

1*STREPTOCOCCUS PNEUMONIAE SEROTYPE 22F*
2*INFECTION IN RESPIRATORY SYNCYTIAL VIRUS INFECTED*
3*NEONATAL LAMBS ENHANCES MORBIDITY*

4Sarhad Alnajjar^{1,2,3}, Panchan Sitthicharoenchai¹, Jack Gallup¹, Mark Ackermann³, David

5Verhoeven^{4*}

6¹Departments of Veterinary Pathology and ⁴Veterinary Microbiology and Preventative Medicine,

7College of Veterinary Medicine, Iowa State University, Ames, Iowa

8²Department of Veterinary Pathology, College of Veterinary Medicine, Baghdad

9University, Baghdad, Iraq

10³Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University

11*Corresponding author:

12David Verhoeven, PhD

13VMPM

14Iowa State University

15College of Veterinary Medicine

161800 Christensen Dr

17Ames IA 50010

18davidver@iastate.edu

19515-294-2562

20 **Abstract:**

21 Respiratory syncytial virus (RSV) is the primary cause of viral bronchiolitis resulting in
22 hospitalization and a frequent cause of secondary respiratory bacterial infection, especially by
23 *Streptococcus pneumoniae* (*Spn*) in infants. While murine studies have demonstrated enhanced
24 morbidity during a viral/bacterial co-infection, human meta-studies have conflicting results.
25 Moreover, little knowledge about the pathogenesis of emerging *Spn* serotype 22F, and especially
26 the co-pathologies between RSV and *Spn* is known. Here, colostrum-deprived neonate lambs
27 were divided into four groups. Two of the groups were nebulized with RSV M37, and the other
28 two groups mock nebulized. At day 3 post-infection, one RSV group (RSV/*Spn*) and one mock-
29 nebulized group (*Spn* only) were inoculated with *Spn* intratracheally. At day 6 post-infection,
30 bacterial/viral loads were assessed along with histopathology and correlated with clinical
31 symptoms. Lambs dually infected with RSV/*Spn* had higher RSV titers, but lower *Spn*.
32 Additionally, lung lesions were observed to be more intense in the RSV/*Spn* group characterized
33 by increased interalveolar wall thickness accompanied by neutrophil and lymphocyte infiltration.
34 Despite lower *Spn* in lungs, co-infected lambs had more significant morbidity and
35 histopathology, which correlated with a different cytokine response. Thus, enhanced disease
36 severity during dual infection may be due to lesion development and altered immune responses
37 rather than bacterial counts.

38

39 **Introduction:**

40 Respiratory Syncytial Virus is one of the leading causes of severe lower respiratory infection in
41 infants under the age of five, leading to 600,000 deaths worldwide [1]. RSV is a member of the
42 pneumoviridae family that infects most infants by the age of two years [2]. Although a mild to
43 moderate upper respiratory tract infection is the most common form of infection, severe lower
44 respiratory tract infection can develop leading to bronchiolitis that frequently leads to
45 hospitalization and sometimes death [3]. Lower respiratory tract infection can also increase the
46 susceptibility to secondary bacterial infection(s) leading to severe and life-threatening
47 pneumonia [4]. *Streptococcus pneumoniae* (*Spn*) is one of the most common bacterial infections
48 that occurs concurrently with respiratory viruses such as influenza and RSV [5, 6], but unlike
49 influenza, less is known about common etiologies during a dual RSV/*Spn* infection. . In fact,
50 while secondary bacterial pneumonia is well known for influenza, clinical data suggests RSV can
51 also often cause bacterial pneumonia that is not well recognized. RSV is associated with
52 invasive *Spn* such as pneumonia in the young or immunocompromised [7-11]. Other studies have
53 demonstrated that RSV is the greatest cause of pneumonia in infants with co-infection
54 with *Spn* very common [12-14]. However, mechanisms associated with secondary *Spn*
55 pneumonia in RSV infected children are not well known.

56 *Spn* is a Gram-positive facultative anaerobic bacterial pathogen that causes invasive disease
57 including sepsis, meningitis, and pneumonia. Similar to RSV, *Spn* causes severe illness and
58 presents with a higher incidence in both children and the elderly worldwide [15]. Pneumococcal
59 pneumonia is one of the leading causes of bacterial pneumonia in children worldwide,
60 responsible for about 11% of all deaths in children under the age of five (700,000-1 million
61 every year). Most of these deaths occur in developing countries [16]. *Spn* vaccines are effective

62in reducing the incidence of pneumonia caused by the serotypes contained in the vaccine [17].
63However, the emergence of non-vaccine serotypes and persistence of antibiotic-resistant *Spn*
64such as serotype 19A highlights the importance of more investigation into *Spn* pathogenesis and
65therapy. Since *Spn* plays an essential role in secondary bacterial infections following viral
66pneumonia or viral-bacterial co-infection [15, 18], animal modeling for understanding viral-
67bacterial co-infections is crucial to investigating therapeutics that combat both. Moreover, most
68studies have concentrated on influenza and *Spn* co-infections but mainly in murine models with
69few mechanistic studies done in humans other than the calculation of frequencies of co-
70infections with these two pathogens [19-21]. Despite the importance of RSV/*Spn* co-infections,
71far fewer studies in this area as compared to influenza/*Spn* have been done. Furthermore, less is
72known about emergent serotype 22F pathogenesis [18, 22]. We have extensively used a neonatal
73lamb model to mimic RSV lower respiratory tract infection in infants as a preclinical model to
74evaluate the efficacy of new therapeutics [23] and to understand RSV pathogenesis [24-26].
75Sheep are also permissive to *Spn* infection and have served as a model of *Spn* sepsis that appears
76to manifest clinical signs similar to human infection [27, 28]. Thus, our current study had a few
77objectives: (1) Can we model RSV/*Spn* pneumonia in a large infant animal species that can be
78improved in future studies; (2) can we successfully dually infect lambs and do we get enhanced
79disease; (3) can we use the model to gain insights into mechanisms that enhance morbidity over
80the single pathogen control groups; and (4) can use infant lambs to study *Spn* pathogenesis? We
81hypothesized, based largely on influenza dual infections, that RSV and *Spn* infected lambs would
82exhibit higher viral and/or bacterial burdens when dually infected. However, here we determined
83that pathogen burdens did not correlate with levels of viral lesions or bacterial burdens but rather
84with different immune responses between groups.

85Material and methods

86Experimental Design:

87**Animals:** A total of 20, 2-3 day-old, colostrum-deprived lambs, were randomly divided into
88four groups with 5 animals per group: RSV only, RSV-Spn co-infection, Spn only, and
89uninfected control. Animal use was approved by the Institutional Animal Care and Use
90Committee of Iowa State University. All experiments were performed following relevant
91guidelines and regulations as set by regulatory bodies. For viral inoculations, infectious focus
92forming units (IFFU), where only replication competent virus is detected by antibody in limiting
93dilution assays, were utilized. Two groups were exposed to nebulized RSV M37 (1.27x10⁷
94IFFU/mL), as done previously [29, 30], on day 0. One of the RSV infected groups was
95inoculated intratracheally with 2 ml normal saline as a mock Spn infection (RSV group) using
96syringe and needle, while the second RSV-infected group was inoculated intratracheally with 2
97ml solution containing Spn serotype 22F (2x10⁶ CFU/ml) 3 days post-RSV nebulization (RSV-
98Spn group). The other two groups were exposed to nebulized cell-conditioned mock media
99containing 20% sucrose at day 0 and inoculated intratracheally with either normal saline (control
100group) or solution containing Spn (2x10⁶ CFU/ml) at day 3 post nebulization (Spn group). At
101day 6 post-RSV infection, all lambs were humanely euthanized with Fatal Plus. An autopsy was
102performed to evaluate the macroscopic lung lesions. After removal, each lung was examined by a
103pathologist similar to prior studies [30, 31]. If lesions were present, percentage involvement was
104estimated for each lung lobe. Percentages were converted to a scale using the following formula:
1050% = 0, 1-9% = 1, 10-39% = 2, 40-69% = 3, 70-100% = 4. Group averages were calculated for the
106gross lesion score. Lung samples were collected including sterile lung tissue for bacterial
107isolation, frozen lung sample for RT-qPCR, bronchioalveolar lavage fluid (BALF) from right

108caudal lung lobe for RSV IFFU assay and RT-qPCR, and lung pieces from different lobes were
109fixed in 10% neutral buffered formalin for histological assessment. Animals were observed daily
110and scored (1-5 on severity) by blinded animal caretakers concerning clinical symptoms
111including wheezing, lethargy, coughing, nasal/eye discharge while also taking a daily rectal
112temperature.

113**Infectious agents:** Lambs were infected with RSV strain M37, purchased from Meridian
114BioSciences (Memphis, TN, USA). This strain is a wild type A RSV isolated from the
115respiratory secretions of an infant hospitalized for bronchiolitis [32, 33]. M37 was grown in
116HELA cells and stored at -80°C in media containing 20% sucrose [29]. 6 mL of 1.27×10^7 IFFU/
117mL in media containing 20% sucrose or cell-conditioned mock media (also containing 20%
118sucrose) was nebulized using PARI LC Sprint™ nebulizers to each lamb over 25-30 minutes
119resulting in the total inhalation of about 3 mL by each lamb [29]. *Spn* serotype 22F was grown
120overnight at 37°C in Todd Hewitt media containing 2% yeast extract, 50 µg/ml of gentamicin,
121and 10% bovine serum. Colony forming units (CFUs) were calculated by OD₆₀₀ with
122confirmation by dilution plating on Tryptic Soy Agar (TSA) plates with 5% sheep blood
123containing gentamicin.

124**Lung RSV viral and *Spn* bacterial titers:** BALF collected from the right caudal lobe at
125necropsy by flushing the caudal lobe with 5 mL of cold DMIM and collected back several times
126as done previously [29, 30]. Collected BALF was used to evaluate RSV IFFU (Plaque assay that
127counts the number of syncial cells formed due to viral infection detected by fluid fluorescent
128antibody technique). BALF was spun for 5 minutes at 3,000g to pellet large debris. Supernatants
129were spun through 0.45 µm Costar SPIN-X filters (microcentrifuge 15,600g) for 5 minutes. The
130resulting BALF samples were applied to HELA cells grown to 70% confluence in 12-well

131culture plates (Fisher Scientific, Hanover Park, IL) at full strength, and three serial dilutions
132(1:10, 1:100, and 1:1000); all samples were tested in triplicate to determine the viral titer. Plates
133were stained with fluorescent antibody technique and as described previously [29, 30]. 100 μ L
134of the right caudal lobe BALF was added to 1 mL TRIzol (Invitrogen) and kept in – 80 °C for
135the qRT-PCR assay to assess RSV mRNA. Sterile lung tissue samples were used to determine
136*Spn* titer. Lung tissue samples were placed in 500 μ l of sterile PBS and were mechanically
137homogenized by a pestle. Lung homogenates were pelleted at 100xg, for 5 minutes. Supernatants
138were serially diluted and applied to 5% sheep blood TSA plates containing gentamycin.

139**Immunohistochemistry (IHC):** Formalin-fixed paraffin-embedded tissue sections were used
140for IHC, which was performed according to a previously published protocol in our laboratory
141[26, 29]. Briefly, after deparaffinization and rehydration, antigen retrieval was performed in
14210mM TRIZMA base (pH 9.0), 1mM EDTA buffer, and 0.05% Tween 20 with boiling under
143pressure for up to 15 minutes. Polyclonal goat anti-RSV antibody (Millipore/Chemicon,
144Temecula, CA; Cat. No. AB1128) was used as the primary antibody after two blocking steps.
145The first blocking was with 3% bovine serum albumin in Tris-buffered saline+0.05% Tween 20
146(TBS-T), and the second was 20% normal swine serum in TBS-T for 15 minutes each. The
147primary antibody was followed by the application of a biotinylated rabbit anti-goat secondary
148antibody (KP&L; Cat. No. 16-13-06). Signal development was accomplished using a 1:200
149dilution of streptavidin-horseradish peroxidase (Invitrogen; Cat. No. 43-4323) for 30 minutes
150followed by incubation with Nova Red chromagen solution (Vector; Cat. No. SK-4800). A
151positive signal was quantified in both bronchioles and alveoli for each tissue section, and a score
152of 0-4 was assigned according to an integer-based scale of: 0=no positive alveoli/bronchioles,
1531=1-10 positive alveoli/bronchioles, 2=11-39 positive alveoli/bronchioles, 3=40-99 positive

154alveoli/bronchioles, 4=>100 positive alveoli/bronchioles. IHC for *Spn* was performed using

155rabbit anti-*Streptococcus pneumoniae* polyclonal antibody (Thermo Fisher scientific cat. # PA-

1567259) followed by biotin-labeled goat anti-rabbit IgG antibody (Thermo Fisher Scientific Cat.#:

15765-6140). Five random images were taken for each tissue section that was then analyzed by the

158quantitative Halo program. **Quantitative reverse transcription polymerase chain reaction**

159(**RT-qPCR**): BALF and lung tissue homogenates in Trizol were used to assess RSV mRNA

160expression by RT-qPCR. The assay was performed as published previously in our laboratory [26,

16130, 31]. Briefly, RNA isolation from lung tissue and BALF was performed using the TRIzol

162method followed by standard DNase treatment. RT-qPCR was carried out using the One-Step

163Fast qRT-PCR Kit master mix (Quanta, BioScience, Gaithersburg, MD) in a StepOnePlus™

164qPCR machine (Applied Biosystems, Carlsbad, CA) in conjunction with PREXCEL-Q assay-

165optimizing calculations. Primers and probe for RSV M37 nucleoprotein were designed based on

166RSV accession number M74568. Forward primer: 5'-

167GCTCTTAGCAAAGTCAAGTTGAACGA; reverse primer: 5'-

168TGCTCCGGTGGATGGTGTATT; hydrolysis probe: 5'-6FAM-

169ACACTCAACAAAGATCAACTTCTGTCATCCAGC-TAMRA.

170Additionally, PBMCs were harvested at 6 days post-infection and added to RNAlater (Sigma)

171and stored at -80 degrees after an overnight incubation at 4 degrees C. RNA was then isolated

172by an RNA plus isolation kit (Qiagen, Gaithersburg, MD) per the manufacturer's directions and

173then subjected to qRT-PCR using a single step reaction using Luna reagent (NEB, Ipswich

174MA). The primers and probes (5'-6FAM and Iowa Black Quencher) used were for IL-10, IFN γ ,

175Actin, IL-1 β , and IL-17a designed using published lamb cytokine sequences and PrimerDesign

176(UK) to find optimal pairs. For the detection of changes in gene expression (normalized on

177Actin), the RNA levels for each were compared with the levels in uninfected lambs (calibrators),
178and data are presented as the change in expression of each gene. The ΔC_T value for the tissue
179sample from the calibrator was then subtracted from the ΔC_T value of the corresponding lung
180tissue of infected mice ($\Delta\Delta C_T$). The increase in cytokine mRNA levels in lung tissue samples of
181the infected animals compared to tissue samples of baseline (calibrator) animals was then
182calculated as follows: increase = $2^{\Delta\Delta C_T}$.

183**Hematoxylin-eosin staining and histological scoring of lung sections:** Hematoxylin-eosin
184stained sections were examined via a light microscope. An integer-based score of 0-4 was
185assigned for each parameter (bronchiolitis, syncytial cells, epithelial necrosis, epithelial
186hyperplasia, alveolar septal thickening, neutrophils in bronchial lumen, neutrophils in alveolar
187lumen, alveolar macrophages, peribronchial lymphocytic infiltration, perivascular lymphocytic
188infiltration, lymphocytes in alveolar septa, fibrosis), with 4 as the highest score. A final score
189was calculated by adding up all measured scores to form a 0-48 score, with 48 as the highest,
190which is called the accumulative histopathological lesion score.

191**Dual co-localization studies:** Hela and Vero cells were infected with RSVA2 (MOI of 0.05)
192expressing mKate2 fluorescent reporter for 24 hours. Media was washed and replaced with
193DMEM without antibiotics and labeled *Spn* (serotypes 6c, 19A, and 22F) similar to (Verhoeven
194et al., 2014) was added for an additional 4 hours at 37 degrees before washing with PBS and
195fixing using 2% paraformaldehyde. A Zoe fluorescent microscope was used to randomly
196document both pathogens on the cells in at least 10 fields with all setting similar overlapping the
197red and green channels on the brightfield.

198 **RSV infection of Sheep neutrophils:** Sheep neutrophils were obtained by Ficoll gradient
199 centrifugation with removal of PBMCs. Neutrophil/blood pellets were then lysed in ACK lysis
200 for 5 minutes on ice followed by washing in PBS. Neutrophils were then resuspended in DMEM
201 10% and infected with RSVA 2001 at MOI of 1 for 4 hours. Neutrophils were then washed 3
202 times and held in RNAlater until qRT-PCR for RSV F transcripts could be performed.

203 **Statistical analysis:** Statistical analysis used the Wilcoxon signed-rank test for
204 nonparametric parameters such as accumulative microscopic lesion scoring, followed by
205 nonparametric comparisons for each pair also using the Wilcoxon method. One-way ANOVA
206 was followed by all pairs comparison by the Tukey-Kramer HSD method for gross lesion scores
207 and viral titer analyses by RT-qPCR and IFFU assays.

208

209

210

211 **Results:**

212 **Infected lambs replicated RSV and were premissive for *Spn* infection:**

213 RSV titers and *Spn* colony-forming units were measured in this study to evaluate the degree of

214 infection by each pathogen and to investigate the possible effect(s) of co-infection in the

215 combined RSV-*Spn* group on the replication of each infectious agent. As measured by IFFU,

216 infectious RSV was detected in both RSV and RSV-*Spn* groups. Although not significantly

217 different, RSV titer was about 2 fold higher in RSV-*Spn* group (Figure 1a). A similar trend was

218 observed when assessing RSV RNA detected in BALF by RT-qPCR (7.28 and 7.31 viral

219 genomes/ml) (Figure 1b). Furthermore, similar to the viable virus titer increase, RSV virions

220 measured by RT-qPCR in the lung of the RSV-*Spn* group were 2 fold higher than the RSV-only

221 group, but again not significantly different (Figure 1c). While significant differences between

222 groups were not detected with respect to viral burdens, bacterial burdens did exhibit some

223 differences. Specifically, *Spn* was isolated in the lung tissue of both the *Spn* only and the RSV-

224 *Spn* groups with the bacterial titer 8.3-fold higher in the *Spn* only infected group ($p<0.05$)

225 (Figure 1d).

226 Interestingly, *Spn* titers in lambs that died before the end of the study were the highest of their

227 groups. One lamb in the RSV-*Spn* group was found dead 36hr after bacterial inoculation with

228 59,302 CFU/ μ g in the lungs determined, while another lamb in the *Spn* only group was

229 euthanized 48 hr after bacterial inoculations due to humane end-point being reached and had a

230 titer of 9,302,325 CFU/ μ g (Figure 1d). Both of these animals had much higher bacterial counts

231 then their group peers possibly indicating some loss of innate control over the bacteria.

232 Unfortunately, *Spn* was detected in the blood in both *Spn* infected groups indicating

233bacteremia/sepsis (Figure 1e) development and possibly indicating a need for further model
234refinement (i.e. CFU given or route).

235**Dually infected lambs showed elevated morbidity over *Spn* only**

236Daily temperatures were taken from each lamb during the study. While uninfected and RSV
237groups failed to spike a temperature at any point during the infection, *Spn* and RSV-*Spn* both
238exhibited an increase in body temperature after inoculation of the bacteria indicative of a mild
239fever as would be typical of *Spn* pneumonia (Figure 2A). However, the differences were not
240statistically significant, and both had similar temperatures 3 days post inoculation with the
241bacteria.

242Where the two groups did diverge was in the clinical symptom scores. By two days post-
243infection, only 3 of the 5 RSV-*Spn* lambs were scored by blinded animal care staff as visibly sick
244while only 1 of the 5 *Spn* only lambs was scored sick and that animal subsequently died from
245sepsis that day (data not shown). By three days post-infection, the *Spn* alone group still were not
246scored as showing symptoms while the RSV-*Spn* lambs all exhibited lethargy, coughing, or
247wheezing (Figure 2B).

248**RSV and *Spn* induce a well-recognized macroscopic and microscopic lesion:**

249Percent of lung tissue with gross lesions related to either infectious agent was determined at
250necropsy coupled with post-necropsy retrospective qualitative analyses. Both RSV and *Spn*-
251related lesions were found scattered across the lung surface in all lung lobes. Pinpoint dark red
252areas of lung consolidation characterized RSV lesions. These areas were evident in RSV and
253RSV-*Spn* groups. There were no differences in the percentage of the lung with RSV macroscopic
254lesions detected between RSV and RSV-*Spn* groups (Figure 3a &3c). *Spn* gross lesions are

255characterized by larger sizes of lung consolidation with bright red color - which was seen to a
256lesser extent when compared to RSV lesions (Figure 3b & 3d). There was a significant increase
257($p<0.001$) in the percent of gross lesion in the RSV-*Spn* group since it has both RSV associated
258lesion and *Spn* associated lesion (Figure 3e).

259Microscopic lesions observed within the lung tissue reflected the infectious agent used and
260contradicted our initial expectations (*i.e.*, microscopic lesions caused by RSV infection were
261multifocal areas of interstitial pneumonia, and bronchiolitis scattered randomly and
262homogeneously throughout the lung tissue). However, *Spn* induced diffuse homogenous and
263subtle pathological changes in the lung tissue. Infection with either *Spn*, RSV, or both, markedly
264increase microscopic lesions (accumulative microscopic lesion score) associated with the disease
265in comparison to the control group ($p<0.05$) (Figure 4a-f). Additionally, the combined RSV-*Spn*
266infection significantly increased the severity of microscopic lesions in comparison to the *Spn*
267only group ($p<0.05$). Lesions varied among lambs, and RSV lesions consisted of thickening of
268the interalveolar wall with inflammatory cellular infiltrates in the airway adventitia and lamina
269propria (lymphocytes and plasma cells), the alveolar lumen (alveolar macrophages and
270neutrophils), and bronchiolar lumen (neutrophils). With RSV, overall, there was a varying degree
271of epithelial necrosis and syncytial cell formation. On the other hand, *Spn* lesions consisted of
272moderate interalveolar wall thickening with inflammatory cellular infiltrate, mainly in the
273alveolar septae. Most of the microscopic lesions seen with RSV overlapped with *Spn*-induced
274injury. However, congestion of the interalveolar wall capillaries and hemorrhage was seen only
275in *Spn*-inoculated lambs.

276Immunohistochemistry was used to identify and localize RSV and *Spn* in tissue sections. RSV
277was present multifocally throughout the sections with bronchial and peribronchial distribution

278(Figure 5c). Therefore, RSV expression was evaluated in bronchioles and alveoli separately.

279There were no significant differences between the RSV only and RSV-*Spn* groups in the degree

280of RSV expression in lung tissue sections (Figure 5a). *Spn* was random and homogenously

281scattered throughout the lung sections with more intense signals in interalveolar walls and blood

282capillaries (Figure 5d). Although not significant, there was a 1.5 fold increase in *Spn* expression

283in the *Spn* only group when compared with the RSV-*Spn* group (Figure 5b).

284**Divergent cytokine responses occurred between the groups**

285We next examined cytokine responses in PBMC from lambs at necropsy and found some

286significant differences in patterns by qRT-PCR between groups (Figure 6). Using the uninfected

287controls as the baseline, we found that PBMCs from the RSV only group were positive for IFN γ ,

288IL-1 β while *Spn* only group were positive for IL-10, IFN γ , and IL-1 β . In contrast to both of

289these groups, RSV-*Spn* lambs were positive only for IL-1 β . No IL-17a was detected in any of

290the lambs, and IL-4 was detected only in the uninfected controls.

291**Dual infections in Hela and Vero cells failed to demonstrate enhanced *Spn***

292**attachment to infected cells**

293Since the literature suggests that Hela cells allow for intact G protein on virions while Vero cells

294cause a cleavage and the G protein is thought to directly bind to *Spn* [34-36], we thought to

295explore these mechanisms since we found many of our *Spn* lesions may not have overlapped

296with RSV lesions. However, as shown in figure 7, we failed to observe enhanced RSV and *Spn*

297dual binding to either Hela or Vero cells suggestive that these two pathogens may not necessarily

298be interacting as we observed in lung lesions of the lambs. In fact, all three serotypes tested,

299while many co-localized with RSV infected cells, appeared to have an equally likelihood of

300attaching to non-RSV infected cells. Hela and Vero cells made no difference in any of these
301results.

302RSV infection of lamb phagocytes are permissive

303We next sought to determine whether infection of neutrophils could be occurring in our model
304and perhaps increasing their pathologic response in the lungs. In prior studies, we found that
305human infant neutrophils could be infected and this disrupted their in vitro *Spn* phagocytic
306activities. Furthermore, infants with severe RSV infections have been observed to have infected
307blood white blood cells. Thus, we obtained sheep neutrophils and infected them with 1 MOI of
308RSVa 2001 virus and allowed the infection to occur for 4 hours prior to extensive washing and
309examination for RSV F transcripts by qRT-PCR. Similar to human neutrophils, we found that
310sheep neutrophils could be infected with the virus (Figure 8A). In vivo staining for RSV also
311demonstrated many monocytes/macrophages infected by RSV (Figure 8B) which could also
312change their activities toward *Spn* in the lungs and also worthy of follow-up studies.

313

314

315 **Discussion:**

316 There is a critical need for an animal model to study bacterial pneumonia secondary to an initial
317 viral infection in the lung to study the mechanisms of viral-bacterial co-infection and to evaluate
318 therapeutic interventions. There are significant advantages of using lambs to model RSV
319 infection as a correlate for human infants - including the ability to use human viral strains
320 without adaptation and the similarity of the pathological sequelae [24, 25]. Serotype 22F is
321 thought to have appeared after the introduction of the *S. pneumoniae* vaccine PCV7 ([37]). While
322 this serotype was not widespread in those subsequent years ([37]), 22F is now the second most
323 common serotype causing invasive disease in children less than seven years old and the primary
324 cause in the elderly [38]. Molecular analysis of this serotype also indicates six different lineages
325 and 18% of clinical isolates demonstrating erythromycin resistance ([18]). Thus, this emerging
326 serotype is a component of the PPSV23 vaccine and an important pathogen to observe for in
327 children vaccinated with PCV13.

328 In this study, we demonstrate that *Spn* readily infects the lungs of lambs and establishes active
329 bacterial pneumonia. A previous study revealed that the peak of RSV titer and infection in lambs
330 is around day 3 post-viral nebulization, and we used this time-frame to model early human co-
331 infection [30]. The results of this study demonstrate consistency in the infection rate of both RSV
332 and *Spn*, as well as an excellent relation to the lesion development induced by either of the
333 infectious agents. Although we used 2×10^6 CFU of *Spn* for infection, murine studies typically
334 use 5×10^5 to 10^7 CFU to get productive infections. Moreover, the lung volume of lambs is
335 significantly larger than mice, which suggests that our inoculating dose may be more dispersed
336 throughout the lungs than murine studies. We believe that we may also be able to reduce the

337infection dosage to a lower CFU or potentially use a colonization model to examine co-infection
338and pneumonia development.

339Prior studies in mice and cotton rats with influenza or RSV/*Spn* co-infections demonstrated
340higher viral loads in dually infected animals [39, 40], although our observed viral (RSV) was not
341different in this study. Influenza co-infection studies also predict higher *Spn* burdens in the lungs
342due to damaged epithelial cells serving as anchor points for the opportunistic bacteria. In other
343studies, RSV with *Spn* in mice or cell culture predicts that the RSV G protein on the infected
344epithelial surface could also serve as an anchor point for *Spn* in the lungs [34]. However, we did
345not observe this in infection of either Hela or Vero cells. In contrast to these murine models, we
346found lower bacterial loads in the co-infection group over the *Spn* only group. These findings
347suggest that the immune response might control *Spn* in the lungs of lambs better than mice.
348Importantly, in human clinical studies of co-infection, an increase in nasal colonization numbers
349of *Spn* upon viral infection has been demonstrated, but this does not translate into higher invasive
350lung disease [41]. These suggest that higher bacterial burdens could be a murine artifact rather
351than a mechanism enhancing disease. In human studies of high *Spn* colonization, RSV disease
352appeared less severe [42], suggesting that further using the lamb model to explore mechanistic
353differences between *Spn* colonization and pneumonia during RSV. Of further interest, murine
354studies using IFN γ or IFN γ receptor knockouts and *Spn* infection have shown reduced lung CFUs
355over wild-type controls with no change in the level of morbidity [43]. Thus, the lower *Spn*
356counts that we observed in our RSV-*Spn* group could derive from the limited IFN γ response
357observed in these lambs. Six days post-infection is early for the recruitment of T-cells into the
358lungs, with three days post-*Spn* also much too early for antibacterial T-cells to infiltrate the
359lungs. However, peripheral blood could have early trafficking PBMCs migrating between lymph

360nodes toward the lungs. We are not yet sure why we observed high levels of IFN γ in the RSV
361group but not the RSV-*Spn* group, but it is feasible that the presence of the bacteria after the
362virus changed the character of the antiviral T cell response.

363The only deaths that occurred in the present study were in the *Spn*-infected groups, and both
364lambs (lamb 11 in the *Spn* only group, and lamb 23 in the RSV-*Spn* group) had high lung *Spn*
365colony-forming units/gram tissue. These could represent a failure to control bacterial division
366and subsequent septicemia.

367Lesion severity was consistent with the RSV titer and *Spn* burden as is shown by the significant
368increase in the percent of lung tissue involved by gross lesions, and the increase in the evaluated
369histological parameters. RSV gross lesions were multifocal lesions scattered randomly in all lung
370lobes - which is the typical lesion distribution induced by RSV nebulization [26, 30]. However,
371presentation of *Spn* gross lesions contradicted what was expected by the apparent development
372of lesions in all lobes - including the caudal lung lobe, which is not typical for bacterial
373pneumonia in lambs. However, the diffuse bacterial lesions and the presence of *Spn* lesions in
374the caudal lobe may be due to the inoculation technique used for *Spn* infection. For *Spn*
375infection, lambs were held vertically by one person and injected intratracheally by the second
376person leading to a fall of inoculum through the bronchial tree into the caudal lobe, which in this
377case, was favorable since it gives a bronchopneumonic distribution similar to that found in
378humans. It is also possible that *Spn* spreads across lung lobes after inoculation either by airflow
379or vascular flow. RSV-induced microscopic lesions were more prominent in comparison to *Spn*-
380induced lesions and subsequently led to significant differences between the RSV-*Spn* and *Spn*
381only groups' accumulative histologic lesion scores. RSV was more prominent in the
382bronchioles, while *Spn* was diffuse throughout the lung sections.

383Although we are still evaluating mechanisms, we believe that the higher morbidity observed in
384the RSV-*Spn* group may derive from an enhanced neutrophil response found in the lungs.
385Evidence for this was found in the histopathology and the lower *Spn* burdens in these animals.
386Likely, RSV infection served as a first activating response to neutrophils that could have then
387better controlled the secondary bacterial infection. It is also possible that alveolar macrophages
388were activated by RSV that, in turn, secreted inflammatory mediators that enhance neutrophil
389activation. Enhanced neutrophil/leukocyte activation contrasts with studies in influenza co-
390infections in mice – which suggests innate immune exhaustion [44]. While the time of
391inoculation could be a reason for the observed differences, another could be the small difference
392between influenza and RSV pathogenesis. In either case, the results suggest further avenues of
393study using this model. Of interest, morbidity is highest in infants infected with RSV that exhibit
394significant wheezing [45], and here we observed high wheezing in the presence of dual infection
395which further suggests that some of the increased morbidity could be from altered immune
396responses over the viral only group. The observed higher RSV infection rate in the co-infection
397could also derive from the higher number of neutrophils in the lungs in this group. There is
398evidence that RSV can infect neutrophils in humans [45], including our unpublished data. Thus,
399if dual infection with *Spn* leads to enhanced neutrophil recruitment to the lungs over RSV alone,
400those cells could become infected and contribute to the higher viral titer we observed in the dual
401infection group. The effects of RSV infection on neutrophilic antibacterial responses would be an
402interesting further study.

403In this study, we have developed an animal model of co-infection for RSV and *Spn*. Of course,
404limitations in the study include low sample numbers in each group that may have limited our
405ability to achieve some statistical differences in RSV titers. However, prior studies by the authors

406 were adequately powered at these sample numbers. We have determined enhanced disease with
407 co-infection of both pathogens that mirrors studies of human and murine influenza infections, but
408 this may all be due to a complex enhanced inflammatory/immune response to co-infection rather
409 than direct damage by either pathogen alone. Additional studies will allow refinement of this
410 model and will include variations in inoculum volume/concentration, the time between
411 infections, and kinetic analyses.

412

413 **Acknowledgments**

414 The work was sponsored by an investigator-initiated grant awarded to DV by Merck.

415 **Author contributions**

416 All authors were involved in animal infections, necropsies, data analysis, and manuscript writing.
417 SA also performed immunohistochemistry, pathologic analysis of histology, prepared viral
418 stocks, and had a primary role in the manuscript writing. PS helped prepared tissues for histology
419 and helped with the analysis of histology. JG performed qRT-PCR for viral loads. MA
420 performed the primary pathologic and immunologic analysis of lung histology. DV performed
421 bacterial preparation, lung CFU counts, cytokine analysis, and experimental design.

422 **Competing interests**

423 The authors declare no competing interests.

424 **Data Availability**

425 The datasets generated and analyzed during the current study are available from the
426 corresponding author on reasonable request.

427

428

429 Literature Cited

4301. Nair H, Nokes DJ, Gessner BD, Dherani M, Madhi SA, Singleton RJ, et al. Global burden of acute
431 lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and
432 meta-analysis. *Lancet.* 2010;375(9725):1545-55. doi: 10.1016/S0140-6736(10)60206-1. PubMed PMID:
43320399493; PubMed Central PMCID: PMCPMC2864404.

4342. Glezen WP, Taber LH, Frank AL, Kasel JA. Risk of primary infection and reinfection with
435 respiratory syncytial virus. *Am J Dis Child.* 1986;140(6):543-6. doi:
43610.1001/archpedi.1986.02140200053026. PubMed PMID: 3706232.

4373. Kwon YS, Park SH, Kim MA, Kim HJ, Park JS, Lee MY, et al. Risk of mortality associated with
438 respiratory syncytial virus and influenza infection in adults. *BMC Infect Dis.* 2017;17(1):785. doi:
43910.1186/s12879-017-2897-4. PubMed PMID: 29262784; PubMed Central PMCID: PMCPMC5738863.

4404. Thorburn K, Harigopal S, Reddy V, Taylor N, van Saene HK. High incidence of pulmonary bacterial
441 co-infection in children with severe respiratory syncytial virus (RSV) bronchiolitis. *Thorax.*
4422006;61(7):611-5. doi: 10.1136/thx.2005.048397. PubMed PMID: 16537670; PubMed Central PMCID:
443PMCPMC2104657.

4445. Madhi SA, Klugman KP, Vaccine Trialist G. A role for *Streptococcus pneumoniae* in virus-
445 associated pneumonia. *Nat Med.* 2004;10(8):811-3. doi: 10.1038/nm1077. PubMed PMID: 15247911;
446 PubMed Central PMCID: PMCPMC7095883.

4476. Verhoeven D, Xu Q, Pichichero ME. Differential impact of respiratory syncytial virus and
448 parainfluenza virus on the frequency of acute otitis media is explained by lower adaptive and innate
449 immune responses in otitis-prone children. *Clin Infect Dis.* 2014;59(3):376-83. doi: 10.1093/cid/ciu303.
450 PubMed PMID: 24785236; PubMed Central PMCID: PMC4155442.

4517. Madhi SA, Schoub B, Simmank K, Blackburn N, Klugman KP. Increased burden of respiratory viral
452 associated severe lower respiratory tract infections in children infected with human immunodeficiency
453 virus type-1. *J Pediatr.* 2000;137(1):78-84. doi: 10.1067/mpd.2000.105350. PubMed PMID: 10891826.

4548. Weinberger DM, Grant LR, Steiner CA, Weatherholtz R, Santosham M, Viboud C, et al. Seasonal
455 drivers of pneumococcal disease incidence: impact of bacterial carriage and viral activity. *Clin Infect Dis.*
4562014;58(2):188-94. doi: 10.1093/cid/cit721. PubMed PMID: 24190895; PubMed Central PMCID:
457PMCPMC3871795.

4589. Weinberger DM, Klugman KP, Steiner CA, Simonsen L, Viboud C. Association between
459 respiratory syncytial virus activity and pneumococcal disease in infants: a time series analysis of US
460 hospitalization data. *PLoS Med.* 2015;12(1):e1001776. doi: 10.1371/journal.pmed.1001776. PubMed
461 PMID: 25562317; PubMed Central PMCID: PMCPMC4285401.

46210. Zhou H, Haber M, Ray S, Farley MM, Panizzo CA, Klugman KP. Invasive pneumococcal
463 pneumonia and respiratory virus co-infections. *Emerg Infect Dis.* 2012;18(2):294-7. doi:
46410.3201/eid1802.102025. PubMed PMID: 22305270; PubMed Central PMCID: PMCPMC3310442.

46511. Watson M, Gilmour R, Menzies R, Ferson M, McIntyre P, New South Wales Pneumococcal N. The
466 association of respiratory viruses, temperature, and other climatic parameters with the incidence of
467 invasive pneumococcal disease in Sydney, Australia. *Clin Infect Dis.* 2006;42(2):211-5. doi:
46810.1086/498897. PubMed PMID: 16355331.

46912. Griffiths C, Drews SJ, Marchant DJ. Respiratory Syncytial Virus: Infection, Detection, and New
470 Options for Prevention and Treatment. *Clin Microbiol Rev.* 2017;30(1):277-319. doi:
47110.1128/CMR.00010-16. PubMed PMID: 27903593; PubMed Central PMCID: PMCPMC5217795.

47213. Jain S, Williams DJ, Arnold SR, Ampofo K, Bramley AM, Reed C, et al. Community-acquired
473 pneumonia requiring hospitalization among U.S. children. *N Engl J Med.* 2015;372(9):835-45. doi:
47410.1056/NEJMoa1405870. PubMed PMID: 25714161; PubMed Central PMCID: PMCPMC4697461.

47514. Michelow IC, Olsen K, Lozano J, Rollins NK, Duffy LB, Ziegler T, et al. Epidemiology and clinical
476characteristics of community-acquired pneumonia in hospitalized children. *Pediatrics*. 2004;113(4):701-
4777. doi: 10.1542/peds.113.4.701. PubMed PMID: 15060215.

47815. Bogaert D, De Groot R, Hermans PW. *Streptococcus pneumoniae* colonization: the key to
479pneumococcal disease. *Lancet Infect Dis*. 2004;4(3):144-54. doi: 10.1016/S1473-3099(04)00938-7.
480PubMed PMID: 14998500.

48116. O'Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M, McCall N, et al. Burden of disease
482caused by *Streptococcus pneumoniae* in children younger than 5 years: global estimates. *Lancet*.
4832009;374(9693):893-902. doi: 10.1016/S0140-6736(09)61204-6. PubMed PMID: 19748398.

48417. Klugman KP, Madhi SA, Huebner RE, Kohberger R, Mbelle N, Pierce N, et al. A trial of a 9-valent
485pneumococcal conjugate vaccine in children with and those without HIV infection. *N Engl J Med*.
4862003;349(14):1341-8. doi: 10.1056/NEJMoa035060. PubMed PMID: 14523142.

48718. Demczuk WHB, Martin I, Hoang L, Van Caeseele P, Lefebvre B, Horsman G, et al. Phylogenetic
488analysis of emergent *Streptococcus pneumoniae* serotype 22F causing invasive pneumococcal disease
489using whole genome sequencing. *PLoS One*. 2017;12(5):e0178040. doi: 10.1371/journal.pone.0178040.
490PubMed PMID: 28531208; PubMed Central PMCID: PMCPMC5439729.

49119. Brealey JC, Chappell KJ, Galbraith S, Fantino E, Gaydon J, Tozer S, et al. *Streptococcus*
492*pneumoniae* colonization of the nasopharynx is associated with increased severity during respiratory
493syncytial virus infection in young children. *Respirology*. 2018;23(2):220-7. doi: 10.1111/resp.13179.
494PubMed PMID: 28913912.

49520. MacIntyre CR, Chughtai AA, Barnes M, Ridder I, Seale H, Toms R, et al. The role of pneumonia and
496secondary bacterial infection in fatal and serious outcomes of pandemic influenza a(H1N1)pdm09. *BMC*
497*Infect Dis*. 2018;18(1):637. doi: 10.1186/s12879-018-3548-0. PubMed PMID: 30526505; PubMed Central
498PMCID: PMCPMC6286525.

49921. Rudd JM, Ashar HK, Chow VT, Teluguakula N. Lethal Synergism between Influenza and
500*Streptococcus pneumoniae*. *J Infect Pulm Dis*. 2016;2(2). doi: 10.16966/2470-3176.114. PubMed PMID:
50127981251; PubMed Central PMCID: PMCPMC5154682.

50222. Jacobs MR, Good CE, Bajaksouzian S, Windau AR. Emergence of *Streptococcus pneumoniae*
503serotypes 19A, 6C, and 22F and serogroup 15 in Cleveland, Ohio, in relation to introduction of the
504protein-conjugated pneumococcal vaccine. *Clin Infect Dis*. 2008;47(11):1388-95. doi: 10.1086/592972.
505PubMed PMID: 18959493.

50623. Roymans D, Alnajjar SS, Battles MB, Sitthicharoenchai P, Furmanova-Hollenstein P, Rigaux P, et
507al. Therapeutic efficacy of a respiratory syncytial virus fusion inhibitor. *Nat Commun*. 2017;8(1):167. doi:
50810.1038/s41467-017-00170-x. PubMed PMID: 28761099; PubMed Central PMCID: PMCPMC5537225.

50924. Ackermann MR. Lamb model of respiratory syncytial virus-associated lung disease: insights to
510pathogenesis and novel treatments. *ILAR J*. 2014;55(1):4-15. doi: 10.1093/ilar/ilu003. PubMed PMID:
51124936027; PubMed Central PMCID: PMCPMC4158344.

51225. Derscheid RJ, Ackermann MR. Perinatal lamb model of respiratory syncytial virus (RSV) infection.
513*Viruses*. 2012;4(10):2359-78. doi: 10.3390/v4102359. PubMed PMID: 23202468; PubMed Central
514PMCID: PMCPMC3497056.

51526. Derscheid RJ, van Geelen A, McGill JL, Gallup JM, Cihlar T, Sacco RE, et al. Human respiratory
516syncytial virus Memphis 37 grown in HEp-2 cells causes more severe disease in lambs than virus grown
517in Vero cells. *Viruses*. 2013;5(11):2881-97. doi: 10.3390/v5112881. PubMed PMID: 24284879; PubMed
518Central PMCID: PMCPMC3856420.

51927. Garedew L AG, Yilma R, Zeleke A, Gelaye E. Isolation of diverse bacterial species associated with
520maedi-visna infection of sheep in Ethiopia. *Afr J Microbiol Res*. 2010;4:014-21.

52128. Zaghwawa A HH, El-Sify A. Epidemiological and clinical studies on respiratory affections of sheep.
522Minufiya Vet J. 2010;7:93-103.

52329. Grosz DD, van Geelen A, Gallup JM, Hostetter SJ, Derscheid RJ, Ackermann MR. Sucrose
524stabilization of Respiratory Syncytial Virus (RSV) during nebulization and experimental infection. BMC
525Res Notes. 2014;7:158. doi: 10.1186/1756-0500-7-158. PubMed PMID: 24642084; PubMed Central
526PMCID: PMCPMC3995326.

52730. Larios Mora A, Detalle L, Van Geelen A, Davis MS, Stohr T, Gallup JM, et al. Kinetics of
528Respiratory Syncytial Virus (RSV) Memphis Strain 37 (M37) Infection in the Respiratory Tract of Newborn
529Lambs as an RSV Infection Model for Human Infants. PLoS One. 2015;10(12):e0143580. doi:
53010.1371/journal.pone.0143580. PubMed PMID: 26641081; PubMed Central PMCID: PMCPMC4671688.

53131. Derscheid RJ, Gallup JM, Knudson CJ, Varga SM, Grosz DD, van Geelen A, et al. Effects of
532formalin-inactivated respiratory syncytial virus (FI-RSV) in the perinatal lamb model of RSV. PLoS One.
5332013;8(12):e81472. doi: 10.1371/journal.pone.0081472. PubMed PMID: 24324695; PubMed Central
534PMCID: PMCPMC3855688.

53532. DeVincenzo JP, Wilkinson T, Vaishnav A, Cehelsky J, Meyers R, Nochur S, et al. Viral load drives
536disease in humans experimentally infected with respiratory syncytial virus. Am J Respir Crit Care Med.
5372010;182(10):1305-14. doi: 10.1164/rccm.201002-0221OC. PubMed PMID: 20622030; PubMed Central
538PMCID: PMCPMC3001267.

53933. Kim YI, DeVincenzo JP, Jones BG, Rudraraju R, Harrison L, Meyers R, et al. Respiratory syncytial
540virus human experimental infection model: provenance, production, and sequence of low-passaged
541memphis-37 challenge virus. PLoS One. 2014;9(11):e113100. doi: 10.1371/journal.pone.0113100.
542PubMed PMID: 25415360; PubMed Central PMCID: PMCPMC4240712.

54334. Avadhanula V, Wang Y, Portner A, Adderson E. Nontypeable *Haemophilus influenzae* and
544*Streptococcus pneumoniae* bind respiratory syncytial virus glycoprotein. J Med Microbiol. 2007;56(Pt
5459):1133-7. doi: 10.1099/jmm.0.47086-0. PubMed PMID: 17761473.

54635. Hament JM, Aerts PC, Fleer A, Van Dijk H, Harmsen T, Kimpen JL, et al. Enhanced adherence of
547*Streptococcus pneumoniae* to human epithelial cells infected with respiratory syncytial virus. Pediatr
548Res. 2004;55(6):972-8. doi: 10.1203/01.PDR.0000127431.11750.D9. PubMed PMID: 15103015.

54936. Smith CM, Sandrini S, Datta S, Freestone P, Shafeeq S, Radhakrishnan P, et al. Respiratory
550syncytial virus increases the virulence of *Streptococcus pneumoniae* by binding to penicillin binding
551protein 1a. A new paradigm in respiratory infection. Am J Respir Crit Care Med. 2014;190(2):196-207.
552doi: 10.1164/rccm.201311-2110OC. PubMed PMID: 24941423; PubMed Central PMCID:
553PMCPMC4226051.

55437. Carnalla-Barajas MN, Soto-Nogueron A, Sanchez-Aleman MA, Solorzano-Santos F, Velazquez-
555Meza ME, Echaniz-Aviles G, et al. Changing trends in serotypes of *S. pneumoniae* isolates causing
556invasive and non-invasive diseases in unvaccinated population in Mexico (2000-2014). Int J Infect Dis.
5572017;58:1-7. doi: 10.1016/j.ijid.2017.02.005. PubMed PMID: 28216181.

55838. Cui YA, Patel H, O'Neil WM, Li S, Saddier P. Pneumococcal serotype distribution: A snapshot of
559recent data in pediatric and adult populations around the world. Hum Vaccin Immunother. 2017;13(6):1-
56013. doi: 10.1080/21645515.2016.1277300. PubMed PMID: 28125317; PubMed Central PMCID:
561PMCPMC5489298.

56239. Smith AM, Adler FR, Ribeiro RM, Gutenkunst RN, McAuley JL, McCullers JA, et al. Kinetics of
563coinfection with influenza A virus and *Streptococcus pneumoniae*. PLoS Pathog. 2013;9(3):e1003238.
564doi: 10.1371/journal.ppat.1003238. PubMed PMID: 23555251; PubMed Central PMCID:
565PMCPMC3605146.

56640. Nguyen DT, Louwen R, Elberse K, van Amerongen G, Yuksel S, Luijendijk A, et al. *Streptococcus*
567*pneumoniae* Enhances Human Respiratory Syncytial Virus Infection In Vitro and In Vivo. PLoS One.
5682015;10(5):e0127098. doi: 10.1371/journal.pone.0127098. PubMed PMID: 25970287; PubMed Central
569PMCID: PMCPMC4430531.

57041. Moyes J, Cohen C, Pretorius M, Groome M, von Gottberg A, Wolter N, et al. Epidemiology of 571respiratory syncytial virus-associated acute lower respiratory tract infection hospitalizations among HIV- 572infected and HIV-uninfected South African children, 2010-2011. *J Infect Dis.* 2013;208 Suppl 3:S217-26. 573doi: 10.1093/infdis/jit479. PubMed PMID: 24265481.

57442. Vissers M, Ahout IM, van den Kieboom CH, van der Gaast-de Jongh CE, Groh L, Cremers AJ, et al. 575High pneumococcal density correlates with more mucosal inflammation and reduced respiratory 576syncytial virus disease severity in infants. *BMC Infect Dis.* 2016;16:129. doi: 10.1186/s12879-016-1454-x. 577PubMed PMID: 26983753; PubMed Central PMCID: PMCPMC4794819.

57843. Rijneveld AW, Lauw FN, Schultz MJ, Florquin S, Te Velde AA, Speelman P, et al. The role of 579interferon-gamma in murine pneumococcal pneumonia. *J Infect Dis.* 2002;185(1):91-7. doi: 58010.1086/338122. PubMed PMID: 11756986.

58144. McNamee LA, Harmsen AG. Both influenza-induced neutrophil dysfunction and neutrophil- 582independent mechanisms contribute to increased susceptibility to a secondary *Streptococcus* 583pneumoniae infection. *Infect Immun.* 2006;74(12):6707-21. doi: 10.1128/IAI.00789-06. PubMed PMID: 58416982840; PubMed Central PMCID: PMCPMC1698099.

58545. Halfhide CP, Flanagan BF, Brearey SP, Hunt JA, Fonceca AM, McNamara PS, et al. Respiratory 586syncytial virus binds and undergoes transcription in neutrophils from the blood and airways of infants 587with severe bronchiolitis. *J Infect Dis.* 2011;204(3):451-8. doi: 10.1093/infdis/jir280. PubMed PMID: 58821742845; PubMed Central PMCID: PMCPMC3132143.

589

590

591 **Figures and legends.**

592

593 **Figure 1. RSV and *Spn* titer in lung tissue and blood.** (a) Number of infectious RSV particles
594 as measured by IFFU assay, (b) RSV mRNA level in the BALF, (c) RSV mRNA level in lung
595 tissue (d) *Spn* colony forming unit per 100 µg lung tissue, (e) *Spn* colony forming unit per 100 µl
596 blood, all shown as average + SEM. Animals were either infected with mock media (control),
597 RSV, *Spn*, or RSV followed by *Spn* (RSV-*Spn*). #11 and #23 died 48 and 36 hrs after *Spn*
598 inoculation. *P<0.05, **P<0.01, ***P<0.005, **** P<0.001, ***** P<0.0001.

599

600 **Figure 2. Morbidity levels after infection.** (a) Rectal temperatures measured during infection,
601 (b) level of morbidity observed (coughing, wheezing, lethargy, respiratory rate) rated from 1
602 (least severe) to 5 (most severe) as evaluated by blinded observation of the animals at 6 days
603 post-infection.

604

605 **Figure 3. Percent of lung tissue associated with RSV and/or *Spn* infection.** Percent of lung
606 tissue associated with RSV lesions (a), *Spn* (b), with photographic representation of RSV-only
607 (c), *Spn*-only (d), RSV-*Spn* (e). All show average and SEM. Lambs were either infected with
608 mock media (control), RSV, *Spn*, or RSV followed by *Spn* (RSV-*Spn*). *P<0.05, **P<0.01,
609 ***P<0.005, **** P<0.001, ***** P<0.0001.

610 **Figure 4. Histologic lesions associated with RSV, *Spn*, and RSV-*Spn* combined infection.**

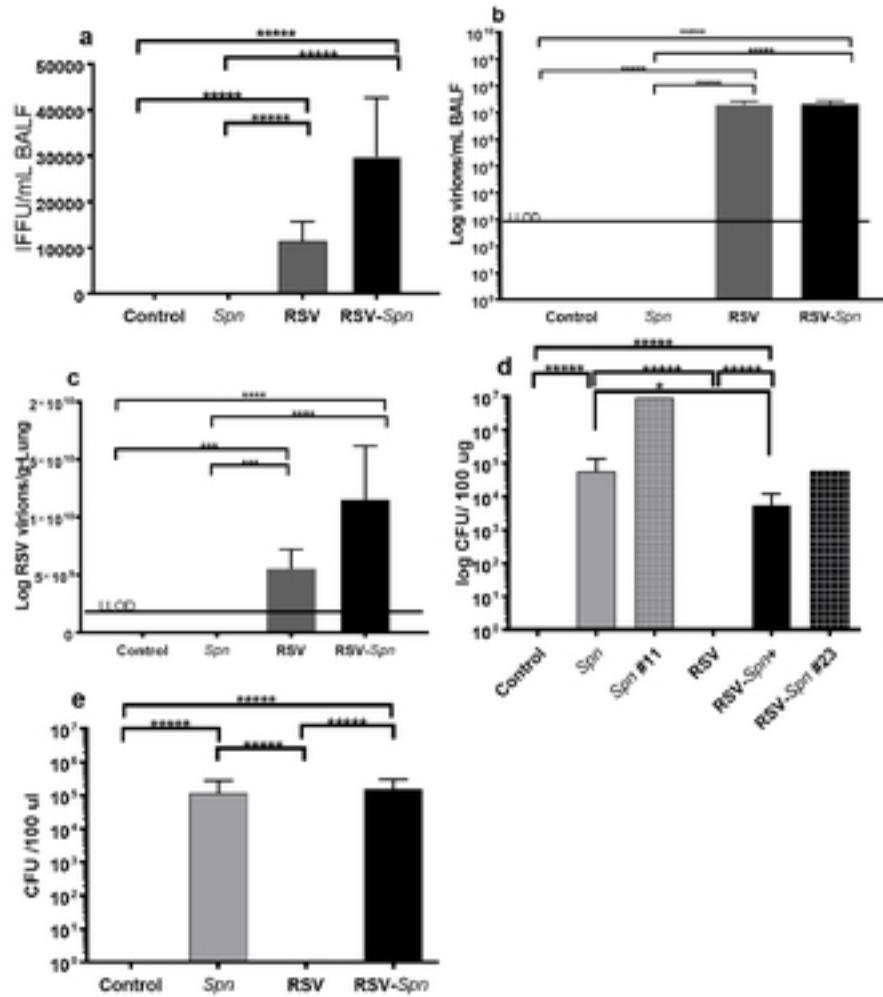
611 (a) Accumulative histologic lesion associated with RSV and *Spn* infection shown as average +
612 SEM (b-f) show a representative photograph of lung tissue sections stained with Gram stain (b),
613 H&E stained tissue section of control (c), RSV only (d), *Spn* only (e), combined RSV-*Spn* (f).
614 Lambs were either infected with mock media (control), RSV, *Spn*, or RSV followed by *Spn*
615 (RSV-*Spn*). * P<0.05, **P<0.01, ***P<0.005, **** P<0.001, ***** P<0.0001.

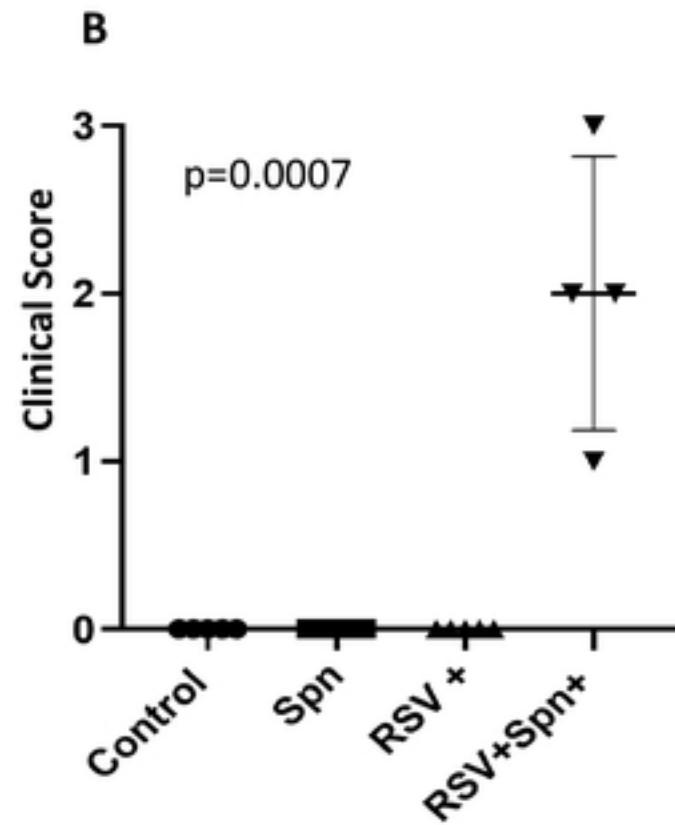
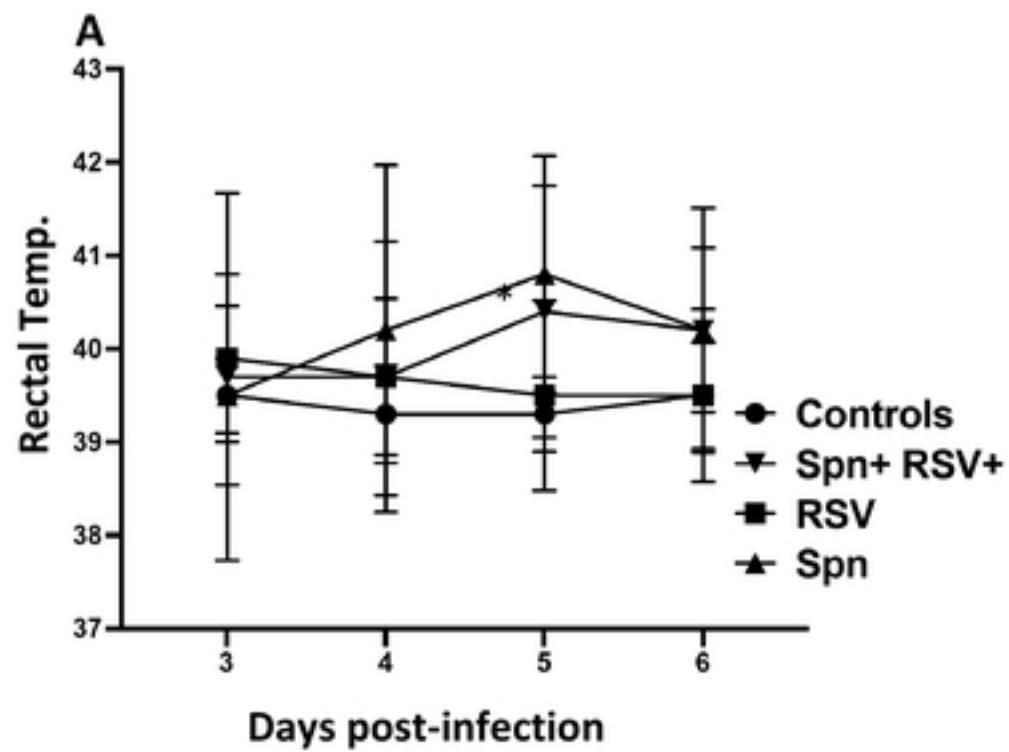
616 **Figure 5. Immunohistochemistry staining of RSV and *Spn* in FFPE lung tissue sections.**

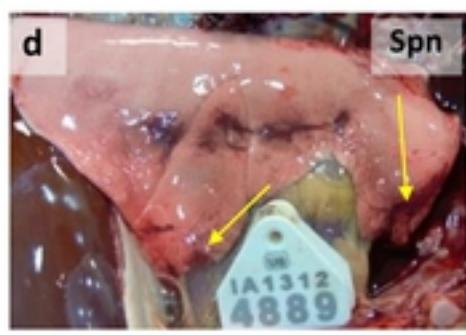
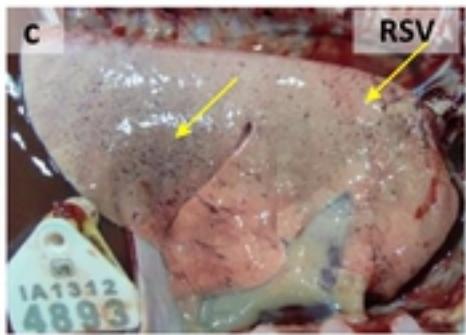
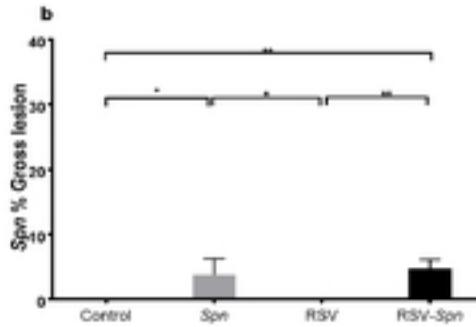
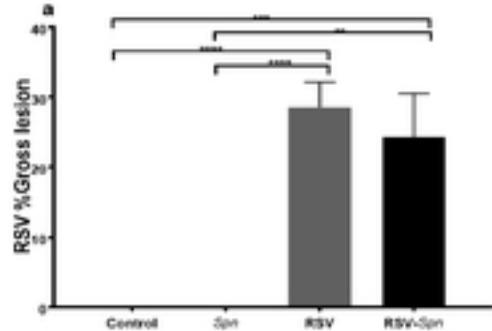
617 The number of bronchioles and alveoli express the RSV positive signal (a), surface area (mm²)
618 occupied by *Spn* IHC positive staining (b), all shown as average + SEM, 5 fields examined. (c)
619 and (d) show a photo representation of RSV (c) and *Spn* (d) IHC positive staining. Animals were
620 either infected with mock media (control), RSV, *Spn*, or RSV followed by *Spn* (RSV-*Spn*). *
621 P<0.05, **P<0.01, ***P<0.005, **** P<0.001, ***** P<0.0001.

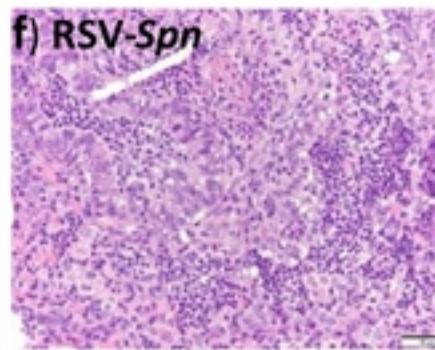
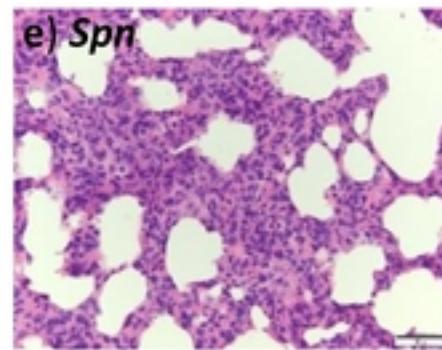
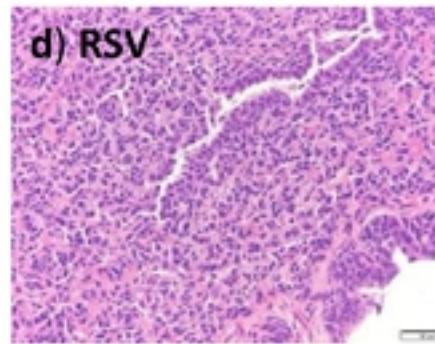
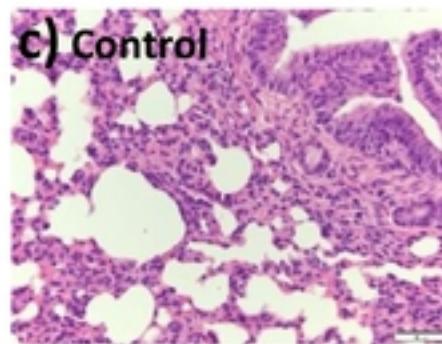
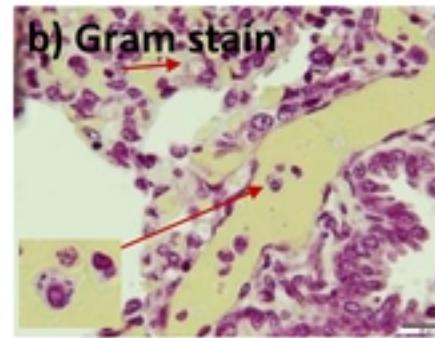
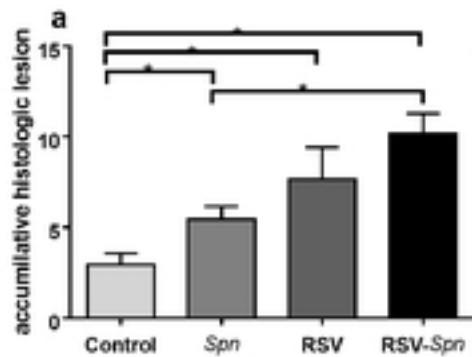
622 **Figure 6. Cytokines in peripheral blood lymphocytes.** qRT-PCR was performed on isolated
623 PBMCs at 6 days post-infection and shown as fold change over uninfected controls. **Figure 7.**

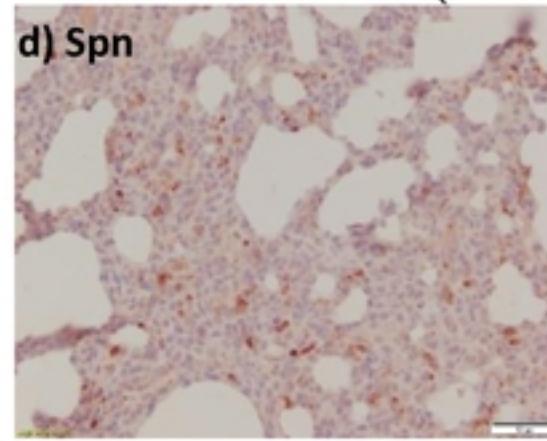
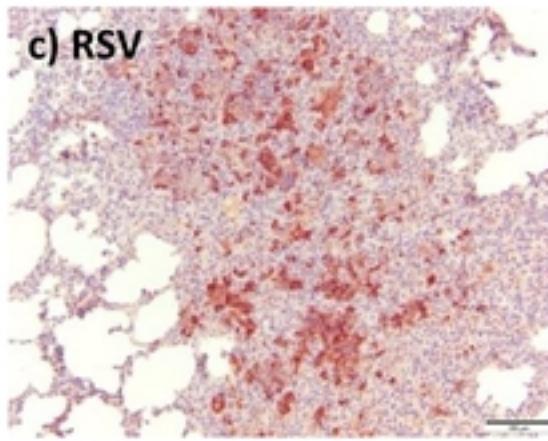
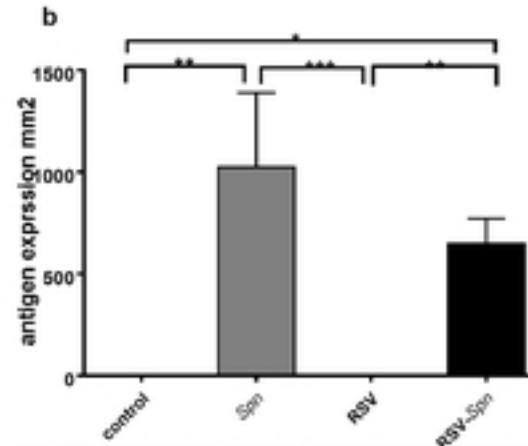
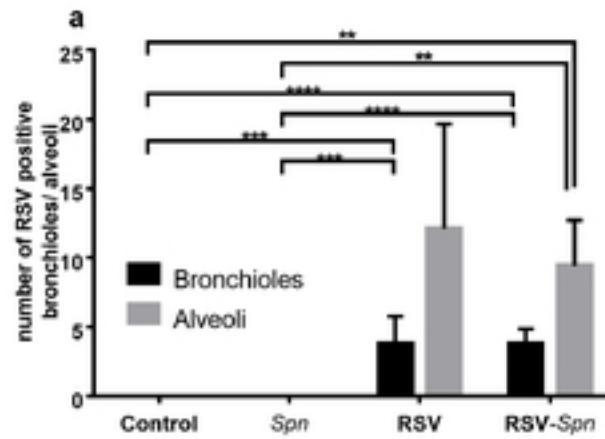
624 **Dual infections of Hela and Vero cells.** RSV infection of Hela and Vero proceeded incubation
625 with FITC stained RSV 19A and 22F. Fluorescent microscopy was used to examine for co-
626 localization of both pathogens.


627 **Figure 7. No strong association between infected cells and *Spn* attachment.**



628 **Figure 8. RSV infects phagocytic cells.** (a) RSV infection occurs in sheep neutrophils as
629 determined by qRT-PCR after infection of peripheral blood neutrophils in vitro, (b) RSV
630 immunohistochemistry shows many infected monocytes/macrophages in the lungs of infected
631 lambs. E=epithelial cell, M=monocyte/macrophage





632







633





634

