unpaired t-test for probe, $t(16.69) = 0.76$,
1018 p = 0.46) or context (Welch's unpaired t-test, $t(17.17) = 2.15$, p = 0.046). (G) Photoinhibition of
1019 CGRP^{PBN} neuron terminals in the SI (n=8,12) during shock attenuated freezing responses to
1020 CS (significant group effect in two-way ANOVA for training, $F_{1,18} = 40.52$, p < 0.0001;
1021 subsequent Sidak pairwise comparisons; probe test Welch's unpaired t-test, $t(11.06) = 3.70$,
1022 **p = 0.0035) but not the context (Welch's unpaired t-test, $t(9.83) = 0.24$, p > 0.05). (H)
1023 Photoinhibition of CGRP^{PBN} neuron projections to either the VPMpc or SI during footshock
1024 attenuated associative learning (area under learning curve) as efficiently as silencing the entire
1025 population. Center line, mean; box limits, upper and lower quartiles; whiskers, min to max.
1026 Significance for one-way ANOVA, $F_{4,45} = 15.35$, p < 0.0001; subsequent Sidak pairwise
1027 comparisons found no difference between PBN, VPMpc, and SI fiber-placement groups. (I)
1028 Locomotion during foot shock was not significantly affected by photoinhibition of CGRP^{PBN}
1029 neurons (one-way ANOVA, $F_{4,44} = 4.13$, p = 0.0063; subsequent Dunnett pairwise
1030 comparisons p > 0.05). Bar graphs are represented as mean±SEM. For full statistical
1031 information see Supplementary Table 1.

1035 Supplemental Figure Legends

1036 Figure 1—figure supplement 1. Fiber placement, autonomic measurements, and 1037 contralateral projection strength

1038 (A) Position of fiberoptic cannula tips for CGRP^{PBN} neuron stimulation. (B) Example of freezing
1039 behavior in response to repeated 30-Hz photostimulation of CGRP^{PBN} neurons. (C) Effect of
1040 15-Hz photostimulation of CGRP^{PBN} neurons on heart rate (n=5, paired t-test, $t(4) = 4.173$, p =
1041 0.014). (D) Effect of 15-Hz photostimulation of CGRP^{PBN} neurons respiratory rate (n=5, paired
1042 t-test, $t(4) = 1.09$, p = 0.34). (E) Effect of 15-Hz photostimulation in YFP-expressing control
1043 animals on heart rate (left), and respiratory rate (right) (n=5, paired t-tests, heart rate $t(4) =$
1044 2.02, p = 0.12; respiration $t(4) = 0.39$, p = 0.71). (F) Vasoconstriction elicited by 30-Hz
1045 photostimulation of CGRP^{PBN} neurons, change in tail-skin temperature (left), and absolute tail-
1046 skin temperature (right) (n=6,6; ChR2, YFP, Welch's unpaired t-test, $t(9.64) = 3.92$, **p =
1047 0.0031). (G) Ipsi- and contralateral fluorescent images of CGRP^{PBN}-neuron projection targets
1048 from mouse unilaterally expressing DIO-YFP in CGRP^{PBN} neurons. Scale bar: 100 μ m. (H)
1049 Contralateral projection strength relative to ipsilateral fluorescent signal in each projection
1050 target structure (n=2). Data are represented as mean±SEM. For full statistical information see
1051 Supplementary Table 1.

1052 Figure 2—figure supplement 1. Collateralization to forebrain targets by CGRP^{PBN} 1053 neurons

1054 (A) Fluorescent images of CGRP^{PBN} neurons and their projection targets from mice expressing
1055 YFP in either all CGRP^{PBN} neurons or those projecting to the VPMpc, PSTN, CeA, or ovBNST.
1056 Scale bar: 100 μ m. (B-F) Cell counts across the AP-axis in various PBN subnuclei of CGRP^{PBN}
1057 neurons transduced with the help of retrogradely transported Flp injected into the VPMpc,

1058 PSTN, CeA, or ovBNST (n=3 per condition). Significance for ordinary one-way ANOVAs with
1059 subsequent Dunnett correction for multiple comparisons ((C) $F_{4,9} = 31.17$, $p < 0.0001$; (D) $F_{4,9}$
1060 = 10.81, $p = 0.0017$; (E) $F_{4,9} = 6.05$, $p = 0.012$; pairwise comparisons $^{**}p < 0.01$). (G)
1061 Collateralization coefficients for each projection target calculated for each projection-specific
1062 subset of CGRP^{PBN} neurons. Data are represented as mean \pm SEM. For full statistical
1063 information see Supplementary Table 1.

1064 **Figure 3—figure supplement 1. Verification of terminal stimulation of CGRP^{PBN} neuron
1065 projections**

1066 (A-B) Postsynaptic neurons are reliably activated by 15- and 30-Hz photostimulation of
1067 CGRP^{PBN} neuron terminals (5 cells from 2 mice). (C) Position of fiber-optic cannula tips for
1068 projection-specific terminal photostimulation in control (o) and experimental (x) groups. Related
1069 to Figure 3-5.

1070 **Figure 3—figure supplement 2. Freezing behavior and physiological responses to
1071 photostimulation of CGRP^{PBN} neuron terminals**

1072 (A) Freezing behavior from each animal collapsed across stimulation epochs. Photostimulation
1073 of CGRP^{PBN} neurons resulted in robust freezing behavior not replicated by activation of any
1074 individual projection (significant group effect in two-way ANOVA, $F_{6,253} = 75.73$, $p < 0.0001$;
1075 subsequent Sidak pairwise comparisons, $^{**}p < 0.01$; $^{***}p < 0.001$). (B) Average distance
1076 moved for each animal during stimulation epochs; only stimulation of CGRP^{PBN} neurons
1077 significantly reduced locomotion (Welch's unpaired t-tests, PBN n=7,6 (ChR2, YFP), $t(5.91) =$
1078 3.37, $p = 0.0153$; rCeA n = 6,5, $t(6.30) = 1.88$, $p = 0.1066$). (C) Photostimulation of CGRP^{PBN}-
1079 neuron terminals did not induce Fos in CGRP^{PBN} neurons (ordinary one-way ANOVA, $F_{6,17} =$
1080 0.37, $p = 0.89$). (D) Autonomic responses to 15-Hz photostimulation of CGRP^{PBN} neuron
1081 terminals in the VPMpc (n=8, paired t-test, heart rate $t(7) = 1.47$, $p = 0.19$; respiration $t(7) =$
1082 0.03, $p > 0.05$). (E) Autonomic responses to 15-Hz photostimulation of CGRP^{PBN} neuron
1083 terminals in the PSTN (n=7, paired t-test, heart rate $t(6) = 1.37$, $p > 0.05$; respiration $t(6) =$
1084 1.32, $p > 0.05$). (F) Autonomic responses to 15-Hz photostimulation of CGRP^{PBN} neuron
1085 terminals in the cCeA (n=6, paired t-test, heart rate $t(5) = 0.90$, $p > 0.05$; respiration $t(5) = 0.31$,
1086 $p > 0.05$). (G) Autonomic responses to 15-Hz photostimulation of CGRP^{PBN} neuron terminals in
1087 the rCeA (n=9, paired t-test, heart rate $t(8) = 7.65$, $p < 0.0001$; respiration $t(8) = 1.94$, $p > 0.05$).
1088 (H) Autonomic responses to 15-Hz photostimulation of CGRP^{PBN} neuron terminals in the SI
1089 (n=7, paired t-test, heart rate $t(6) = 2.48$, $p = 0.048$; respiration $t(6) = 1.66$, $p > 0.05$). (I)
1090 Autonomic responses to 15-Hz photostimulation of CGRP^{PBN} neuron terminals in the ovBNST
1091 (n=6, paired t-test, heart rate $t(5) = 4.35$, $p = 0.0074$; respiration $t(5) = 0.36$, $p > 0.05$). (J-O)
1092 Autonomic responses to 15-Hz light delivery in control animals. Data represented as
1093 mean \pm SEM. For full statistical information see Supplementary Table 1.

1094 **Figure 4—figure supplement 1. Activation of CGRP^{PBN} terminals in the rCeA potentiates
1095 nocifensive responses**

1096 (A) Response latency on 52°C hot plate increased by stimulating CGRP^{PBN} neurons or
1097 projections to the cCeA, rCeA, or ovBNST prior to exposure, consistent with stress-induced
1098 analgesia (significance for Welch's unpaired t-test; PBN n=6,5 (ChR2, YFP); $t(4.31) = 6.22$, $^{**}p$

1099 = 0.0027; cCeA n=6,5; $t(6.21) = 2.76$, *p = 0.0315; rCeA n=6,5; $t(8.00) = 5.00$, **p = 0.0011;
1100 ovBNST n=6,4; $t(7.91) = 3.57$, **p = 0.0074). (B) Number of jumps in 1-min exposure to 52°C
1101 hot plate increased by stimulating CGRP^{PBN} neuron terminals in the rCeA (Welch's unpaired t-
1102 test, $t(5.85) = 2.69$, *p = 0.0369; n=6,5). (C) Latency to jump was also reduced by rCeA-
1103 terminal activation (Welch's unpaired t-test, $t(5.73) = 2.80$, *p = 0.0329; n=6,5). (D) Tail-flick
1104 latency upon tail submersion in 52.5 °C water bath was not significantly affected by either
1105 somata or terminal photostimulation of CGRP^{PBN} neurons (Welch's unpaired t-test, p > 0.05).
1106 (E-K) Distance moved during RTPP assay pairing one side of a novel chamber with
1107 photostimulation of CGRP^{PBN}-neuron terminals or somata (significance for Welch's unpaired t-
1108 test). Data are represented as mean±SEM. For full statistical information see Supplementary
1109 Table 1.

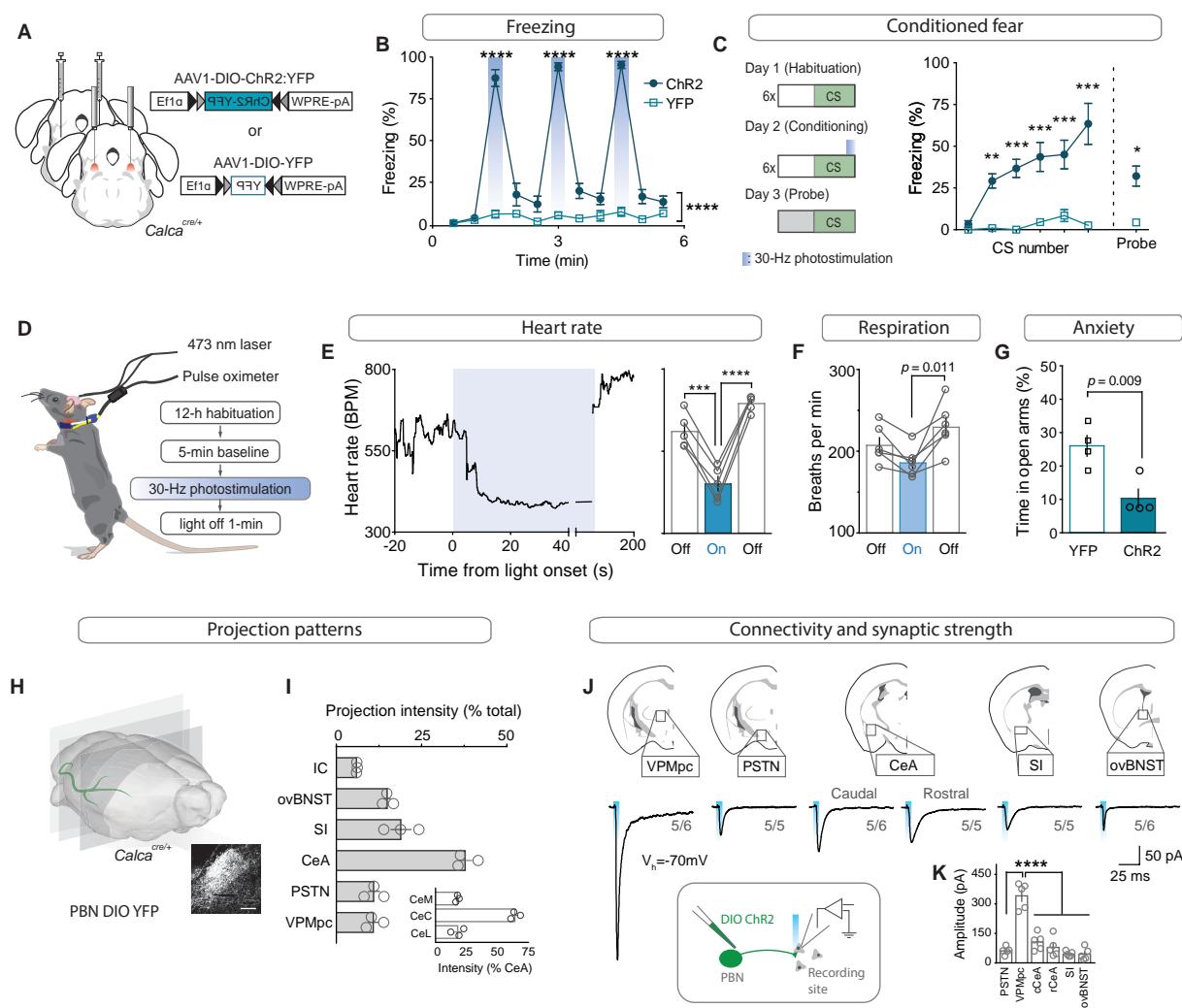
1110 **Figure 6—figure supplement 1. Coincident activation of CGRP^{PBN} neuron projections
1111 using ChrimsonR causes profound freezing responses**

1112 (A) Schematic showing configuration for implantation of 3 fiber-optic cannulae into one
1113 hemisphere allowing simultaneous optogenetic activation of multiple CGRP^{PBN}-neuron terminal
1114 fields using ChrimsonR for photostimulation. (B-D) Freezing behavior during 30-Hz
1115 photostimulation of increasing power of CGRP terminal fields in (B) the cCeA (n=5), (C) rCeA
1116 (n=5), or (D) the VPMpc (n=5). Significance for one-way ANOVA with subsequent Tukey
1117 correction for multiple comparisons. (E) Freezing behavior in response to simultaneous
1118 activation of CGRP terminals in the rostral and caudal CeA (n=5,4 (ChR2, control), significant
1119 effect of group in two-way repeated-measure ANOVA, $F_{1,7} = 41.27$, p = 0.0004; subsequent
1120 Sidak pairwise comparisons, ****p < 0.0001). (F) Freezing behavior in response to
1121 simultaneous activation of CGRP^{PBN} terminals in the rostral CeA and VPMpc (n=5,4; significant
1122 effect of group in two-way RM ANOVA, $F_{1,7} = 173.5$, p < 0.0001; subsequent Sidak pairwise
1123 comparisons, **p < 0.01; ***p < 0.001). (G) Freezing behavior in response to simultaneous
1124 activation of CGRP^{PBN} terminals in the caudal CeA and VPMpc (n=5,4, significant effect of
1125 group in two-way RM ANOVA, $F_{1,7} = 118.3$, p < 0.0001; subsequent Sidak pairwise
1126 comparisons, *p < 0.05). (H) Comparison of averaged freezing behavior for each stimulation
1127 combination during the stimulation epoch (n=5,4, one-way ANOVA, $F_{3,16} = 72.18$, p < 0.0001;
1128 subsequent Tukey correction for multiple comparisons, dissimilar letters above columns of
1129 data indicate statistical differences between groups). (I) Comparison of averaged freezing
1130 behavior for each stimulation combination during the post-stimulation epoch (n=5,4, one-way
1131 ANOVA, $F_{3,16} = 14.04$, p < 0.0001; subsequent Tukey correction for multiple comparisons). (J)
1132 Representative image showing ChrimsonR:tdTomato expression in CGRP^{PBN} neurons (red)
1133 and Fos expression (white) following activation of terminals in the cCeA and VPMpc. Scale
1134 bar: 100 µm. (K) Quantification of number of Fos-positive neurons in the PBN and forebrain
1135 targets following simultaneous activation of CGRP^{PBN} neuron terminals in the cCeA and
1136 VPMpc (n=5), or light delivery in a YFP-expressing control (n=6). Significance for Welch's
1137 unpaired t-tests. (L) Quantification of the number of CGRP^{PBN} neurons expressing Fos
1138 following simultaneous activation of terminals in the cCeA and VPMpc (n=5), or light delivery in
1139 a YFP-expressing control (n=6) (Welch's unpaired t-test, $t(4.40) = 4.26$, p = 0.0106).
1140 Data represented as mean±SEM. For full statistical information see Supplementary Table 1.

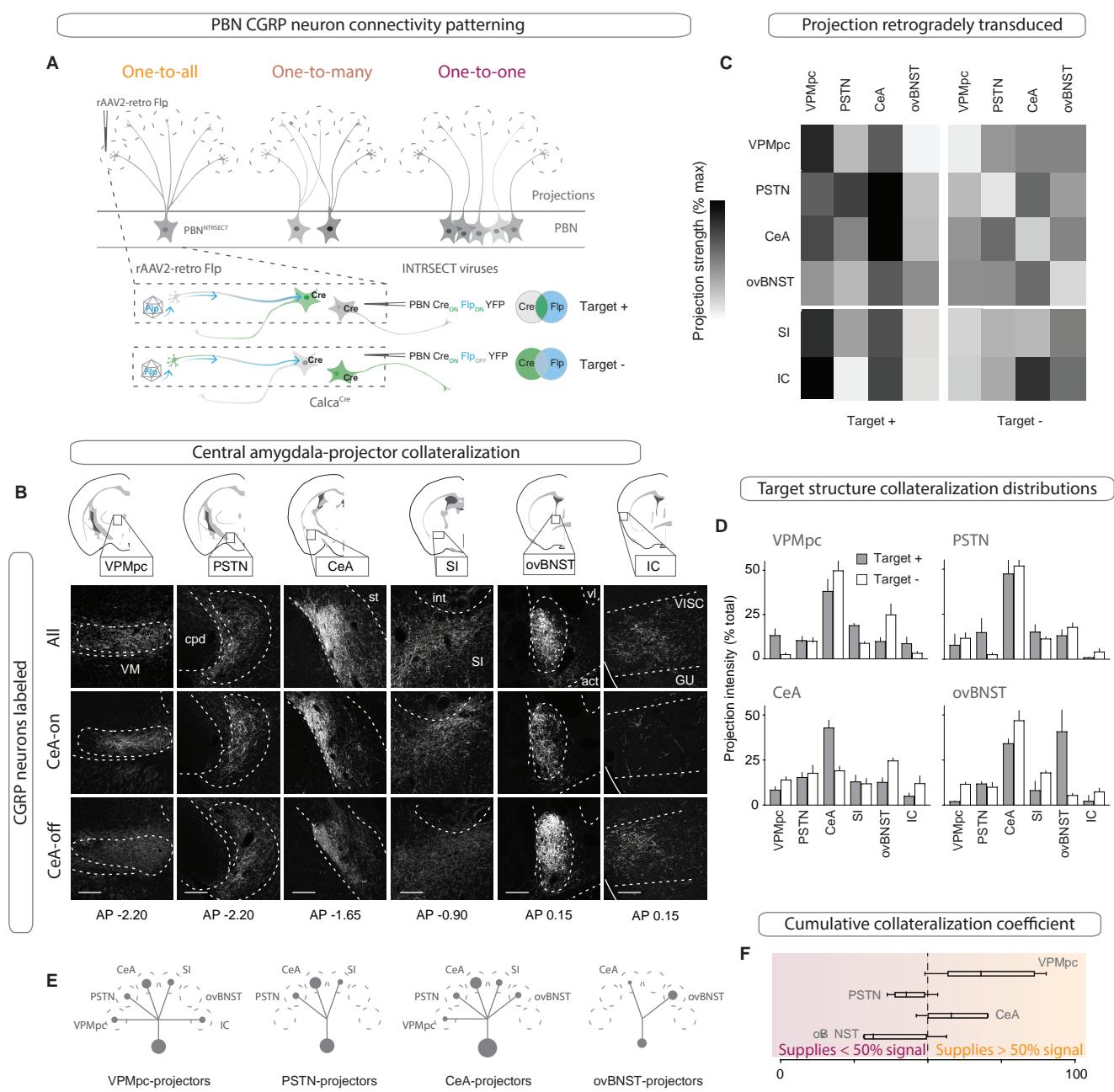
1141 **Figure 7—figure supplement 1. Photoinhibition of CGRP^{PBN} neurons or projections does**
1142 **not affect nocifensive responses or alter place preference**
1143 (A) Representative recording of action potentials from a CGRP^{PBN} neuron. Red-light
1144 photostimulation (3 s on and 1 s ramp-down) effectively suppressed firing rate of CGRP^{PBN}
1145 neurons with minimal rebound excitation (7 cells from 2 mice). (B) Nociceptive response
1146 latency to 57°C hot plate with photoinhibition of CGRP^{PBN} neurons (2-s on, 1-s ramp, 1-s off for
1147 30-s trial) (Welch's unpaired t-test, $t(7.28) = 0.07$, $p > 0.05$; $n=8,5$). (C) Number of jumps on
1148 57°C hot plate during 30-s trial with photoinhibition of CGRP^{PBN} neurons (Welch's unpaired t-
1149 test, $t(9.02) = 2.03$, $p = 0.0734$; $n=8,5$). (D) Nociceptive response latency to 57°C hot plate with
1150 photoinhibition of CGRP^{PBN} terminals in the VPMpc, CeA, or SI ($n=8$ per group) relative to
1151 controls ($n=12$) (one-way ANOVA, $F_{3,32} = 2.46$, $p = 0.0808$). (E) Number of jumps on 57°C hot
1152 plate during 30-s trial with photoinhibition of CGRP^{PBN} terminals in the VPMpc, CeA, or SI ($n=8$
1153 per group) relative to controls ($n=12$) (one-way ANOVA, $F_{3,32} = 1.26$, $p = 0.3057$). (F-I)
1154 Photoinhibition of CGRP^{PBN} neurons or individual projections in one side of chamber did not
1155 influence place preference (Welch's unpaired t test; PBN $t(7.22) = 0.48$, $p > 0.05$, $n=8,5$;
1156 VPMpc $t(12.17) = 0.81$, $p > 0.05$, $n=8,12$; CeA $t(17.72) = 0.62$, $p > 0.05$, $n=8,12$; SI $t(14.64) =$
1157 0.24 , $p > 0.05$, $n=8,12$. Data represented as mean \pm SEM. For full statistical information see
1158 Supplementary Table 1.

1159 **Supplementary Video 1. Freezing Behavior Generated by Activating CGRP^{PBN} Neurons.**

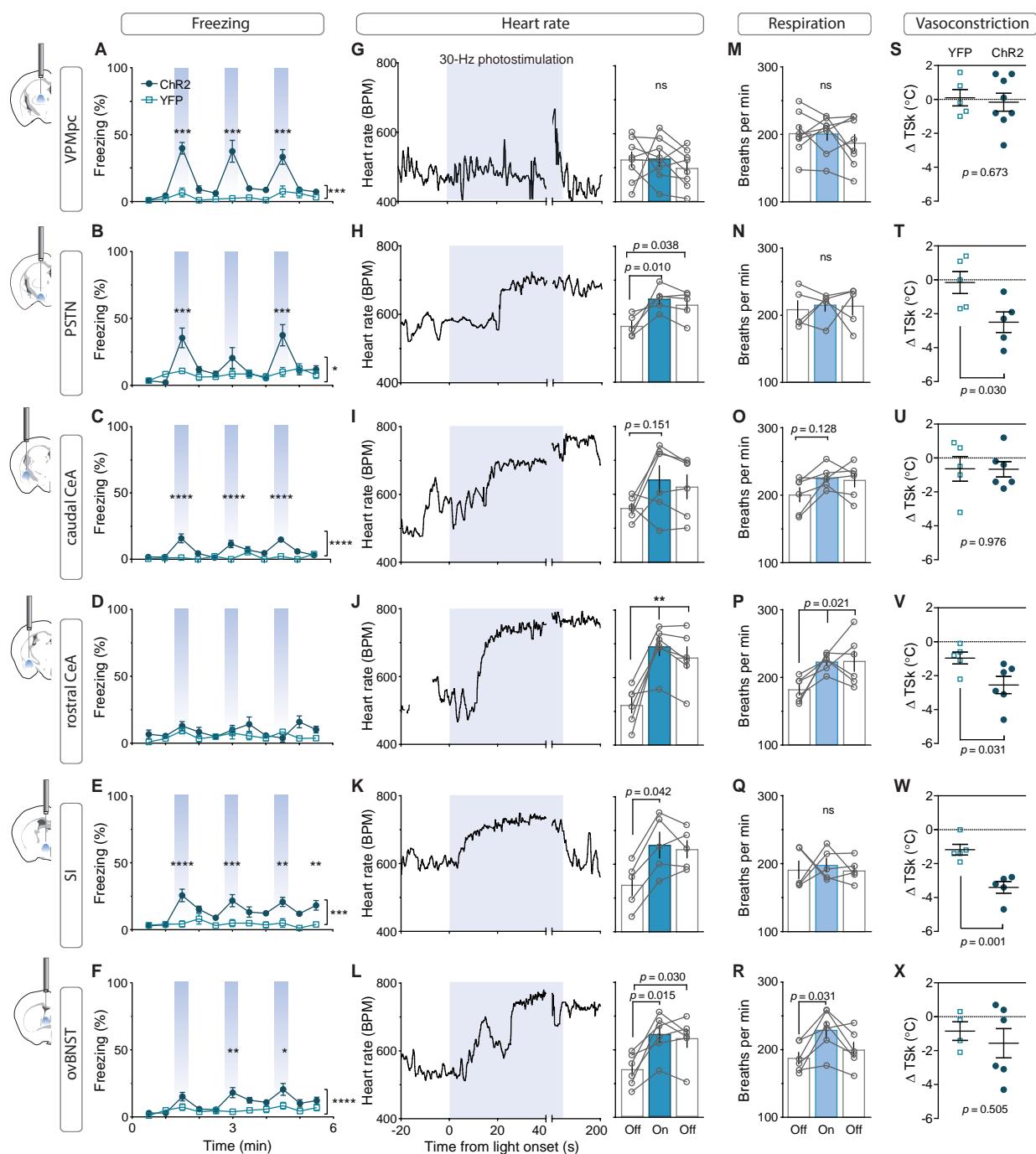
1160 Supplement to Figure 1.

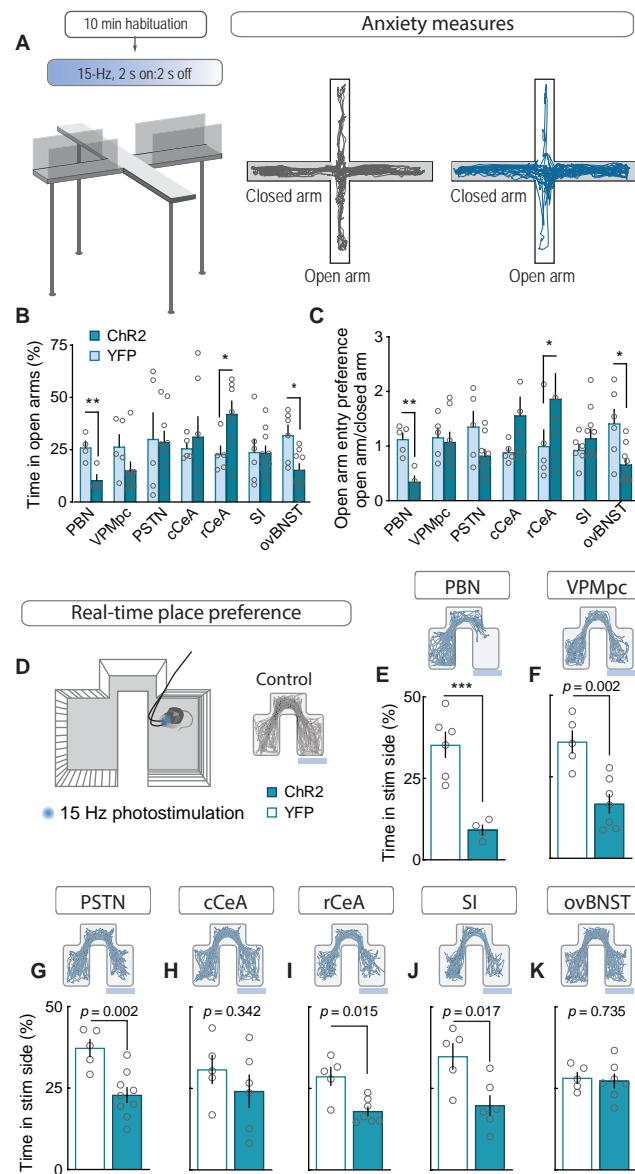

1161 **Supplementary Video 2. Freezing Behavior Generated by Activating the SI and Caudal**
1162 **CeA Simultaneously**

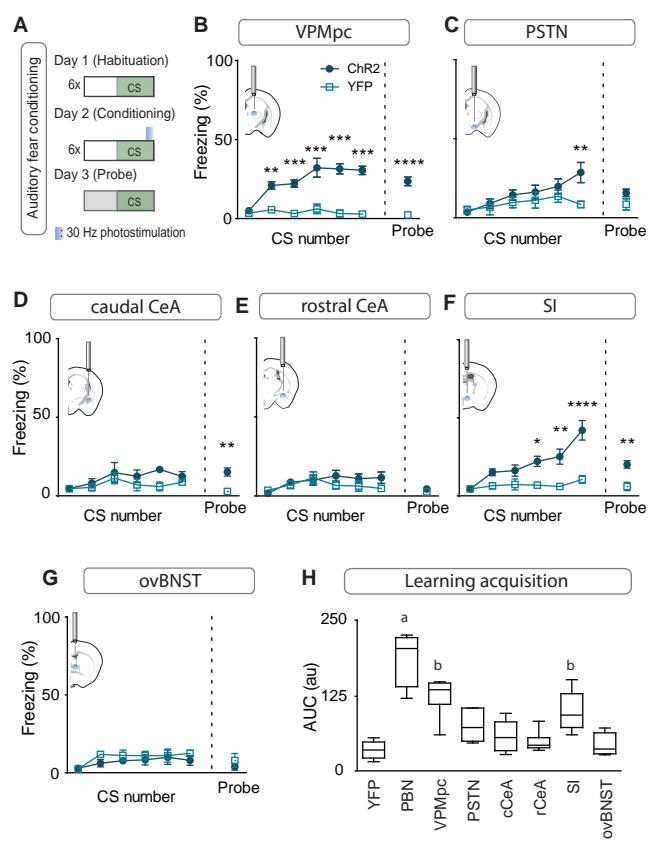
1163 Supplement to Figure 6.

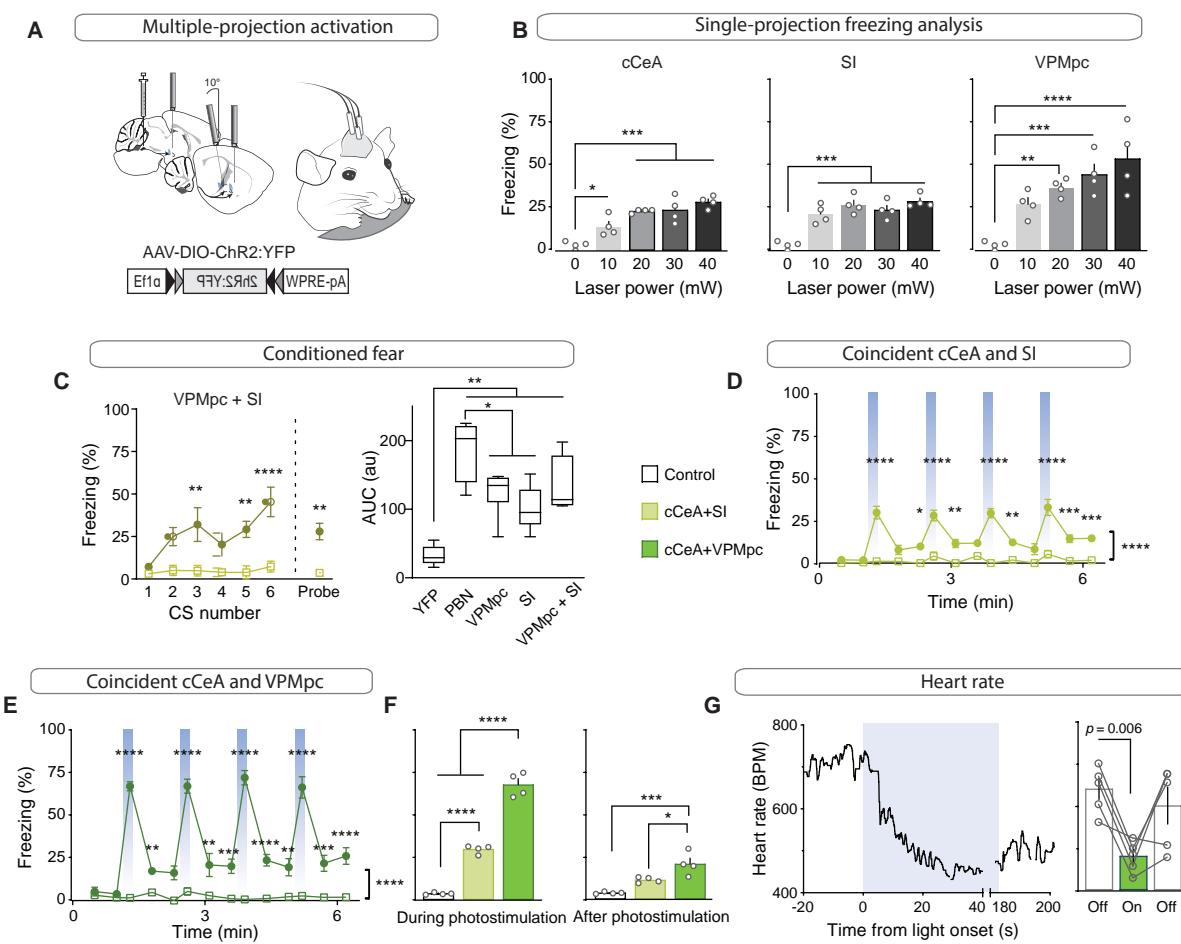

1164 **Supplementary Video 3. Freezing Behavior Generated by Activating the Caudal CeA and**
1165 **VPMpc Simultaneously**

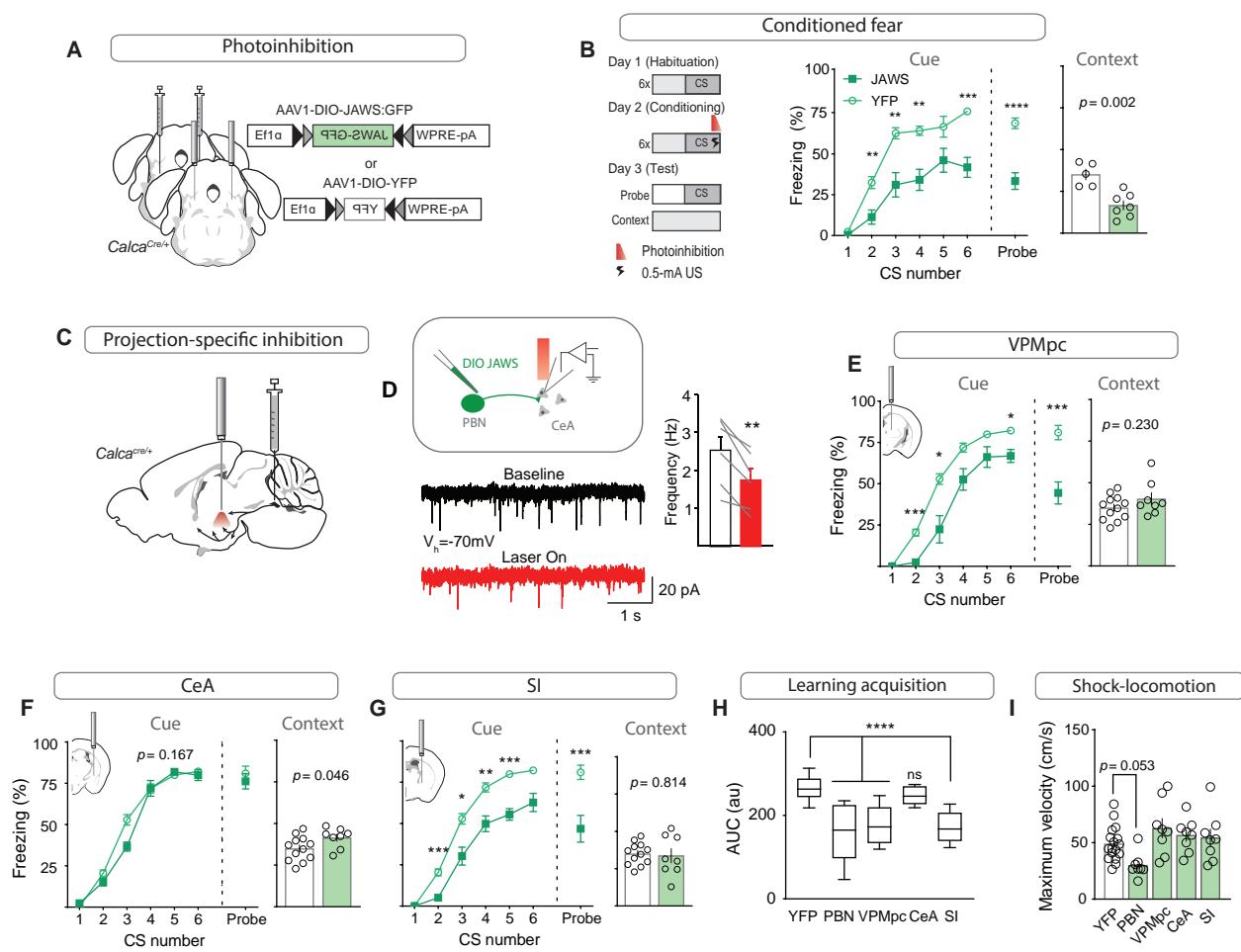
1166 Supplement to Figure 6.


Figure 1


Figure 2


Figure 3


Figure 4


Figure 5

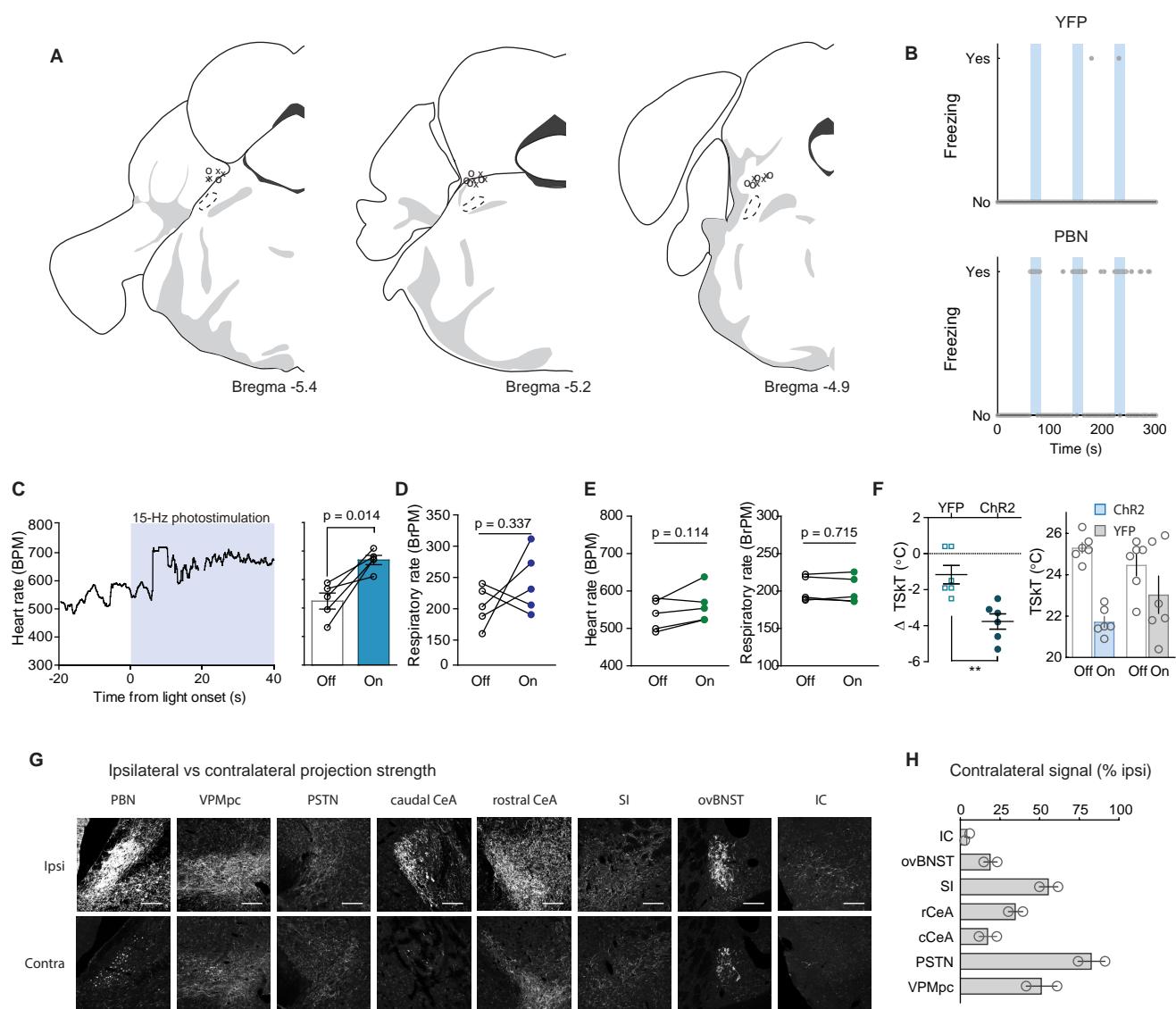

Figure 6

Figure 7

Figure 1—figure supplement 1

Figure 2—figure supplement 1

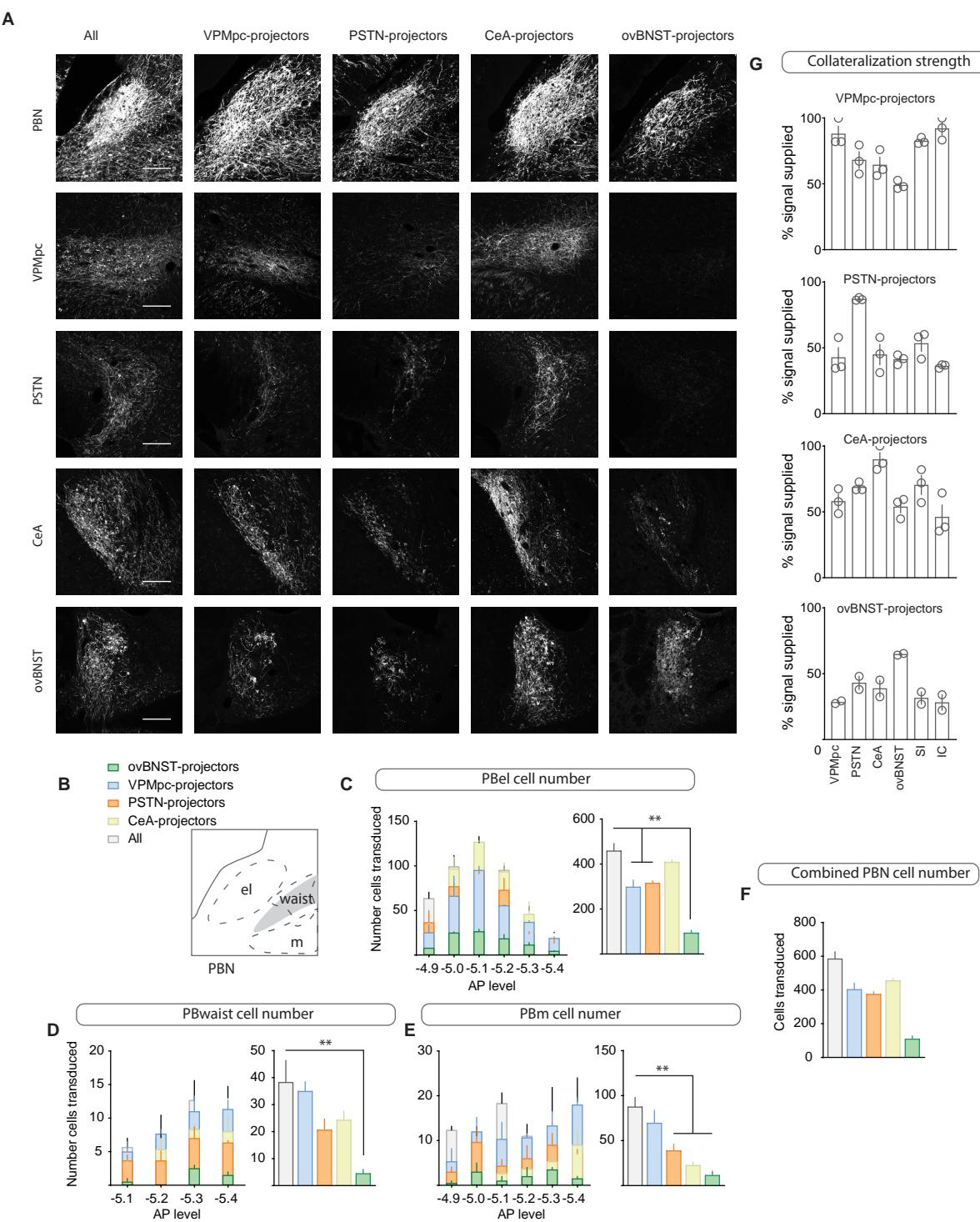
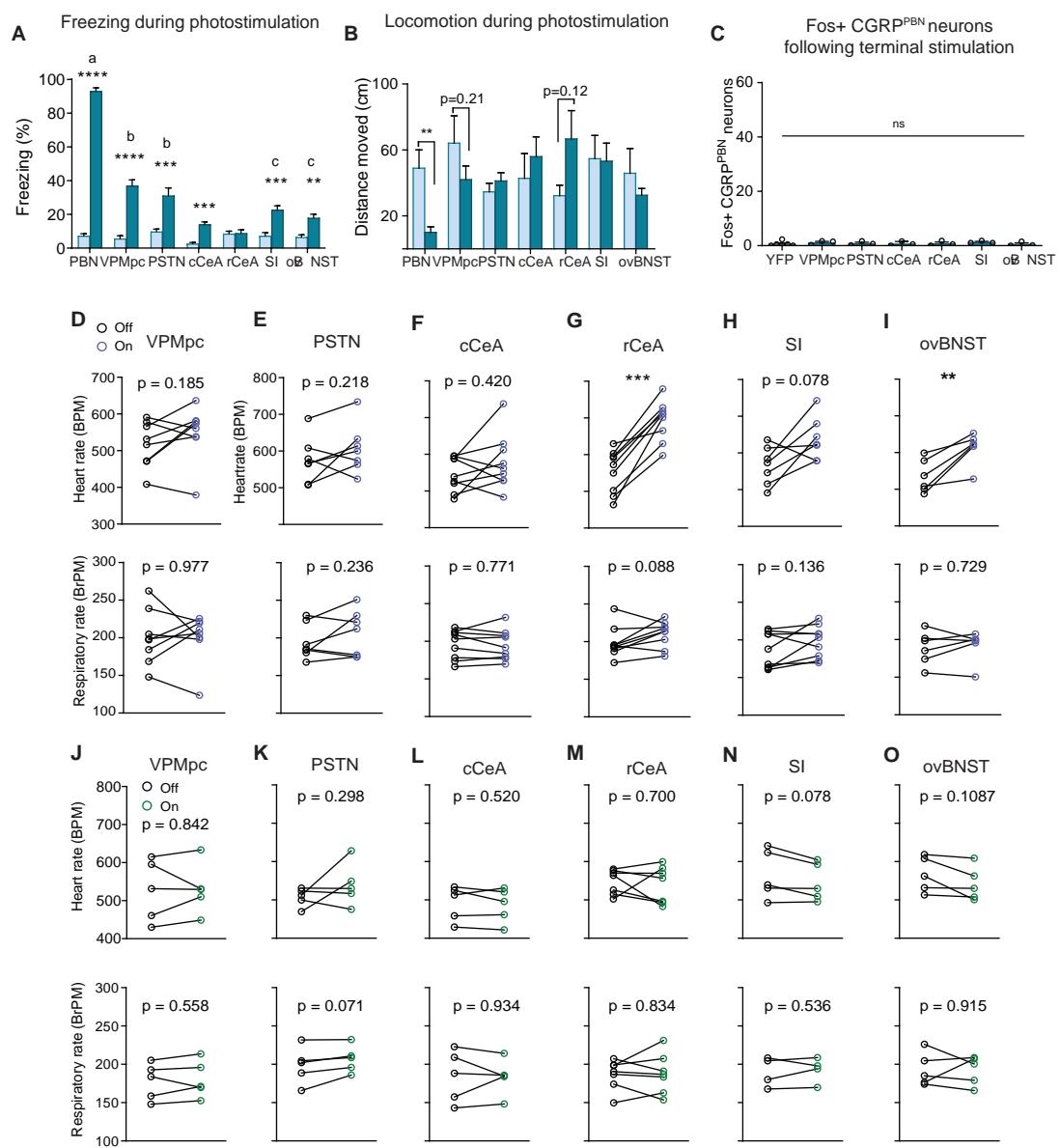
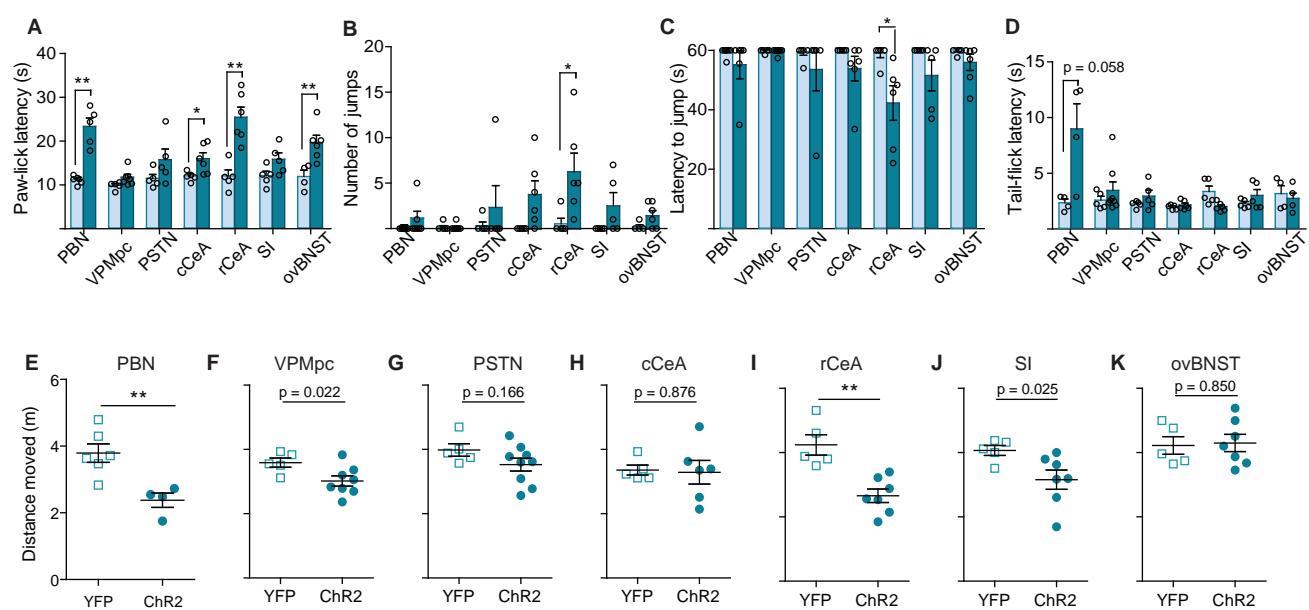
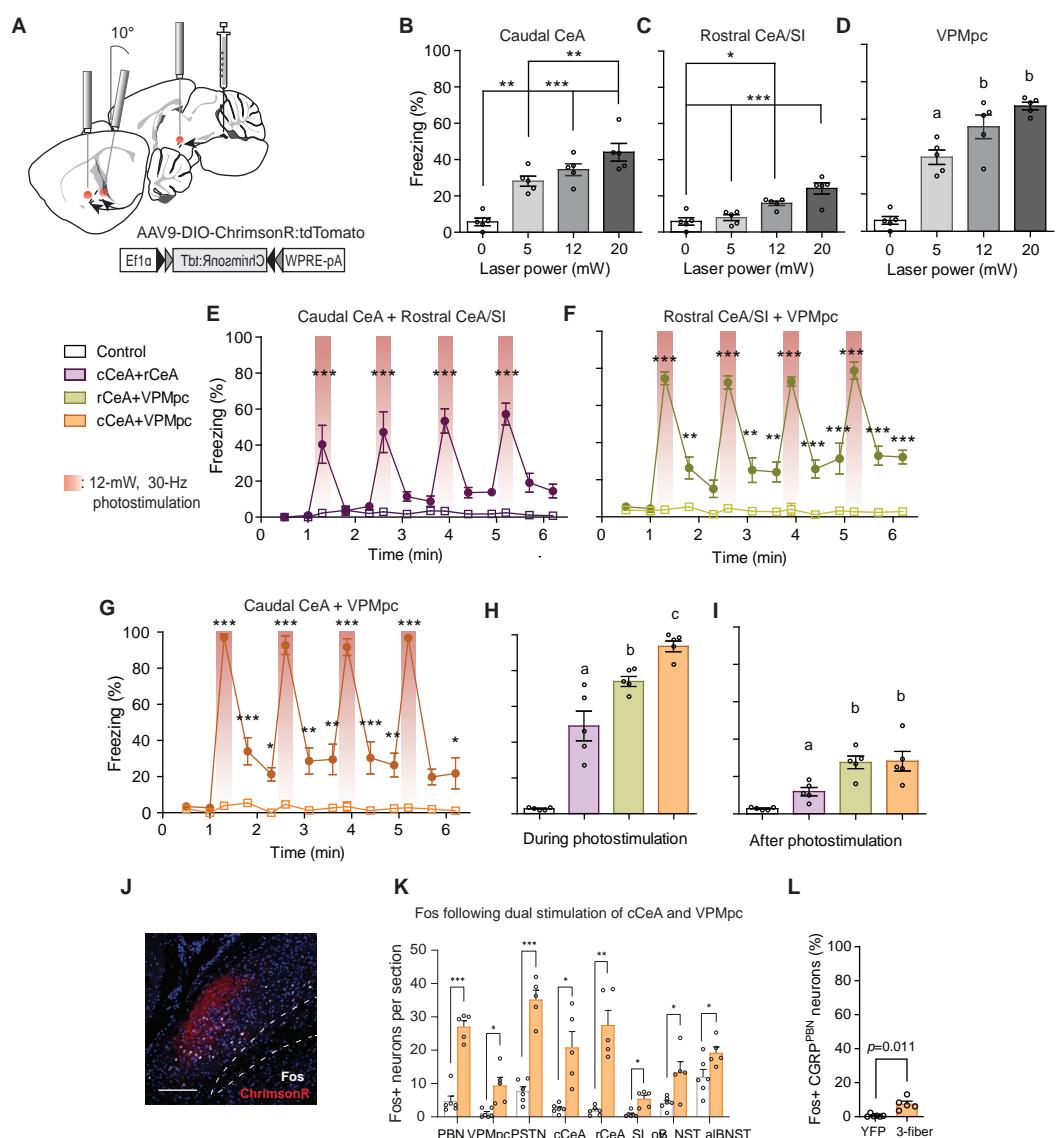


Figure 3—figure supplement 1

Figure 3—figure supplement 2

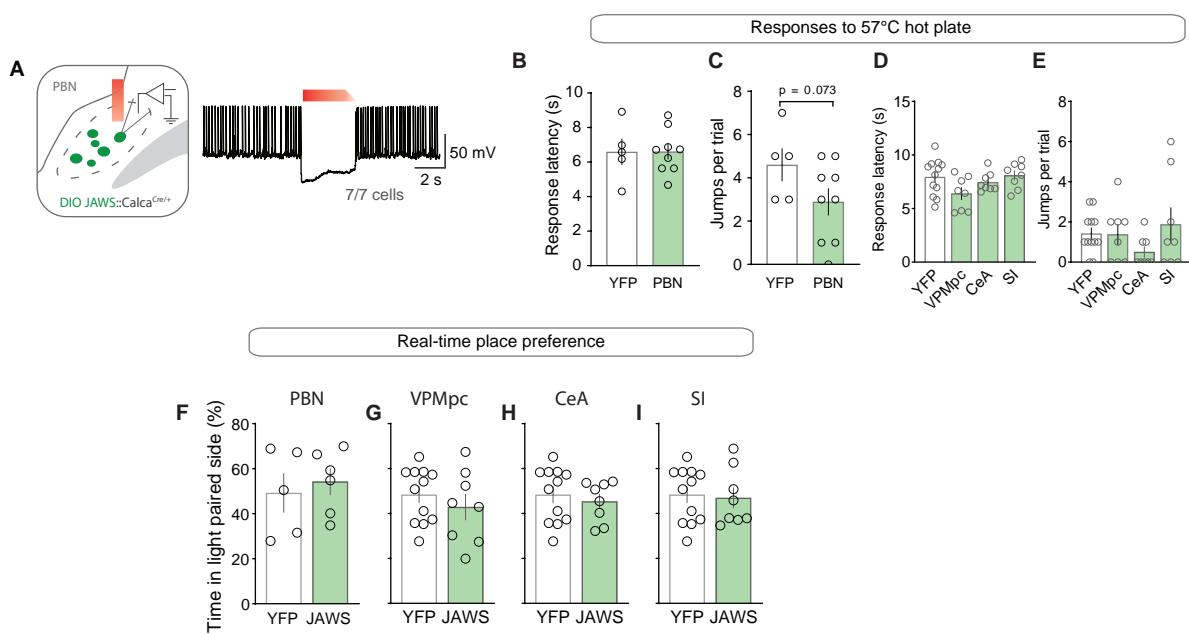

Figure 4—figure supplement 1

Figure 6—figure supplement 1

Figure 7—figure supplement 1

