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Summary	
Late-Onset	 Alzheimer’s	 Disease	 (LOAD)	 results	 from	 a	 complex	 pathological	 process	

influenced	 by	 genetic	 variation,	 aging	 and	 environment	 factors.	 Genetic	 susceptibility	

factors	indicate	that	myeloid	cells	such	as	microglia	play	a	significant	role	in	the	onset	of	

LOAD.	 Here,	 we	 developed	 a	 computational	 systems	 biology	 approach	 to	 construct	

probabilistic	 causal	 and	 predictive	 network	models	 of	 genetic	 regulatory	 programs	 of	

microglial	 cells	 under	 LOAD	 diagnosis	 by	 integrating	 two	 independent	 brain	

transcriptome	and	genome-wide	genotype	datasets	from	the	Religious	Orders	Study	and	

Rush	Memory	and	Aging	Project	(ROSMAP)	and	Mayo	Clinic	(MAYO)	studies	in	the	AMP-

AD	consortium.	From	this	network	model,	we	identified	and	replicated	novel	microglial-

specific	master	regulators	predicted	to	modulate	network	states	associated	with	LOAD.	

We	 experimentally	 validated	 three	 microglial	 master	 regulators	 (FCER1G,	 HCK	 and	

LAPTM5)	in	primary	human	microglia-like	cells	(MDMi)	by	demonstrating	the	molecular	

impact	 these	 master	 regulators	 have	 on	 modulating	 downstream	 genomic	 targets	

identified	by	our	top-down/bottom-up	method	and	the	causal	relations	among	the	three	

key	drivers.	These	master	regulators	are	 involved	 in	phagocytosis,	a	process	associated	

with	 LOAD.	 	 Thus,	 we	 propose	 three	 new	 master	 regulator	 (key	 driver)	 genes	 that	

emerged	from	our	network	analyses	as	robust	candidates	for	further	evaluation	in	LOAD	

therapeutic	development	efforts.	
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Introduction	

Late-Onset	Alzheimer’s	disease	 (LOAD)	 is	a	complex	neurodegenerative	disease	

that	 is	 characterized	 by	 neuropathology	 consisting	 of	 amyloid	 beta	 (Aß)	 plaques,	

neurofibrillary	tangles	and	clinical	dementia.	Genome-wide	association	studies	(GWAS)	

have	 implicated	 immune	 cell-specific	 genes	 associated	 with	 AD	 risk	 that	 point	 to	

microglia	as	a	causal	cell	type	[1-18].	Microglial	cells	are	resident	innate	immune	cells	of	

the	central	nervous	system[19]	and	play	an	important	role	in	abolishing	apoptotic	cells,	

Aß	 deposits	 and	 synapse	 removal	 by	 phagocytosis.	 It	 has	 previously	 been	 discovered	

that	microglia	 are	associated	with	amyloid	plaques	 in	 the	brain[20].	 Especially,	 given	

the	 recently	 failed	 clinical	 trials	 on	 anti-amyloid	plaques[21],	 it	 becomes	 critically	

important	 to	 understand	molecule	mechanisms	 of	microglia	 in	 the	 formation	 and	

clearance	of	amyloid	plaques.	A	previous	study	using	co-expression	network	analysis	of	

post-mortem	brains	from	patients	with	LOAD	showed	a	microglial	module	dominated	by	

genes	implicated	in	phagocytosis[22].		

In	 this	 study,	 we	 sought	 to	 identify	 cell	 type	 specific	 master	 regulators	 (key	

drivers)	 modulating	 network	 states	 underlying	 microglial	 functions,	 particularly	 those	

involved	 in	 phagocytosis	 and	 Aβ	 clearance	 in	 the	 context	 of	 AD.	 We	 applied	 the	

computational	 framework	 PSEA	 [23]	 to	 deconvolve	 bulk-tissue	RNA	 sequencing	 (RNA-

seq)	 data	 from	 post-mortem	 brain	 regions	 to	 isolate	 the	 microglial-specific	 gene	

expression	signal.	The	reason	we	chose	the	PSEA	method	over	other	popular	methods,	
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such	as	Cibersort [24], dtangle [25], DSA [26] and NNLS [27],	 is	 that	these	methods	

cannot	directly	estimate	cell-type	specific	residuals	from	the	bulk-tissue	RNA-seq	data,	

instead,	 these	 methods	 only	 estimate	 cell	 fraction	 in	 a	 bulk-tissue	 sample.	 We	

demonstrated	the	robustness	of	this	de-convolution	method	using	random	selection	of	

microglial	 biomarkers	 derived	 from	 single-cell	 RNA-seq	 (scRNAseq)	 studies	 [28-32].	

Next,	we	 applied	 a	 novel	 systems	 biology	 approach	 to	 these	 data	 to	 build	microglial-

specific	 probabilistic	 causal	 network	 models	 of	 the	 immune	 component	 of	 AD.	 From	

these	models	we	identified	master	regulators	of	the	network	states	in	microglial	cells	for	

AD.	 Among	 the	 predicted	 microglial-specific	 key	 drivers,	 we	 experimentally	 validated	

three	novel	targets,	HCK,	FCER1G,	and	LAPTM5,	that	replicated	across	our	two	cohorts	

using	human	monocyte-derived	microglial-like	(MDMi)	cells[33]:	HCK	is	a	member	of	the	

Src	family	of	protein	tyrosine	kinases	which	couples	to	Fc	receptors	during	phagocytosis.	

FCER1G	is	predominantly	expressed	by	hematopoietic	cells,	encodes	for	a	subunit	of	an	

IgE	Fc	receptor	and	is	 implicated	as	a	hub	gene	in	amyloid	overexpressing	models[34].	

Both	 FCER1G	 and	HCK	 were	 found	 to	 be	 hub	 genes	 of	microglial	modules	 in	 a	 LOAD	

transcriptomics	study[22].	A	study	by	Castillo	and	colleagues[35]	shows	that	both	genes	

are	 upregulated	 in	 the	 cortex	 of	 AppNL-G-F/NL-G-F	 	 	 transgenic	 mice	 as	 Aβ	 amyloidosis	

progresses.	FCER1G	shows	a	significant	association	in	regards	to	immune	and	microglial	

functions	 and	 amyloid	 deposits	 in	 humans	 and	 mice[34,	 36].	 Lastly,	 LAPTM5	 is	

associated	with	 lysosomes	organization	and	biogenesis[37-40].	A	 recent	study	using	a	

murine	 amyloid	 responsive	 network	 and	 GWAS	 defined	 association	 has	 shown	 that	

genetic	variations	in	LAPTM5	are	associated	with	amyloid	deposition	in	AD[41].		
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In	the	present	study,	by	using	causal	predictive	network	modeling,	we	showed	that	HCK,	

FCER1G	 and	 LAPTM5	 not	 only	 function	 together	 in	 the	 same	 co-expression	 module	

(subnetwork),	but	they	also	play	a	key	driver	role	in	AD	through	effects	on	phagocytosis	

and	lysosomal	function	in	microglial	cells.	 In	addition,	our	network	model	showed	that	

HCK	 is	 downstream	of	 both	FCER1G	 and	 LAPTM5,	 and	 that	FCER1G	 is	 downstream	of	

LAPTM5.	 Finally,	we	validated	 these	predicted	 relationships	 and	 their	 functions	 in	 the	

MDMi	 model[33]:	 we	 used	 lentivirus	 mediated	 targeted	 shRNA	 to	 knockdown	 HCK,	

FCER1G	 and	 LAPTM5	 in	 MDMi	 cells	 and	 then	 measured	 the	 expression	 of	 their	

downstream	genes	as	predicted	by	our	microglia-specific	network	model.	Not	only	did	

our	predictive	network	model	accurately	predict	the	genes	that	changed	in	response	to	

these	perturbations,	but	it	accurately	predicted	the	gene	expression	dynamics	as	well	of	

the	downstream	genomic	targets.	In	addition,	we	also	confirmed	a	causal	role	for	two	of	

the	 key	 drivers	 as	 modulators	 of	 phagocytic	 function	 of	 microglia	 cells	 using	 an	 Aß	

uptake	assay.	

Results	

Integrative	Systems	Biology	Approach	for	Constructing	Single	Cell-Type	

Regulatory	Networks	of	AD	
We	 developed	 an	 integrative	 network	 analysis	 pipeline	 (Figure	 1)	 to	 construct	

data-driven	 microglial-specific	 predictive	 networks	 of	 AD.	 The	 overall	 strategy	 for	

elucidating	the	single	cell-type	gene	network	model	depicted	in	Figure	1	is	centered	on	

the	 objective,	 data-driven	 construction	 of	 predictive	 network	 models	 of	 AD	 that	 can	
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then	 be	 directly	 queried	 to	 not	 only	 identify	 the	 network	 components	 causally	

associated	with	AD,	but	to	identify	the	master	regulators	of	these	components	and	the	

impact	 they	 have	 on	 the	 expression	 dynamics	 of	 the	 genes	 comprising	 the	 biological	

processes	underlying	AD,	moving	us	 towards	predictive	molecular	models	of	diseases.	

We	previously	developed	and	applied	the	network	reconstruction	algorithm,	top-down	

&	bottom-up	predictive	network	(predictive	network	for	short),	which	statistically	infers	

causal	 relationships	 between	 DNA	 variation,	 gene	 expression,	 protein	 expression	 and	

clinical	features	that	are	scored	in	hundreds	of	individuals	or	more[42].		

The	 inputs	required	for	this	type	of	analysis	are	the	molecular	and	clinical	data	

generated	 in	 populations	 of	 individuals,	 as	 well	 as	 first	 order	 relationships	 between	

these	data,	such	as	QTL	mapped	for	the	molecular	traits	and	causal	relationships	among	

traits	 inferred	 by	 causal	 mediation	 analysis	 that	 use	 the	mapped	 QTL	 as	 a	 source	 of	

perturbation.	 These	 relationships	 are	 input	 as	 structure	 priors	 to	 the	 network	

construction	algorithm,	boosting	the	power	to	infer	causal	relationships	at	the	network	

level,	as	we	and	others	have	previously	shown	[22,	43-50].		

To	focus	on	the	microglial	component	of	AD,	we	applied	the	PSEA	de-

convolution	algorithm	[23]	to	the	transcriptomic	data	to	identify	the	microglial-specific	

expression	component	of	the	transcriptome	data	(Step	1,	Figure	S1).	We	demonstrated	

this	method	is	robust	against	random	selection	of	microglia	biomarkers	derived	from	

single-cell	RNA-seq	(scRNAseq)	studies[28-32].	Given	the	microglial	expression	

component	in	the	ROSMAP	and	MAYO	populations,	we	further	focused	the	input	of	

molecular	traits	into	the	network	reconstruction	algorithm	on	those	traits	associated	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2020. ; https://doi.org/10.1101/2020.06.09.143529doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.09.143529
http://creativecommons.org/licenses/by-nc-nd/4.0/


with	AD,	by	identifying	AD	gene	expression	signatures	comprised	of	hundreds	to	

thousands	of	gene	expression	traits	(Step	2,	Figure	S1).	These	signatures	were	enriched	

for	a	number	of	pathways,	including	mitochondrial	and	immune	processes.	To	identify	

gene	expression	traits	co-regulated	with	the	AD	signature	genes,	we	constructed	gene	

co-expression	networks,	and	from	these	networks	identified	highly	interconnected	sets	

of	co-regulated	genes	(modules)	that	were	significantly	enriched	for	the	AD	expression	

signatures	as	well	as	for	pathways	previously	implicated	in	AD	(Step	3,	Figure	S1).	To	

obtain	a	final	set	of	genes	for	input	into	the	causal	network	construction	process,	we	

combined	genes	in	the	co-expression	network	modules	enriched	for	AD	signatures	(the	

seed	set,	Step	5,	Figure	S1).		

With	our	AD-centered	input	set	of	microglial	genes	for	the	network	

constructions	defined,	we	mapped	expression	quantitative	trait	loci	(eQTLs)	for	

microglial-specific	gene	expression	traits	to	incorporate	the	QTL	as	structure	priors	in	

the	network	reconstructions,	given	they	provide	a	systematic	perturbation	source	that	

can	boost	the	power	to	infer	causal	relationships	(Step	4,	Figure	S1)[22,	43,	44,	46-51].	

The	input	gene	set,	and	eQTL	data	from	ROSMAP	were	then	processed	by	the	predictive	

network	to	construct	probabilistic	causal	networks	of	AD	(Step	6,	Figure	S1).	An	artificial	

intelligence	algorithm	to	detect	key	driver	genes	from	these	network	structures	was	

then	applied	to	identify	and	prioritize	master	regulators	of	the	AD	networks	(Step	7,	

Figure	S1).	An	in-silico	prediction	algorithm	was	developed	and	used	to	predict	

expression	profiles	upon	perturbation.	Our	findings	were	then	replicated	in	the	MAYO	
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dataset.	For	the	top	regulators	we	identified,	we	performed	functional	and	molecular	

validation	in	microglial	cell	systems.	

	

The	ROSMAP/Mayo	Clinic	Study	Populations	and	Data	Processing	

Our	 predictive	 network	 pipeline	 starts	 by	 integrating	whole	 exome	 sequencing	 (WES)	

and	RNA	sequencing	(RNA-seq)	data	generated	from	the	dorsolateral	prefrontal	cortex	

of	612	persons	from	ROSMAP[52-55]	and	from	the	temporal	cortex	of	266	patients	from	

MAYO	 [56-58]	 in	 the	 Accelerating	Medicines	 Partnership	 -	 Alzheimer's	 Disease	 (AMP-

AD)	consortium,	spanning	the	complete	spectrum	of	AD	clinical	and	neuropathological	

traits	(Figure	1).	We	processed	matched	genotype	and	RNA-seq	data	(Online	Methods).	

CNS	tissue	consists	of	various	cell	types,	including	neurons,	endothelial	and	glial	cells.	To	

discover	 key	 network	 drivers,	 which	 could	 serve	 as	 therapeutic	 targets,	 specific	 to	 a	

single	cell	type	 in	the	CNS	and	study	their	contribution	to	AD	in	that	specific	cell	type,	

we	 utilized	well-known/verified	 single-cell	marker	 genes	 to	 directly	 de-convolve	 bulk-

tissue	gene	expression	data	 into	cell	type-specific	gene	expression	for	the	five	primary	

cell	 types	 in	 the	CNS:	neurons,	microglia,	 astrocytes,	 endothelia	 and	oligodendrocytes	

(Online	Methods).	In	this	study,	we	focused	on	investigating	the	role	of	microglial	cells	

in	 AD	 due	 to	 their	 strong	 genetic	 association	 with	 AD	 pathogenesis	 [59-61].	 After	

normalizing	 RNA-seq	 data,	 we	 evaluated	 the	 contribution	 of	 demographic,	 clinical,	

technical	covariates	and	cell-specific	markers	 to	 the	gene	expression	variance	of	 the	5	

primary	cell	types	using	a	variance	partition	analysis	(VPA)[62]	(Figure	2A).	The	list	of	cell	

type-specific	 marker	 genes	 used	 for	 neurons,	 microglia,	 astrocytes,	 endothelia	 and	
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oligodendrocytes	were	ENO2,	CD68,	CD34,	GFAP,	and	OLIG2	respectively,	as	previously	

published[57].		

The	 rational	of	using	 single-gene	biomarkers	 in	 the	above	over	multi-gene	biomarkers	

derived	 from	 scRNAseq	 data	 is	 as	 follows:	 1)	 multi-gene	 biomarkers	 derived	 from	

various	scRNAseq	studies	 in	human	brain	under	control	conditions	[28-32]	shows	non-

significant	(FDR>0.05,	Online	Method)	overlap	(Figure	S2,	1/0/1/1	significant	pair	out	of	

6	 study-pairs	 in	 Asctrocyte/Endothelial/Microglial/Oligodendrocyte	 types	 and	 2	

significant	 pairs	 out	 of	 10	 study-pairs	 in	 Neuron),	 indicating	 lack	 of	 robustness	 and	

consensus	 in	 these	 biomarkers	 derived	 from	 these	 studies;	 2)	 significant	 overlap	 of	

scRNAseq-derived	 biomarkers	 expression	 in	 ROSMAP	 and	MAYO	 AD	 samples	 by	 PCA	

analysis	 (Figure	 S3),	 indicating	 the	 majority	 of	 scRNAseq-derived	 biomarkers	 are	 not	

ideal	 in	 distinguishing	 cell	 populations	 under	 AD	 conditions;	 3)	 Significant	 overlap	

between	 scRNAseq-derived	 biomarkers	 and	 AD	 therapeutic	 targets	 (Figure	 S4)	 in	 the	

AMP-AD	AGORA	knowledge	portal	(https://agora.ampadportal.org/genes).	This	overlap	

is	more	significant	than	randomly	selected	genes	from	the	background	overlapping	with	

the	AGORA	list	(Online	method),	indicating	that	scRNAseq-derived	biomarkers	may	play	

a	significant	role	in	AD	pathology.	Therefore,	they	are	not	optimal	for	adjusting	the	bulk-

tissue	gene	expression	variance	by	PSEA.	By	contrast,	our	single-gene	biomarker,	though	

not	 perfect,	 is	 derived	 from	 biological	 knowledge	 and	 validated	 by	 others	 [57].	

Moreover,	 our	 single-gene	 biomarker	 had	 no	 overlap	 with	 AD	 therapeutic	 targets	 in	

AGORA,	 which	 make	 them	 good	 candidates	 for	 PSEA.	 4)	 Further,	 our	 single-gene	

biomarker	 derived	microglial-specific	 residual	 is	 significantly	 	 (p-value<2.2E-16,	 Figure	
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S5,	 Online	Method)	 correlated	with	 the	 “pseudo”	microglial-specific	 residuals	 derived	

from	 randomly	 selected	 subset	 of	 scRNAseq	 biomarkers	 by	 PSEA,	 indicating	 that	 our	

single-gene	biomarker	derived	microglial-specific	residual	represents	a	robust	microglial	

component	in	the	bulk-tissue	RNAseq	data	for	following	analysis.	

	

In	 addition	 to	 the	 cell-type	 specific	markers,	 in	 ROSMAP,	 the	 covariates	 used	 in	 VPA	

included	Sequencing	Batch,	Exonic	Mapping	Rate,	RNA	Integrity	Number	(RIN),	Age-at-

death,	 Age-at-first-AD-diagnosis,	 Post-Mortem	 Interval	 (PMI),	 Education,	 APOE	

genotype,	Diagnosis,	Sex	and	Study.	 In	MAYO,	we	 included	Exonic	Mapping	Rate,	RIN,	

Sequencing	 Batch,	 Diagnosis,	 Age-at-death,	 Tissue	 source,	 APOE	 genotype	 and	 Sex.	

Next,	cell-type	specific	gene	expression	residuals	were	calculated	by	adjusting	the	bulk	

tissue	 expression	 data	 by	 these	 covariates	 and	 the	 cell-type	 specific	 markers	 using	 a	

linear	regression	model.	To	get	cell-type	specific	gene	expression,	 including	microglial-

specific	 gene	 expression,	 we	 added	 the	 estimated	 variance	 of	 each	 cell	 type	 to	 the	

residual	 (Online	Methods).	 In	 this	 way,	 the	 cell-type	 specific	 gene	 expression	 can	 be	

directly	 derived	 from	 expression	 data	 without	 the	 need	 to	 first	 estimate	 the	 cell	

population	from	bulk	tissue	data,	which	could	induce	approximation	errors.	

Identifying	an	AD-associated	gene	set	in	microglia	and	mapping	their	

eQTL	

To	 identify	 an	 AD-centered	 set	 of	 microglia	 gene	 expression	 traits,	 we	 performed	

microglial-specific	 differential	 expression	 (DE)	 analysis	 in	 the	 ROSMAP	 and	 MAYO	

cohorts	 using	 the	 derived	 microglial-specific	 expression	 data	 (Online	 Methods).	 By	
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comparing	expression	data	 from	AD	and	pathologically	 confirmed	controls	 (CN),	 there	

were	 513	 significantly	 (FDR<0.05)	 DE	 microglial-specific	 genes	 in	 the	 MAYO	 dataset	

(MAYO-microglial	for	short)	and	1,693	microglial-specific	genes	in	the	ROSMAP	dataset	

(ROSMAP-microglial	 for	 short)	 (Figure	 2B),	 with	 120	 significant	 DE	 genes	 overlapping	

between	 these	 two	 sets	 (Fisher	 Exact	 Test,	 odd	 ratio=3.8169,	 p-value<2.2E-16).	 To	

examine	the	biological	processes	that	are	disrupted	between	AD	cases	and	controls,	as	

reflected	in	the	DE	signatures,	we	performed	Pathway	Enrichment	Analysis	(PEA)	on	the	

DE	gene	set	for	each	cohort.	We	identified	84	and	173	GO	terms	(Figure	2C),	and	15	and	

54	 KEGG	 pathways	 (Figure	 S6)	 that	 are	 enriched	 (p-value<0.05)	 in	 the	 MAYO	 and	

ROSMAP-microglial	 data	 respectively.	 These	 pathways	 include	 well-known	 biological	

functions	 associated	 to	 AD,	 such	 as	mitochondrial	 functions,	 amino	 acid	metabolism,	

lipid	metabolism,	 glial	 cell	 functions,	 Fc	 gamma	R-mediated	 phagocytosis,	 Phagosome	

etc.	

	

Another	 critical	 input	 for	 the	 construction	 of	 predictive	 network	 models,	 are	 the	

expression	 quantitative	 trait	 loci	 (eQTL),	 leveraged	 as	 a	 systematic	 source	 of	

perturbation	to	enhance	causal	inference	among	molecular	traits,	an	approach	we	and	

others	have	demonstrated	across	a	broad	range	of	diseases	and	data	types[22,	 43-47,	

49-51,	63-77].			We	mapped	cis-eQTL	by	examining	the	association	of	microglial-specific	

expression	 traits	 with	 genome-wide	 genotypes	 [78-82]	 assayed	 in	 the	 ROSMAP	 and	

MAYO	 cohorts	 (Online	Methods).	 In	 the	MAYO-microglial,	 3875	 (19.5%)	 of	 the	 genes	

tested	 were	 significantly	 correlated	 with	 allele	 dosage	 (FDR	 <	 0.01)	 and	 in	 ROSMAP-
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microglial,	 5186	 (25.6%)	 of	 the	 genes	 tested	 were	 significantly	 correlated	 with	 allele	

dosage	(FDR	<	0.01).	Of	the	cis-eQTL	detected	in	each	cohort,	1785	eQTL	(46%	in	MAYO	

and	34%	in	ROSMAP)	were	overlapping	between	the	two	sets.		

Microglial-specific	Co-expression	Network	in	AD		

While	DE	analysis	can	reveal	patterns	of	microglial-specific	expression	associated	with	

AD,	the	power	of	such	analysis	to	detect	a	small-to-moderate	expression	difference	is	

small.	To	complement	the	DE	analyses	in	identifying	the	input	gene	set	for	the	

predictive	network,	we	clustered	the	microglial	gene	expression	traits	into	data-driven,	

coherent	biological	pathways	by	constructing	co-expression	networks,	which	have	

enhanced	power	to	identify	co-regulated	sets	of	genes	(modules)	that	are	likely	to	be	

involved	in	common	biological	processes.	We	constructed	co-expression	networks	on	

the	AD	patients	for	each	dataset	after	filtering	out	lowly	expressed	genes	(Online	

Methods).	The	MAYO-microglial	co-expression	network	consists	of	45	modules	ranging	

in	size	from	32	to	2,201	gene	members.	The	ROSMAP-microglial	co-expression	network	

consists	of	46	modules	ranging	in	size	from	115	to	892	gene	members.	In	comparing	all	

pairs	of	modules	between	the	datasets	for	overlap,	we	identified	133	module	pairs	with	

significant	overlap	(FDR<0.05	for	Fisher’s	Exact	Test,	Figure	3A).		

	

To	characterize	the	functional	relevance	of	the	microglial-specific	modules	to	AD	

pathology,	two	measures	were	employed:	1)	Fold-enrichment	for	AD	DE	genes	in	each	

module;	2)	Fold-enrichment	for	known	microglial	cell	marker	genes[31].	From	these	

measures,	we	selected	a	seeding	set	of	genes	for	input	into	the	causal	predictive	
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network	modeling	by	pooling	genes	from	microglial-specific	modules:	8	modules	from	

the	MAYO-microglial	co-expression	network	(turquoise,	pink,	greenyellow,	tan,	

mediumblue,	darkcyan	enriched	for	AD	microglial	DE	genes;	red	and	beige	enriched	for	

microglial	cell	markers)	and	11	modules	from	the	ROSMAP-microglial	co-expression	

network	(black,	steelblue,	brown,	yellow,	tan,	plum1,	darkgreen,	skyblue3,	red,	sienna3,	

and	mediumpurple3	enriched	for	AD	microglial	DE	genes;	pink	and	greenyellow	

enriched	for	microglial	cell	markers).		

	

It	is	known	that	microglial	cells	interplay	with	other	brain	cells,	such	as	astrocytes	in	

modulating	amyloid	pathology	in	mouse	models	of	Alzheimer’s	disease[83].		We	note	

that	2	modules	(red	and	darkgreen)	are	enriched	for	both	microglial-DE	signature	and	

astrocyte	markers,	1	module	(plum1)	is	enriched	for	both	microglial-DE	signature	and	

neuron	markers,	and	2	modules	(mediumpurple3,	tan)	are	enriched	for	both	microglial-

DE	signature	and	oligodendrocyte	markers	from	the	ROSMAP-microglial	co-expression	

networks,	indicating	that	these	interactions	were	reflected	in	our	microglial-specific	

data.	Failing	to	account	for	these	interactions	will	result	in	a	compromised	network	

model,	however,	over-counting	these	interactions	will	decrease	the	network	specificity	

to	microglial	cells.	Therefore,	we	only	considered	microglial-interacting	cell	types	whose	

marker	genes	are	the	most	significantly	enriched	(FDR-value<10E-4)	by	the	same	

modules	that	are	also	the	most	significantly	enriched	(FDR-value<10E-4)	for	microglial-

DE	signature	(Figure	S7).	Consequently,	on	top	of	the	selected	modules	above,	we	

added	2	modules	(yellow	and	honeydrew)	and	2	modules	(darkgreen	and	red)	enriched	
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for	astrocyte	cell	marker	genes	from	MAYO-microglial	and	ROSMAP-microglial	co-

expression	networks.	Genes	in	these	additional	modules	reflecting	astrocyte-microglia	

interactions	comprised	only	13.9%	(583	genes)	and	16.9%	(873	genes)	of	the	MAYO-	and	

ROSMAP-microglial	networks,	respectively.	

	

To	 further	 annotate	 the	 co-expression	 modules	 selected	 above	 with	 respect	 to	 the	

biological	processes	they	participate	in,	we	performed	pathway	enrichment	analysis	to	

identify	 overrepresented	 biological	 processes	 across	 all	 selected	 modules	 in	 each	

dataset.	 	Of	 the	10	and	13	selected	modules	 from	the	MAYO-	and	ROSMAP-microglial	

networks,	 7	 and	 9,	 respectively	 were	 significantly	 enriched	 (FDR<0.05)	 for	 KEGG	

pathways	 (highlighted	 red	 in	 Figure	 3B).	 There	 are	 104	 and	 142	 significant	 pathways	

enriched	 by	 the	 selected	 modules	 from	 the	 MAYO	 and	 ROSMAP	 networks	 with	 an	

overlapping	of	78	 significant	pathways	 (Fish’s	Exact	Test,	OR=7.445,	p-value=1.92E-15,	

Supplementary	File	S1),	including	the	phagosome	pathway.		

Predictive	Network	Modeling	of	Genetic	Regulations	Identified	

Pathological	Pathways	and	Key	Drivers	for	Microglial	Function	in	AD	

	
The	ultimate	goal	of	this	study	was	to	identify	upstream	master	regulators	(referred	to	

here	as	key	drivers)	and	pathways	 in	microglia	that	contribute	to	AD	pathology.	Based	

on	our	DE,	eQTL	and	co-expression	network	analysis,	we	built	causal	predictive	network	

models	 on	 the	 subset	 of	 genes	 comprising	 co-expression	 network	 modules	 selected	

above	 by	 integrating	 the	 eQTLs	 and	microglial-specific	 RNA-seq	 data.	 To	 this	 end,	we	

developed	a	novel	top-down	&	bottom-up	predictive	network	modeling	pipeline	(Online	
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Method)	 and	 applied	 it	 to	 the	 microglia-specific	 gene	 expression	 data	 in	 AD.	 The	

bottom-up	 component	 of	 our	 network	 reconstruction	 pipeline	 incorporates	 known	

pathway/network	relationships	derived	from	the	literature	and	other	sources,	while	the	

top-down	component	represents	a	structure-based	learning	algorithm	that	infers	causal	

relationships	supported	by	the	eQTL	and	gene	expression	data.		

	

To	build	the	predictive	network,	we	first	pooled	all	genes	from	the	subset	of	10	and	13	

selected	 modules	 in	 the	 MAYO-	 and	 ROSMAP-microglial	 co-expression	 networks	

respectively,	to	derive	a	set	of	seeding	genes	for	each	cohort	(4187	for	MAYO-microglial	

and	5152	for	ROSMAP-microglial	co-expression	networks).	The	overlap	between	the	two	

seeding	 gene	 sets	 contains	 1842	 genes	 (35.7%	 of	 ROSMAP	 and	 43.9%	 of	 MAYO).	

Therefore,	 analysis	 using	 these	 two	 datasets	 increases	 the	 power	 to	 build	 robust	

networks	and	to	discover	high-confidence	microglial	key	drivers	that	are	associated	with	

AD	pathology.	As	cis-eQTLs	 causally	 affect	 the	expression	 levels	of	neighboring	genes,	

they	 can	 serve	 as	 a	 source	 of	 systematic	 perturbation	 to	 infer	 causal	 relationships	

among	 genes[51,	 84,	 85].	 Consequently,	 we	 incorporated	 cis-eQTL	 genes	 into	 each	

network	as	structural	priors.	Of	5186	and	3875	unique	cis-eQTL	genes	identified	in	the	

ROSMAP-	 and	MAYO-specific	 datasets,	 1978	 and	 687	 overlapped	 with	 genes	 in	 each	

network	respectively.	The	final	causal	predictive	networks	were	comprised	of	4600	and	

4008	 genes	 in	 the	 ROSMAP-	 and	 MAYO-microglial	 predictive	 networks	 (Figure	 4A)	

respectively,	with	1646	genes	overlapping	each	network.	
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Identification	of	Microglial-specific	Key	Drivers	indicate	the	Phagosome	Contributes	to	

AD	

Given	the	predictive	networks,	we	applied	Key	Driver	Analysis	(KDA,	Online	Method)	to	

derive	 the	 list	 of	 Key	 Driver	 (KD)	 genes	 for	 each	 network	 (Figure	 4A).	 KDA	 seeks	 to	

identify	those	genes	in	the	causal	network	that	modulate	network	states.	In	the	present	

analysis,	 we	 applied	 KDA	 to	 microglial-specific	 predictive	 network	 models	 to	 identify	

those	genes	causally	modulating	the	states	of	these	networks.	In	total,	we	identified	757	

and	 164	 KD	 genes	 identified	 in	 the	 ROSMAP-	 and	 MAYO-microglial	 networks	

respectively	and	43	KDs	replicated	across	both	networks.	We	prioritized	all	key	drivers	

based	on	 i)	whether	a	 gene	predicted	as	KD	 is	 replicated	across	both	datasets;	 ii)	 the	

number	of	different	categories	of	target	source	predicting	a	gene	as	KD	used	by	KDA	(In	

this	study,	we	used	3	kinds	of	targets	for	KDA:	DE	genes,	modules	and	overlapping	genes	

of	DE	gene	with	modules);	and	iii)	the	number	of	different	target	sources	used	by	KDA	

predicts	a	gene	as	a	KD.	

	

Among	 the	 pathways	 enriched	 by	 the	 43	 KDs	 (Figure	 S8),	 Microglial	 Pathogen	

Phagocytosis	 Pathway	 is	 the	most	 significantly	 enriched	 (p-value=2.60E-12)	 biological	

function	 by	 these	 43	 replicated	 KDs.	We	 identified	 three	 KD	 genes,	FCER1G,	HCK	 and	

LAPTM5	 which	 are	 known	 to	 be	 involved	 in	 the	 phagosome	 as	 driving	 the	 AD	

phenotype,	 indicating	 that	 microglia-mediated	 phagocytosis	 causally	 links	 to	 the	 AD	

phenotype.	Though	these	three	genes	are	known	to	be	 involved	 in	phagocytosis,	 their	

molecular	mechanism	 in	 phagocytosis	 and	 the	 causal	 relationship	 among	 them	 is	 still	
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unclear.	 To	 illustrate	 the	 molecular	 mechanism	 of	 these	 genes	 in	 phagocytosis,	 we	

extracted	the	downstream	sub-network	of	these	three	KDs	in	the	ROSMAP-	and	MAYO-

microglial	 networks	 respectively	 (Figure	 4B),	 and	 then	 performed	 CPDB	 pathway	

enrichment	 analysis[86],	 which	 confirmed	 that	 both	 sub-networks	 are	 significantly	

(p<0.05)	enriched	 for	Phagocytosis	and	Phagosome	Pathways	 (Supplementary	File	S2).	

In	addition,	we	predicted	their	causal	relationship	with	the	AD	phenotype.	In	the	MAYO-

microglial	sub-network,	there	are	a	total	of	189	enriched	pathways,	including	Microglia	

Pathogen	 Phagocytosis	 Pathway	 (p-value=0.0167),	 ER-Phagosome	 pathway	 (p-

value=0.018)	and	Phagosome	 (p-value=0.028).	 In	 the	ROSMAP-microglial	 sub-network,	

there	are	534	enriched	pathways,	 including	Microglia	Pathogen	Phagocytosis	Pathway	

(p-value=6.06E-11),	Cross-presentation	of	particulate	exogenous	antigens	(phagosomes)	

(p-value=1.81E-05),	Fc	gamma	R-mediated	phagocytosis	 (p-value=1.94E-05),	Fc-gamma	

receptor	 (FCGR)	 dependent	 phagocytosis	 (p-value=4.03E-04),	 Role	 of	 phospholipids	 in	

phagocytosis	 (p-value=9.55E-04),	 Phagosome	 (p-value=2.24E-03),	 ER-Phagosome	

pathway	 (p-value=0.03).	 The	 overlapping	 contains	 77	 pathways,	 including	 Microglia	

Pathogen	Phagocytosis	Pathway,	Phagosome,	and	ER-Phagosome	pathway.	

	

Validation	of	the	microglial	key	driver	and	network	for	AD	pathology	by	knockdown	in	

monocyte-derived	microglia-like	cells	

To	validate	the	molecular	mechanism	and	pathways	of	these	three	key	drivers	captured	

by	 our	 predictive	 network	 model,	 we	 first	 sought	 to	 validate	 the	 downstream	 and	

upstream	genes	of	microglial-specific	key	drivers	 (HCK,	FCER1G,	LAPTM5)	predicted	by	
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our	 network	 model.	 To	 address	 this,	 we	 utilized	 the	 previously	 characterized	 highly	

efficient	in	vitro	cell	model	system	composed	of	human	monocyte-derived	microglia-like	

cells	 (MDMi)	 that	 recapitulates	 key	 aspects	 of	microglia	 phenotype	 and	 function[33].		

Using	 this	 model,	 we	 applied	 three	 different	 constructs	 of	 short	 hairpin	 lentiviral	

knockdown	 vectors	 targeting	 different	 parts	 of	 each	 KD	 gene	 by	 RNA	 interference	

(shHCK,	shFCER1G	and	shLAPTM5)	to	MDMi	cells	differentiated	from	3	healthy	donors.	

We	then	picked	two	of	the	three	constructs	that	gave	at	least	70-90%	knockdown	in	the	

gene	 of	 interest	 compared	 to	 a	 control	 shRNA	 as	 verified	 by	 qPCR	 (Figure	 S9).	 To	

validate	the	predictive	network,	we	measured	the	gene	expression	between	MDMi	cells	

that	 received	 the	 shHCK,	 shFCER1G	 or,	 shLAPTM5	 and	 empty	 vector	 (shCTRL)	 for	 six	

network-predicted	 immediate	 downstream	 genes	 for	 HCK,	 FCER1G	 and	 LAPTM5	

respectively	using	Taqman	real-time	PCR	(Figure	5A).	Out	of	all	immediate	downstream	

genes	of	 the	KDs	predicted	by	 the	 two	microglia	networks,	 the	six	downstream	genes	

were	chosen	on	the	basis	of	their	expression	level	in	the	MDMi	cells	as	determined	by	

RNA-seq	 data	 set	 on	 MDMi	 (Supplementary	 File	 S3).	 For	 HCK,	 we	 selected	 CASP1,	

FCGR1A,	 CYTH4	 and	 NCF4,	 LAIR1,	 FCGR2A	 from	 the	 MAYO-	 and	 ROSMAP-microglia	

networks	respectively.	Of	the	six	genes,	knockdown	of	the	HCK	gene	in	MDMi	cells	led	

to	statistically	 significant	 reduction	 (p-value<0.05)	 (Online	Method)	 in	gene	expression	

of	 five	downstream	genes	 in	at	 least	one	construct:	CYTH4,	NCF4,	LAIR1,	FCGR1A	 and	

FCGR2A	 as	 compared	 to	MDMi	 cells	 that	 received	 the	 control	 vector	 (ShCTRL).	 There	

was	no	significant	decrease	in	gene	expression	from	CASP1	 in	either	construct,	though	

they	 trended	 in	 the	same	direction	 (p-values=5.87E-02	and	6.62E-02).	For	FCER1G,	we	
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selected	 FERMT3,	 CD14,	 SPI-1,	 LAIR1	 and	 S100A11,	 FXYD5	 from	 the	 MAYO-	 and	

ROSMAP-microglia	 networks.	 Five	 out	 of	 six	 downstream	 genes	 showed	 a	 significant	

reduction	in	gene	expression	in	shFCER1G	MDMi	cells	as	compared	to	MDMi	cells	that	

received	 the	 control	 vector	 (ShCTRL)	 in	 at	 least	 one	 construct.	 S100A11	 showed	 no	

significant	decrease	 in	gene	expression	with	p-values	 (5.68E-02	and	7.69E-02)	close	 to	

the	 significance	 threshold.	 Similarly,	 we	 also	 conducted	 experiments	 using	 shRNA	

targeting	the	third	key	driver	LAPTM5.	For	LAPTM5,	we	selected	NFAM,	TYROBP,	HLA-

DRA,	 CD68	 and	 NFAM,	 TYROBP,	 ITGB2,	 SPI-1	 from	 MAYO-	 and	 ROSMAP-microglia	

networks.	 Knockdown	of	LAPTM5	 significantly	upregulates	 ITGB2,	HLA-DRA	 and	CD68,	

and	 significantly	 downregulates	 SPI-1.	 Furthermore,	 knockdown	 of	 LAPTM5	 in	 MDMI	

cells	did	not	have	any	significant	effect	on	the	expression	of	TYROBP	(p-value=7.61E-01	

and	 5.44E-01)	 and	 NFAM	 (p-value=7.27E-02	 and	 6.07E-02),	 which	 is	 close	 to	 the	

significance	 threshold.	 TYROBP	 in	 our	 network	 contains	 2	 and	 5	 parent	 genes	

respectively	 in	 the	MAYO-	and	ROSMAP-microglia	networks.	 In	 the	ROSMAP-microglia	

network,	 it	 has	 significantly	 more	 parents	 than	 all	 other	 nodes	 in	 the	 network	 (p-

value=2.2e-16),	 potentially	 explaining	 why	 modulation	 of	 LAPTM5	 does	 not	 regulate	

TYROBP	 in	our	model	system.	 In	addition,	we	measured	the	gene	expression	between	

MDMi	 cells	 that	 received	 the	 shHCK,	 shFCER1G	 or,	 shLAPTM5	 and	 empty	 vector	

(shCTRL)	 for	 four	 network-predicted	 common	 upstream	 genes	 (C1ORF162,	 CKLF,	

SLC37A2,	RMDN1)	for	the	three	KDs	respectively	using	Taqman	(Figure	5B).	As	predicted	

by	the	network,	none	of	these	genes	are	significantly	changed.	The	experimental	results	

are	listed	in	Supplementary	File	S4	(sheet	‘KD,	downstream	genes,	results’).	
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Validation	of	 In-silico	Prediction	on	Gene	Expression	Prediction	by	Microglial-specific	

Predictive	Networks	

Next,	we	predicted	in-silico	gene	expression	of	downstream	genomic	targets	from	these	

three	 key	 drivers	 based	 on	 our	 predictive	 network	model.	We	developed	 the	 in-silico	

phenotypic	 prediction	 pipeline,	 which	 is	 a	 component	 of	 the	 predictive	 network,	 to	

predict	 i)qualitative	 response,	 i.e.	 direction	 of	 gene	 expression	 fold-change	 and	

ii)quantitative	response,	 i.e.	expression	fold-change	of	the	downstream	genes	of	three	

key	drivers	 in	 the	ROSMAP	and	MAYO-microglial	networks.	 In	shRNA	experiments,	we	

measured	 gene	 expression	 fold-change	 of	 11	 and	 9	 KD-target	 pairs	 (see	 last	 section)	

predicted	by	the	MAYO-	and	ROSMAP-microglial	networks	with	two	constructs	in	MDMi	

cells	from	3	healthy	donors.	Therefore,	there	are	a	total	66	and	54	measurements	in	the	

MAYO-	and	ROSMAP-microglia	network	respectively.	First,	we	predicted	the	direction	of	

gene	expression	change	(up-regulation	or	down-regulation)	and	compared	it	to	those	in	

the	 shRNA	 experiments.	 Out	 of	 the	 66	 measurements,	 all	 predicted	 to	 be	 down-

regulated	 by	 the	MAYO	 network,	 22	measurements	were	 up-regulated	 	 and	 44	were	

down-regulated	 in	 the	 shRNA	 experiment.	 Out	 of	 54	 measurements	 predicted	 to	 be	

down-regulated	 by	 the	 ROSMAP	 network,	 18	 were	 up-regulated	 and	 36	 were	 down-

regulated	in	the	shRNA	experiment.	The	accuracy	of	the	qualitative	response	prediction	

is	 66.7%	 for	 both	 networks.	 Next,	 we	 calculated	 the	 Pearson	 correlation	 (0.423	 and	

0.508,	p-value=3.97e-04	and	8.85e-05)	and	Spearman	correlation	 (0.367	and	0.436,	p-

value=2.61e-03	 and	 1.1e-03)	 between	 predicted	 and	 experimental	 expression	 fold-

change	 (Online	method,	 Supplementary	 File	 S5)	 in	 the	MAYO-	 and	ROSMAP-microglia	
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networks	 (Figure	 5C).	 Further,	 if	 we	 only	 consider	 measurements	 (p-value<0.05)	 in	

shRNA	experiments,	28	and	28	pairs	are	used	to	calculate	the	Pearson	correlation	(0.549	

and	0.622,	p-value=2.47e-03	and	4.06e-04)	and	Spearman	correlation	(0.358	and	0.492,	

p-value=6.21e-02	and	8.51e-03)	in	the	MAYO-	and	ROSMAP-microglia	networks	(Figure	

5D).	 This	 result	 demonstrated	 that	 our	 predictive	 network	 model	 accurately	 predicts	

downstream	 gene	 expression	 changes	 upon	 perturbing	 any	 key	 driver,	 which	 is	

validated	using	Taqman.	

	

Validation	of	the	causal	regulation	among	HCK,	FCER1G	and	LAPTM5	by	knockdown	in	

MDMi	cells	

Next,	we	identified	previously	unknown	causal	regulation	among	the	three	key	drivers	in	

the	 process	 of	 phagocytosis	 using	 our	microglia-specific	 predictive	 network	models	 in	

ROSMAP	 and	 MAYO.	 We	 extracted	 sub-networks	 of	 phagocytosis	 around	 the	 3	 key	

drivers	(highlighted	in	Figure	4B),	and	determined	that	HCK	was	downstream	of	FCER1G,	

which	 is,	 in	 turn,	 downstream	 of	 LAPTM5.	 These	 causal	 regulations	 are	 replicated	 in	

MAYO-	and	ROSMAP-microglial	networks.	Further,	to	validate	the	relationship	between	

HCK,	 FCER1G	 and	 LAPTM5,	 we	 applied	 shRNA	 targeting	 FCER1G	 and	 LAPTM5	 using	

lentivirus	 in	MDMi	 cells.	We	 then	measured	HCK,	 LAPTM5	 and	 FCER1G	 expression	 in	

each	 knockdown.	 Gene	 expression	 data	 from	 the	 shFCER1G	 cells	 showed	 significant	

reduction	(p-value=2.09E-4)	in	HCK	gene	but	there	was	no	significant	(p-value=1.62E-01)	

change	 in	 LAPTM5	 expression.	 In	 addition,	 gene	 expression	 data	 from	 shLAPTM5	

showed	significant	reduction	in	HCK	(p-value=3.58E-04)	and	FCER1G	(p-value=2.12E-03)	
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(Figure	 4C),	 thereby	 indicating	 that	 LAPTM5	 was	 upstream	 of	 FCER1G	 and	 HCK	 was	

downstream	 of	 FCER1G,	 which	 validated	 our	 microglia-specific	 network.	 Besides	 HCK	

and	FCER1G,	ITGB2	and	SYK	gene	are	also	significantly	changed	their	expression	level	in	

both	 knockdown	 experiments,	 suggesting	 that	 they	 are	 directly	 or	 indirectly	

downstream	 of	 LAPTM5	 and	 FCER1G	 (Figure	 4C).	 Interestingly,	 both	 our	 MAYO	 and	

ROSMAP	sub-networks	show	that	ITGB2	is	downstream	of	LAPTM5,	and	in	the	ROSMAP	

sub-network,	 ITGB2	 is	 an	 indirect	 downstream	 gene	 of	 FCER1G.	 In	 addition,	 in	 the	

ROSMAP	 sub-network,	 SYK	 is	 direct	 downstream	 gene	 of	 LAPTM5	 and	 indirect	

downstream	 gene	 of	 FCER1G	 (Figure	 4B).	 The	 experimental	 results	 are	 listed	 in	

Supplementary	Table	S4	(sheet	‘KD,	subnetworks,	results’).	

	

Functional	 Validation	of	HCK	 and	 FCER1G	as	 key	 drivers	 of	microglia	 function	of	Aβ	

clearance	

Microglia	are	innate	immune	cells	of	the	brain	which	play	an	important	role	in	clearance	

of	amyloid-beta	which	 forms	plaques	 in	 the	brain,	a	hallmark	pathology	of	AD.	 In	 this	

study,	we	identified	key	drivers	in	our	predicted	microglia-specific	causal	network	model	

for	 phagocytosis	 (HCK	 and	 FCER1G)	 and	 lysosome	 function	 (LAPTM5).	 In	 order	 to	

validate	the	function	of	HCK	and	FCER1G	as	mediators	of	phagocytosis,	we	analyzed	the	

Aß42	uptake	ability	of	MDMi	cells	differentiated	from	4-5	healthy	donors	that	received	

lentivirus	 containing	 the	 short	 hair	 pin	 RNA	 targeting	 HCK	 (shHCK)	 and	 FCER1G	

(shFCER1G)	 and	 compared	 it	 to	 the	MDMi	 cells	 from	 the	 same	 donors	 that	 received	

empty	control	virus	(shCTRL)	using	fluorescently	labelled	Aß42	peptide.	The	MDMi	cells	
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with	both	shHCK	and	shFCER1G	show	a	significant	decrease	in	Aß42	uptake	for	the	two	

HCK	 constructs	 (paired	 t-test,	 p-value	 =	 0.030	 and	 0.028)	 and	 for	 the	 two	 FCER1G	

constructs	(p-value=0.037	and	0.045	(Figure	6).	As	LAPTM5	is	a	lysosomal	molecule,	we	

do	not	expect	to	see	an	effect	in	our	uptake	assay.	Thus,	we	functionally	validated	these	

genes	 as	 key	 drivers	 of	 phagocytosis	 in	 microglia	 cells	 as	 predicted	 by	 our	 network	

specific	model.	The	complete	results	are	in	Supplementary	File	S4		(sheet	‘Abeta	uptake,	

results’).	

	

	Discussion	

GWAS	studies	 in	 LOAD	have	 identified	 several	microglial	 specific	genes.	However,	 it	 is	

unclear	 how	 these	 genes	 interact	 and	 what	 cellular	 pathways	 are	 involved	 in	 the	

pathology	 of	 LOAD.	 Hence,	 a	 comprehensive	 characterization	 of	 gene	 regulatory	

networks	with	association	to	disease	is	important	to	provide	insights	into	the	underlying	

mechanisms	of	 complex	 neurodegenerative	 diseases	 such	 as	Alzheimer’s	 disease.	Our	

study	 uses	 an	 innovative	 predictive	 computational	 systems	 biology	model	 to	 identify	

upstream	 regulators	 (key	 drivers)	 and	 cellular	 pathways	 in	 microglial	 cells	 that	

contribute	to	AD	pathology	using	the	Mayo	Clinic	and	ROSMAP	datasets	in	the	AMP-AD	

consortium.	The	RNA-seq	data	from	brain-region	tissue	in	MAYO	(TCX-Temporal	Cortex,	

79	AD	and	76	CN)	and	ROSMAP	(PFC-Pre-frontal	Cortex,	212	AD	and	200	CN)	cohorts	are	

computationally	 de-convoluted	 into	 single	 cell	 types	 including	 neurons,	 microglia,	

astrocytes,	 endothelial	 cells	 and	 oligodendrocytes.	 In	 this	 study,	 we	 focused	 on	

microglial-specific	 gene	 expression	 data.	 We	 performed	 preliminary	 bioinformatics	
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analysis	 including	differential	 expression,	 eQTLs,	 co-expression	networks	 and	pathway	

analysis	 prior	 to	 building	 predictive	 causal	 network	 models.	 There	 are	

4187(43.9%)/5152(35.7%)	 (overlap	 percentage	 in	 parenthesis)	 genes	 in	 the	 seeding	

gene	 list	 of	 MAYO-/ROSMAP-microglial	 predictive	 network	 models	 and	

4008(41.0%)/4600(35.7%)	 genes	 in	 the	 final	 MAYO-/ROSMAP-microglial	 predictive	

network	models.	The	difference	of	key	drivers/pathways	in	each	predictive	network	can	

be	 attributed	 to:	 i)	 different	 susceptibility	 and	 pathology	 response	 to	 AD	 in	 TCX	 and	

DLPFC	 regions	 analyzed	 in	 the	 MAYO	 and	 ROSMAP	 cohorts	 respectively;	 ii)	 different	

patient	 composition	 in	 the	 two	 cohorts,	 such	 as	Male/Female,	 APOE4+/-	 and	 clinical	

stage;	 and	 iii)	 technical	 variance	 in	 sample	 extraction,	 RNA	 preparation,	 and	 RNA-

sequencing	as	well	 as	other	 covariates.	However,	 the	 replicated	 key	drivers/pathways	

derived	by	these	network	models	identified	robust	biological	processes	and	key	drivers	

in	microglial	cells	under	AD	diagnosis	despite	the	significant	variance	in	data	and	cohorts	

as	described	above.	Consequently,	our	predictive	networks	identified	robust	key	drivers	

for	phagocytosis	in	microglial-specific	cells	associated	with	AD,	which	are	validated	using	

an	in	vitro	model	of	microglia.	

	

Our	novel	predictive	network-based	analysis	 integrated	microglial	cell-specific	genetics	

and	genomics	data	to	identify	key	regulatory	genes	associated	with	microglial	functions	

in	AD,	 i.e.	LAPTM5,	FCER1G	 and	HCK.	 Pathway	enrichment	 analysis	 confirmed	 that	 all	

three	 key	 drivers	 and	 their	 downstream	 genes	 in	 the	 network	 model	 regulate	

phagosome	 processes.	 The	 phagosome	 pathway	 is	 activated	 upon	 neuronal	 loss	 or	
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amyloid	 plaque	 buildup,	 two	 important	 pathophysiological	 hallmarks	 of	 AD.	Microglia	

clear	 synapses	 and	 neurites	 during	 development	 and	 in	 neurodegenerative	 processes		

using	phagocytosis	via	C1Q,	C3,	CR3,	and	the	DAP12/TYROBP	cascade[87-89].	Microglia	

are	also	closely	associated	with	amyloid	beta	plaques	making	it	important	to	understand	

the	cause-and-effect	relationship	between	immune	cells	and	AD	progression[90].		

	

Our	network	model	predicted	regulation	between	FCER1G,	HCK	and	LAPTM5	genes.	We	

highlight	 that	HCK	 is	downstream	of	FCER1G	 in	 the	network	with	our	 lentiviral	 shRNA	

knockdown	 in	MDMi	cells	 (Figure	4C).	 	A	 study	by	Taguchi	et	al[36]	 showed	 that	HCK	

and	 FCER1G	 are	 up-regulated	 in	 the	 cortex	 of	AppNL-G-F/NL-G-F	 	 	mice	 as	 Aβ	 amyloidosis	

progressed	 thereby	 associating	 them	 with	 plaques	 and	 phagocytosis.	 Furthermore,	

FCER1G	 shows	 significant	 association	 in	 AD,	 in	 regards	 to	 immune	 and	 microglial	

functions	and	amyloid	deposits	in	humans	and	mice[34-36].	The	reduction	in	uptake	of	

the	 fluorescently	 labeled	 amyloid	 beta	 1-42	 in	 shFCER1G	 and	 shHCK	 microglia	 cells	

indicates	 the	 significance	 of	 these	 genes	 as	 phagocytic	 modulators	 in	 microglia	 cells,	

which	 validated	 the	 accuracy	 of	 our	 predictive	 network	 model.	 Furthermore,	 while	

LAPTM5	is	upstream	of	FCER1G	and	HCK,	its	main	role	is	in	lysosomal	function,	which	is	

not	captured	in	our	assay,	and	thus	modulating	LAPTM5	doesn’t	show	a	robust	effect	on	

uptake	of	Aß42	(Supplementary	File	S4,	sheet	‘Abeta	uptake,	results’).		

	

GWAS	studies	have	implicated	SNPs	and	polymorphisms	in	the	TYROBP	binding	protein	

TREM2,	 ITGAM	 and	 SPI-1	 genes	 as	 being	 associated	 with	 LOAD[91].	 Using	 our	
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computational	 predictive	 network,	 we	also	highlight	 that	TYROBP	 is	 downstream	 of	

LAPTM5	and	TREM2	and	hence	is	regulated	by	both	genes,	while	ITGAM	is	upstream	of	

LAPTM5,	FCER1G	and	HCK.	We	further	demonstrated	that	SPI-1,	an	established	GWAS	

loci	 for	 AD,	 is	 a	 downstream	 gene	 of	 our	 key	 driver	 LAPTM5	 in	 a	 microglial	 specific	

network	from	the	ROSMAP/MAYO	data	sets.	Our	study	demonstrates	the	importance	of	

these	classical	immune	genes	in	AD	functions.		

	

Comparative	profiling	of	human	cortical	gene	expression	in	AD	patients[35]	and	mouse	

models	 with	 amyloid	 beta	 plaque	 accumulation	 have	 shown	 involvement	 of	 our	 key	

drivers	 LAPTM5,	 FCER1G	 and	 HCK.	 These	 three	 genes	 were	 identified	 in	 Zhang	 et	 al.	

(ref.),	however	here	we	demonstrate	that	they	exist	in	one	causal	network,	and	we	have	

delineated	 the	 upstream	 and	 downstream	 relationships.	 A	 recent	 study	 by	 Lim	 et	 al.	

shows	 that	 inhibition	 of	 HCK	 dysregulates	 microglial	 function	 of	 phagocytosis	 and	

enhances	 amyloid	 plaque	 build-up	 in	 the	 J-20	mouse	model	 of	 AD[92].	 In	 addition,	 a	

recent	 study[41]	 showed	that	LAPTM5	is	significantly	 associated	 with	 the	 mouse	

amyloid	response	network	and	that	 it’s	human	ortholog	contains	SNPs	associated	with	

AD.		

	

In	addition	to	network	reconstruction	and	key	driver	discovery,	our	predictive	network	

model	 is	 capable	 to	 perform	 in-silico	 phenotype	 prediction.	 Upon	 perturbing	 any	

number	of	genes	in	the	network,	we	can	predict	i)	whether	a	given	gene	in	the	network	

will	significantly	change	their	expression	level;	ii)	the	qualitative	response,	i.e.	direction	
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of	 gene	 expression	 change	 of	 the	 downstream	 genes	 to	 the	 perturbation;	 iii)	 the	

quantitative	response,	i.e.	log	fold-change	of	gene	expression	in	the	downstream	genes	

to	perturbation.	We	used	two	shRNAs	targeting	different	regions	of	the	three	key	driver	

genes	and	tested	gene	expression	change	of	18	downstream	genes	of	these	three	key	

drivers	 in	 the	 network	 using	 Taqman	 array.	 Fourteen	 out	 of	 18	 (78%)	 predicted-to-

change	downstream	genes	by	our	network	models	are	validated	as	significantly	(p<0.05)	

altered	 in	 their	 gene	 expression	 by	 knockdown	 experiments.	 In	 addition,	 4	 common	

upstream	genes	of	these	key	drivers	predicted	not-to-change	by	the	networks,	are	100%	

validated	as	not	altering	in	expression	after	knockdown.	The	accuracy	of	the	qualitative	

response	 prediction	 is	 66.7%	 for	 the	 18	 downstream	 target	 genes	 in	 MAYO	 and	

ROSMAP-microglial	networks.	The	Pearson	correlation	between	experimental	data	and	

quantitative	 prediction	 by	 the	model	 is	 very	 significant	 for	 all	measured	 downstream	

targets	 in	 MAYO-	 and	 ROSMAP-microglial	 network	 respectively.	 This	 result	

demonstrated	 that	 our	 predictive	 network	 model	 is	 capable	 of	 further	 predicting	

phenotypic	changes	upon	perturbations	in	the	model.		

	

Overall,	 our	 innovative	 computational	 systems	 biology	 modeling	 of	 microglia	 specific	

networks	 further	 deepens	 our	 understanding	 of	 microglial-specific	 implications	 in	 AD	

pathology	by	identifying	robust	causal	networks	of	key	driver	genes	and	their	genomic	

target	genes	for	the	phagosome,	including	a	GWAS	AD-related	gene	(LAPTM5)	that	has	

major	 implications	 in	AD.	Our	predictive	network	not	only	 identifies	FCER1G,	HCK	and	

LAPTM5	as	key	drivers	for	microglial	specific	genes	in	the	phagosome	pathway	but	also	
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demonstrates	the	functional	association	of	HCK	and	FCER1G	in	amyloid	beta	uptake	in	

microglial	 cells.	 Our	 approach	 appears	 to	 offer	 novel	 insights	 for	 drug	 discovery	

programs	that	can	affect	neurodegenerative	diseases,	such	as	LOAD.		
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Online	Methods	
Data	source	
Data	has	been	downloaded	from	the	AMP-AD	consortium	database	hosted	on	the	

Synapse.org	data	portal	(doi:10.7303/syn2580853).	

	

Mayo	Clinic	Transcriptome	and	Genome-Wide	Genotype	Data:	

The	Mayo	Clinic	(MAYO)	transcriptome	and	genome-wide	genotype	datasets	utilized	in	

this	study	have	previously	been	described[1-4].	The	Mayo	Clinic	temporal	cortex	RNA	

sequence	data	(Synapse	ID:	syn3163039)	and	genome-wide	genotypes	(Synapse	ID:	

syn8650953)	are	available	from	AMP-AD	Knowledge	portal.	Below,	we	provide	details	

on	these	datasets:	

	

Mayo	Clinic	Cohort	Participants:	

Mayo	Clinic	RNAseq	cohort	has	RNAseq-based	whole	transcriptome	data	from	278	

TCX	samples	from	subjects	with	the	following	diagnoses:	84	AD,	84	PSP,	80	controls	

and	30	pathologic	aging.	For	this	study,	we	utilized	data	from	subjects	with	AD	and	

controls.	Subjects	with	AD	had	definite	neuropathologic	diagnosis	according	to	the	

NINCDS-ADRDA	criteria[5]	and	had	Braak	neurofibrillary	tangle	(NFT)	stage	of	≥4.0.		

	

Control	subjects	each	had	Braak[6]	NFT	stage	of	3.0	or	less,	CERAD[7]	neuritic	and	

cortical	plaque	densities	of	0	 (none)	or	1	(sparse)	and	 lacked	any	of	 the	 following	

pathologic	 diagnoses:	 AD,	 Parkinson’s	 disease	 (PD),	DLB,	 VaD,	 PSP,	motor	 neuron	
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disease	 (MND),	 CBD,	 Pick’s	 disease	 (PiD),	 Huntington’s	 disease	 (HD),	 FTLD,	

hippocampal	 sclerosis	 (HipScl)	 or	 dementia	 lacking	 distinctive	 histology	 (DLDH).	

Within	the	Mayo	RNAseq	cohort,	all	AD	and	PSP	subjects	were	from	the	Mayo	Clinic	

Brain	Bank.	Thirty-one	control	TCX	samples	were	from	the	Mayo	Clinic	Brain	Bank,	

and	 the	 remaining	 control	 tissue	 was	 from	 the	 Banner	 Sun	 Health	 Institute.	 All	

subjects	were	North	American	Caucasians.	All	but	control	subjects,	had	ages	at	death	

≥60,	and	a	more	relaxed	lower	age	cutoff	of	≥50	was	applied	for	normal	controls	to	

achieve	sample	sizes	similar	 to	 that	of	AD	and	PSP	subjects.	Brain	samples	 for	 the	

Mayo	RNAseq	study	underwent	RNA	extractions	via	the	Trizol/chloroform/ethanol	

method,	followed	by	DNase	and	Cleanup	of	RNA	using	Qiagen	RNeasy	Mini	Kit	and	

Qiagen	RNase	 -Free	DNase	 Set.	 The	quantity	 and	quality	 of	 all	RNA	 samples	were	

determined	by	the	Agilent	2100	Bioanalyzer	using	the	Agilent	RNA	6000	Nano	Chip.	

Samples	had	to	have	an	RIN	≥5.0	for	inclusion	in	the	study.		

	

All	 of	 this	work	was	 approved	 by	 the	Mayo	 Clinic	 Institutional	 Review	Board.	 All	

human	subjects	or	their	next	of	kin	provided	informed	consent.		

	

Mayo	Clinic	RNAseq	Data:	

Mayo	Clinic	RNAseq	samples	were	randomized	across	flowcells,	taking	into	account	

age	 at	 death,	 sex,	 RIN,	 Braak	 stage	 and	 diagnosis.	 Library	 preparation	 and	

sequencing	 of	 the	 samples	 were	 conducted	 at	 the	 Mayo	 Clinic	 Medical	 Genome	

Facility	 Gene	 Expression	 and	 Sequencing	 Cores,	 as	 previously	 described[8].	 The	

TruSeq	 RNA	 Sample	 Prep	 Kit	 (Illumina,	 San	 Diego,	 CA)	 was	 used	 for	 library	
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preparation	 from	all	 samples.	 The	 library	 concentration	 and	 size	 distribution	was	

determined	on	an	Agilent	Bioanalyzer	DNA	1000	chip.	Three	samples	were	run	per	

flowcell	 lane	 using	 barcoding.	 All	 samples	 underwent	 101	 base-pair	 (bp),	 paired-

end	 sequencing	 on	 Illumina	 HiSeq2000	 instruments.	 Base-calling	 was	 performed	

using	 Illumina’s	RTA	1.17.21.3.	FASTQ	sequence	 reads	were	aligned	 to	 the	human	

reference	genome	using	TopHat	2.0.12	[9]	and	Bowtie	1.1.0[10],	and	Subread	1.4.4	

was	 used	 for	 gene	 counting[11].	 FastQC	was	 used	 for	 quality	 control	 (QC)	 of	 raw	

sequence	reads,	and	RSeQC	was	used	for	QC	of	mapped	reads.	Raw	read	counts	were	

log2-transformed	and	normalized	using	Conditional	Quantile	Normalization	(CQN)	

via	the	Bioconductor	package;	accounting	for	sequencing	depth,	gene	length,	and	GC	

content[12].		

	

Mayo	Clinic	Genome-Wide	Genotype	Data:	

Subjects	 in	 the	Mayo	 Clinic	 RNAseq	 cohort	 underwent	whole	 genome	 genotyping	

using	 the	 Illumina	 Infinium	 HumanOmni2.5-8	 BeadChip,	 which	 delivers	

comprehensive	 coverage	 of	 both	 common	 and	 rare	 SNP	 content	 from	 the	 1000	

Genomes	Project	(minor	allele	frequency>2.5%)	providing	genotypes	for	2,338,671	

markers.	 The	 genotyping	 was	 done	 at	 the	 Mayo	 Clinic	 Medical	 Genome	 Facility.	

Whole	 genome	 genotype	 calls	 were	 made	 using	 the	 auto-calling	 algorithm	 in	

Illumina’s	BeadStudio	2.0	software,	subsequent	to	which	they	were	converted	into	

PLINK	formats	for	analysis[13].			
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Mayo	Clinic	RNAseq	Data	Quality	Control	(QC):	

All	Mayo	 Clinic	 TCX	 RNAseq	 samples	 had	 percent	mapped	 reads	 ≥	 85%.	 Using	 R	

statistical	software,	raw	read	counts	were	transformed	to	counts	per	million	(CPM),	

which	were	 log2	normalized.	Mean	expression	 for	chromosome	Y	genes	with	non-

zero	 counts	 were	 plotted	 to	 identify	 any	 samples	 with	 deviation	 from	 expected	

expression	based	on	recorded	sex.	Two	AD	TCX	samples	with	discordant	sex	were	

excluded.	 Raw	 read	 counts	 were	 then	 normalized	 using	 Conditional	 Quantile	

Normalization	 (CQN)	 via	 the	 Bioconductor	 package;	 accounting	 for	 sequencing	

depth,	gene	length,	and	GC	content.	GC	content	was	calculated	via	the	Bioconductor	

package,	 Repitools	 and	 sequencing	 depth	 was	 calculated	 as	 the	 sum	 of	 reads	

mapped	to	genes.	Genes	with	non-zero	counts	across	all	samples	were	retained	and	

principal	 components	 analysis	 was	 performed	 using	 the	 prcomp	 function	

implemented	using	R	Statistical	 Software	 (R	Foundation	 for	 Statistical	Computing,	

version	 3.2.3).	 Principal	 components	 1	 and	 2	were	 plotted	 and	 no	 outliers	 (>6SD	

from	mean)	were	identified.		

	

Mayo	Clinic	Genotype	Data	Quality	Control	(QC):	

Genome-wide	genotypes	were	obtained	 for	all	 subjects	 in	 the	Mayo	Clinic	RNAseq	

study	using	Illumina	Omni	2.5	Beadchips.	Samples	were	checked	for	discordant	sex.	

The	same	two	subjects	that	were	excluded	due	to	discordant	sex	based	on	RNAseq	

data	 were	 also	 determined	 to	 have	 discordant	 sex	 based	 on	 the	 genome-wide	

genotype	data.	Subjects	were	assessed	for	heterozygosity	rate	>	3SD	from	the	mean.	

One	 AD	 sample	 with	 TCX	 RNAseq	 had	 high	 heterozygosity	 indicating	 possible	
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sample	 contamination	 and	 3	 TCX	 RNAseq	 samples	 had	 low	 heterozygosity	 (2	

controls	 and	 1	 AD)	 indicating	 either	 divergent	 ancestry	 or	 consanguinity.	 These	

samples	were	also	excluded	 from	 the	analysis.	The	dataset	was	 filtered	 to	 include	

only	autosomal	SNPs.	PLINK[13]	--genome	function	was	used	to	identify	any	sample	

duplicates	or	related	pairs	of	subjects.	Two	pairs	of	samples	were	identified	as	>	3rd	

degree	 relatives.	 For	 each	 pair,	 the	 sample	 with	 the	 lowest	 SNP	 call	 rate	 was	

excluded	(1	PSP	and	1	control).	The	dataset	was	further	filtered	to	remove	complex	

genomic	 regions	 (chr8:1-12,700,000;	 chr2:129,900,001-136,800,000;	

chr17:40,900,001-44,900,000;	 chr6:32,100,001-33,500,000)	 and	 LD	 pruned	 using	

the	SNPRelate	(v1.4.2)	package	in	R	(v3.2.3)	[14],	implementing	an	LD	threshold	of	

0.15	and	a	sliding	window	of	1E-07	bp.	Remaining	SNPs	and	subjects	were	analyzed	

using	 EIGENSOFT[15]	 for	 population	 outliers.	 Two	 samples	 were	 identified	 as	

population	 outliers	 (1	 PSP	 and	 1	 control)	 using	 the	 default	 parameters	 of	 >	 6	 SD	

from	the	mean	on	any	of	the	top	ten	inferred	axes	following	5	iterations	and	were	

removed	from	further	analysis.		

	
Clinical,	genotype	and	processed	RNA-seq	read	count	data	was	obtained	privately	from	

Dr.	Nilufer	Tan	Taner	lab	at	the	Mayo	Clinic.	

	

ROSMAP	Transcriptome	and	Genome-Wide	Genotype	Data:	

The	 ROSMAP	 dataset’s	 dorsolateral	 prefrontal	 cortex	 gene	 expression	 (RNA-seq	 BAM	

files),	 genotypes	 and	 clinical	 covariates	 were	 downloaded	 from	 synapse	 (respective	

synapse	project	IDs:	syn4164376,	syn3157325	and	syn3191087)	using	the	synapseClient	
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R	library	(Matthew	Furia	(2015).	synapseClient:	Synapse	R	Client	from	Sage	Bionetworks.	

R	package	version	1.11-1.	http://www.sagebase.org).		Requests	for	ROSMAP	data	can	be	

made	at	www.radc.rush.edu.		

	

ROSMAP	Cohort	Participants:	

ROSMAP	dataset	contains	two	cohorts:	The	Religious	Orders	Study	(ROS)	and	The	

Memory	and	Aging	Project	(MAP)[16].	Both	ROS	and	MAP	are	a	longitudinal	clinical-

pathologic	cohort	studies	of	aging	and	dementia	run	by	the	Rush	Alzheimer’s	

Disease	Center.	In	both	studies,	participants	enroll	without	known	dementia	and	

agree	to	annual	clinical	evaluation.	All	subjects	agree	to	brain	donation	as	a	

condition	of	entry.	ROS	enrolled	individuals	from	religious	orders	(nuns,	priests,	

brothers)	from	across	the	United	States	starting	in	1994.	MAP	enrolled	lay	persons	

from	across	northeastern	Illinois.	Each	study	administers	a	battery	of	21	cognitive	

performance	tests	annually	of	which	19	are	in	common.			Alzheimer's	Disease	status	

was	determined	by	a	computer	algorithm	based	on	cognitive	test	performance	with	

a	series	of	discrete	clinical	judgments	made	in	series	by	a	neuropsychologist	and	a	

clinician.	Persons	were	categorized	as	no	cognitive	impairment	(NCI)	if	diagnosed	

without	dementia	or	mild	cognitive	impairment	(MCI).	Diagnoses	of	dementia	and	

AD	conform	to	standard	definitions.	A	clinician	reviewed	all	cases	determined	by	

this	algorithm	to	render	a	diagnosis	blinded	to	data	collected	in	prior	years.	In	

addition	to	dementia,	five	other	diagnoses	were	determined	by	this	approach	

including	stroke,	cognitive	impairment	due	to	stroke,	parkinsonism,	Parkinson's	

disease,	and	depression.	Most	other	diagnoses	are	by	self	report.			Upon	death,	a	
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summary	diagnosis	is	made	by	a	neurologist	blinded	to	the	post-mortem	

assessment.	A	post-mortem	neuropathologic	evaluation	is	performed	that	includes	a	

uniform	structured	assessment	of	AD	pathology,	cerebral	infarcts,	Lewy	body	

disease,	and	other	pathologies	common	in	aging	and	dementia.	The	procedures	

follow	those	outlined	by	the	pathologic	dataset	recommended	by	the	National	

Alzheimer’s	Disease	Coordinating	Center	and	pathologic	diagnoses	of	AD	use	NIA-

Reagan	and	modified	CERAD	criteria,	and	the	staging	of	neurofibrillary	pathology	

uses	Braak	Staging.	Both	studies	are	conducted	by	the	same	clinical	and	pathologic	

data	collection	teams	with	extensive	item-level	harmonization	allowing	the	data	to	

be	efficiently	merged.		

	
	

ROSMAP	Genotype	data	Processing	

Plink2	was	used	to	perform	operations	on	the	genotype	file	(see	link	https://www.cog-

genomics.org/plink/1.9/general_usage#cite),	and	positions	were	liftovered	from	hg18	to	

hg19	(http://genome.ucsc.edu/cgi-bin/hgLiftOver).	Picard	was	used	to	sort	the	resulting	

genotype	 file,	 and	 variants	with	more	 than	 2%	missing	 values,	minor	 allele	 frequency	

less	 than	 1%,	 Hardy-Weinberg	 equilibrium	 less	 than	 10E-6	 as	 well	 as	 inbred	 samples	

(inbreeding	 coefficient	 >0.15)	 and	 samples	 with	 more	 than	 2%	 missing	 values	 were	

removed	using	Plink2.	Starting	with	750,173	variants	 in	1,708	 individuals	 for	ROSMAP,	

736,073	variants	in	1,091	individuals	for	ROSMAP	were	left	after	quality	control.	
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ROSMAP	RNAseq	data	processing	
	
The	RNA-seq	BAM	files	were	sorted	using	samtools[17]	and	converted	to	fastq	files	

using	the	SamToFastq	function	(Picard	1.138,	http://broadinstitute.github.io/picard/).	

RAPiD[18]	was	used	to	generate	a	count	matrix	for	the	gene	expression	data	and	

generate	a	vcf	file	for	each	sample	aligned	to	hg19	from	the	fastq	files.	

	

Imputation	

After	 quality	 control,	 we	 used	 1000	 Genomes	 data[19]	 and	 IMPUTEv2[20]	 to	 impute	

untyped	 variants.	 Imputed	 variants	were	 removed	 if	 they	 failed	 any	 of	 the	 previously	

listed	quality	control	criteria	or	had	information	scores	<	0.6.	After	 imputation	we	had	

7,132,687	variants	in	Mayo	and	9,333,139	variants	in	ROSMAP.	

	

De-convolute	RNA-seq	data	into	Microglia-specific	Expression	Residual	
	
ROSMAP	RNA-seq	read	count	expression	data	was	normalized	using	log2	counts	per	

million	 (CPM)	 and	 the	 TMM	 method[21]	 implemented	 in	 edgeR[22].	 Genes	 with	

over	 1	 CPM	 in	 at	 least	 30%	 of	 the	 experiments	 were	 retained.	 We	 then	 used	

precision	 weights	 as	 implemented	 in	 the	 voom	 function	 from	 the	 limma[23]	 R	

package	 to	 further	 normalize	 the	 gene	 counts.	 MAYO	 expression	 data	 was	

normalized	using	the	CQN	R	package	(see	above).	For	ROSMAP,	expression	residuals	

were	obtained	by	 correcting	 for	 the	effects	of	 technical	 (study,	 sequencing	batch),	

sample-specific	 (post-mortem	 interval	 (PMI),	 RNA	 integrity	 number	 (RIN),	 exonic	
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mapping	 rate)	 and	 patient-specific	 covariates	 (sex,	 educational	 attainment,	 age	 at	

death).	 For	 Mayo	 we	 adjusted	 for	 a	 slightly	 different	 set	 of	 covariates	 due	 to	

availability	 of	 recorded	 measurements	 (source	 of	 sample,	 sequencing	 batch,	 RIN,	

exonic	 mapping	 rate,	 sex,	 age	 at	 death).	 For	 both	 ROSMAP	 and	 MAYO	 data,	 we	

computed	 the	 exonic	mapping	 rate	 using	 RNAseQC[24].	 The	 exonic	mapping	 rate	

was	also	 included	 in	 the	covariates.	Adjustment	 for	covariates	was	done	using	 the	

limma	R	package.		

	

Further,	 and	 performed	 together	with	 the	 above	 listed	 covariate	 adjustments,	 for	

both	 ROSMAP	 and	 Mayo,	 we	 also	 adjusted	 for	 5	 cell	 type	 markers[25]:	 ENO2	

[neuron],	 CD68	 [microglial],	 CD34	 [endothelial],	 OLIG2	 [oligodendrocyte],	 GFAP	

[astrocyte].	To	obtain	expression	residuals	 that	mimic	expression	patterns	seen	 in	

microglial	cells,	we	added,	for	every	gene,	the	CD68	effects	estimated	by	the	linear	

regression	models	back	to	the	expression	residuals.	

The	final	microglia-specific	expression	residual	data	available	for	analysis	included	

20,276	genes	 for	612	 individuals	 (ROSMAP)	and	19,885	genes	 for	266	 individuals	

(Mayo),	with	18,408	genes	in	common	to	the	two	datasets.	

Rationalize	 and	 Validate	 Single-gene	 Biomarker	 for	 Bulk-tissue	 RNA-seq	

De-convolution	

Compare	sc-RNAseq	derived	Biomarker	Genes	per	Cell	Type	

We	assembled	cell-type	specific	biomarkers	derived	from	existing	single-cell	

RNAseq	data	for	neurons,	microglial,	astrocyte,	endothelial	and	oligodendrocyte	

respectively.	These	biomarkers	are	included	in	the	lists	(Supplementary	File	S6).	In	
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each	cell	type,	we	compared	the	biomarker	genes	from	every	pair	of	studies	and	

calculated	the	significance	of	the	overlap	by	Exact	Fisher’s	test.	The	FDR	is	used	to	

correct	for	multiple	testing.		

PCA	analysis	of	sc-RNAseq	derived	Biomarker	Expression	in	AMP-AD	Data	

We	first	merged	biomarker	list	from	different	scRNA-seq	studies	for	each	cell	type.	

Then,	extracted	the	gene	expression	matrix	of	merged	biomarkers	from	the	ROSMAP	

and	MAYO	RNA-seq	data.	Next,	we	applied	principal	component	analysis	(PCA)	on	the	

extracted	RNA-seq	sub-matrix.		

Compare	sc-RNAseq	derived	Biomarker	Genes	with	AMP-AD	AGORA	Targets	

We	merged	all	biomarkers	for	each	cell	type	and	calculated	the	percentage	of	

overlapping	with	AGORA	Targets.	To	evaluate	the	significance	of	this	overlap,	we	

simulated	a	background	distribution	of	overlap	by	randomly	selected	the	same	

number	of	genes	from	background	genes	(taking	the	non-duplicate	union	of	genes	in	

MAYO	and	ROSMAP	RNA-seq	data)	per	cell	type,	and	compare	the	randomly	

generated	“pseudo”	biomarker	list	to	AMP-AD	AGORA	Targets	to	generate	a	

overlapping	percentage.	We	repeated	the	random	simulation	10,000	times	to	

construct	the	background	distribution.	The	p-value	is	then	calculated	by	comparing	

true	percentage	to	the	background	distribution	per	cell	type.	

Evaluate	Robustness	of	Single-gene	Biomarker	derived	Microglial-specific	Residuals	to	

scRNAseq	Biomarker	derived	Microglial-specific	Residuals.	

By	using	PSEA,	we	estimated	the	variance	component	of	the	bulk-tissue	RNAseq	data	in	

ROSMAP	and	MAYO	dataset	explained	by	our	single-gene	microglial	biomarker	(CD68).	

Next,	we	randomly	select	a	subset	of	biomarkers	of	each	cell	type	from	the	scRNAseq-
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derived	 biomarkers	 (Supplementary	 File	 S6),	 then	 applied	 PSEA	 again	 to	 estimate	 the	

variance	component	of	the	bulk-tissue	RNAseq	data	explained	by	the	simulated	subset	

of	biomarkers.	Then,	we	calculated	the	Pearson	correlation	of	each	gene	between	our	

single-gene	 microglial	 residuals	 with	 the	 simulated	 microglial	 residuals.	 We	 repeated	

this	procedure	1,000	times	to	construct	a	distribution	of	the	correlations.	

	

Next,	we	 intend	to	construct	a	background	distribution	of	correlation.	To	this	end,	we	

again	 randomly	 select	 a	 subset	 of	 “pseudo”	 biomarkers	 of	 each	 cell	 type	 from	 the	

background	genes	(see	above),	then	applied	PSEA	to	estimate	the	variance	component	

of	the	bulk-tissue	RNAseq	data	explained	by	the	simulated	“pseudo”	biomarkers.	Then,	

we	calculated	the	Pearson	correlation	of	each	gene	between	our	single-gene	microglial	

residuals	with	the	simulated	“pseudo”	microglial	residuals.	We	repeated	this	procedure	

1,000	 times	 to	 construct	a	distribution	of	 the	correlations.	 Lastly,	we	applied	 t-test	 to	

calculate	the	p-value	based	on	the	two	distributions.		

Computational	Analysis	of	Microglial-specific	Gene	Expression	Data	

eQTL	analysis	
	
Expression	quantitative	trait	loci	(eQTL)	analysis	was	performed	using	the	R	package	

MatrixEQTL	v2.1.1[26]	using	QCed	genotypes	and	normalized	and	covariate-adjusted	

celltype-specific	expression	residuals.	cis-eQTL	analysis	considered	markers	within	1Mb	

of	the	transcription	state	site	of	each	gene.	False	discovery	rates	were	computed	using	

the	Benjamini–Hochberg	procedure[27].	
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Differential	Expression	(DE)	Analysis	
We	 interrogated	 the	 celltype-specific	 residual	 expression	 data	 for	 genes	 differentially	

expressed	between	AD	cases	and	healthy	controls	using	linear	models,	as	implemented	

in	 the	 R	 package	 limma[23].	 Significance	 was	 assessed	 using	 Benjamini-Hochberg	

corrected	p-values	<	5%.	

Co-expression	networks	Analysis	
	
Co-expression	networks	were	constructed	using	the	coexpp	R	package[28]	(Michael	

Linderman	 and	 Bin	 Zhang	 (2011).	 coexpp:	 Large-scale	 Co-expression	 network	

creation	 and	 manipulation	 using	 WGCNA.	 R	 package	 version	 0.1.0.	

https://bitbucket.org/multiscale/coexpp).	 A	 soft	 thresholding	 parameter	 value	 of	

6.5	 is	 used	 to	 power	 the	 expression	 correlations.	 Seeding	 gene	 lists	 for	 the	

predictive	 networks	 were	 obtained	 by	 selecting	 genes	 in	 co-expression	 modules	

that	 were	 statistically	 enriched	 (FDR	 adjusted	 p-value	 <	 0.05)	 for	 DE	 genes	 or	

astrocyte	or	microglial	cell	markers	(lists	of	the	latter	two	were	obtained	from	[29]).	

	

Key	Driver	Analysis	

To	do	Key	Driver	Analysis,	we	used	the	R	package	KDA[30]	(KDA	R	package	version	0.1,	

available	 at	http://research.mssm.edu/multiscalenetwork/Resources.html).	 The	

package	 first	defines	a	background	sub-network	by	 looking	 for	a	neighborhood	K-step	

away	from	each	node	in	the	target	gene	list	in	the	network.	Then,	stemming	from	each	

node	in	this	sub-network,	it	assesses	the	enrichment	in	its	k-step	(k	varies	from	1	to	K)	

downstream	neighborhood	for	the	target	gene	list.	In	this	analysis,	we	used	K	=	6.	
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Predictive	networks	Modeling	and	In-silico	Prediction	Validation	
Though	the	co-expression	network	modules	capture	highly	co-regulated	genes	

operating	in	coherent	biological	pathways,	these	modules	do	not	reflect	the	

probabilistic	causal	information	needed	to	identify	key	driver	genes.	Conventional	

Bayesian	networks	(BN)	have	been	widely	used	to	infer	causal	structures	among	genes	

given	gene	expression	data,	however,	BN	has	significant	limitations	when	it	comes	to	

infer	opposite	causality	given	the	symmetry	of	joint	probability.	Recent	work[31]	has	

demonstrated	that	the	bottom-up	causality	inference	can	accurately	distinguish	true	

causality	from	opposite	causality	in	equivalent	class.	In	this	study,	we	developed	a	novel	

computational	network	model,	called	Predictive	Network,	by	integrating	conventional	

(top-down)	Bayesian	network	with	the	bottom-up	causality	inference	to	address	the	

problem	of	opposite	causality	inference	in	BN.	Our	causal	predictive	network	pipeline	

incorporated	multi-scale	omics	data,	such	as	genotypes	and	transcriptomic	profiles,	in	

ROSMAP	and	MAYO	dataset	(de-convoluted	microglial-specific	residuals)	to	build	causal	

predictive	networks	separately	in	ROSMAP	and	MAYO.	

	

The	predictive	network	model	captures	causal	regulations	among	genes,	which	allows	us	

to	generate	(in-silico)	predictions	upon	perturbations,	e.g.	shRNA.	Previously[32],	we	

developed	an	integrative	method,	called	Qualitative-constrained	Maximal-a-Posterior	

(QMAP),	to	estimate	the	parameters	of	probabilistic	graphical	models.	This	method	has	

been	demonstrated	to	outperform	traditional	Maximal-a-Posterior	(MAP)	estimation	
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without	prior	information.	In	this	paper,	we	extended	QMAP	to	integrate	infinite	

number	of	resources	of	(priori)	information	on	genetic	regulations	and	big	training	data,	

to	estimate	parameters	for	constructed	MAYO-	and	ROSMAP-microglial	networks.	

Firstly,	we	collected	multiple	resources	of	prior	information:	i)	we	checked	each	edge	in	

the	MAYO-	and	ROSMAP-microglial	network	model	against	pathway	knowledgebase,	

such	as	CPDB	and	String;	ii)	we	applied	linear	regression	to	the	(continuous)	residual	

data	to	estimate	the	interaction	type	of	each	edge;	Secondly,	we	integrated	the	two	

resources	of	prior	with	data	to	derive	the	parameters.	

	

To	predict	gene	expression	fold-change	upon	shRNA	against	each	key	driver	(HCK,	

FCER1G,	LAPTM5),	we	developed	three-step	generalization	procedure.	First,	we	

extracted	the	total	sub-network	of	three	key	drivers	from	the	constructed	MAYO-	and	

ROSMAP-microglial	predictive	networks	(MAYO-sub,	ROSMAP-sub)	and	included	the	

Markov	blanket	of	all	top	nodes	in	these	sub-networks	from	the	original	MAYO-

/ROSMAP-microglial	networks.	Second,	we	simulated	the	predictive	network	under	

wild-type	(unperturbed)	AD	condition	where	probability	of	every	top	node	is	initialized	

according	to	the	MAYO-/ROSMAP-microglial	residual	data	under	AD	condition.	Thirdly,	

we	simulated	the	predictive	network	by	perturbing	key	drivers	under	AD	condition	

where	probability	of	each	key	driver	is	initialized	according	to	its	knockdown	level	

measured	by	Tagman	(Figure	S9)	and	other	top	nodes	are	initialized	according	to	wild-

type	AD	condition.	
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To	calculate	simulated	gene	expression	fold-change,	we	used	previously	developed	

method	[33,	34]	to	calculate	the	ratio	of	marginal	probability	of	18	measured	target	

genes	and	compared	to	the	experimental	gene	expression	fold-change	by	Pearson	

correlation.	

	
	
Induction	of	Monocyte-Derived	Microglia-like	Cells	(MDMi)		
Peripheral	 blood	mononuclear	 cells	 (PBMCs)	were	 separated	by	 Lymphoprep	 gradient	

centrifugation	(StemCell	Technologies).	PBMCs	were	frozen	at	a	concentration	of	1–3	×	

107	cells	ml–1	 in	10%	DMSO	(Sigma-Aldrich)/90%	fetal	bovine	serum	(vol/vol,	Corning).	

Prior	 to	 each	 study,	 aliquots	 of	 frozen	 PBMCs	 from	 the	 PhenoGenetic	 cohort	 were	

thawed	 and	 washed	 in	 10	 ml	 PBS.	 Monocytes	 were	 positively	 selected	 from	 whole	

PBMCs	 using	 anti-CD14+	 microbeads	 (Miltenyi	 Biotech)	 and	 plated	 at	 the	 following	

densities	per	well:	1	x	105	cells	 (96-well	plate).	To	 induce	the	differentiation	of	MDMi,	

monocytes	 were	 incubated	 in	 serum-free	 conditions	 using	 RPMI-1640	 Glutamax	 (Life	

Technologies)	 with	 1%	 penicillin/streptomycin	 (Lonza)	 and	 2.5	 μg/ml	 Fungizone	 (Life	

Technologies)	and	a	mixture	of	the	following	human	recombinant	cytokines:	M-CSF	(10	

ng/ml;	Biolegend	574806),	GM-CSF	(10	ng/ml;	R&D	Systems	215-GM-010/CF),	NGF-β	(10	

ng/ml;	 R&D	 Systems	 256-GF-100),	 CCL2	 (100	 ng/ml;	 Biolegend	 571404)	 at	 standard	

humidified	culture	conditions	(37°C,	5%	CO2)	for	up	to	10	days[35].		

	

Lentivirus	 mediated	 shRNA	 triggered	 knockdown	 in	 primary	 monocyte	 derived	

microglia	like	cells	(MDMi)	
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shRNA	lentiviral	particle	preparation:	Vpx	viral	particles	were	made	using	293	T	cells.	On	

day	1,	293T	cells	were	transfected	using	Lipofectamine	2000	(Thermo	Fisher	Scientific)	

along	 with	 envelope	 and	 packaging	 plasmids	 (Siv3+,	 pHEF	 VsVg	 a	 concentration	 of	 1	

μg/ml).	 On	 day	 2,	 the	 culture	 medium	 was	 replaced	 by	 RPMI	 (Invitrogen)	 with	 1%	

pennstrep	and	1%	fungizone	(Amphotericin	B)	medium;	the	lentiviruses	containing	the	

Vpx	particles	were	harvested	48	hours	 later	and	centrifuged	at	400	g	 for	5	minutes	at	

4°C.	The	final	product	was	filter	sterilized	using	a	0.45-μm	syringe	filter	(EMD	Millipore).	

shRNA	for	target	gene	containing	Lentiviral	particles	for	each	gene	were	obtained	from	

the	 Broad	 Institute	 GPP	 (HCK,	 TRCN00000379914	 and	 TRCN00000379408),	 FcER1G	

(TRCN0000057455	 and	 TRCN0000057457)	 and	 LAPTM5	 (TRCN0000428031	 and	

TRCN0000429201).	

	

Lentivirus	mediated	knockdown	of	MDMi:	The	monocytes	were	isolated	from	9	healthy	

subjects	and	differentiated	to	MDMi	using	the	above-mentioned	protocol	and	plated	on	

96	well	 -	 temperature	 sensitive	plate	 (Life	Technologies	#)	 as	well	 as	 regular	384	well	

plates.	 On	 day	 4,	 in	 the	 process	 of	 differentiation,	Media	was	 changed	 and	 lentivirus	

containing	 the	 Vpx	 particles	 and	 the	 lentivirus	 containing	 the	 shRNA	 for	 target	 gene	

from	Broad	were	added	 to	 the	 cells,	MDMi	were	maintained	 in	 the	RPMI	media	with	

MDMi	 cocktail.	 On	 day	 7,	 the	 transduced	 cells	 were	 selected	 using	 puromycin	

(Thermofisher	scientific)	at	a	concentration	of	(3ug/ml)	conc.	On	day	10,	the	cells	were	

lysed	and	gene	expression	assays	(qPCR)	was	performed	to	validate	expression	of	HCK,	

FcER1G	and	LAPTM5	as	well	as	key	downstream	genes	for	each.	
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To	 assess	 statistical	 significance	 of	 differences	 in	 gene	 expression	 of	 knocked-down	

genes	or	genes	downstream	of	these,	we	made	use	of	linear	mixed	models,	accounting	

for	the	multiple	technical	replicates	for	each	biological	replicate	via	random	intercepts.	

These	models	 also	 allowed	us	 to	deal	with	 the	 fact	 that	 the	 experimental	 design	was	

unbalanced	with	only	two	technical	replicates	for	the	empty	control	and	three	technical	

replicates	for	each	biological	replicates	using	shRNA	triggered	constructs.	

	

Quantitative	Real	Time-Polymerase	Chain	Reaction	(qRT-PCR)	
RNA	was	extracted	 from	each	 sample	using	RNeasy	micro	 kit	 (Qiagen,	USA).	Genomic	

DNA	contamination	was	minimized	by	 spinning	 samples	using	a	genomic	DNA	column	

(gDNA)	according	to	the	manufacturer’s	instructions.	RNA	was	reverse	transcribed	into	

cDNA	using	a	Taqman	Reverse	Transcription	kit	(Invitrogen).	qPCR	was	performed	using	

TaqMan®	Fast	Advanced	Master	Mix	(Applied	Biosystems)	and	run	on	a	Light	cycler	480	

System	(Roche,	USA).	The	cycling	conditions	consisted	of	90	°C	for	10	min	and	40	cycles	

of	95	°C	 for	20	s	 followed	by	60	°C	 for	30	sec.	Samples	were	assayed	with	2	 technical	

replicates.	mRNA	 levels	were	 normalized	 relative	 to	 B2M	by	 the	 formula	 2−ΔCt,	where	

ΔCt	=	CtmRNA-X	–	CtB2M.		

		
Aβ1-42	Uptake	Assay		
We	tested	the	uptake	ability	of	lentivirus	mediated	shRNA	triggered	downregulated	HCK	

and	 FcER1G	 MDMi	 using	 HiLyte™	 Fluor	 488-labeled	 beta	 amyloid	 1-42(Anaspec	 AS-

60479-01)	for	a	period	of	10	days	in	RPMI	media	with	MDMi	cocktail	(Katie’s	paper).	On	

day	10,	the	media	was	replaced	with	media	containing	1.5ug/ml	of	HiLyte™	Fluor	488-
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labeled	beta	amyloid	1-42	for	2	h	at	37	°C.	After	2	hours,	cells	were	washed	three	times	

with	 PBS	 and	 fixed	 in	 4%	 PFA	 for	 15	min.	 The	 cells	were	 then	 imaged	 using	 confocal	

image	 express	 C	 (Harvard,	 Longwood	 ICCB).	 The	 mean	 fluorescence	 intensity	 was	

measured	 using	 the	 Multi-wavelength	 scoring	 program.	 Data	 shown	 is	 the	 mean	

fluorescence	 intensity	 for	 each	 subject.	 Two-tailed,	 paired	 t-tests	 were	 used	 to	

determine	statistical	significance.	
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Cell	Type	 Overlap	 P-value	
Astrocyte	 5.54%	(16)	 9E-04	
Endothelial	 1.68%	(6)	 0.855	
Microglial	 7.85%	(31)	 0	
Neuron	 6.53%	(37)	 0	
Oligodendrocyte	 5.77%	(30)	 0	
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