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Abstract

We derive an approximate closed-form solution to the chemical master equation describing
the Michaelis-Menten reaction mechanism of enzyme action. In particular, assuming that the
probability of a complex dissociating into enzyme and substrate is significantly larger than the
probability of a product formation event, we obtain expressions for the time-dependent marginal
probability distributions of the number of substrate and enzyme molecules. For delta function
initial conditions, we show that the substrate distribution is either unimodal at all times or else
becomes bimodal at intermediate times. This transient bimodality, which has no deterministic
counterpart, manifests when the initial number of substrate molecules is much larger than the
total number of enzyme molecules and if the frequency of enzyme-substrate binding events is large
enough. Furthermore, we show that our closed-form solution is different from the solution of
the chemical master equation reduced by means of the widely used discrete stochastic Michaelis-
Menten approximation, where the propensity for substrate decay has a hyperbolic dependence on
the number of substrate molecules. The differences arise because the latter does not take into
account enzyme number fluctuations while our approach includes them. We confirm by means of
stochastic simulation of all the elementary reaction steps in the Michaelis-Menten mechanism that
our closed-form solution is accurate over a larger region of parameter space than that obtained
using the discrete stochastic Michaelis-Menten approximation.

1 Introduction

The mechanistic basis of the simplest single-enzyme, single-substrate reaction consists of a reversible
step between an enzyme and a substrate, yielding the enzyme—substrate complex, which subsequently
forms the product. This reaction is commonly called the Michaelis-Menten (MM) reaction |[1}2].

For over a century, the dynamics of this reaction have been extensively studied using deterministic
rate equations. Because these equations do not admit an exact closed-form solution, various approxi-
mations have been devised to obtain insight into the underlying dynamics. Use of the quasi-equilibrium
or quasi steady-state approximations lead to the famous Michaelis-Menten equation, an ordinary dif-
ferential equation relating the rate of product formation and the substrate concentration (see [3| for
a discussion of these approximations and their range of validity). This equation provides a simple
means to extract the relevant kinetic parameters (the Michaelis-Menten constant and the maximum
velocity) from experimental data. The Michaelis-Menten equation has also been solved exactly leading
to explicit expressions for the time-evolution of the substrate (and product) concentration [4].
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The stochastic formulation of enzyme kinetics, while not as much studied as its deterministic
counterpart, has received increasing attention since the 1960s when the chemical master equation
(CME) for the MM reaction mechanism was first derived and studied by Anthony F. Bartholomay [5].
The CME is a probabilistic discrete description of chemical reaction kinetics that is valid in well-mixed
environments for point reacting particles [6l/7]. Its relevance lies in its ability to describe kinetics when
the molecule numbers are low, conditions typical in intracellular environments, e.g., the median copy
number per cell of most enzymes in E. coli is below a thousand [8]. Research efforts in the area of
stochastic chemical kinetics can be, broadly speaking, categorized into three types: (i) The search for
a solution of the CME for the MM reaction and its various extensions, i.e., obtaining a closed-form
solution for the time-dependent or steady-state probability distribution of the molecule numbers of
each species in the reaction system [9,[10]. (ii) The reduction of the CME and the construction of
the stochastic equivalent of deterministic approximations (such as the fast equilibrium, quasi steady-
state and total quasi steady-state approximations) and understanding their regime of validity [11}24].
(iii) The derivation of exact or approximate expressions for the mean of the stochastic rate of product
formation and an investigation of the differences or similarities from the predictions of the deterministic
Michaelis-Menten equation [25-31].

The majority of the literature has focused on (ii) and (iii). There are very few studies that focus
on (i) principally because the CME is notoriously difficult to solve analytically [22]. In this paper,
we are interested in deriving new solutions of the CME for enzyme kinetic systems and hence next
we briefly review the known solutions (see also [32] for a lengthier discussion). Arényi and To6th [9)
were the first to exactly solve the CME introduced by Bartholomay for the special case in which there
is only one enzyme molecule with several substrate molecules in a closed compartment; in particular,
they obtained an exact expression for the joint distribution of the number of substrate and enzyme
molecules as a function of time (since the original paper is rather difficult to find, in Appendix [A] we
have reproduced the derivation in a concise manner). Another exact solution is reported in [10] by
Schnoerr et al. who derive the exact steady-state solution for the CME describing the MM reaction
system with one enzyme molecule and augmented with a substrate production reaction step (to model
for example the translation of substrate). To our knowledge, there are no known exact or approximate
solutions for the time-dependent probability distribution solution of the CME of the MM reaction
system with multiple enzyme molecules; however, expressions for the mean rate of product formation
have been derived and some of these papers are referenced in point (ii) above.

In this paper, our aim is to (a) derive an expression for the approximate time-dependent solution
of the CME of the MM reaction system with multiple enzyme molecules under quasi-equilibrium con-
ditions; (b) compare and contrast this solution with the solution of an often used reduced CME for
the MM reaction in the literature; (c) use the closed-form solution to identify interesting dynamical
phenomena. Our paper is divided as follows. In Section [2] we briefly review the main results known
for deterministic enzyme kinetics, focusing in particular on the quasi-equilibrium approximation. In
Sections [3.1] and [3.2] we introduce our method by first applying it to the MM reaction with a single
enzyme molecule and subsequently to the case of multiple enzyme molecules. The method consists of
three steps: (1) using a time scale separation method called averaging [33] to define groups of rapidly
equilibrating states which then allows the derivation of a master equation describing the Markovian
dynamics of these groups on the slower time scale; (2) solving the resultant time-dependent, single
variable master equation for the group dynamics using the method developed in |34] which has the
advantage of bypassing the calculation of the eigenvectors of the transition matrix and hence consider-
ably simplifies the analytical computations; (3) using the time-dependent solution describing the group
dynamics to construct the marginal time-dependent distributions for both the numbers of substrate
and enzyme molecules. We use the closed-form solution to find the regions of parameter space where
transient bimodality of the distribution of substrate molecules occur. In Section [d] we show that our
solution is accurate over a wider region of parameter space than the solution of a commonly used
reduced master equation with a propensity that has the same hyperbolic dependence on the number of
substrate molecules as the deterministic Michaelis-Menten equation (an approach popularized by Rao
and Arkin [12]). In Section [5] we show that the same three-step method used in Sections [3.1] and
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can be used to derive time-dependent distributions for multi-substrate enzyme reactions. We finish by
discussing our results in Section [6]

2 Deterministic enzyme kinetics

Before progressing to stochastic enzyme kinetics we first briefly outline some of the main results known
for deterministic enzyme kinetics. We consider the chemical reaction system:

S+E%wﬂ%E+R (1)
1

where S denotes the substrate species, E denotes the enzyme species, C' denotes the enzyme-substrate
complex and P denotes the product. This system can be thought of as a reduction of the more
biologically realistic set of reactions:

S+E=ES—EP—>E+P, (2)

where the unbinding of the product from the enzyme is very fast. Without loss of generality, we
assume the initial condition for this system is that all enzymes are unbound to the substrate. There
are two conservation laws for this system: [E]+ [C] = [E]o and [S] + [C] + [P] = N, where [i] denotes
the concentration of species i, [i]p denotes the initial concentration of species ¢ and N is the initial
substrate concentration. Assuming well-mixed conditions and the law of mass action, the deterministic
dynamics of the reaction system in Eq. are described by a set of coupled ordinary differential
equations (commonly called the rate equations) describing the time-evolution of the substrate and
complex concentrations:

ﬂ%ﬂ:_mwwmmr«mm+mm@L 3)
d[cdit)] = — (k1 + k2)[C ()] + ko[S(H)]([E]o — [C(1)]). )

Note that the time-dependent concentrations of £ and P can be straightforwardly obtained from the
time-dependent solutions of C' and S by means of the conservation laws previously stated. Although
seemingly simple, Egs. and are not easy to solve analytically for the time-dependent analytic
solution, and as such one is limited to finding approximate solutions. Two of the most common
approximations used in the literature are the (i) quasi steady-state assumption (QSSA) and (ii) the
quasi-equilibrium approxzimation (QEA), also called the rapid equilibrium approximation or the reverse
quasi steady-state assumption. The QSSA, derived by Briggs and Haldane [35], assumes that after a
short transient, the concentration of the complex (and enzyme) is in a quasi steady-state (with regard
to the substrate and product); thus under the QSSA, it is assumed that d[C(¢)]/dt ~ 0. See [36] for
a detailed discussion of this approximation and for its range of validity. On the other hand, the QEA
assumes that substrate binding and dissociation occur much more rapidly than product formation
such that the substrate, enzyme and complex are approximately in equilibrium. Thus under the QEA,
it is assumed that d[S(t)]/dt ~ 0; this approximation, popularized by Michaelis and Menten [1], is
commonly used in the analysis of various biochemical models [37].

Enforcing either the QSSA or QEA leads to the following effective rate equation describing the
time-evolution of the substrate concentration:

d[S1)] _ —Vinax[S(1)]
dt k+[S()]

(5)

where Vinax = k2[Elo, k = (k1 + ka2)/ko if the QSSA is used, k = k1 /ko if the QEA is used, and where
the conservation law [S] + [P] = N holds. Eq. has been solved perturbatively in a number of
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studies, all of which also assessed the validity of the QSSA [36L/38]. An exact solution was reported
in [4] which is given by:

(n(0)s = 205(0)] =k W (L] exp (ot L) ©)

where (n(t))q gives the (deterministic) mean number of substrate molecules at time ¢, € is the volume
of the system, and W () is the principal branch of the Lambert W function (also known as the Omega
function). In the rest of this article, we study the stochastic equivalent of the QEA and thus we shall
use k = ky/ko.

3 Stochastic QEA analysis

3.1 Single enzyme

For simplicity, we first illustrate the method by solving the enzyme system described in Eq. for
the case of one enzyme molecule with initially IV substrate molecules. Since there are no birth-death
processes coupled to any species, the conservation equations ng +nc =1 and n+ne +np = N hold,
where n denotes the number of substrate molecules and all other n; denote the number of species 1.
Without loss of generality, we set the size of the system to {2 = 1 for the rest of the paper.

We label the microstate of the reaction network in Eq. as (n,ng), which fully specifies the state
of the system due to the conservation laws stated previously. The possible transitions between all of
the discrete microstates of this system are illustrated in Fig. i): the system starts from the state
(N, 1) and eventually ends up in the state (0,1). Our goal now will be to find the marginal probability
distribution P(n;t), i.e., the probability of observing n substrate molecules at a time t¢.

Assuming Markovian dynamics |22], it follows that the time-evolution of P(n,ng;t) (the probability
of observing n substrate molecules and ng enzyme molecules at a time ¢) is given by the CME:

OP(n,ng;t
% = ko(n+1)(ng+1)P(n+1,ng + 1;t) (7)
+2—ng)(k1P(n—1,ng — 1;t) + ko P(n,ng — 1;t))

— (ko nng + (1 — nE)(k1 + kg)) P(TL,TLE; t).

The standard approach involves introducing the time-dependent marginal generating functions G, , (z;t) =
> . 2" P(n,ng;t) and attempting to solve the generating function partial differential equations, e.g.,
using eigenfunction methods [7]. However, this standard method quickly leads one to mathematical
difficulty. An analytic solution only presents itself in a non-cumbersome form where one assumes the
initial state contains a single substrate molecule [9]. In Appendix [A] we summarise the single enzyme
solution provided by [9], and its complexity even in the single substrate molecule case motivates the
analysis we present below.

We take a different approach. We first simplify the problem through the use of averaging [331/39,/40].
Specifically the procedure lumps together microstates equilibrating on a fast timescale in groups which
then allows one to write a master equation describing the dynamics of the groups on the slow timescale.
We shall assume that the slow timescale is that associated with product formation, i.e. ks is sufficiently
small (we will be more precise what this really means later) and hence the averaging procedure is in
the same spirit as the QEA discussed in Section [2}

Since ko is small, it follows that we can group all microstates that are in rapid equilibrium with
each other (due to the fast processes of binding and unbinding of substrate from the enzyme) as shown
in Fig. ii); group m is then the set of fast processes that contain N — m substrate molecules when
ng =1 and N — (m+ 1) substrate molecules when ny = 0. We define pd, (¢) as the probability to be in
group m at a time ¢, and pg’em as the probability that if the system is in group m it has ¢ free enzymes.
Once these probabilities are found, we can construct P(n;t), based on the fact that there are two
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Figure 1: Illustration of the enzymatic system described by a single enzyme and N initial substrate molecules. (i)
Markovian dynamics of the enzyme kinetic system described by a single enzyme. The initial condition for the system
is (N,1), and as t — oo the microstate of the system is guaranteed to be that of the absorbing state (0, 1), with no
remaining substrate and one free enzyme. (ii) Markovian dynamics in the reduced model, where processes occurring in a
group are assumed to be much faster than the interactions between the groups themselves. The label ‘group m’ denotes
the set of fast processes that have N —m substrate molecules when the enzyme is free; hence, it is easily seen that there
are N + 1 groups in total with labels m = {0,1,2,..., N — 1, N}.

microstates that contain n substrate molecules: (n,0) and (n,1) associated with groups N — (n + 1)
and N — n respectively. This means that:

P(”? t) = p?v_n (t)pch_n + p?v,(n+1)(t)pg?N,(n+1)- (8)

In the case of the single enzyme system studied in this section, the quasi-equilibrium probabilities are
trivial (since there are only two microstates in each group) and are given by:

k ko(n +1)

ae = ! d pi¢ = 7 9
PLN-n = 3 hon ™0 PON-) T 3 Gk (1) )

All that remains is the task of finding p9, (¢). To do this we first write the master equation for the
transitions between groups. Rescaling time as t' = kot and making use of the previous definition,
k = ki1/ko, the master equation for the groups is:

O p(t') = ampf_1(t') — ami1pf, (1), (10)
where:

~ N—-(m-—1)
S k+N-—(m-—1)

(m , 1<m<N+1, (11)
and a;<o = 0. Note that a,, is the probability of the jump from group m — 1 to group m in a unit
interval of rescaled time. From Fig. [I| the probability of the jump from group m — 1 to group m in
a unit interval of normal time is equal to k2 multiplied by the probability of being in the microstate
(N —m,0) which under the rapid equilibrium assumption is ko(N —m + 1)/(k1 + ko(N — (m — 1))).
Due to time rescaling, the factor of ko disappears and hence follows Eq. .

Since there are N + 1 groups in total, Eq. corresponds to a system of N + 1 ODEs which can
be concisely written as the matrix equation:

owp?(t') = Q- pi(t'), (12)

(@31
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where p9(t') is a N + 1 element column vector defined by p9(t') = (p§(t'), p{(t'), ...,p% (t')) and Q is a
(N +1) x (N + 1) lower-bidiagonal square matrix defined by:

—ay
ai —ag

Q = as —as . (13)

N  —AaN+1

As we will describe below, we solve the set of ODEs given by Eq. using the method described
in [34] which provides an exact time-dependent solution for any one-variable one-step master equation
with finite number of microstates as long as one can find the eigenvalues of the transition rate matrix
exactly. In our case, the eigenvalues of Q are trivial, since Q is lower-bidiagonal, and they are given
by the diagonal elements. Hence the eigenvalues of Q are given by A\; = —a;, 1 <i < N +1. Note that
An+1 = 0 and is the largest eigenvalue, with all Aj<;<ny < 0 as is required by the Perron-Frobenius
theorem for Markovian systems that are ergodic [41].

We now proceed to use these eigenvalues to find the time-dependent solution to Eq. . The
solution to this set of ODEs is formally given by:

p?(t') = exp (Qt') - p?(0), (14)

where exp(Qt') is defined as a matrix exponential. For a general master equation, this matrix expo-
nential is typically difficult to deal with, however in our case Q is lower-bidiagonal and hence we can
proceed via the method of [34]. We first consider Cauchy’s integral formula for matrices, explicitly
given by [42]:
1 _
f(Q) = i (21 -Q)" - [(2)dz, (15)
™ Jo
where C' is a closed contour in the complex plane that encloses all the eigenvalues of Q and I is the
identity matrix. Taking f(z) = e*" p9(0) we then arrive at:
1 /
pI(t) = — @ (2 — Q)" p9(0)e*" dz. (16)
- 211 C -
A typical initial condition is pZ,(0) = d,,,0, meaning that we always start in group 0 which contains
the microstates (N, 1) and (N — 1,0), as is shown in Fig. i). Note that d; ; is the Kronecker delta.
Using this initial condition, Eq. becomes:

1 _ "
P (t) = 5 ?{C(zf - Q) e da. (17)

We show at the end of this section how to extend the time-dependent solution for a general initial
distribution. Since it is bidiagonal, the inverse of 21 — Q can easily be found via Cramer’s rule [43]:

0, i< j,
(21 - Q);;' =4 otz i=3j, (18)

1 @ ak—1 . .
aj+z Hk:j+1 ap+z’ t>]

Substituting this into Eq. then gives us:

0, m <0,
ezt/

P () =< 355 $c =, 4% m =0, (19)

2t/

% (—1)m Z;l Ak} X {§C mdz} , m >0,
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where we have utilised the relation A; = —a;. These integrals can then be evaluated using Cauchy’s
residue theorem [44], explicitly stated as:

j‘{ f(2)dz = 270’ S Res(f(2), 2), (20)
c k

where the values z = zj, are poles of f(z) within C and the residues are Res(f(2), zx) = lim, ., (z —
zr) f(2) for the simple poles in Eq. . Note that the poles of the complex integrals in Eq. are
the eigenvalues of Q. Therefore, from Eq. we finally get an expression for p, (t') as:

0, m <0,

At _
po () =" m =0, (21)

m m m+1 Akt,
{(_1) Hk:l )\k} X {Zk 1 W} m > 0.

Hence the time-dependent probability distribution P(n;t) is given by Eq. together with Eqs. @
and . The extension to a more general initial distribution is then relatively simple. Consider some
initial distribution p?(0) = ¢, where g is an N +1 element vector; the time-dependent group probability

. o (t') is then given by the weighted sum:

m‘qvn me‘qJ (22)

This initial condition could be useful to model variation in the initial number of substrate molecules
due to uncertainty introduced by experimental error or else due to the intrinsic noise in the reaction
mechanism generating the substrate. Note that if g, = d,,,0, one clearly recovers the analysis shown
above. For the rest of the paper we only consider the initial condition pg,(0) = d,, o, specifically where
all enzymes are initially unbound to the substrate, but note that the analysis that follows can be easily
extended for more general initial distributions.

In the beginning of this derivation, we stated that the main assumption is that ke is sufficiently
small. This statement can be made more precise as follows. From Fig. ii) it is clear that the exit
from group m can only occur when the enzyme is bound to substrate, i.e., from state (N —m — 1,0).
Now given that we are in this state, it follows that only two reactions can occur: either a reaction
which causes a group change, i.e., (N —m — 1,0) — (N —m — 1,1) which occurs with rate ks or a
reaction that leads to no group change, i.e., (N —m — 1,0) — (N — m, 1) which occurs with rate k.
Hence the probability of leaving the group is ka/(k1 + k2), from which follows that the microstates in
each group will achieve quasi-equilibrium if ks < k1. Therefore, this is the condition under which our
method provides a good approximation to the distribution of substrate molecules at all times.

We test the distributions predicted by Eq. against the SSA in Fig. [QJA(i-iii) and Fig. 2B(i-iii).
In Fig. [2A(i-iii) we show that the solution is accurate for small N = 8, over a time range from ¢’ = 1
near the initial condition, to ¢ = 12 close to the absorbing state, where the validity criterion ki > ko
holds. In Fig. (i—iii) we observe that our solution agrees similarly well to the SSA for larger values
of N. For a more general comparison of the exact solution to SSA through time, we can compute the
mean and standard deviation from Eq. :

Ny = Z nP(n;t’), (23)

o(t') = <Z n2P(n;t) ) — (n(t"))2. (24)
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Figure 2: Comparison of the analytic time-dependent probability distribution of substrate molecules for the enzyme
reaction in with one enzyme molecule, i.e., M = 1, and N initial substrate molecules to the distribution obtained
from the stochastic simulation algorithm (SSA) |§| Note that the analytic solution is given by Eq. together with
Egs. @D and . In all cases we enforce ki/k2 > 1 such that the quasi-equilibrium assumption behind the QEA is
justified. We show the time-evolution of the distribution for substrate numbers, from near the initial condition to near
the absorbing state, in two cases: A(i-iii) is for N = 8, ko = k1 = 103, k2 = 1, meaning that k = k1 /ko = 1. B(i-iii) is
for N = 50, and all rate parameters as in the previous case. Note that the analytical solution (green lines) matches the
SSA (black dots) for all times, for both a small and large initial number of substrate molecules. In A(iv) and B(iv) we
show the corresponding plots of the time-evolution of the mean (n) and of the standard deviation o of the distributions
of substrate molecules, as predicted by our theory; these are compared with the mean calculated from the SSA and from
the deterministic rate equation (n), given by Eq. @ Note that the deterministic mean is a better approximation to
the stochastic mean for larger N. As shown in B(iii), and mildly in A(ii), the distribution can bimodal at intermediate
times. Each SSA probability distribution is constructed from 10° individual reaction trajectories.
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The stochastic mean number of substrate (n) can then be compared to the deterministic solution mean
number (n)q from Eq. (6).

In Fig. 2A(iv) we plot the evolution of the stochastic and deterministic mean substrate numbers
in time, and compare them to the SSA for V =8 and £k = 1. We also show the standard deviation
about the mean, i.e., (n) &0, where we have dropped the time dependence for brevity, given in the blue
envelope. Clearly, (n) from Eq. matches the mean predicted by the SSA for all times, whereas the
deterministic mean (n), performs especially poorly (i) very soon after ¢’ = 0 and (ii) in the region where
(n)a < 1. Both of these discrepancies are explained by the fact that deterministic analyses consider
molecule number to be continuous. The explanation of (i) follows by considering the system after quasi-
equilibrium has been reached between the states (IV, 1) and (VN —1, 0) after a time ¢/, ~ 1/min{koN, k1 }
which is small under the rapid equilibrium assumption. Because of the discreteness of the substrate
molecules, (n) after a time t/, < 1 becomes an average over n = N and n = N — 1 weighted by the
quasi steady-state probabilities p{%, and pf, respectively, hence the step-like drop in (n) at t' = t;
(n)q does not show this step-like drop at ¢’ = ¢/, because it does not consider molecular discreteness,
hence the deterministic QEA does not capture the initial transient. Averaging accounts for this initial
transient, but not under the same definition as discussed in |4]; the initial transient captured here being
the time between ¢’ = 0 and where quasi steady-state is achieved in group 0 at ¢’ = ¢, (this definition
also follows for the next section on multiple enzymes). The explanation of (ii) follows since molecular
discreteness is very important where (n) = O(1), and properly accounting for it leads to differing
dynamics for (n) in this region, whereas the behaviour of (n), does not change compared to (n)q g 1.
As we shall see later, increasing the number of enzyme molecules removes this discrepancy between
the stochastic and deterministic means, highlighting that the discrepancy seen here is because we do
not consider enzyme molecules to be discrete in the deterministic analysis. Comparing Fig. (iv)
(with N = 8) and Fig. 2B(iv) (with N = 50), it is clear that as N becomes large, the deterministic
mean becomes a better approximation of the true mean.

From Fig. 2B(iii) we observe that the distribution of substrate molecule numbers can be bimodal
at intermediate times (there are two peaks at n = 0 and n = 6 at ¢’ = 45). This bimodality, though
less conspicuous, can in fact be also observed in Fig. (ii) with peaks at n = 0 and n = 2. From Fig.
RA(iv) and B(iv), we can see that in both cases the bimodality occurs at a time ¢’ when (n) — o ~ 0,
i.e., when the fluctuations are large enough to cause frequent transitions to the absorbing state. This
type of dynamical phase transition (which we shall refer to as transient bimodality), from a unimodal
distribution to a bimodal one and then back to a unimodal one, as time progresses, has also been
recently observed in genetic feedback loops [39] and is known in non-biological systems [45,146]. We
will discuss this phenomenon more extensively in later sections.

3.2 Multiple enzymes

We now extend the solution to the enzyme system to the case where initially there are N free
substrate molecules and M free enzyme molecules with the constraint of substrate abundance, i.e.,
N > M. Note that the solution to the system with M > N follows as a special case of the N > M
system, discussed at the end of this section.

We proceed in solving this system as we did in the single enzyme case: assuming ko is sufficiently
small, we group the fast processes together to form N + 1 groups between which the transitions are
significantly slower than those between the fast internal states of an individual group. The Markov
chain describing the system split into groups is shown in Fig. Our task is then to find (i) the
equilibrium probabilities p?)cm of being in each fast internal state ¢ given we are in group m and (ii)
to find the time-dependent probability p9 (t) of being in group m. Knowledge of both (i) and (ii) will
allow us to construct the distribution of interest, P(n;t).

We begin by finding the probabilities pgﬁn and revise its definition for the multiple enzyme case:
piS, is the probability that if the system is in group m it has M — i free enzymes. Now, finding p5,
for any group 0 < m < (N — 1) is more complicated than was the case for a single enzyme system,
since there we had only two fast internal states in each group. To proceed we consider the following
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Figure 3: Illustration showing the transitions between the discrete microstates of the enzyme system with initially M
enzymes and N substrate molecules where N > M. Fast processes are aggregated together, with each set of fast processes
corresponding to a group. The label ‘group m’ denotes the set of fast processes with N — m free substrate molecules
when all enzymes are free. Groups 0 < m < N — M have M + 1 fast internal states, whereas groups N — M <m < N
have N —m + 1 fast internal states. Note that as ¢ — co we are guaranteed to be in the absorbing state (0, M).

Markovian dynamics of a system with L + 1 possible microstates:

AN N N (25)

k1,0 k2,1 kr,L—1

One can then write the master equation for this dynamical system in matrix form:
WPy = M- Py, (26)

where P, = (P;(0), Pi(1), ..., P.(L)), P:(i) is the probability of being in microstate  at time ¢ and

—ko,1 k1,0
kor  —(kio+ki2) ka1
M = k1,2 —(k21 +ko3) kso . (27)

kr—1. —kr,r—1

Enforcing the quasi-equilibrium condition, d;(-) = 0, converts the system of L + 1 ODEs in Eq. (26))
into a system of L+ 1 simultaneous equations in the equilibrium microstate probabilities P(i), given by
M:-P = 0. One can explicitly solve this set of simultaneous equations under the constraint ), P(i) = 1,
yielding the probabilities:

(H§:1 kj—l,j) x (HJL:i+1 kﬂ'vj‘l)
Yict [(H;:l ’fj—l,j) x (H]L=z'+1 ’%—1” |

P(i) = (28)
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Using this result we can find the quasi-equilibrium probabilities for each group shown in Fig. [3] First,
we consider the groups 0 < m < N — M, each with M + 1 fast internal states as these groups contain
more (or the same number) free substrate molecules than enzymes. Taking the specific example of group
m = 0, we see that we have a total of M+1 microstates, i.e., L = M, k;_1; = ko(N—(j—1))(M—(j—1))
and kj ;1 = jki, with 1 < j < M. Identifying p{{) with P(i) in Eq. , we find that:

o RRTHIIL O - G- 0)0 - G-} T o)
T Trak IV = G = ) = G— )Y {1 )]

The result can be easily generalised for groups 0 <m < N — M and 0 < < M:
— 7 . . M .
Ty (V= m) = G = D)YM = G = 1)} x {TT} i }

qe
pi,m_ M

Sy [ Ty (O —m) = (= 1) = G = 1)} x {TT20 5}

where we have re-introduced k& = k;/ko. The dynamics of groups N — M < m < N are slightly
different as they contain fewer substrate molecules than enzymes. These groups correspondingly have
N — m + 1 fast internal states, i.e., 0 < i < N — m. This leads to quasi-equilibrium probabilities of

: (30)

the form:
. Ty (V= m) = G = D)) = (G = D) p < {150}
pg,m = ZN-m - ; ) ) Nem . ) (31)
SN [ T (= m) — = ) = G = 1) } =< {T15T 7]
Finally, by defining
g(m) = ©(m — (N = M)) x (m — (N = M)) , (2)

where ©(m — (N — M)) is the Heaviside step function, we can write down a joint expression for all
groups 0 <m < N and 0 <i < M — g(m):

e Zi,m
p?;n = z (33)
with
) M—g(m)
Zm =k [N =m) =G —1))M =G -1)) p xS ] dy¢» (34)
Jj=1 Jj=i+l
M—g(m)
Zn= > Zim (35)
1=0

We now proceed to calculate p?, (t). From Fig. [3| we observe that the transitions between the groups
are described by the master equation identical in form to Eq. . However, the transition rates a,,
in this case are different, as the group m can be reached from any of the M — g(m — 1) microstates
in the group m — 1 (excluding only the microstate with M free enzymes) and we must also take into
account the quasi-equilibrium probabilities of being in the corresponding microstate. It follows that
the transition rates can be defined as:

M—g(m—1)
Ay = Z npy o1 = —ko(In(Zm-1)), 1<m < N +1 (36)
n=1
k1F1(1—-M;—m—M+N+3;—k)
_ M x ((—m—]M:—]\I/'+2)1F1(—M;—m—J\/I+N+2;—k) - 1) ) m< N —M+1,
- k1Fi(m—N;m+M—-N+1;,—k)
(N—m+1) X ((m+M17]\1/)1F1(m7N71;m+waN;fk) - 1) ;o m>N—M+1,

11
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where 1F1(a,b,c) is the confluent hypergeometric function. As the dynamics between the groups
are identical to the single enzyme case, pZ, (¢') has exactly the same form as Eq. but with the
eigenvalues of Q being given by \; = —a;, where the a; are now defined in Eq. (36]).

We can now obtain the probability distribution P(n;t), which requires us to find all microstates
in the system containing n free substrate molecules. From Fig. [3] we see that for substrate numbers
n, where 0 <n < N — M, there are M + 1 corresponding microstates given by (n,0), (n,1), ..., (n, M)
which respectively belong to groups (N —M)—n,(N—M)—n+1,..., N —n. Therefore, the distribution
has the form:

M

P(n;t)=>" PN sy PNy () s where 0<n <N — M. (37)
7=0

In the case of N — M < n < N, there are N — (n — 1) microstates containing n substrate molecules,
explicitly defined as (n,M — (N —n)),(n,M — (N —n) +1),...,(n, M) and associated with groups
0,1,..., N — n respectively. Hence we have:

N—n

P(n;t') =Y PN i) PR (may(t') s where N —M <n < N. (38)
7=0

Finally, using the function g(m) previously defined in Eq. (32), we obtain:

M—g(n)

P(n;t') = Z PN mafy PN—(niy (') s where 0 <n <N, (39)
=0

which fully describes the time-dependent solution for the multiple enzyme system N > M with the
initial condition pZ,(0) = d,,,0. Note that the solution can also be extended to a more general initial
distribution in the same way as was done for the single enzyme system in Section The equations
for mean number of substrate, (n(t')), and standard deviation, o(t’), at rescaled time t’ are the same

as in Egs. —, but where P(n;t’) is now given by Eq. .
T - T T~
p < Initial state N Vs \
(N, M) (N —1,M)

\ / \
lekoNM /l/ k HkO(N— 1)M
5 -
(N—-1,M —1) N-2M-1) -

I (

{ ol
' |
| 2k, ‘k‘o(N— I)M 2k1Hko(N—2)(M— 1)
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i ke i
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Figure 4: Illustration showing the transitions between the discrete microstates of the enzyme system with initially
M enzymes and N substrate molecules where M > N. Fast processes are aggregated together, with each set of fast
processes corresponding to a group. The dynamics of the groups 0 to N can be mapped onto the dynamics of groups
N — M to N in the system with N > M (shown in Fig. . See text for discussion.

Now consider a multiple enzyme system which initially contains fewer free substrate molecules than
enzymes, i.e., M > N. The Markov chain describing the transitions between the microstates of this

12
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system, shown in Fig. [4] has similarities to that for the system with N > M. Specifically, if we replace
N by M in groups 0 to N in the M > N case of Fig. [4] then we exactly recover groups N — M to N
in the N > M case of Fig. [3| This mapping implies that the dynamics of the system with M > N are
correctly described by Eq. due to the utility of g(m). Therefore, Eq. is a valid solution for
any positive integer values of N and M.

As for the single enzyme case, we can make the initial statement that ko must be sufficiently small for
the derivation to hold, more precise. Suppose we are in the microstate (n,n.). There are then 3 possible
reactions which can occur: (i) (n,n.) = (n,n.+ 1) with rate ko(M — n.), (i) (n,n.) = (n+1,n.+1)
with rate k(M —n,.) and (iii) (n,n.) = (n—1,n. — 1) with rate kg n n.. Only the first reaction leads
to a transition out of the current group of microstates (since its associated with the product formation
step) and hence the probability of exiting the current group is ko (M —n.)/((k1+ke)(M —ne)+ko n ne).
It is easy to prove that the latter is always less than ko /(k1+k2). Hence quasi-equilibrium of microstates
in each group is possible when ko/(k1 + k2) < 1. In other words, generally the closed-form solution
for the distribution of substrate numbers will be accurate for all times provided ky > ko.

In Fig. [pA(i-iii) and [pB(i-iii) we show agreement between P(n;t') from Eq. and the SSA
where k1 > ko is enforced, over times ranging between the initial time, when the number of substrate
isn = N and the absorbing state at n = 0 for large times, for cases M > N and N > M respectively. In
Fig. [fA(iv) and[5B(iv) we plot the mean and standard deviation of our analytical distribution ((n), o),
the deterministic mean (n)y and the mean predicted by the SSA for M > N and N > M respectively.
The SSA prediction of the mean is shown to be in exact correspondence with (n) when the QEA holds.
Again, as previously discussed in Section (n)q differs from (n) for small times due to the molecular
discreteness of substrate. However, the discrepancy seen for (n) < 1 is no longer observed, highlighting
that the discrepancy seen in Fig. (iv) originates from the molecular discreteness of the enzyme
species. We additionally note the presence of transient bimodality in Fig. (ii) similar to that seen in
the single enzyme case from Section note that the parameter set chosen for Figs. [5JA(i-iii) does not
exhibit transient bimodality. The parameter space of transient bimodality is explored later in more
detail in Section[3:2:2] In Fig. [6] we demonstrate using stochastic simulations that, as predicted by our
theory, the requirement for the stochastic QEA to be a good approximation relies only on satisfying
the condition k1 > ko, and does not require any additional constraint on the value of k.

3.2.1 Time-dependent solution for the probability distribution of enzyme molecules

Having solved the master equation for the group dynamics, it is relatively straightforward to extract the
time-dependent probability distribution for the number of free enzyme molecules, P(ng;t’), and hence
the distribution for the number of enzyme-substrate complexes, P(n¢c;t’). As previously, we begin by
considering the N > M system depicted in Fig. We observe that the groups 0 < m < N — M all
contain a microstate with ng free enzyme molecules, where 0 < np < M, as enzymes are saturated
with substrate. However, for groups N — M < m < N, free enzymes become more abundant than free
substrate molecules, so that microstates containing 0 < ng < M enzymes are found only in groups
N—-M<m< N —(M-—ng). Note that the quasi-equilibrium probability of having ng free enzymes
in group m is p?\?[ﬂm’m, given by Eq. , and the group probabilities pg, (¢') are identical to the
ones defined for the distribution of substrate number in Eq. . Therefore, the distribution of free
enzymes takes the form:

N*(M*TLE)
P(ng;t) = Z p}z\jin&jp?(t’) , 0<ng <M. (40)

=0

This expression is valid for any positive integer values of N and M, again due to the mapping between
the Markov chains of N > M and M > N systems, described above. Moreover, for the N < M
system, the definition of an empty sum as zero ensures that non-physical values of ng are not allowed,
i.e., the number of bound enzymes cannot be larger than N given the chosen initial conditions, so
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Figure 5: Comparison of the closed-form time-dependent probability distribution of substrate molecules, for the enzyme
reaction with multiple enzyme molecules M, and initial substrate molecules N, to the distribution obtained from the
SSA. Note that the closed-form solution is given by Eq. . In A(i)-(iii), N = 15, M = 20,k = 102 and we simulate
the SSA using ko = 1, k1 = 102 and k2 = 1; the theory (green lines) agrees with the SSA since the quasi-equilibrium
assumption is justified, i.e., k1 /ko > 1. In B(i)-(iii), N = 60, M = 10,k = 10~ ! and we simulate the SSA using ko = 103,
k1 = 102 and k2 = 1; again the theory is in agreement with the SSA since quasi-equilibrium is justified. Note that these
results show that the theory accurately describes both the N > M and the M > N cases. In A(iv) and B(iv) we show
the corresponding plots of the time-evolution of the mean (n) and of the standard deviation o of the distributions of
substrate molecules, as predicted by our theory; these are compared with the mean calculated from the SSA and from the
deterministic rate equation (n)4 given by Eq. @ The parameter set in B is shown to be transiently bimodal in B(ii),
whereas for the parameter set describing A transient bimodality is not observed. Each SSA probability distribution here
is constructed from 10% individual reaction trajectories.
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Figure 6: Testing the conditions necessary for the accuracy of the stochastic QEA. The three panels show how the
accuracy of the closed-form time-dependent solution changes as we vary ko/k2 and ki /k2 whilst keeping k = k1 /ko fixed
to 102, for initial substrate number N = 102 and total number of enzyme molecules equal to M = 25. The green line
denotes the stochastic QEA solution from Eq. ; SSA 1 (black dots) denotes the SSA prediction with parameters
ko/ka = 1, k1/ka2 = 10% calculated over 10* trajectories; SSA 2 (blocked red region) denotes the SSA prediction with
parameters ko/k2 = 1072, k1/ks = 1 calculated over 10° trajectories; SSA 3 (blocked blue region) denotes the SSA
prediction with parameters ko/k2 = 10, k1 /ka = 103 calculated over 103 trajectories. It is clear that SSA 2 is poorly
predicted by P(n;t), which is expected as k1 = O(kz2). Since P(n;t) is in equally good agreement with SSA 1 and SSA
3 it can be seen that the only requirement is k1 > ko, without requiring additional constraints on kg.
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Figure 7: Comparison of the closed-form time-dependent probability distribution of enzyme-substrate complexes, for
the enzyme reaction with multiple enzyme molecules M, and initial substrate molecules N, to the distribution
obtained from the SSA. Note that the closed-form solution is given by Eq. . In A(i)-(iii), N = 15, M = 20,k = 10?
and we simulate the SSA using ko = 1, k1 = 102 and k2 = 1; In B(i)-(iii), N = 60, M = 10,k = 10~ ! and we simulate the
SSA using ko = 103, k1 = 102 and ko = 1 (parameters are the same as in Fig. . In both cases, the theory (green lines)
agrees with the SSA since the quasi-equilibrium assumption is justified, i.e., k1/k2 > 1. In A(iv) and B(iv) we show
the corresponding plots of the time-evolution of the mean (n¢) and of the standard deviation o¢ of the distributions
of enzyme-substrate complex, as predicted by our theory; these are compared with the mean calculated from the SSA.
Each SSA probability distribution here is constructed from 10° individual reaction trajectories.
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that P(ng;t’') =0 for ng < N. Finally, as nc = M — ng, the probability distribution of the enzyme-
substrate complex follows trivially:

N-— nc
P(nc;t Z ple it 0<nc <M. (41)

In Fig. [JA(i-iii) and [7B(i-iii) we confirm that P(nc;t’) from Eq. and the SSA are in good
agreement for enzyme systems with M > N and N > M respectively over the whole time-range from
near the initial condition to the absorbing state, where again ki > ks is enforced (using the same
parameters as in Fig. [5]). Note that the transient bimodality is seemingly not manifest in P(n¢;t’) at
the points in the parameter space where it is observed for the distribution of substrate number (c.f.
Fig. pB(ii) and [[B(ii)). In Fig. [7A(iv) and Fig. [B(iv) we plot the mean and standard deviation of
our analytical distribution for the enzyme-substrate complexes ((n¢) and o¢), and the mean predicted
by the SSA for M > N and N > M respectively. The SSA prediction of the mean matches (n¢) for
all times further validating our solution, given that the QEA condition holds.

3.2.2 Bimodality

In Fig. [SA(i)-(iii) we explore further the transient bimodality observed in Figs. PJA(ii), 2B(iii) and
5B(ii). Namely, we investigate how the strength of the bimodality varies with the parameters N, M
and k using the stochastic QEA solution from Eq. . Each point on the heatmap in Fig. IA (iil)
shows, for a particular parameter set, the maximum of the strength of bimodality calculated over the
entire time course from ¢' = 0 to a time near the absorbing state of n = 0. We utilise the measure of
bimodality strength introduced in [39], which is explicitly given by:

o Hlow - Hvallcy

42
Hyign (42)

where Hioy and Hyign are the heights of the smallest and largest magnitude modes respectively, and
H ey is the height of the valley between the modes. For bimodal distributions ~ has a value between
0 (no bimodality) and 1 (maximum bimodality), and for monomodal distributions is defined as zero.
This definition of bimodality strength considers the ‘most bimodal” distributions to have modes of
equal height with a deep valley between them. In order to produce each heatmap we devised a simple
algorithm, as follows. For each parameter set {N, M, k}:

1. Calculate the estimated time to reach the absorbing state which provides us with the time range
over which the transient bimodality search will be conducted. This can be estimated from the
deterministic mean by solving Eq. @ for ¢’ = kot which gives us the required time range Ty,:

(n)q
N K (n)qe &
Ty = = Pojog [ 124 F 4
‘M M Og( N ’ (43)

where we set (n)y = 1072, which was chosen small enough such that transient bimodality for all
parameter sets was accounted for.

2. Choose the number of iterations, I, over which to check if the distribution is bimodal. In our case
we chose I = 400. This gives the set of times over which we check for bimodality as t; = iT, /I
for1 <i<I.

3. Define a variable denoting the maximum bimodality measure k¢ which is initially set to zero. For
each t; find the number of peaks in the distribution given by Eq. for the stochastic QEA,
and if two peaks are detected, calculate the bimodality strength « from Eq. . If kK > Ko then
set kg = k. Do for all t,,.
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Figure 8: Heatmaps elucidating the regions of parameter space where transient bimodality is observed using the
stochastic QEA solution (A(i)-(iii)) from Eq. and the discrete stochastic MM approximation (B(i)-(iii)) given by
Eq. @) Note that kg is a measure of how bimodal is the distribution of substrate molecules across the timecourse of
the reaction (see text for details). Three parameter regimes are considered: N vs M with k = 1 (left), N vs k with M =5
(middle) and M vs k with N = 30 (right). The plots C(i)-(iii) show the closed-form distributions of the stochastic QEA,
P(n;t'), and the discrete stochastic MM approximation, P(n;t')(™M) | at the times when the stochastic QEA exhibits
maximum bimodality, for cases with k = 1, N = 80 and (i) M = 1, (ii) M = 5 and (iii) M = 15 (highlighted on
the heatmap A(i) as the points a, b and c¢ respectively). The corresponding SSA predictions with ko/kz = 102 and
k1/ka = 10? are also included (constructed from 10® individual reaction trajectories). Note that the two distributions
(discrete stochastic MM approximation and stochastic QEA) are almost identical in C(i), but the difference becomes
more pronounced in C(ii) and C(iii) with increasing M.
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4. Once all iterations of this process are complete, the value of kg will denote the largest value of
the transient bimodality measure for all probability distributions at ¢ € t;. We take kg as the
largest value of transient bimodality encountered on the time course.

The results obtained using this algorithm are summarised by the three heatmaps in Fig. (i)—(iii).
The distribution of substrate molecules corresponding to the time at which the maximal bimodality
strength kg occurs for points a,b,c in Fig. [SJA(i) are shown by the solid blue lines in [BC(i)-(iii),
respectively. Note that the bimodality is most pronounced in C(i), less in C(ii) and least in C(iii), in
accordance with the value of k¢ in Fig. (i); this validates the use of Eq. as an accurate measure
of the strength of bimodality. From Fig. (i)—(iii), it is clear that bimodality is most pronounced
when the initial number of substrate molecules N is significantly larger than the total enzyme number
M and also when k is small, i.e., when the frequency of enzyme-substrate binding is much larger than
the frequency of complex dissociation into enzyme and substrate. Note that generally the frequency
of enzyme-substrate binding is inversely proportional to the volume of the compartment [6] in which
the bimolecular reaction occurs and hence the transient bimodality is likely observable inside cells.

4 The discrete stochastic Michaelis-Menten approximation

We next consider how the analytical solution that we obtained for the reaction system using a
combination of averaging and linear algebra techniques in Section [3.2] compares with the solution of a
commonly used reduced CME for enzyme kinetics.

The reduced CME for single substrate enzyme kinetics can be heuristically justified as follows (for
a derivation see [12]). Under the QEA approximation, from the deterministic analysis in Section |2} it
follows that the rate equation describing the time-evolution of the substrate concentration is given by:

dISM1)] _ VinaalS(1)]
dt k4 [S(t)]

(44)

Note that V40 = koM, where M is the total number of enzyme molecules. Hence, species S can be
seen as changing into P by means of an effective first-order decay reaction with rate given by the right
hand side of Eq. . One common way to approximately describe the enzyme reaction stochastically
consists of writing down an effective propensity describing the decay of substrate, i.e., we postulate
that if there are m substrate molecules at time ¢ then the probability that a reaction S — P occurs
somewhere in a unit volume in the time interval [¢,¢ + dt) is approximately given by a,,dt where
A, = Vinazm/(k +m). This is the discrete stochastic Michaelis-Menten (MM) approximation. Hence
if we choose an initial condition of N substrate molecules, it follows that a corresponding effective
CME is given by:

Ot PN_m(t) = am+1PN—(m+1)(t) — amPn_m (1), (45)

where Py _,,(t) is the probability that there are m substrate molecules at time ¢ (0 < m < N). This
CME can be conveniently written as:

O P(t)=Q-P(t) (46)

where P(t) = (Po(t), Pi(t), ..., Pn(t)) and Qisa (N +1) x (N +1) lower bidiagonal matrix whose only
NG D) Vimax 510 Q. y s = an gy = NG D)Vinax g
k+(N—(i—1)) i+1, N—(i—1) k+(N—(i—1))

1 <i< N+ 1. To our knowledge this master equation has not been analytically solved before, likely
because a standard reference in the field of stochastic processes [7] states that for the one variable,
one-step master equation, there are no general methods of solution except in the time-independent
situation. However, using the method in |34] that was used to solve the master equation for the group
dynamics for the single enzyme, the solution is found to be given by Eq. , modified to take into

non-zero elements are Q;; = —an_(i—1) =
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account the fact that Py_, is equivalent to the probability of being in the group N — n:

0, n > N,
Ay _
Py _n ()0 = T n=No )
—n TTN—"n (M N—-n+1 Hn
e | Y g Ll B ET R
J=1,j#k\"k J

Note the superscript (M) specifying that the solution is for the CME (46)) resulting from the discrete
stochastic MM approximation. Here, we have again rescaled the time ¢’ = kot, and )\%W) are the

eigenvalues of Q, which are simply given by the diagonal elements:
A _ M(N —(m—1))

= — 1<m<N+1. 4

We shall denote the time-dependent mean and standard deviation of the distribution Eq. by
(n(t"))M) and o (t') M) respectively. Note that the distributions for the number of free enzymes/enzyme-
substrate complexes cannot be obtained under the discrete stochastic MM approximation as the en-
zyme number fluctuations are not taken into account, in contrast to the Stochastic QEA from which
enzyme/enzyme-substrate complex distributions can be obtained (see Section .

4.1 Comparison with the stochastic QEA

We used the algorithm described in Section (with the difference that in step 3 we use Eq.
instead of Eq. ) to explore the regions of parameter space where the discrete stochastic
MM approximation predicts the distribution of substrate molecules to be bimodal. The results are
summarised by the three heatmaps in Fig. (i)—(iii). By comparison to the heatmaps generated using
the stochastic QEA in Fig. (i)—(iii), it is clear that the discrete stochastic MM approximation tends
to predict bimodality where in reality there is none. Notably, the bimodality predicted by the discrete
stochastic MM approximation is independent of M (see Figs. [8B(i) and B(iii)) since M only acts
to scale the eigenvalues representing the system’s relaxation timescales in Eq. ; in contrast, the
stochastic QEA predicts bimodality which is strongly dependent on M (see Figs. [SA(i) and Afiii)).
These issues with the discrete stochastic MM approximation are also clearly discernible in [§C(i)-(iii),
where we compare the distribution of substrate molecule numbers predicted by this approximation
(green line) with that predicted by the SSA (dots) and the stochastic QEA (blue line).

A different way to contrast the discrete stochastic MM approximation and the stochastic QEA
involves comparing the eigenvalues of the transition matrix. In the single enzyme case where M =1,
one observes that the eigenvalues predicted by Eq. exactly match the eigenvalues predicted by
averaging for the group dynamics in the single enzyme case from Eq. . However, note that
the group dynamics is not precisely the same as the substrate dynamics which is determined by
two microstates in different groups. For example the averaging technique implies that there are two
microstates that contain n substrate molecules: (n,0) and (n,1) associated with groups N — (n + 1)
and N —n respectively. However this subtlety is not important if N > 1 and hence the CME resulting
from the discrete stochastic MM approximation will practically lead to the same results as averaging
for most cases of interest.

The comparison is more complicated in the case of multiple enzymes (M > 1) and abundant
substrate N > 1, which we explore in Fig. |§| (for N = 100 and k = 1), showing how the discrete
stochastic MM approximate solution differs to that from averaging as the ratio M/N is increased.
We first consider the case where M/N = 1/20, and we see that (n)™) in Fig. (i) is a good
approximation of (n) for the time range of interest, i.e., from the initial state at N = 100 to a time
t' = 30 where both (n)(™) and (n) are small quantities. Note that the error in the standard deviation
for this parameter set, shown in EIA(ii)7 is also small. The slight difference in the relaxation dynamics
is corroborated by small differences in the eigenspectra of A, (given in Eq. again noting that
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Ai = —a;) and A (given by Eq. (48))) which can be appreciated in Fig. @A(iii). We additionally
plot the deterministic mean as predicted by Eq. @ which clearly shows the relaxation dynamics of
(n)q accurately approximates (n) for short times only.

M _ 1 M _ 1
N — 5 N — 2
B(i)
102 102 102
1 1 1
"z
2 ) | )
10 10 Bi) 10 s
8t 8
4
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a(t)
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Figure 9: Comparison of the discrete stochastic MM approximation and the exact result from averaging in the quasi-
equilibrium limit. A(i), B(i) and C(i) show log-scale plots of (n), (n)(™) and (n)4 for N = 100, k =1 and M =5 (i.e,
M/N =1/20), M = 20 (i.e, M/N = 1/5) and M = 50 (i.e, M/N = 1/2) respectively. The corresponding SSA results
with ko/ke = 102 and kj /k2 = 102 are also included (constructed from 10% individual reaction trajectories). A(ii), B(ii)
and C(ii) are the corresponding plots of the standard deviations o (¢'), o(t')*) and that of SSA. A(iii), B(iii) and C(iii)
show the eigenspectra for each differing M/N; each symbol corresponds to an individual eigenvalue (since the spectra
are discrete) and the dashed lines are only present to aid the reader.

In Figs. (1) and C(i) we see that as M /N increases to 1/5 and 1/2 respectively, (n)(™) becomes
a worse approximation of (n), with (n)*) tending more to (n)g than (n). The corresponding error
in the standard deviation, as shown in [9B(ii) and C(ii), also follows that of the mean, increasing with
M/N. There are two main reasons for this disagreement:

1. If M is comparable to N then initially there will be large fluctuations in the number of enzyme
molecules, which are taken into account by the averaging solution (since it allows for switching
between microstates in each group) but not by the CME resulting from the discrete stochastic
MM approximation (since the total number of enzymes only appears as a constant through
Vinaz)- This is most clearly seen in Fig. [0IC(i) where we observe a large discrepancy between (n)
and (n)M) at ¢/ = ¢/, < 1 (where t. is the time over which the initial transient occurs and is
indistinguishable from ¢ = 0 in the figure).

2. Where M/N = O(1), the eigenspectra A, and A show a large disagreement (see Figs. (iii)
and C(iii)). This leads to the misprediction of the relaxation dynamics of (n)(*), which better
represents the dynamics predicted by (n)g rather than of (n), for both small and large times.
This is due to the fact that the effective Michaelis-Menten propensity in the reduced CME Eq.
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(46) is of the same form as the effective rate from the deterministic rate equation given by Eq.
().

In summary, the solution of the CME obtained by the discrete stochastic MM approximation is a
good approximation to the solution of the CME derived by averaging provided N > 1 and N/M > 1.

5 Multi-substrate mechanisms

Thus far we have considered the simple enzyme mechanism shown in where an enzyme can catalyze
a single type of substrate. However in nature, it is common for one enzyme species to be able to
catalyze multiple substrates [47]. Multi-substrate reactions follow various mechanisms that describe
how substrates bind and in what sequence. One such common mechanism is that of ternary complex
formation, whereby two substrates bind sequentially to an enzyme to form a complex with three
molecules. An example is the following mechanism involving two substrate species A and B and two
corresponding reaction products, P and @ [47|:

E+A= EA EA+B= EAB, EAB — EPQ, (49)
EPQ — EQ+ P, EQ — E+Q.

Note that here we have assumed an ordered binding mechanism, in the sense that binding of A must
precede that of B. An alternative is a random binding mechanism, wherein either A or B could first
bind the enzyme. We assume that both enzyme-substrate binding reactions and the steps subsequent
to complex formation are fast such that we can consider the simpler reaction scheme:

E+A+B2c* Eipio. (50)
k1

Note that ordered or random binding mechanisms cannot be distinguished within this reaction scheme.
We assume that there are initially V4 molecules of substrate A, Ng molecules of substrate B, where
Ny > Np, and M free enzymes. There exists a relation between the number of species A and B,
denoted n4 and np respectively, which we can write as ng — ng = Na — Ng = Aap. Hence each
microstate of the system is fully specified by (ng,ng). Again the group dynamics where k1 > ko are
given by Eq. but the eigenvalues ), specific to this mechanism are given by:

M—g(m—1)
A== > npl,  =kop(n(Zm_1)), L <m < Np+1, (51)
n=1

where we have now defined

P, = 2, (52)
g(m) =0©(m — (Ng — M)) x (m — (Np — M)), (53)
% M—g(m)
Zim =k [ I(Na=m) = G = D)) (Ng—m) = (G =) =G -1) p x< [ dp. (59
J=1 j=i+1
M—g(m)
Zy = Z Zim- (55)
=0

Using the results for the group dynamics and quasi-equilibrium probabilities, we can then find the
probability distribution for the substrate molecules:

M—g(np)

P(nA’ nB; t/) = 6nA7AAB’nB X Z pq,eNB—(nB-l‘j)p?VB—(nB-i-j)(t/) ) (56)
=0
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where §; ; is the Kronecker delta symbol. This allows us to find the marginal distributions:

M—g(ng)
P(nB;t/) = ZP(’HA,TLB;t/) = Z p‘?,eNB*(nB‘Fj)p!]]VB*(nB‘l’j)(t/)7 (57)
nA 7=0
P(na;t') = P(ng + Aap;t'). (58)
. : . . . 0.1
0.2 (1) =1
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Figure 10: Comparison of the analytic distribution of two types of substrate species A and B, involved in the reaction
mechanism , against the distributions obtained using the SSA. Note that SSA A and SSA B denote the SSA
predictions for species A (red dots) and species B (green dots), respectively. We plot the probability distribution
P(na;t') (red line; from Eq. ) and P(npg;t’) (green line; from Eq. ) for four different time points (time is non-
dimensional as in previous figures). The initial number of substrate molecules are N4 = 60, Ng = 40 and the number of
enzyme molecules is M = 5; the rates are ko/ke = k1/ka = 10% which enforce the QEA. The analytic distributions are
in good agreement with the respective SSA distributions. Note that the absorbing point of A is n4 = 20 while that of
B is np = 0; this is dictated by the difference between the initial number of substrate molecules Ny — Np = 20. Each
SSA probability distribution is constructed from 10° individual reaction trajectories.

In Fig. [I0] we compare the analytic marginal distributions against the SSA and as expected we find
very good agreement when the rate parameters are consistent with the QEA. As previously for the
single substrate mechanism, the distributions of A and B molecules display bimodality at intermediate
times.

6 Discussion

In summary, we have shown using averaging that in the limit of quasi-equilibrium between substrate
and the enzyme, it is possible to reduce the two variable stochastic description of the MM reaction
to that of an effective one variable master equation describing the slow transitions between groups of
microstates. This master equation is subsequently solved exactly, using methods from linear algebra
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and complex analysis, to obtain closed-form solutions for the time-dependent marginal distributions
of substrate and enzyme numbers. We have shown theoretically, and verified by means of stochastic
simulations, that the solutions for the time-dependent marginal distributions are accurate for all times,
provided the probability of complex decay into substrate and enzyme is much larger than the prob-
ability of complex decay into product and enzyme. To our knowledge, this is the first approximate
closed-form solution for the MM reaction for an arbitrary initial number of substrate and enzyme
molecules; previous work derived closed-form solutions for the case of a single enzyme molecule [91[10]
or else considered reactions with multiple enzyme molecules but focused on deriving expressions for
the turnover rate [25[30L[33]. We have also shown how the same procedure can be used to obtain the
solution of more complex enzyme mechanisms such as those involving the catalysis of multiple types
of substrate by the same enzyme species.

For the MM reaction, we have compared our closed-form solution with that obtained by the so-
lution of the CME reduced by means of the widely used discrete stochastic MM approximation [12],
where the propensity for substrate decay has a hyperbolic dependence on the number of substrate
molecules. If the initial substrate number N is not much larger than the total enzyme number M, but
the rate constants satisfy the inequality k1 > ko, then the enzyme numbers fluctuations can be large,
even though the rapid equilibrium approximation is valid. In this case, we show that the distribution
predicted by the CME reduced using the discrete stochastic MM approximation is significantly differ-
ent than the one obtained from stochastic simulations, whereas the solution provided by our theory
accurately matches the simulations.

Using the closed-form solution for the time-dependent marginal probability distribution for sub-
strate number, we have found that unexpectedly for a delta function (unimodal) initial condition, the
distribution of substrate numbers can be bimodal at intermediate times, if the initial number of sub-
strate molecules is significantly larger than the total number of enzyme molecules and provided the rate
of complex decay into substrate and enzyme is much less than the rate of substrate and enzyme bind-
ing. We note that the latter rate in the CME formulation is inversely proportional to the compartment
volume (since the encounter rate of two molecules decreases with increasing volume [6]), and hence
our results imply that in the limit of small volumes (taken at constant initial number of substrate and
enzyme molecules), bimodality of the distribution of substrate molecules is observable. This result is
of particular relevance to understanding enzyme dynamics inside cells where the volume is very small.
Our system with the initial conditions used, can then be interpreted as modelling the enzyme-mediated
decay of substrate molecules, following the production (via translation) of a short burst of substrate
molecules N at time t = 0, provided there is not another burst of substrate expression before the
substrate decays; these conditions are common for many cells where protein production occurs spo-
radically in bursts of short duration [48]49]. We emphasize that the presence of transient bimodality
in the MM reaction system is particularly interesting since it has no deterministic counterpart.
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A Exact time-dependent solution of single enzyme system

The master equation for a single enzyme molecule (given by Eq. ) was first solved by Aranyi and
Toth [9]. As the original paper is rather difficult to find, we present the solution here. The authors
used marginal probability generating functions

N—-1+ng
Gup(z,t)= > 2"P(n,ng,t)  (np=0,1;t>0) (59)
n=0

to transform Eq. @ into the following first-order partial differential equations:

6G08(: b _ —(k1 + k2)Go(z,t) + 8Gg(;’t) ) (60)

%137(:7” = —ko aGl@(Z t) + klzGo(Z t) + kQG()(Z t) .

By a simple substitution one can prove that the solutions have the form:

T - = kl + kg _
G t)=Te k L(z— 1) kot T2 (k1+ko)t 61
O(Zv ) e 0 + klz n k2 e ( )
s - (m) -k2 B (k2 + )\(*’"L))Z- o )\(nz)t
+ Z Z Fl _)\(m) e s
1=1 m=0 L i i
_ _k —
Gi(z,t) =T — Te 7t (1) g—kat _ Pp—(kitka)t (62)
o0 i m)y ] dm+1
- F(m) ko — (kQ + )\E ))Z /\gm)t
B Z Z i \(m) e )
=1 m=0 L —A; i

where

(m)y2 (m)
VP G S R A ) (63)

ko(ka + A™)
Since Go and G, are generating functions of a system with a finite state space, i.e., the number of
substrate and enzyme are bounded quantities (n € [0, N], ng € [0, 1]), they must be polynomials of a
finite degree in z. Hence, the summations in Egs. and must contain a finite number of terms

only, meaning that T’ = T=0 (if k1 # 0). By the same reasoning the ¢, must be positive integers,
ie., 0<gn <N —1, (¢gn=m), then the A\(™ are the roots of a quadratic equation:

A2 (kg + ko(m 4+ 1) 4 ko] A + koko(m +1) =0, (m=0,1,..., N —1). (64)
The constants I" can be determined from the initial conditions:
Go(1,t) + G1(1,t) =1,
Go(2,0) =0, (65)
Gi(z,0) = 2N
The first constraint implies that I'(=1) = 1, while the remaining two lead to a linear algebraic system

for I‘Em) by enforcing the constraints explicitly on each coefficient of the polynomials Gy and G; for

each power of z. However, solving for I‘gm) becomes computationally expensive for larger values of N.
To summarise, the solution has the form:

2 N-1 m
ol LR

AV”)
=1 m=0
2 N-1 o [s = iy + ™) +1 . (66)
m i t
Gi1(z, _1—22201‘ [ NG ] e :
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where

i —

2 2 (67)
/\(m) . k‘o(m—Fl) + k1 + ko \/[k‘o(m—Fl) + k1 +k2]2 _4k0k2(m+1)
2 2 2 '
Finally, the probabilities can be calculated from the generating functions according to
1 0"G,p(2,1)
P = "B . 68
(nng,?) n! 02" =0 (68)
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