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Summary

Studying epistatic gene interactions is important in understanding genetic architecture
of complex traits in organisms. However, due to an enormous number of gene combinations
to be analyzed, detection of epistatic gene-gene interactions has been computationally
demanding. Here, we show a simple approach RIL-StEp, specialized to Recombinant Inbred
Lines (RILs), to study epistasis using single nucleotide polymorphisms (SNPs) information of
the genome. We applied the method to reveal epistasis affecting rice seed hull color
phenotype, and successfully identified gene pairs that presumably control seed hull color. This
method has a potential to enhancing our understanding of genetic architecture of various
traits.

Introduction

Understanding the links between genes and phenotypes of organisms is one of the most
important subjects in biology. Non-additive gene interactions is called epistasis (Fisher, 1919;
Phillips, 2008), and is important for crop improvement through cross breeding (Cordell, 2002;
Carlborg and Haley, 2004; Xu and Crouch, 2008; Heffner et al., 2009; Wang et al., 2012).

In recent years, genome-wide association studies (GWAS) came to be widely employed
to elucidate genetic variations that affect complex phenotypic traits, allowing identification of
candidate loci controlling crop phenotypes (Huang et al., 2012; Sukumaran et al., 2014; Zhou
et al., 2015). However, phenotype is affected by biological pathways that involve interactions
of multiple genes (Mackay, 2014). GWAS approach has been conventionally used to identifying
major Quantitative Trait Loci (QTL) associated with a phenotype of interest. In most cases,
these QTL were considered as contributing additive effects to the trait values independent of
the effects of other loci. If there are strong phenotypic effects of gene-gene interaction,
however, GWAS approach potentially misses important loci that control the trait in
combination with other loci. In such cases, additive QTL may not explain the whole phenotypic
variations (Carlborg and Haley, 2004; Mackay and Moore, 2014). Therefore, it is necessary to
take epistasis into account for better understanding of the genetic factors controlling
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phenotypic variations.

Identification of epistatic gene pairs is challenging, since one needs to consider a large
number of combinations of genotypes, which incurs a heavy computational load and low
statistical power due to multiple test correction. Despite these difficulties, a number of
methods have been developed (Wei et al., 2014; Niel et al., 2015) that are classified into the
two major approaches; the exhaustive and the non-exhaustive approach.

The exhaustive approach is designed to test all combinations of genetic variants including
SNPs (Wan et al., 2010; Hemani et al., 2011; Li, 2017). The advantage of exhaustive approach
is its lower risk of failure in detecting epistasis. However, the exhaustive search requires a
higher computational inputs but nevertheless tends to have a lower statistical power due to
multiple tests resulting from studying a large number of combinations of all pairwise genetic
variations (Wei et al., 2014). Therefore, reduction of search space is needed to mitigate the
computational burden. There have been several studies that attempted to reduce the search
space by incorporating information of candidate genes based on metabolic pathways, gene
ontology, and protein-protein interactions (Ritchie, 2011; Sun et al., 2014). However, these
approaches are prone to ignoring unknown, but important, genes affecting the phenotype.

The non-exhaustive approach as represented by machine learning algorithms attempts
to make non-parametric models to detect epistasis. Non-exhaustive approach is useful to
detect higher-order epistatic relationships thanks to a low computational cost. However, this
approach tends to generate highly complex models that sometimes suffer from a local
optimality problem (Wei et al., 2014; Tuo, 2018). Especially when the sample size is small, the
complexity of models easily becomes too large as compared to the sample size. This
complexity leads to overfitting of the model to the sample dataset (Niel et al., 2015).
Therefore, non-exhaustive approach is not appropriate in the samples with small sizes.

Recombinant Inbred Lines (RILs) are generated by first performing an intercross of
genetically distinct inbred parents to obtain the F1 progeny. The F1 plants are self-pollinated
to obtain the F2 plants, and each of the F2 progeny is self-pollinated several times by single
seed descent (SSD) method to obtain further generations (Bailey, 1971). Each self-pollination
reduces heterozygosity by half, so that after substantial number of generations (e.g. > F6), the
genotypes of RILs become random mosaics of parental genotypes and the majority of
genomes of RILs become homozygous. Therefore, using RILs enables one to remove the
effects of heterozygous genotypes, which contributes to reducing the complexity of models
used for the detection of epistasis. In addition, RILs allows phenotyping of multiple individuals
from the same genotype, increasing the reliability of phenotype measurements.

In this study, we report a new approach named RIL-StEp specialized to RILs to detect
epistasis in a pair of genetic variations based on the comparison of simple linear models. Bayes
factor value is used to evaluating a model with epistasis against a null model without epistasis,
and if this value is larger than a certain threshold, we assume that there is epistasis. This model
considers the additive effects of significant QTL as well as epistatic effects between two

2


https://doi.org/10.1101/2020.06.09.141697
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.09.141697; this version posted June 10, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

selected SNPs. Therefore, the model is simple and easy to interpret. We applied the method
to study epistatic relationships of loci that affect seed hull color of rice (Oryza sativa). RIL-StEp
identified three candidate genes, a gene for major QTL and two epistatically interacting genes,
that may control seed hull color. We suggest RIL-StEp would lead to enhancing our
understanding of the genetic architecture of phenotypes of important crops as well as other
organisms.

Results
Phenotyping of seed hull color of rice RILs

In order to quantify rice seed hull color phenotype, we converted the color to numeric
values based on the CIE XYZ color space. We then measured color values of the seeds of 235
RILs of F7 generation derived from a cross between the rice cultivar “Hitomebore” (japonica
type rice) and “Kaluheenati” (aus type rice). Seed hull color of RILs showed a gradation, and
was not categorized into the two discrete parental phenotypes, beige and black for
Hitomebore and Kaluheenati, respectively (Figure 1, Table S1). Frequency distribution of color
values of the 235 RILs is skewed toward the higher phenotypic value (Figure 1); approximately
one-third of RILs were whitish brown seeds (the higher phenotypic values) whereas the rest
were darker brown seeds (the lower phenotypic values). From these data, we conclude that
seed hull color is not controlled by a single gene, but by multiple genes.

Kaluheenati Hitomebore

Count

60000 80000 100000 120000 140000 160000 180000 200000
Phenotype value

Figure 1 Seed hull color variation among the RILs and the distribution of phenotypic
values. A histogram showing the distribution of phenotypic values. X-axis shows the range of
phenotypic values of CIE XYZ color space. Y-axis shows the number of lines with phenotypic
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values in each range. The panels at the top show the representative images of seeds in each
range of the phenotypic values.

QTL analysis of seed hull color

We first carried out conventional QTL analysis to identify SNPs to be included in the
models of RIL-StEp. Between the genomes of the two parents Hitomebore and Kaluheenati,
we identified a total of 1,046,779 SNPs. We selected one SNP per 5,000bp interval and used
59,287 SNPs for subsequent QTL analysis and RIL-StEp. QTL analysis was carried out using 235
RILs by an R package “GWASpoly” (Rosyara et al., 2016) to detect SNPs associated with the
seed hull color phenotypes. As a result, we extracted two genomic regions showing statistical
significance after the Bonferroni correction, i.e. —logio(p) > 6.07 on chromosome 4 and 9
(Figure 2, Table S2). Then, we selected two SNPs showing the highest —log,(p) values in
each region. These SNPs were located at chr04:23121877 and chr09: 6953870, respectively.
We incorporated these two SNP values into the RIL-StEp models as the QTL variables. In order
to study the possibility of epistasis of these two loci, we examined the effects of their
genotypes on the phenotype. When the genotype of the SNP located in chr04:23121877 is
Kaluheenati genotype, phenotype values tended to be lower (Figure S1A). The SNP located in
chr09:6953870 also showed a similar tendency (Figure S1B), indicating there is no epistatic
interaction between the two loci. However, when we focus on the SNP at chr04:23121877,
the trait value variance of RILs with Kaluheenati genotype was larger than that of Hitomebore
genotype (Figure S1C). Thus, the two QTLs do not fully explain the phenotypic variance and
other genomic regions apart from these possibly affect the seed hull color.

Q\é\/f‘: Huh O A
S & & SEFEES

Chromosome

Figure 2 QTL analysis of rice seed hull color. A Manhattan plot showing the significant
association of SNPs with seed hull color phenotype as calculated by GWASpoly (Rosyara et al.,
2016). Y-axis shows the —logio(p) value of each SNP. X-axis shows the genomic position. Dashed
line indicates the significance threshold after Bonferroni correction of multiple tests. Only
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SNPs located near chr04:23121877 and chr09:6953870 exceeded the threshold.

RIL-StEp (Recombinant Inbred Lines Stepwise Epistasis detection)

To detect genomic regions of RILs that are epistatically interacting, we developed a simple
approach named RIL-StEp. In RIL-StEp, we generate linear models incorporating major QTLs
as well as two SNPs at a time that are sampled from the entire genome. Two models, one with
epistasis between the two SNPs and the other without epistasis, are compared by using Bayes
factor. Specifically, we consider the following two linear models:

q
Model, sy = i+ ) Que+S1f+ 5,5, +e 1)
i=1
a
Model, : y = p+ z 1Qiai + 8181 + 8282, + E1f3 + Exf, + E3fs + e (2)
=
e~N(0,0?%I)

y is an n-vector of phenotypic values for n samples; u is an intercept term; «; is the
additive effect of each SNP detected by QTL analysis; g is the number of QTLs; f; is the
effect of first SNP and [, is the effect of second SNP. B5_s are the interaction effects of the
alleles from the two SNPs; f5: P1 (Parent 1) allele and P2 (Parent 2) allele; B,: P2 allele and
P1 allele, Bs: P2 allele and P2 allele, for the SNP1 and SNP2, respectively. One combination
of alleles (P1-P1) is not included to escape multicollinearity (Table S3). Q;,S1, are the n-
dimensional genotype vectors of 1s and Os for each QTL and the two selected SNPs. E;._3 are
n-dimensional vectors with 1s for samples with the specific combination of alleles of selected
SNPs and Os for the rest. e is an n-vector of residual error and o2 is residual error variance.

The Model; onlyincludes QTLs and two selected SNPs as the variables. In the Model,,
we incorporated the variables of epistasis effects between the two selected SNPs in addition
to the Model,. We compared the Model; and the Model, based on Bayes factor. The
Bayes factor is a ratio of the marginal likelihoods of the two models of hypotheses. To measure
the better fit of Model, as compared to Model,;, we use the Bayes factor K given by:

_ Pr(y|Model,) 3)
Pr(y|Model,)

Pr(y|Model) is the likelihood representing the probability that phenotypic data are
produced under the assumption of the Model. The Bayes factor K > 1 means the Model,
is more strongly supported by the phenotype dataset compared to Model,, indicating that
the model with epistasis effects is better supported. We considered the value of K larger
than 100 as the evidence of epistasis, following the interpretation table (Jarosz and Wiley,
2014).


https://doi.org/10.1101/2020.06.09.141697
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.09.141697; this version posted June 10, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Application of RIL-StEp to rice RILs

We used RIL-StEp to detect SNP pairs showing significant genetic interactions in rice seed
hull color trait. In this analysis, we incorporated two major QTLs in chromosome 4 and 9,
respectively (Figure 2). To detect loci showing epistasis, we first selected one SNP every 10
SNPs out of 5,9287 SNPs across the genome, resulting in 5,929 SNPs to be considered. We
applied RIL-StEp to the all pairs of the 5,929 SNPs. After calculating the Bayes factors for SNP
pairs (Table S4), we focused on the genomic regions with SNP combinations showing the Bayes
factor values > 100. After finding approximate positions of the loci showing possible epistasis,
we applied RIL-StEp again to the combinations of all SNPs in the two regions (Figure 3, Table
S5). As a result, we identified two genomic regions, chr04:22350619~25534998 and
chr04:31048756~33482737 as the candidate regions showing epistatic interactions. The first
region matched the position of the SNP detected by QTL analysis (chr04:23121877). The
second region was not detected as a significant QTL; however, this corresponded to a peak
with —log10p = 4.26 (Figure 2). SNP pairs between these regions showed a large Bayes factors
values (Table S5). Thus, we hypothesized that the genes located in these two regions are
interacting to each other. To validate this finding, we selected a SNP pair with the highest
Bayes factor, and plotted the phenotype values for the combination of genotypes for the SNP
pair (Figure 4). When the genotypes of SNPs located in chr04:23048862 and chr04:31581963
are both Kaluheenati types, the phenotype values tend to be low. On the other hand, if the
genotypes are in other combinations, the color values were higher and similar to each other
(Figure 4). This result suggested that both these regions should be Kaluheenati types to make
seed hull color black. Therefore, it is assumed that two genes close to these SNPs are
functioning together to determine seed hull color. To confirm this hypothesis, we surveyed

candidate genes located in these two regions.
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Figure 3 Heatmap showing Bayes factors for combinations of SNPs as revealed by RIL-
StEp. The left heatmap shows the Bayes factor of SNP combinations over the whole genome.
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The right heatmap magnifies genomic regions with the high Bayes factors. The lower triangle
shows Bayes factors of all SNP combinations. The upper triangle highlights only combinations
with Bayes factors > 100. Bayes factors of all combinations of SNPs located between
chr04:22350619~25534998 and chr04:31048756~33482737, respectively, were higher than
100.
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Figure 4 Relationships between phenotypic values and genotypes of the two epistatic
SNPs as identified by RIL-StEp. A boxplot showing the phenotypic values of RILs with different
combinations of genotypes of SNPs at chr04:23048862 and chr04:31581963. X-axis shows the
combinations of genotypes. Y-axis shows phenotypic values. When genotypes of SNPs at
chr04:23048862 and chr04:31581963 are both Kaluheenati genotype, phenotypic values
tended to be low, whereas in other combinations, the values were higher and similar.

Identifying candidate genes involved in seed hull color epistasis
We surveyed genes located in the two regions as detected by RIL-StEp and tried to
identify genes that may affect seed hull color. In the region chr04:22350619~25534998, there
was Black Hull 4 gene (BH4 :chr04:22969845~22971859). In the region
chr04:31048756~33482737, we found a gene called Phenol reaction 1 (Phrl:
chr04:31749141~31751604). A previous study showed that the loss of function of Bh4
changed the black hull phenotype of wild rice species to white hull of cultivated rice (Zhu et
al., 2011). Phrl is known as the gene related to phenol reaction (Yu et al., 2008). It was
reported that brown hull color of indica rice is caused by the presence of Phr1 (Yu et al., 2008).
RIL-StEp identified a pair of SNPs showing a high Bayes factor (Figure 3) and two genes close
to the SNPs have been previously reported to control seed hull color. Therefore, we
hypothesize that these genes are the major factors epistatically affecting seed hull color in our
RILs.
We compared the nucleotide sequences of BH4 and Phrl from the parental cultivars
7
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Hitomebore and Kaluheenati used for generating the RILs. Kaluheenati had intact BH4 and
Phr1 genes, whereas Hitomebore had a 22bp deletion in BH4 and a 18bp deletion in Phrl
(Figure S2A, S2B). These deletions are identical to those reported in other japonica cultivars
(Fukuda et al., 2012). In addition, these deletions were reported to cause loss-of-function in
the respective genes (Yu et al., 2008; Zhu et al., 2011). Thus, we conclude that Kaluheenati
maintains the function of BH4 and Phr1, and Hitomebore cultivar probably lost their functions.

Using a crossed line between an indica type cultivar “Habataki” and japonica type cultivar
“Arroz da Terra”, Fukuda et al. (2012) reported that both BH4 and Phrl are necessary for
maintaining black hull phenotype. BH4 encodes a tyrosine transporter and Phrl encodes a
polyphenol oxidase of the tyrosinase family (Yu et al., 2008; Zhu et al., 2011). Tyrosine is
converted by the tyrosinase to melanin, the main black pigment (Riley, 1997). Thus, it is
assumed that BH4 is required for transportation of tyrosine and Phr1 for melanin biosynthesis
(Figure 5). This suggests that the melanin biosynthesis pathway does not operate if either of
these two genes does not function. It is consistent with the result that seed hull color tends
to be beige when even one of the two SNPs is Hitomebore genotype (Figure 4).

In addition, we surveyed genes located near the SNP chr09:6953870 as identified by the
QTL analysis to address its contribution to seed hull color in combination with BH4 and Phr1.
We found Inhibitor for brown furrowsl (IBF1) located in chr09:6873236~6874612. The
previous study showed ibf1 mutants of japonica and indica type cultivars accumulate brown
pigments during seed maturation. Thus, IBF1 is a suppressor of brown pigment deposition in
rice hull furrows (Shao et al., 2012). We compared the sequences of IBF1 for the two parental
cultivars. Kaluheenati had 19bp deletion in IBF1, whereas Hitomebore had an intact protein
coding region (Figure S2C). This result suggests that 19-bp deletion in Kaluheenati caused loss
of function of IBF1, which no more suppresses the accumulation of brown pigmentation of
rice hull furrows. This is in line with the lower phenotypic value (brown color) of RILs with
Kaluheenati-type genotype near the IBF1 gene (Figure S1B). IBF1 is reported to be involved in
flavonoids biosynthesis (Shao et al., 2012).

Taken together, the relationship between seed hull color phenotype and genotypes of the
three SNPs located near BH4, Phrl, and IBF1 showed that the effect of IBF1 is clearly
independent of that of BH4 and Phr1 (Figure S3). Thus, the pathway involving BH4 and Phr1
and that of IBF1 are probably functioning independently (Figure 5).
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Figure 5 A simplified scheme of the pathways related to rice seed hull color as
hypothesized in the present study. This figure shows the summary of biological function of
BH4, Phr1, and IBF1. BH4 encodes a tyrosine transporter (Zhu et al., 2011) and Phr1 encodes
a polyphenol oxidase (Yu et al., 2008). These genes are related to melanin biosynthesis
pathway. IBF1 inhibits flavonoids biosynthesis as a suppressor (Shao et al., 2012).
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Discussion

In this study, we describe a new approach “RIL-StEp” for detecting epistatic relationships
of genes. This approach is specialized to RIL population and based on Bayes factors for
comparison of simple linear models. Using RIL-StEp we successfully detected a likely gene pair
showing epistasis that affect seed hull color. The advantage of RIL-StEp is its high
interpretability as compared to other approaches that consider many variables at once. Our
model includes in variables only significant QTLs as well as epistasis of two SNPs at a time
without considering heterozygous genotype. Thus, our model has a low complexity without
any possibility of overfitting as seen in the complex model. Therefore, we believe that RIL-
StEp is a recommended option to detect epistasis in any traits when the RILs are used.
Additionally, our approach adopted Bayes factors. It is known that Bayes Factors have
flexibility to combine prior information on each effect of genetic variants (Wakefield, 2009;
Runcie and Crawford, 2019). Thus, although we specified prior distribution according to the
paper (Liang et al., 2008), our approach is capable to incorporate any prior information. The
disadvantage of our approach is the difficulty in detecting higher-order (e.g. 3 loci) epistatic
relationships. Detection of high-order relationships using our exhaustive approach increases
computational cost explosively and decreases the interpretability of the models (Taylor and
Ehrenreich, 2015). Therefore, the non-exhaustive approach may be more appropriate to
identify the high-order epistasis.

We succeeded in identifying genomic regions that show epistasis. However, these regions
contained multiple genes and we could not specify the responsible genes only by the genetic
analysis. It is a challenging problems of GWAS to fill the gap between identification of the
genomic regions and identification of the causative genes responsible for the phenotype
(Gallagher and Chen-Plotkin, 2018). It could be possible to pin down to much smaller genomic
regions by applying a more strict threshold in the epistasis analysis. However, this has a risk
of missing true positive SNPs. It is known to be difficult to decide the proper balance between
type | and type Il errors (Todorov and Rao, 1997). Thus, the approach to identify genes using
only statistical significance threshold is usually not possible and not appropriate.

In our case, we have successfully specified strong candidate genes presumably controlling
the phenotype using the knowledge about the candidate genes and the sequence analysis.
However, this approach may not be applicable in every case. In epistasis analysis, there may
be several approaches to validate the epistatic relationship between the genes. For example,
co-expression analysis explore genes in the same biological processes (Aoki et al., 2007; Mao
and Chen, 2012; van Dam et al., 2018). eQTL analysis identify genetic variants regulated by
specific genes (Gilad et al., 2008; Feltus, 2014). Therefore, combining information from other
sources of evidence to RIL-StEp may enhance our capability of identifying interacting genes.

We quantitatively measured seed hull color to use as phenotypes. Seed hull color can be
treated not only as categorical traits, but also as quantitative traits (Shao et al., 2011). In our
study, the difference in seed hull color between the two parental lines is most likely controlled
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by the three genes. Two genes of them seem interacting to each other. Thus, seed hull color
exhibited gradual change according to the genotypes of these genes.

The main factor of seed hull color is probably black and brown pigments. Thus, it is
assumed that measuring seed hull colors based on the brightness in CIE XYZ color space was
appropriate. However, when various colors are included, it is difficult to convert colors to 1-
dimensional values and we have to consider other methods of measurement. Some of other
traits are also difficult to assess, like virulence and resistance response (Stewart and McDonald,
2014; Stewart et al., 2016). Thus, developing methods to quantitatively measure the trait is
one of the critical steps in understanding genetic architecture that affects traits.

To summarize, we propose a novel approach based on simple linear models to detect
epistatic interaction for quantitative traits in the RIL population. By applying RIL-StEp to rice
seed hull color, we succeeded in identifying three genomic regions related to seed hull color.
Incorporating additional information allowed us to identify candidate genes involved in seed
hull color variation. Thus, our approach has the potential to identify epistasis in various
biological traits.

Experimental procedures
Materials

A rice (Oryza sativa) cultivar Hitomebore belonging to the japonica rice group shows
white seed hull color. On the other hand, a cultivar Kaluheenati, which is one of the NARO
World Rice Core Collection (WRC) (Kojima et al., 2005), belonging to the aus rice group shows
black seed hull color (Figure 1). Hitomebore and Kaluheenati were crossed and RILs of the F9
generations consisting of 235 lines were generated by the single seed descent (SSD) method.
Images of seeds of each line were scanned and saved as pictures for phenotyping of seed hull

color.

Methods
Genotyping of RILs by whole genome resequencing

To obtain the genotypes of all RILs, we performed the whole genome resequencing of the
parents and 235 RILs. We filtered and trimmed these sequences using prinseq (Schmieder and
Edwards, 2011) and FaQCs (Lo and Chain, 2014). Then, the quality-trimmed lllumina short
read data were aligned against the reference genome using BWA (Li and Durbin, 2009). We
used genome sequence of Os-Nipponbare-Reference-IRGSP-1.0 as the reference (Kawahara
et al., 2013). After mapping, we sorted and added index to bam files using samtools(Li et al.,
2009). These bam files were subjected to variant calling with bcftools (Narasimhan et al.,
2016). Finally, we imputed the variants based on Hitomebore and Kaluheenati genotypes
using LB-impute (Fragoso et al., 2016). For biallelic SNPs in our RILs, there are three genotypic
classes Hitomebore-Hitomebore, Hitomebore-Kaluheenati and Kaluheenati-Kaluheenati.
These genotype classes were parameterized to {0, 1, 2}. We used 59,287 SNPs for the analysis
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that were selected from a total of 1,046,779 SNPs found between the two rice parents. For
selection of SNP, we used only one SNP per 5,000bp interval.

Phenotyping and quantification of seed hull color

In the RILs, seed hull color showed gradation between beige and black colors (Figure 1).
It is known that quantitation of phenotypes tend to improve statistical power and
interpretability of relationships between genetic variants and phenotypes (Bush and Moore,
2012). Therefore, in order to convert seed hull color phenotypes to quantitative values, we
measured the brightness of the seed hull color. First, we extracted seed image from the
original picture and constructed the matrix of RGB values of the image. Then, we applied
Principal Component Analysis(PCA) to extract the RGB values to pick up representative color
of all seeds in the image (Figure S4). We applied this process to each RIL and obtained the
representative RGB value of seed hull color for each line. Finally, we converted these
representative RGB values to CIE XYZ color space. Y axis value showed the brightness in CIE
XYZ color space. Thus, we used y-axis values as quantitative phenotypes. The larger y-axis
values express brighter color as compared to the lower y-axis values corresponding to darker

color (Figure S4).

QTL analysis

To identify SNPs corresponding to major QTLs and include these SNPs in our linear models,
we used genome-wide association study (GWAS) approach based on the mixed linear model
(Yu et al., 2006). We utilized the R package “GWASpoly” (Rosyara et al., 2016) to identify
genomic regions that show a significant association with the phenotypic effect. We used the
Bonferroni method to determine the QTL significance threshold. Then, we selected a SNP with
the largest values of -log10p for each genomic region that exceeds the Bonferroni threshold.
These selected representative SNPs will be included in the Model; and Model, as the
major QTLs.

Calculating Bayes factors in RIL-StEp

Bayes factors are computed by integrating the likelihood with respect to the priors on
parameters. We estimated Bayes factors based on Monte Carlo sampling for the integration
of parameters. The equation (1) and (2) can be expressed as:

y=u+X0+ee~N(0,0%I) (4)

X is a n Xr design matrix of genotypes for QTL or epistasis variables. 8 isa r X 1
vector of QTL and epistasis effects. r is sum of the number of QTLs and epistasis variables
used in the model. In Monte Carlo sampling, we specified the prior distribution of 8 as given
by:

6~N(0,go%(X"X 1)), g~InverseGamma(1/2,v2/8) (5)
12
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The number of iterations to estimate Bayes factor was 10,000. We used the R package
“BayesFactor” (Morey et al., 2018) to compute Bayes factors. We applied these processes to
a total of 17,573,556 combinations of SNPs. When we calculated Bayes factor, we did not
consider RILs showing heterozygous genotypes at the QTL or the selected SNPs.

The source codes and detailed usage instructions of RIL-StEp are freely available from
GitHub (https://github.com/slt666666/RILStEp) under MIT license.

Data availability

The genotype dataset, seed images of RILs, and detail of supporting information (Table
S4, S5) were deposited in the Zenodo (10.5281/zenodo0.3882105). All other relevant data are
within the paper and the supplemental files. RIL-StEp package source codes and a user manual
are freely available through GitHub (https://github.com/slt666666/RILStEp) under MIT
License. The scripts used in phenotyping process are also deposited in GitHub
(https://github.com/slt666666/Seed phenotyping)
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Figure S1. Relationships between rice seed hull color phenotypes and the genotypes
of the two major QTLs. Boxplots showing the phenotypic values of RILs (Y-axis) in relation to
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their genotypes at the two major QTLs (Y-axis). (A) The phenotypic values of RILs separately
shown for Hitomebore or Kaluheenati genotypes at the SNP of chr04:23121877. (B) The
phenotypic values of RILs separately shown for Hitomebore or Kaluheenati genotypes at the
SNP of chr09:6953870. (C) The phenotypic values of RILs shown separately for the four
combinations of genotypes at the SNPs of chr04:23121877 and chr09:6953870.

BH4_Hitomebore 1721
BH4_KALUHEENATI 1721
BH4_Nipponbare 1721

1760
1760
1760

AGATAATCCTGAGAAATAATGTAGTAGAAGAAATCACGTT

AATGCGATTGATAGATAAGAAAAAAAATCTCTTGACAAAT

BH4_Hitomebore 1761
BH4_KALUHEENATI 1761
BH4_Nipponbare 1761

1800
1800
1800

BH4_Hitomebore 1801
BH4_KALUHEENATI 17801
BH4_Nipponbare 1801

1840
1840
1840

TTTGAGAAAACATATATTTTTAAAGCAAGTTATAAACAAT

BH4_Hitomebore 1841
BH4_KALUHEENATI 17841
BH4_Nipponbare 1841

1880
1880
1880

CTGGTGCATAATCAGAATGGATTAATTGATGGTCGATCAA

BH4_Hitomebore 1881
BH4_KALUHEENATI 1881
BH4_Nipponbare 1881

1920
1920
1920

TATACTGACCAACTCTTCAATTGATTATTGATCAATTAAT

BH4_Hitomebore 1921
BH4_KALUHEENATI 1921
BH4_Nipponbare 1921

1960
1960
1960

TATTATCAAATATCAACCAGATGCTAGTGATATGCTTCCT

BH4_Hitomebore 1961
BH4_KALUHEENATI 1961
BH4_Nipponbare 1961

1978
2000
1978

GCTGTGCACGCTCAACTACGGTGCAATGGCGGTGCTCGGC

BH4_Hitomebore 1979 2015
BH4_KALUHEENATI 2001 2037
BH4_Nipponbare 1979 2015

TACCTCATGTACGGCGACGGCGTGCTGTCCCAGGTGA

Figure S2A. DNA sequence alignment of the BH4 gene. Genome sequences of the BH4
gene for Hitomebore, KALUHEENATI, and Nipponbare are aligned and shown. Hitomebore and
Nipponbare sequences have a 22bp deletion.
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Phri1_Hitomebore 1912 1951
Phri_KALUHEENATI 1921 1960
Phri_Nipponbare 1912 1951
GCGCCCGCGGCCGGCGCGTTCCCGGCGACCCTGGACAAGA
Phr1_Hitomebore 1952

Phr1i_KALUHEENATI 719671
Phri_Nipponbare 1952

1991
2000
1991

CCGTGCGGGTGGCCGTGACGAGGCCCAGGGCGTCGAGGAG

Phri1_Hitomebore 1992 2021
Phr1i_KALUHEENATI 2001 2040
Phri_Nipponbare 1992 2021
CCGCGAGGAGAAGGAGGAGGAGGAGGAGGTGCTCGTCATC
Phr1_Hitomebore 2022 - - - ... .. 2053
Phr1i_KALUHEENATI 2041 2080
Phri_Nipponbare 2022 - - - - .- .. 2053

GAGGGGATCGAGATCCCCGACCACTCCACGTACGTCAAGT

Phr1_Hitomebore 2054 2093
Phr1i_KALUHEENATI 2081 2120
Phri_Nipponbare 2054 2093

TCGACGTGTTCGTGAACGCGCCCGAGAGCGGGGACGGCGC

Phri_Hitomebore 2094 2133
Phri_KALUHEENATI 27121 2160
Phri_Nipponbare 2094 2133

GGCGACGTGCGCGGCGACGTGCGCCGGLCAGCGTCGCGCTG

Phri_Hitomebore 2134 2173
Phri_KALUHEENATI 2161 2200
Phr1_Nipponbare 2134 2173

GCGCCGCACGGGATCCACCGCGAGGGGCAGCTGTCGCCGA

Phr1_Hitomebore 2174 2213
Phri_KALUHEENATI 2201 2240
Phri_Nipponbare 2174 2213
GGAAGACGGAGGCGAGGTTCGGCATATGCGACTTGCTGGA
Figure S2B The sequence alignments of Phrl. Genome sequences of Hitomebore,

KALUHEENATI, and Nipponbare in the region of Phr1 gene. Hitomebore and Nipponbare have
18bp deletion.
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IBF1_Hitomebore 41
IBF1_KALUHEENATI 41
IBF1_Nipponbare 41

GCAGCACCTGCACGGCGACGTGCTCGAGTCGGCGGTGGAG

IBF1_Hitomebore

120
IBF1_KALUHEENATI 120
IBF1_Nipponbare 120

CGCGTGCCGGCGCCCGATCTCGCCGCCGCGGCGCTGGTGT

IBF1_Hitomebore 121
IBF1_KALUHEENATI 721
IBF1_Nipponbare 121

CACGGGAGTGGCTCCGCGCGGTGCGCGCCGCGCTGCGACG

IBF1_Hitomebore 161 200
IBF1_KALUHEENATI 161 200
IBF1_Nipponbare 161 200

GCGCATGCTGCGGCTGCCGTGGCTCGTCGTCCACGTGATC

IBF1_Hitomebore 201
IBF1_KALUHEENATI 201
IBF1_Nipponbare 201

CATCTCCGGGGCCAGCGGCGCCTCGCCGCGGCTTACGACC

IBF1_Hitomebore 241 280
IBF1_KALUHEENATI 241 276
IBF1_Nipponbare 241 280
CGCGCTCCGGGGCGTGGCTCGCCGTGCCCACGGCGCCACC
IBF1_Hitomebore 281 320
IBF1_KALUHEENATI 277 301
IBF1_Nipponbare 281 320

GGCGCGCCACGGCGCGACGTCGCCGCCGCcAGececageAcCcTCG

IBF1_Hitomebore 321

360
IBF1_KALUHEENATI 302 341
IBF1_Nipponbare 321 360

CACGTCCGCCTGATGCGGGGCGCGAGCGGGGACCGCGTCT

Figure S2C The sequence alignments of IBF1. Genome sequences of Hitomebore,
KALUHEENATI, and Nipponbare in the region of IBF1 gene. KALUHEENATI has 19bp deletion
and 1 genetic variant.
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Figure S3. Relationships between rice seed hull color phenotypes and genotypes of the
three loci. Boxplots showing the phenotypic values of RILs (Y-axis) separately for the different
combinations of genotypes in the three loci (X-axis). When the genotype of chr09:6953870 is
KALUHEENATI genotype, phenotypic values are consistently low independent of the
genotypes of the other two loci. When the genotypes of chr04:23048862 and chr04:31581963
are both KALUHEENATI types, the phenotypic values tend to be low independent of
chr09:6953870.
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Figure S4. Phenotyping of rice seed hull color. We first trimmed only the image of seeds.

Next, we extracted the representative color of the seeds using Principal Component
Analysis(PCA). Finally, we converted RGB values of representative seed hull color to Y-axis
values of CIE XYZ color space.
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