

Pott et al., Innate Immunity to CHIKV Infection in Primary Synovial Fibroblasts

1 **Cell-intrinsic Innate Immune Responses against Chikungunya Virus in a Human Ex**

2 ***Vivo* Synovial Fibroblast Model**

3 Fabian Pott^{a,b,e}, Richard J. P. Brown^c, Elena Neumann^d, Thomas Pietschmann^e, and Christine

4 Goffinet^{a,b,e*}

5

6 ^aInstitute for Virology, Charité – Universitaetsmedizin Berlin, Berlin, Germany,

7 ^bBerlin Institute of Health, Berlin, Germany

8 ^cDivision of Veterinary Medicine, Paul Ehrlich Institute, Langen, Germany

9 ^dInternal Medicine and Rheumatology, Justus-Liebig-University Giessen, Campus Kerckhoff,
10 Bad Nauheim, Germany

11 ^eInstitute of Experimental Virology, Twincore Centre for Experimental and Clinical Infection
12 Research, Hannover, Germany

13

14

15 *Corresponding author:

16 Christine Goffinet, Institute for Virology, Charité – Universitaetsmedizin Berlin, Charitéplatz
17 1, 10117 Berlin, Germany, christine.goffinet@charite.de

18 **Abstract**

19 In recent years, newly and re-emerging arboviruses including Chikungunya virus (CHIKV),
20 have caused growing concern due to expansion of insect vector ranges, mediated by the
21 exponential increase in international travel and accelerating climate change. Due to the
22 absence of specific antiviral treatment strategies and a protective vaccine, over 2 million
23 CHIKV cases have been reported since 2005. Long-term morbidity after CHIKV infection
24 includes debilitating chronic joint pain, which has associated health, social, individual, and
25 economic impact. Here, we analyzed the early cell-intrinsic response to CHIKV infection in
26 primary human synovial fibroblasts. This cell type represents a potential source of
27 polyarthralgia induced by CHIKV infection. Synovial fibroblasts from healthy donors and
28 osteoarthritic patients were similarly permissive to CHIKV infection. We observed a CHIKV
29 infection-induced transcriptional profile that consisted in upregulation of several hundred
30 interferon-stimulated genes, in addition to transcription factor-encoding genes and effector
31 genes of proinflammatory pathways. In contrast, IL-6, which mediates chronic synovitis by
32 stimulating neutrophil and macrophage infiltration into the joints, was barely secreted by
33 CHIKV-infected fibroblasts. Finally, the cell-intrinsic response to interferon type I and III
34 treatment of synovial fibroblasts differed from that of immortalized model cell lines. In
35 synovial fibroblasts, CHIKV replication was impaired by IFN- α administered post-infection.
36 In summary, primary human synovial fibroblasts serve as *bona-fide ex vivo* primary cell
37 model of CHIKV infection and provide a valuable platform for studies of joint tissue-
38 associated aspects of CHIKV immunopathogenesis.

39

40 **Keywords:** chikungunya virus, primary cells, fibroblasts, innate immunity, RNA-seq,
41 transcriptomics

42 **Introduction**

43 Chikungunya virus (CHIKV) is an arthritogenic alphavirus of the *Togaviridae* family, which
44 is transmitted by mosquitoes and circulates both in urban cycles between vectors and humans,
45 and in sylvatic cycles [1,2]. Beyond the typically short acute phase associated with febrile
46 illness and rashes, the most severe consequence of a CHIKV infection in humans is
47 excruciating pain in multiple joints. The arthritis-like pain often manifests during the acute
48 phase of the infection, but importantly can persist in a subgroup of patients for months to
49 years [3,4]. The symptoms cause a severe loss of quality of life and high economic costs,
50 which is a burden especially for low-income countries [5]. The underlying pathophysiology of
51 the chronic symptoms remains largely unclear, but appears to associate with circulating IL-6
52 [6] and IL-12 [7]. Furthermore, it may involve persisting viral RNA [7,8], although this
53 scenario has been debated [9].

54 Multiple studies on CHIKV in immortalized model cell lines or *in vivo* in
55 immunodeficient mice have provided valuable information on key aspects of CHIKV tropism
56 and replication, including host factors for entry and replication [10,11], the impact of
57 mutations in the viral glycoproteins on cell entry [12], and cellular restriction factors acting
58 against CHIKV [13,14]. Additionally, studies investigating immune responses to infection
59 have demonstrated that CHIKV nsP2 counteracts host immunity by blocking nuclear
60 translocation of STAT1 [15,16] and inducing a host transcriptional shutdown [17,18].
61 However, it is unclear how relevant these and potentially additionally immunity-subverting
62 mechanisms are in infected patients. *In vivo* studies in mice, though combining innate and
63 adaptive immune responses, require a type I IFN-deficient background, neglecting the impact
64 of type I IFN-mediated antiviral responses [19]. However, type I IFN induced in and acting
65 on nonhematopoietic cells appears to be essential for the control and early clearance of
66 CHIKV *in vivo* [20-22]. Therefore, these systems do not fully recapitulate the cellular

Pott et al., Innate Immunity to CHIKV Infection in Primary Synovial Fibroblasts

67 environment of human primary cells and tissues that are targeted by CHIKV *in vivo*. Primary
68 human cells have been used sporadically, but only few studies properly characterized their
69 unique properties [23-25]. Here, we perform an in depth-characterization of primary human
70 synovial fibroblasts as an *ex vivo* model of CHIKV infection. Synovial fibroblasts have been
71 described to be an aggressive key driver for rheumatoid arthritis by facilitating
72 proinflammatory processes and stimulating the degradation of cartilage [26,27]. We found
73 synovial fibroblasts to support the full replication cycle of CHIKV and characterized their
74 intrinsic immune responses against CHIKV infection and their sensitivity to IFN exposure.
75 Importantly, synovial fibroblasts from healthy donors and the more accessible synovial
76 fibroblasts from osteoarthritic patients displayed very similar phenotypes in the context of
77 CHIKV infection. Prospectively, this primary cell model provides the opportunity to address
78 preclinical questions regarding the physiopathology of CHIKV.

79 **Material and Methods**

80

81 **Cells and Viruses**

82 Human osteosarcoma U2OS cells (a kind gift from T. Stradal, Hanover), human HEK293T
83 cells (a kind gift from J. Bohne, Hanover), human foreskin fibroblast HFF-1 cell (ATTC-
84 SCRC-1041) and hamster BHK-21 cells (ATCC CCL-10) were grown in Dulbecco's
85 modified Eagle's medium - high glucose (DMEM, Sigma-Aldrich) supplemented with 10%
86 heat-inactivated fetal bovine serum (FBS, Sigma-Aldrich), 2mM L-Glutamine (Gibco), and
87 100 units/ml penicillin-streptomycin (Gibco). Primary human fibroblasts were obtained from
88 synovial biopsies from donors suffering from osteoarthritis (osteroarthrosis synovial
89 fibroblasts, OASF) or a non-arthritic background (healthy donor synovial fibroblasts, HSF),
90 purified, and cultured as described before [28]. The local ethic committee (Justus-Liebig-
91 University Giessen) approved the cooperative study (ethical vote IDs 66-08 and 74-05). All
92 patients gave written informed consent. Mycoplasma testing was routinely performed and
93 negative in all primary human cell cultures. After 2-4 passages of initial cultivation, cells
94 were used for experiments in high glucose DMEM supplemented with 20% FBS, 2 mM L-
95 Glutamine, 100 units/ml penicillin-streptomycin, 1% non-essential amino acids (Gibco), and
96 1 % sodium pyruvate (Gibco). The CHIKV LR2006-OPY 5'GFP infectious clone expressing
97 EGFP under the control of a subgenomic promotor (hereafter referred to as CHIKV) has been
98 described previously [29]. Virus was produced by *in vitro*-transcription of and subsequent
99 electroporation of RNA into BHK-21 cells. Virus-containing supernatant was collected,
100 passaged once on BHK-21 cells and viral titers were determined by titration on HEK293T
101 cells.

102

103

104

105 **Infection, Treatments, Transfections**

106 EGFP expression as surrogate for productive CHIKV infection was analyzed on a BD
107 FACSCalibur, FACSLyric or Accuri C6. For neutralization assays, virus-containing
108 supernatants were pre-incubated for one hour with anti-CHIKV E2 antibody C9 (Integral
109 Molecular) at 1 µg/ml or with recombinant MXRA8-Fc (a kind gift from M. Diamond) at 150
110 ng/ml. Recombinant IFN- α 2a (Roferon, Roche) and IFN- λ 1 (Peprotech) was used where
111 indicated. Transfections were performed using Lipofectamine2000 (Thermo Fisher) for
112 plasmid DNA (pcDNA6 empty vector) or 5' triphosphate dsRNA (InvivoGen).

113

114 **RNA-Seq Analysis**

115 RNA was extracted using the Promega Maxwell 16 with LEV simplyRNA Tissue Kits. RNA
116 quality was assessed using the Agilent Bioanalyzer and appropriate samples were used for
117 NGS library preparation with the NEBNext Ultra II Directional RNA kit and sequenced with
118 50 bp paired-end reads and 30 mio reads per sample on the Illumina HiSeq 2500. Data was
119 analyzed with CLC Genomics Workbench 12 (QIAGEN) by mapping the human reads onto
120 the hg19 reference genome scaffold (GCA_000001405.28). Unmapped reads not matching
121 the human genome were mapped onto the CHIKV genome LR2006_OPY (DQ443544.2). For
122 HSF, infection and analysis were performed similarly, but RNA was extracted with the Zymo
123 Research Direct-Zol RNA MiniPrep Kit, NGS libraries were prepared with the Illumina
124 TruSeq stranded mRNA kit and sequencing was performed on the Illumina NextSeq500 with
125 65 mio reads per sample. Biological process enrichment was analyzed by Gene Ontology
126 [30,31].

127

128

129 **Results**

130

131 **Osteoarthritic fibroblasts are susceptible and permissive to CHIKV infection**

132 First, we examined the capacity of primary human synovial fibroblasts to support the entire
133 CHIKV replication cycle. Therefore, we infected synovial fibroblasts obtained from
134 osteoarthritic patients (OASF) and from patients with a non-arthritic background (HSF) with
135 CHIKV strain LR2006-OPY expressing EGFP under the control of a second subgenomic
136 promotor. 24 hours post-infection, the proportion of EGFP-positive cells ranged between 4
137 and 24.5 % and did not differ between fibroblast types (Fig 1A). At the same time point,
138 supernatants of both OASF and HSF displayed titers of $1.6\text{--}8.8 \times 10^5$ infectious particles per
139 ml, with significantly higher titers produced by OASF. At 48 hours post-infection, virus titers
140 produced by HSF did not further increase, whereas the titers produced by OASF reached up to
141 1.5×10^7 infectious particles per ml (Fig. 1B), suggesting slightly higher virus production
142 and/or viral spread in OASF as compared to HSF.

143 Susceptibility of cells to CHIKV infection is enhanced by the attachment factor
144 MXRA8 [10]. Similarly, the cytosolic protein FHL-1 is essential for CHIKV genome
145 replication [11]. We confirmed the expression of these two cellular cofactors in OASF and
146 HSF by immunoblotting and/or immunofluorescence (Fig. 1C). We assessed the functional
147 relevance of the MXRA8 attachment factor using a soluble MXRA8-Fc fusion protein, which
148 blocks the binding site on the E1-E2 glycoprotein complex on the virus surface [10,32]. At a
149 low MOI, MXRA8-Fc-preincubated CHIKV was 50 % less infectious to synovial fibroblasts,
150 and this inhibition was reversed when saturating amounts of infectious virus particles were
151 used (Fig. 1D), indicating that endogenous MXRA8 may contribute, at least partially, to
152 CHIKV entry in OASF.

Pott et al., Innate Immunity to CHIKV Infection in Primary Synovial Fibroblasts

153 We next wondered whether IL-1 β -mediated activation of synovial fibroblasts, a
154 hallmark of rheumatoid arthritis [33-35], modulates their susceptibility to CHIKV infection.
155 Treatment with IL-1 β , while readily inducing IL-6 secretion, did not alter the percentage of
156 EGFP-positive cells upon CHIKV challenge (Fig. 1E). Conversely, infection with CHIKV
157 induced very mild secretion of IL-6 only at 48 hours post-infection, and did not modulate the
158 amount of IL-6 secreted upon IL-1 β treatment (Fig. 1F). These data suggest that CHIKV
159 infection of synovial fibroblasts neither induces nor modulates IL-6 secretion, arguing against
160 their activation.

161 To determine the importance of IFN-mediated antiviral immunity in this primary cell
162 system, we monitored the infection in the absence or presence of the JAK/STAT inhibitor
163 Ruxolitinib. Using live-cell imaging, we documented the increase in EGFP-positive cells
164 between ten and 48 hours post-infection, which progressed faster in Ruxolitinib-treated
165 cultures, and an onset of cytopathic effects after 24 hours in all infected cultures (Fig. 1G,
166 Suppl. Mov. M1). Analysis of the EGFP intensity in each frame over time confirmed the
167 higher expression of EGFP in Ruxolitinib-treated cultures (Fig. 1H, Suppl. Mov. M2). To
168 assess the ability of CHIKV to persist in a fibroblast cultures over multiple passages, virus-
169 containing supernatants of infected OASF were transferred to an uninfected culture, in the
170 presence or absence of Ruxolitinib. The initial infection rates were markedly higher in
171 Ruxolitinib-treated cultures (18.6 times on average), however, EGFP positivity was lost after
172 two to three passages (Fig. 1I). Overall, these experiments establish the susceptibility and
173 permissiveness of synovial fibroblasts to CHIKV infection and their expression of important
174 cellular cofactors. Furthermore, we showed an absence of interconnection between IL1- β
175 activation and susceptibility to infection, and restriction of infection through JAK/STAT-
176 mediated innate immunity.

177

178 **Productive CHIKV infection provokes a strong cell-intrinsic immune response in OASF**

179 Next, we performed RNA-seq analysis on OASF infected with CHIKV, in the absence or
180 presence of the E2-binding, neutralizing antibody C9 [36], and on mock-infected cells. C9
181 pre-treatment resulted in potent inhibition of the infection by (Fig. 2A). Upon CHIKV
182 infection, expression of numerous interferon-stimulated genes (ISGs) was induced at the
183 protein level in a C9 treatment-sensitive manner, including IFITM3, ISG15, and MX2. As
184 expected, production of the viral E1-E2 and Capsid proteins was detectable specifically in
185 CHIKV-infected, but not in cells exposed to C9-pretreated virus (Fig. 2B). We performed
186 global transcriptional profiling of mock- and CHIKV-infected OASF by RNA-Seq and
187 identified 992 significantly up- and 99 significantly downregulated genes in CHIKV-infected
188 cells 24 hours post-infection (Fig. 2C). No significant differences were observed between the
189 transcriptional profiles of uninfected cells and cells exposed to C9-treated virus (data not
190 shown). We defined a set of prototype effector genes of the cell-intrinsic immune response,
191 such as ISGs and proinflammatory transcription factors. Most of these genes were highly
192 upregulated in CHIKV-infected cells, demonstrating a broad and strong activation of antiviral
193 immune responses (Fig. 2D) in cells from four different donors with no statistically
194 significant deviation in the magnitude of induction. Upon CHIKV infection, upregulation of
195 *IFNB* and *IFNL1*, *IFNL2*, and *IFNL3* expression was statistically significant but low in
196 magnitude. Almost no *IFNA* mRNA was upregulated upon CHIKV infection. Expression of
197 mRNAs for all IFN receptors was detectable and stable with exception of the IFN- λ receptor,
198 which was upregulated upon CHIKV infection. Established host factors for CHIKV as well
199 as fibroblast marker genes and cellular housekeeping genes were not quantitatively altered in
200 their expression. Virtual absence of expression of monocyte/macrophage lineage-specific
201 genes excluded the possibility of a contamination of the fibroblast culture with macrophages,
202 which occasionally has been reported in early passages of *ex vivo* cultured synovial

Pott et al., Innate Immunity to CHIKV Infection in Primary Synovial Fibroblasts

203 fibroblasts [28] (Fig. 2D). In productively infected cultures, 19-54 % of the reads were
204 attributed to the CHIKV genome (Fig. 2E). Additionally, the 26S subgenomic viral RNA was
205 10-fold more abundant than nonstructural subgenomes in both CHIKV-infected cells and cells
206 inoculated with C9-neutralized virus (Fig. 2F). Overall, CHIKV-infected OASF sense and
207 react to productive CHIKV infection with the extensive upregulation of antiviral and
208 proinflammatory ISGs. Interferon expression itself was low at 24 hours post-infection, not
209 excluding the possibility that it peaked transiently at earlier time points.

210

211 **HSF and OASF share a similar base-line and CHIKV-induced transcriptome**

212 We next aimed at uncovering potential differences between fibroblasts from donors with
213 different clinical conditions. In fibroblasts from healthy donors, infection rates, the resulting
214 immune response, and the ratio of human and CHIKV RNAs equaled those of OASF (Fig.
215 S1). A potential transcriptional predisposition in the cells of either category was largely
216 excluded by the finding of a good correlation of the gene expression profile of respective
217 uninfected samples ($R^2=0.9086$) (Fig. 3A). The CHIKV-inducible program of genes was not
218 significantly differentially dysregulated at baseline when comparing uninfected OASF and
219 HSF cells. Indeed, the pathways in which the differentially expressed genes were involved in
220 were mostly part of organ development and cellular regulatory processes, and not of
221 inflammatory or antiviral processes (Fig. 3B). Additionally, the transcriptional profile in
222 CHIKV-infected OASF and HSF displayed a similarly good correlation of the gene
223 expression ($R^2=0.9085$, Fig. 3C), with an equivalently strong upregulation of prototypic
224 inflammation genes ($R^2=0.7565$, Fig. 3D). Interestingly, the number of genes significantly up-
225 and downregulated upon CHIKV infection was 1.23-fold and 3.57-fold higher in HSF
226 compared to OASF, respectively, but 55.4% of upregulated genes from both groups
227 overlapped (Fig. 3E). Gene ontology analysis of the upregulated genes in HSF identified

Pott et al., Innate Immunity to CHIKV Infection in Primary Synovial Fibroblasts

228 pathways similar to those seen in OASF, such as the response to interferons and viruses,
229 cytokine-mediated processes, and cell-intrinsic defense mechanisms (Fig. 3F). Conclusively,
230 OASF and HSF share similar basal and CHIKV-inducible transcriptional profiles. Minor
231 differences were present only in gene families not linked to innate immunity, while important
232 mediators of antiviral immunity were equally strongly upregulated upon CHIKV infection in
233 both OASF and HSF.

234

235 **The cell-intrinsic response to CHIKV infection in primary synovial fibroblasts exceeds
236 the one induced in immortalized cell lines**

237 We noticed that infection rates in OASF rarely increased after 24 hours post-infection, and
238 suspected this to be the result of the strong immune activation and subsequent IFN signaling.
239 As a reference, the commonly used osteosarcoma cell line U2OS was much more susceptible
240 to CHIKV infection. As an additional reference, HFF-1, an immortalized fibroblast cell line,
241 displayed reduced susceptibility (Fig. 4A). OASF exhibited very strong ISG responses, which
242 exceeded those mounted by U2OS and HFF-1 cells at both 24 and 48 hours post-infection
243 (Fig. 4B). To exclude the possibility that cell lines are less able to sense viral RNA, we
244 performed stimulation experiments with a 5'-triphosphate dsRNA (5-ppp-RNA), which
245 exclusively stimulates the RNA sensor RIG-I [37], the main sensor of CHIKV RNA in
246 infected cells [38] (Fig. 4C). Because of the reported involvement of the DNA sensor cGAS
247 in modulating RNA-viral infections [39-42], we further tested the ability of all cell types to
248 sense plasmid DNA (Fig. 4D). All cell types responded to stimulation with 5-ppp-RNA and
249 DNA by upregulating *IFIT1* and *MX2* mRNA. There was a trend towards strongest responses
250 in OASF, despite the absence of statistical significance between the individual three cell
251 systems. These findings demonstrate that even though the response to a virus-independent,
252 specific stimulus led to immune responses of largely similar magnitudes in all cultured cells,

Pott et al., Innate Immunity to CHIKV Infection in Primary Synovial Fibroblasts

253 the response to the viral infection was highest in the primary synovial fibroblasts. This may
254 reflect a synovial fibroblast-specific response to CHIKV infection and/or inefficiency of viral
255 antagonism of host defenses.

256 **Primary synovial fibroblast-specific sensitivities to type I and III IFN treatment**

257 Type I and III IFNs play a crucial role in limiting virus infection and protecting the host [43-
258 45]. Here, we analyzed to what extent they restrict CHIKV infection in OASF. Furthermore,
259 we quantified the corresponding induction of expression of *IFIT1* and *MX2* mRNAs as
260 surrogates for the overall response to IFN treatment. First, we pre-stimulated OASF
261 individually with a range of IFN- α 2a and - λ 1 concentrations for 48 h and infected the cells
262 with CHIKV in the continuous presence of the IFNs. All investigated concentrations, even the
263 lowest dose, of IFN- α almost completely inhibited CHIKV infection. In contrast, IFN- λ
264 inhibited infection less efficiently, in a largely dose-dependent fashion (Fig. 5A, left panel).
265 The antiviral state induced by IFN- α pre-treatment manifested itself by a robust and dose-
266 dependent *IFIT1* and *MX2* mRNA expression at the time point of infection initiation. IFN- λ
267 pre-treatment mediated a comparably lower and less dose-dependent induction of ISGs (Fig.
268 S2A, left panel). Additionally, we investigated IFN- α in a post-infection treatment setting
269 (Post-treatment). When added four hours post-infection, IFN- α still displayed a clear, though
270 less potent antiviral activity when compared to the pre-treatment setting (Fig. 5A, right panel).
271 In parallel to the assessment of antiviral activity, we quantified the antiviral state induced by
272 either the IFN treatment alone, or the state resulting from the combination of infection and
273 subsequent IFN post-treatment. Interestingly, a preceding CHIKV infection failed to prevent
274 ISG induction, and led to expression levels of *IFIT1* and *MX2* even exceeding those induced
275 by IFN- α (Fig. S2). These data are in contrast to previous reports of efficient CHIKV-
276 mediated antagonism of IFN signaling in Vero cell lines [15].

Pott et al., Innate Immunity to CHIKV Infection in Primary Synovial Fibroblasts

277 Analogous experiments in U2OS and HFF-1 cells yielded partially different outcomes.

278 Although less effective than in OASF, IFN- α pre-treatment restricted CHIKV infection both

279 in U2OS and HFF-1 cells, despite more efficient IFN- α induced expression of *IFIT1* and *MX2*

280 in U2OS cells when compared to HFF-1, suggesting different abilities of the two cell lines to

281 exert ISG-mediated antiviral restriction. IFN- λ pre-treatment was more potent in U2OS cells

282 than in OASF, and largely ineffective in HFF-1 cells (Fig. 5B, left panels). IFN- λ antiviral

283 activity in U2OS cells was accompanied by a decent expression of ISG mRNAs (Fig. S2B,

284 left panel). In HFF-1 cells, a lack of IFN- λ antiviral activity correlated with a weak induction

285 of *IFIT1* and *MX2* mRNA expression, which was in the same range as those detected in

286 OASF and which was sufficient to exert an antiviral effect, pointing to different efficiencies

287 of a given antiviral state in the two cell systems (Fig. 5B, left panels). Post-treatment of both

288 immortalized cell lines with IFN- α was very ineffective (Fig. 5B, C, right panels), even

289 though we observed a dose-dependent ISG induction in both cells lines (Fig. S2B, C, right

290 panels). Overall, the data suggest a stronger sensitivity of OASF to IFN- α -induced immunity

291 compared to commonly used immortalized cell lines. IFN- λ pre-treatment of OASF, although

292 not as effective as in the osteosarcoma cell line U2OS, clearly inhibited CHIKV infection,

293 suggesting that these primary synovial fibroblasts express levels of IFN- λ receptors that are

294 sufficient to signal upon IFN- λ treatment. This corresponds to our observation that the

295 *IFNL1* gene is not only expressed, but upregulated in CHIKV infected OASF (Fig. 2D).

296 Most interestingly, and in striking contrast to the immortalized cell lines, OASF were unique

297 in their ability to transform a post-infection treatment of IFN- α into a relatively potent

298 antiviral program, suggesting that postulated virus-mediated antagonistic strategies against

299 IFNs such as the inhibition of STAT1 nuclear translocation or a host transcriptional and

300 translational shutoff [15-17,46,47] are poorly effective in primary synovial fibroblasts.

301 Collectively, these data uncover crucial differences between primary synovial fibroblasts and

Pott et al., Innate Immunity to CHIKV Infection in Primary Synovial Fibroblasts

302 widely used immortalized cell lines and underline the need to study virus-host interactions in
303 primary target cells of CHIKV infection.

304

305 **Discussion**

306 Considering the CHIKV-induced arthritis, it is likely that cells of the synovium are directly
307 implicated in the pathophysiology of CHIKV infection. Cells of the synovial tissue and
308 synovial fluid contain CHIKV RNA and protein upon CHIKV infection *in vivo* in humans [7],
309 experimentally infected macaques [48], and mice [49]. The main cell types composing the
310 synovium are macrophages and fibroblasts. The latter have been identified to be susceptible to
311 CHIKV infection *ex vivo* [10,50,51]. However, the corresponding basal innate immune state
312 of primary synovial fibroblasts and their ability to exert IFN-mediated antiviral restriction is
313 unknown. Here, we establish that the widely available OASF and less available HSF share
314 susceptibility and permissiveness to CHIKV infection and their basal and infection-induced
315 transcriptional program. These findings are in line with reports on overall transcriptional
316 similarity of the two cell types, except in some signaling pathways unrelated to immunity
317 [52]. CHIKV infection provoked a striking cellular response that involves upregulation of
318 multiple ISGs, many of them exerting antiviral activity. Although we did not define the
319 PAMP(s) that trigger responses in synovial macrophages, infection by alphaviruses typically
320 raises RIG-I-mediated responses through exposure of dsRNA intermediates and provokes
321 mitochondrial DNA leakage that is sensed via cGAS/STING [38,39,41]. Indeed, experimental
322 ligands of both sensors were highly reactive in OASF, as was IFN- α pre-treatment.
323 Surprisingly, also IFN- λ pre-treatment translated into an antiviral state, indicating that
324 synovial fibroblasts may represent an exception to the notion of otherwise IFN- λ -
325 nonresponsive fibroblasts [53]. Finally, CHIKV infection of synovial fibroblasts was sensitive
326 to IFN- α applied after inoculation with virus. These findings appear to contrast potent virus-
327 mediated antagonism of IFN in U2OS and HFF-1 cell lines, which has been suggested to
328 involve counteraction of nuclear translocation of STAT1 [15,16]. Also, unaltered levels of
329 expression of housekeeping genes and genes encoding fibroblast markers did not generate

Pott et al., Innate Immunity to CHIKV Infection in Primary Synovial Fibroblasts

330 evidence for virus-mediated host transcriptional shut-off reported in several cell lines [17,18].
331 Overall, synovial fibroblasts appear to react differently to CHIKV as compared to commonly
332 used cell lines, and to be particularly responsive to CHIKV infection. The underlying reason
333 for this difference is unknown, but may involve a different intracellular milieu that is hyper-
334 responsive to CHIKV infection. Future studies are required to delineate the exact mode of
335 CHIKV sensing in productively infected synovial fibroblasts. In addition, it will be important
336 to study the impact of potential abortive infection events, occurring either due to uptake of
337 defective interfering particles and/or due to high refractoriness of individual cells, to the
338 overall cellular response in an infected culture or tissue. Finally, the interplay of tissue-
339 resident, synovial macrophages and fibroblasts likely additionally modulates CHIKV
340 infection and cellular responses.

341 It is tempting to speculate that the synovial fibroblast-specific hyperreactivity is linked
342 to the long-term arthralgia observed *in vivo* in chronic CHIKV patients, and that
343 pharmacological interference with hyperinflammation represents a feasible intervention
344 approach towards alleviation of long-term arthralgia. In rheumatoid arthritis, hyperactivated
345 synovial fibroblasts are known to invade the joint matrix, destroying/disrupting the cartilage
346 and causing long-term inflammation [26,54]. This and the subsequent attraction of immune
347 cells, including monocyte-derived macrophages to the damaged sites, may represent
348 important events in the progression to long-term morbidity [55]. Indeed, data obtained in
349 recent clinical studies suggest that treatment of chikungunya-induced arthritis with the
350 immunosuppressant methotrexate may be a beneficial strategy [56,57].

351

352 **Acknowledgements**

353 We thank the sequencing core of the Helmholtz Centre for Infection Research (HZI) and the
354 Genomics platform of the Berlin Institute of Health (BIH) for preparation of the Illumina
355 sequencing libraries and the next generation sequencing. We thank M. Diamond for providing
356 the MXRA8-Fc proteins. We thank Theresia Stradal and Jens Bohne for providing U2OS
357 cells and HEK293T cells, respectively. We thank Christian Drosten for constant support. This
358 work was supported by funding from Deutsche Forschungsgemeinschaft (DFG) to C.G.
359 (GO2153/3-1), by the Impulse and Networking Fund of the Helmholtz Association through
360 the HGF-EU partnering grant PIE-008 to C.G., and by funding from the Helmholtz Center for
361 Infection Research (HZI) and Berlin Institute of Health (BIH) to C.G.

362

363 **Declaration of Interest**

364 The authors declare they have no actual or potential competing financial interests.

365

366 **References**

- 367 1. Matusali G, Colavita F, Bordi L, et al. Tropism of the Chikungunya Virus. *Viruses*. 368 2019 Feb 20;11(2).
- 369 2. Levi LI, Vignuzzi M. Arthritogenic Alphaviruses: A Worldwide Emerging Threat? 370 *Microorganisms*. Vol. 72019.
- 371 3. Couderc T, Lecuit M. Chikungunya virus pathogenesis: From bedside to bench. 372 *Antiviral research*. 2015 Sep;121:120-31.
- 373 4. Paixao ES, Rodrigues LC, Costa M, et al. Chikungunya chronic disease: a systematic 374 review and meta-analysis. *Trans R Soc Trop Med Hyg*. 2018 Jul 1;112(7):301-316.
- 375 5. Suhrbier A. Rheumatic manifestations of chikungunya: emerging concepts and 376 interventions. *Nat Rev Rheumatol*. 2019 Oct;15(10):597-611.
- 377 6. Chow A, Her Z, Ong EK, et al. Persistent arthralgia induced by Chikungunya virus 378 infection is associated with interleukin-6 and granulocyte macrophage colony- 379 stimulating factor. *The Journal of infectious diseases*. 2011 Jan 15;203(2):149-57.
- 380 7. Hoarau JJ, Jaffar Bandjee MC, Krejbich Trotot P, et al. Persistent chronic 381 inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a 382 robust host immune response. *J Immunol*. 2010 May 15;184(10):5914-27.

Pott et al., Innate Immunity to CHIKV Infection in Primary Synovial Fibroblasts

383 8. Young AR, Locke MC, Cook LE, et al. Dermal and muscle fibroblasts and skeletal
384 myofibers survive chikungunya virus infection and harbor persistent RNA. *PLoS*
385 pathogens. 2019 Aug;15(8):e1007993.

386 9. Chang AY, Martins KAO, Encinales L, et al. Chikungunya Arthritis Mechanisms in
387 the Americas: A Cross-Sectional Analysis of Chikungunya Arthritis Patients Twenty-
388 Two Months After Infection Demonstrating No Detectable Viral Persistence in
389 Synovial Fluid. *Arthritis & rheumatology* (Hoboken, NJ). 2018 Apr;70(4):585-593.

390 10. Zhang R, Kim AS, Fox JM, et al. Mxra8 is a receptor for multiple arthritogenic
391 alphaviruses. *Nature*. 2018 May;557(7706):570-574.

392 11. Meertens L, Hafirassou ML, Couderc T, et al. FHL1 is a major host factor for
393 chikungunya virus infection. *Nature*. 2019 Sep 25.

394 12. Salvador B, Zhou Y, Michault A, et al. Characterization of Chikungunya pseudotyped
395 viruses: Identification of refractory cell lines and demonstration of cellular tropism
396 differences mediated by mutations in E1 glycoprotein. *Virology*. 2009 Oct
397 10;393(1):33-41.

398 13. Reynaud JM, Kim DY, Atasheva S, et al. IFIT1 Differentially Interferes with
399 Translation and Replication of Alphavirus Genomes and Promotes Induction of Type I
400 Interferon. *PLoS pathogens*. 2015 Apr;11(4):e1004863.

401 14. Poddar S, Hyde JL, Gorman MJ, et al. The Interferon-Stimulated Gene IFITM3
402 Restricts Infection and Pathogenesis of Arthritogenic and Encephalitic Alphaviruses.
403 *Journal of virology*. 2016 Oct 1;90(19):8780-94.

404 15. Fros JJ, Liu WJ, Prow NA, et al. Chikungunya virus nonstructural protein 2 inhibits
405 type I/II interferon-stimulated JAK-STAT signaling. *Journal of virology*. 2010
406 Oct;84(20):10877-87.

407 16. Goertz GP, McNally KL, Robertson SJ, et al. The Methyltransferase-Like Domain of
408 Chikungunya Virus nsP2 Inhibits the Interferon Response by Promoting the Nuclear
409 Export of STAT1. *Journal of virology*. 2018 Sep 1;92(17).

410 17. Akhrymuk I, Kulemzin SV, Frolova EI. Evasion of the innate immune response: the
411 Old World alphavirus nsP2 protein induces rapid degradation of Rpb1, a catalytic
412 subunit of RNA polymerase II. *Journal of virology*. 2012 Jul;86(13):7180-91.

413 18. Akhrymuk I, Lukash T, Frolov I, et al. Novel Mutations in nsP2 Abolish Chikungunya
414 Virus-Induced Transcriptional Shutoff and Make the Virus Less Cytopathic without
415 Affecting Its Replication Rates. *Journal of virology*. 2019 Feb 15;93(4).

416 19. Haese NN, Broeckel RM, Hawman DW, et al. Animal Models of Chikungunya Virus
417 Infection and Disease. *The Journal of infectious diseases*. 2016 Dec 15;214(suppl
418 5):S482-s487.

419 20. Simarmata D, Ng DC, Kam YW, et al. Early clearance of Chikungunya virus in
420 children is associated with a strong innate immune response. *Scientific reports*. 2016
421 May 16;6:26097.

422 21. Schilte C, Couderc T, Chretien F, et al. Type I IFN controls chikungunya virus via its
423 action on nonhematopoietic cells. *J Exp Med*. 2010 Feb 15;207(2):429-42.

424 22. Soares-Schanoski A, Baptista Cruz N, de Castro-Jorge LA, et al. Systems analysis of
425 subjects acutely infected with the Chikungunya virus. *PLoS pathogens*. 2019
426 Jun;15(6):e1007880.

427 23. Hussain KM, Lee RC, Ng MM, et al. Establishment of a Novel Primary Human
428 Skeletal Myoblast Cellular Model for Chikungunya Virus Infection and Pathogenesis.
429 *Scientific reports*. 2016 Feb 19;6:21406.

430 24. Sukkaew A, Thanagith M, Thongsakulprasert T, et al. Heterogeneity of clinical
431 isolates of chikungunya virus and its impact on the responses of primary human
432 fibroblast-like synoviocytes. *J Gen Virol*. 2018 Apr;99(4):525-535.

Pott et al., Innate Immunity to CHIKV Infection in Primary Synovial Fibroblasts

433 25. Bernard E, Hamel R, Neyret A, et al. Human keratinocytes restrict chikungunya virus
434 replication at a post-fusion step. *Virology*. 2015 Feb;476:1-10.

435 26. Neumann E, Lefevre S, Zimmermann B, et al. Rheumatoid arthritis progression
436 mediated by activated synovial fibroblasts. *Trends Mol Med*. 2010 Oct;16(10):458-68.

437 27. Lefevre S, Meier FM, Neumann E, et al. Role of synovial fibroblasts in rheumatoid
438 arthritis. *Curr Pharm Des*. 2015;21(2):130-41.

439 28. Neumann E, Riepl B, Knedla A, et al. Cell culture and passaging alters gene
440 expression pattern and proliferation rate in rheumatoid arthritis synovial fibroblasts.
441 *Arthritis research & therapy*. 2010;12(3):R83.

442 29. Tsetsarkin K, Higgs S, McGee CE, et al. Infectious clones of Chikungunya virus (La
443 Reunion isolate) for vector competence studies. *Vector borne and zoonotic diseases*
(Larchmont, NY). 2006 Winter;6(4):325-37.

444 30. The Gene Ontology Resource: 20 years and still GOing strong. *Nucleic Acids Res*.
445 2019 Jan 8;47(D1):D330-d338.

446 31. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of
447 biology. The Gene Ontology Consortium. *Nat Genet*. 2000 May;25(1):25-9.

448 32. Basore K, Department of Pathology & Immunology WUSoM, Saint Louis, MO
449 63110, USA, Kim AS, et al. Cryo-EM Structure of Chikungunya Virus in Complex
450 with the Mxra8 Receptor. *Cell*. 2019;0(0).

451 33. Georganas C, Liu H, Perlman H, et al. Regulation of IL-6 and IL-8 expression in
452 rheumatoid arthritis synovial fibroblasts: the dominant role for NF-kappa B but not
453 C/EBP beta or c-Jun. *J Immunol*. 2000 Dec 15;165(12):7199-206.

454 34. Gitter BD, Labus JM, Lees SL, et al. Characteristics of human synovial fibroblast
455 activation by IL-1 beta and TNF alpha. *Immunology*. 1989 Feb;66(2):196-200.

456 35. Kay J, Calabrese L. The role of interleukin-1 in the pathogenesis of rheumatoid
457 arthritis. *Rheumatology (Oxford)*. 2004 Jun;43 Suppl 3:iii2-iii9.

458 36. Selvarajah S, Sexton NR, Kahle KM, et al. A neutralizing monoclonal antibody
459 targeting the acid-sensitive region in chikungunya virus E2 protects from disease.
460 *PLoS neglected tropical diseases*. 2013;7(9):e2423.

461 37. Hornung V, Ellegast J, Kim S, et al. 5'-Triphosphate RNA is the ligand for RIG-I.
462 *Science (New York, NY)*. 2006 Nov 10;314(5801):994-7.

463 38. Sanchez David RY, Combredet C, Sismeiro O, et al. Comparative analysis of viral
464 RNA signatures on different RIG-I-like receptors. *eLife*. 2016 Mar 24;5:e11275.

465 39. Schoggins JW, MacDuff DA, Imanaka N, et al. Pan-viral specificity of IFN-induced
466 genes reveals new roles for cGAS in innate immunity. *Nature*. 2014 Jan
467 30;505(7485):691-5.

468 40. Zheng Y, Liu Q, Wu Y, et al. Zika virus elicits inflammation to evade antiviral
469 response by cleaving cGAS via NS1-caspase-1 axis. *Embo j*. 2018 Sep 14;37(18).

470 41. Aguirre S, Luthra P, Sanchez-Aparicio MT, et al. Dengue virus NS2B protein targets
471 cGAS for degradation and prevents mitochondrial DNA sensing during infection.
472 *Nature microbiology*. 2017 Mar 27;2:17037.

473 42. Parker MT, Gopinath S, Perez CE, et al. Innate Immune Priming by cGAS as a
474 Preparatory Countermeasure Against RNA Virus Infection. *bioRxiv*. 2018:434027.

475 43. Lazear HM, Schoggins JW, Diamond MS. Shared and Distinct Functions of Type I
476 and Type III Interferons. *Immunity*. 2019 Apr 16;50(4):907-923.

477 44. Schoggins JW, Wilson SJ, Panis M, et al. A diverse range of gene products are
478 effectors of the type I interferon antiviral response. *Nature*. 2011 Apr
479 28;472(7344):481-5.

480 45. Zhou JH, Wang YN, Chang QY, et al. Type III Interferons in Viral Infection and
481 Antiviral Immunity. *Cell Physiol Biochem*. 2018;51(1):173-185.

482

Pott et al., Innate Immunity to CHIKV Infection in Primary Synovial Fibroblasts

483 46. White LK, Sali T, Alvarado D, et al. Chikungunya virus induces IPS-1-dependent
484 innate immune activation and protein kinase R-independent translational shutoff.
485 *Journal of virology*. 2011 Jan;85(1):606-20.

486 47. Bae S, Lee JY, Myoung J. Chikungunya Virus-Encoded nsP2, E2 and E1 Strongly
487 Antagonize the Interferon-beta Signaling Pathway. *J Microbiol Biotechnol*. 2019 Nov
488 28;29(11):1852-1859.

489 48. Labadie K, Larcher T, Joubert C, et al. Chikungunya disease in nonhuman primates
490 involves long-term viral persistence in macrophages. *J Clin Invest*. 2010
491 Mar;120(3):894-906.

492 49. Couderc T, Chrétien F, Schilte C, et al. A mouse model for Chikungunya: young age
493 and inefficient type-I interferon signaling are risk factors for severe disease. *PLoS*
494 *pathogens*. 2008 Feb 8;4(2):e29.

495 50. Agrawal M, Pandey N, Rastogi M, et al. Chikungunya virus modulates the miRNA
496 expression patterns in human synovial fibroblasts. *J Med Virol*. 2020 Feb;92(2):139-
497 148.

498 51. Selvamani SP, Mishra R, Singh SK. Chikungunya virus exploits miR-146a to regulate
499 NF-κB pathway in human synovial fibroblasts. *PloS one*. 2014;9(8):e103624.

500 52. Del Rey MJ, Usategui A, Izquierdo E, et al. Transcriptome analysis reveals specific
501 changes in osteoarthritis synovial fibroblasts. *Annals of the rheumatic diseases*. 2012
502 Feb;71(2):275-80.

503 53. Sommereyns C, Paul S, Staeheli P, et al. IFN-lambda (IFN-lambda) is expressed in a
504 tissue-dependent fashion and primarily acts on epithelial cells in vivo. *PLoS*
505 *pathogens*. 2008 Mar 14;4(3):e1000017.

506 54. Hillen J, Geyer C, Heitzmann M, et al. Structural cartilage damage attracts circulating
507 rheumatoid arthritis synovial fibroblasts into affected joints. *Arthritis research &*
508 *therapy*. 2017 Feb 28;19(1):40.

509 55. Falconer J, Murphy AN, Young SP, et al. Review: Synovial Cell Metabolism and
510 Chronic Inflammation in Rheumatoid Arthritis. *Arthritis & rheumatology* (Hoboken,
511 NJ). 2018 Jul;70(7):984-999.

512 56. Amaral JK, Sutaria R, Schoen RT. Treatment of Chronic Chikungunya Arthritis With
513 Methotrexate: A Systematic Review. *Arthritis Care Res* (Hoboken). 2018
514 Oct;70(10):1501-1508.

515 57. Ganu MA, Ganu AS. Post-chikungunya chronic arthritis--our experience with
516 DMARDs over two year follow up. *J Assoc Physicians India*. 2011 Feb;59:83-6.

517

518

519 **Legends**

520

521 **Figure 1. Osteoarthritis fibroblasts are susceptible and permissive to CHIKV infection.**

522 (A) OASF or HSF were infected with 5'EGFP-CHIKV (MOI 10). The percentage of EGFP-
523 positive cells was quantified by flow cytometry (n = 12 for OASF, 5 for HSF. Values are
524 derived from data also shown in Fig. 2, 5, and S1). (B) Supernatants of CHIKV-infected
525 OASF were collected at 24 and 48 hpi, titrated on HEK293T cells, and titers were determined
526 by analyzing EGFP expression at 24 hpi. For background controls (post-wash), samples were
527 collected 1 h post virus inoculation and subsequent washing (n = 3). (C) Uninfected OASF
528 and HSF were analyzed for MXRA8 and FHL1 expression by immunoblotting (n = 4-6) and
529 for MXRA8 expression by immunofluorescence. Scale bar = 50 μ m (n = 3, representative
530 images shown). (D) OASF were infected with 5'EGFP-CHIKV treated with MXRA8-Fc
531 recombinant protein or mock-treated virus. At 24 hpi, cells were analyzed for EGFP
532 expression (n = 4). (E) OASF were stimulated with IL-1 β at 10 ng/ml for 16 h and
533 subsequently infected with CHIKV (MOI 10) in the presence of IL-1 β . Mock-stimulated
534 OASF were infected as a control. Cells were analyzed for EGFP expression and (F)
535 supernatant was analyzed for IL-6 secretion by ELISA (n = 3). (G) OASF were infected with
536 5'EGFP-CHIKV (MOI 10) in the absence or presence of Ruxolitinib (10 μ M) or mock-
537 infected. Infection was analyzed by live-cell imaging and representative images are shown.
538 Scale bar = 100 μ m (n = 3). (H) Live-cell imaging from G was analyzed for EGFP intensity
539 using ImageJ. (I) OASF were treated with Ruxolitinib or mock-treated for 16 h, infected with
540 5'EGFP-CHIKV (MOI 10) and supernatant was transferred to uninfected, untreated or
541 Ruxolitinib-pretreated OASF every two to three days. Expression of EGFP in the target cells
542 was quantified at indicated time points (n = 3).

543

544 **Figure 2. Productive CHIKV infection provokes a strong cell-intrinsic immune response**
545 **in OASF.**

546 (A) OASF were infected with 5'EGFP-CHIKV (MOI 10) in the presence or absence of the
547 anti-E2 antibody C9. At 24 hpi, the percentage of EGFP-positive cells was measured by flow
548 cytometry (filled squares: donor cells used for RNA-seq, n = 4. Values shown for comparison
549 are derived from data plotted in Fig. 5). (B) Immunoblot of selected proteins expressed upon
550 infection in samples from A (n = 4). (C-F) RNA from cells infected in A was extracted and
551 subjected to RNA-seq (n = 4). (C) Analysis of up- and downregulated genes in CHIKV-
552 infected samples compared to mock infection. Dotted lines indicate cutoff for <1.5 fold
553 regulation and a p-value of 0.05. (D) Heatmaps of selected gene expression profiles related to
554 innate immune responses (left) or to secreted proinflammatory mediators (middle) as well as
555 to the expression of interferon receptors, CHIKV cofactors, and cellular expression markers
556 (right) in uninfected or CHIKV-infected cells. (E) Number of NGS reads attributed to the
557 human or CHIKV reference genome in CHIKV or neutralizing antibody-treated CHIKV
558 infected cells. (F) NGS reads attributed to each individual position in the CHIKV genome
559 plotted for cells infected with CHIKV in the presence or absence of neutralizing antibody.
560 SGP: subgenomic promotor-

561

562 **Figure 3. HSF and OASF share a similar base-line and CHIKV-induced transcriptome.**
563 (A) Visualization of global transcriptional differences between OASF and HSF under regular
564 culturing conditions. Average RPKM (\log_{10}) values for all detected transcripts from OASF
565 are plotted on the x-axis, with corresponding values from HSF plotted on the y-axis. R^2 value
566 and regression line for comparison are inset. (B) Gene ontology analysis of differentially
567 expressed genes in OASF compared to HSF. (C) Visualization of global transcriptomic
568 differences between CHIKV-infected OASF and HSF as described in A. (D) Visualization of

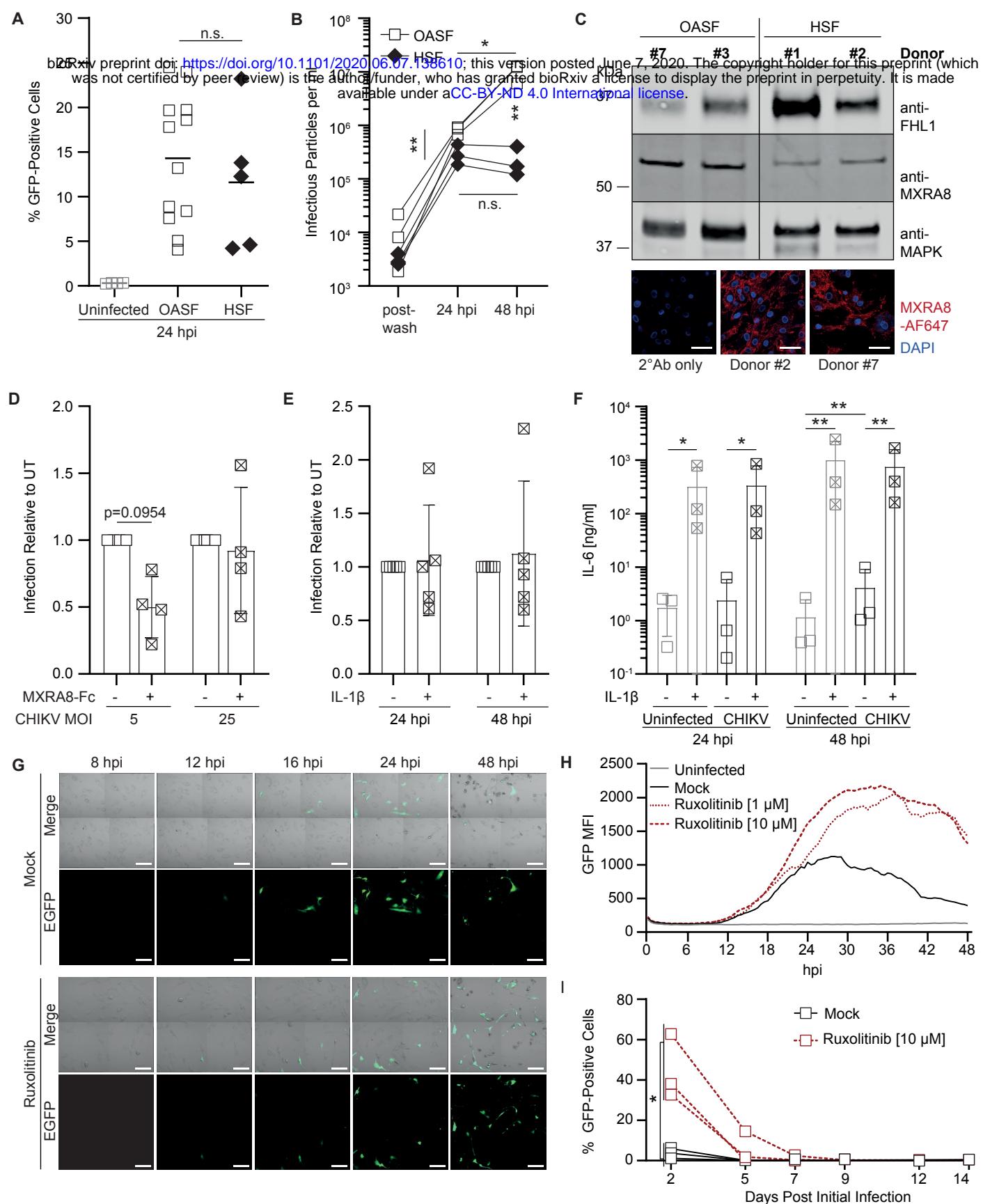
Pott et al., Innate Immunity to CHIKV Infection in Primary Synovial Fibroblasts

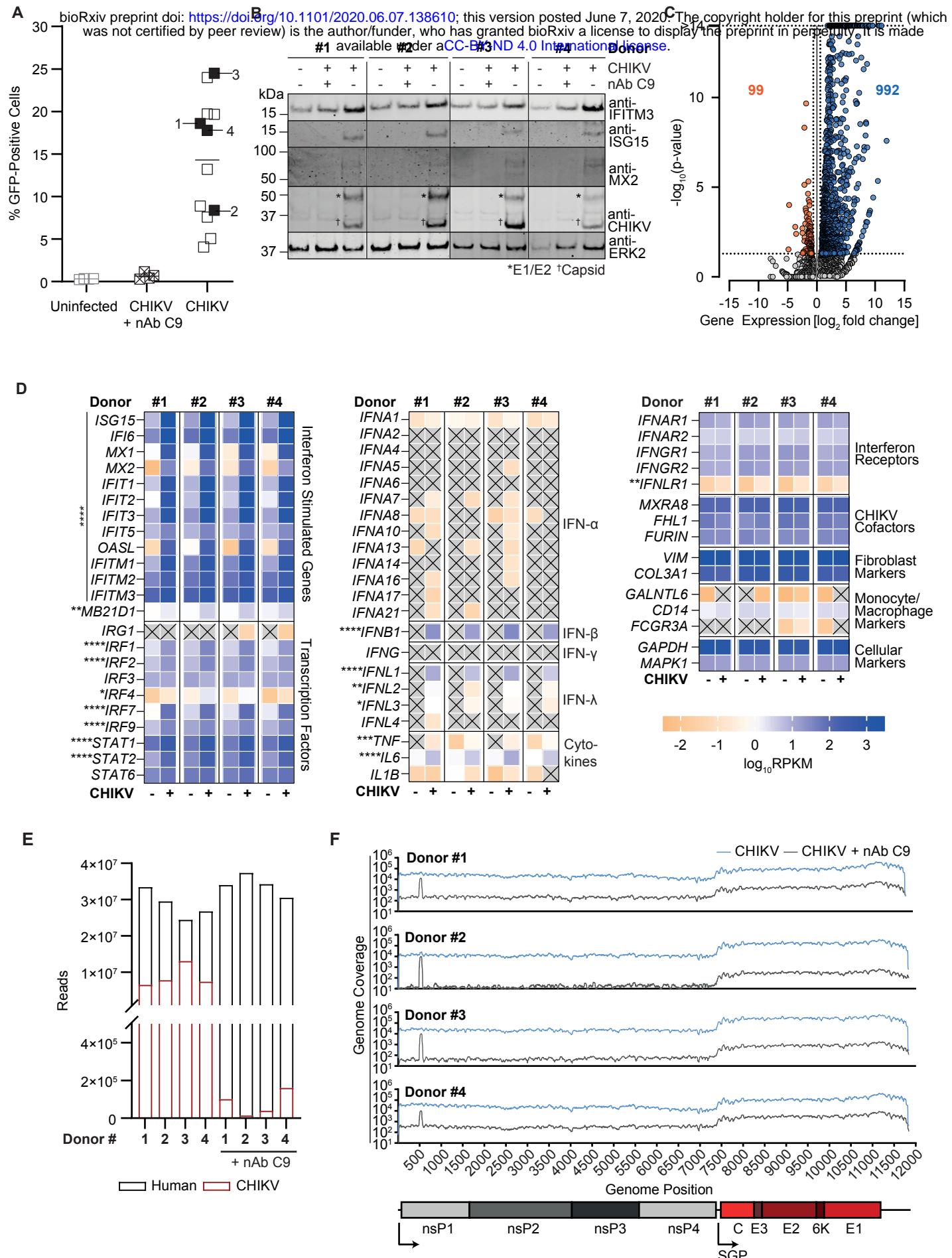
569 the fold change induction of indicated genes in CHIKV-infected OASF and HSF. Average
570 fold change (\log_2) values for infected OASF are plotted on the x-axis, with corresponding
571 values from infected HSF plotted on the y-axis. R^2 value and regression line for the
572 comparison are inset. (E) Overlap of significantly (FDR-p <0.05) up- and downregulated
573 genes in infected OASF and HSF. Numbers of genes up- or downregulated in either OASF or
574 HSF only, or in both cell-types, are indicated. (F) Gene ontology analysis of the top
575 significantly upregulated pathways in OASF, HSF, and shared by both in response to CHIKV
576 infection.

577

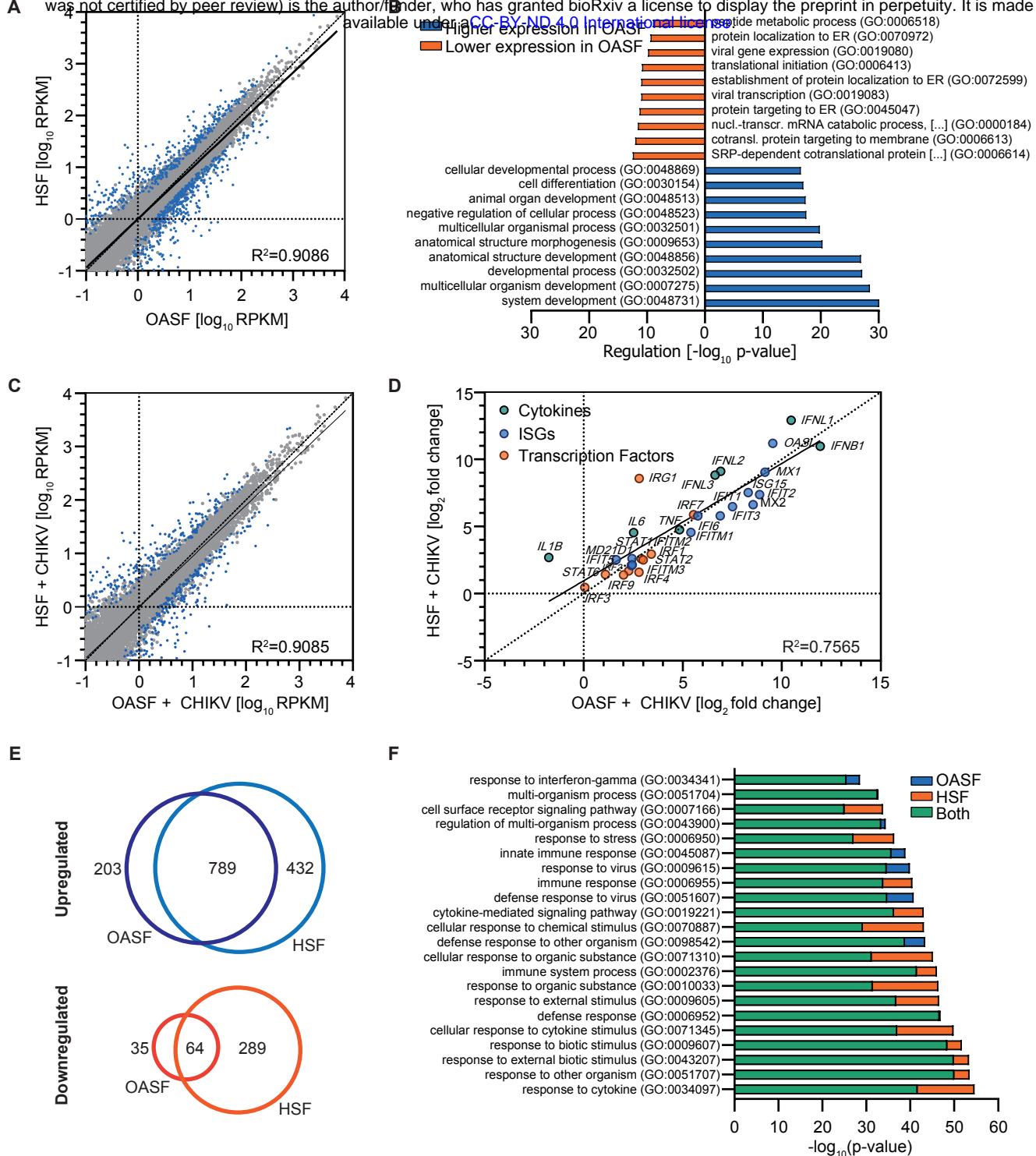
578 **Figure 4. The cell-intrinsic response to CHIKV infection in primary synovial fibroblasts**
579 **exceeds the one induced in immortalized cell lines.**

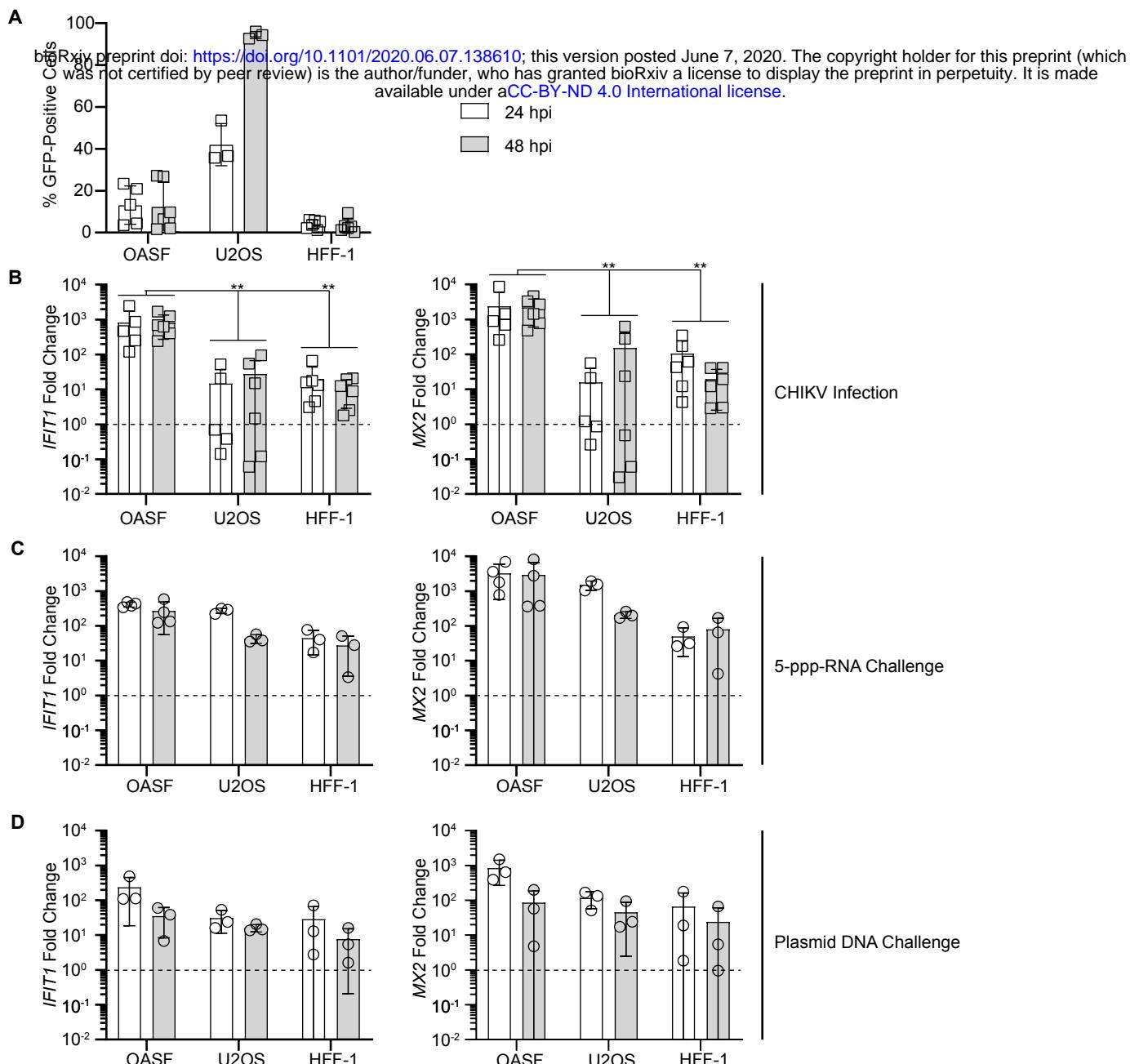
580 (A) OASF and HFF-1 cells were infected (MOI 10), U2OS cells were infected (MOI 0.5), and
581 EGFP-positive cells were quantified by flow cytometry (n = 3-6). (B) Cells infected in A were
582 analyzed for expression of *IFIT1* and *MX2* mRNA by quantitative RT-PCR (n = 3-6). Data
583 from (A) and (B) is derived from experiments shown in Fig. 5. (C) Indicated cell cultures
584 were transfected with 5'-triphosphate dsRNA (5-ppp-RNA) and analyzed for the expression
585 of *IFIT1* (left) and *MX2* (right) mRNA (n = 3-4) (D) Same as F, but with plasmid DNA as
586 transfectant (n = 3).

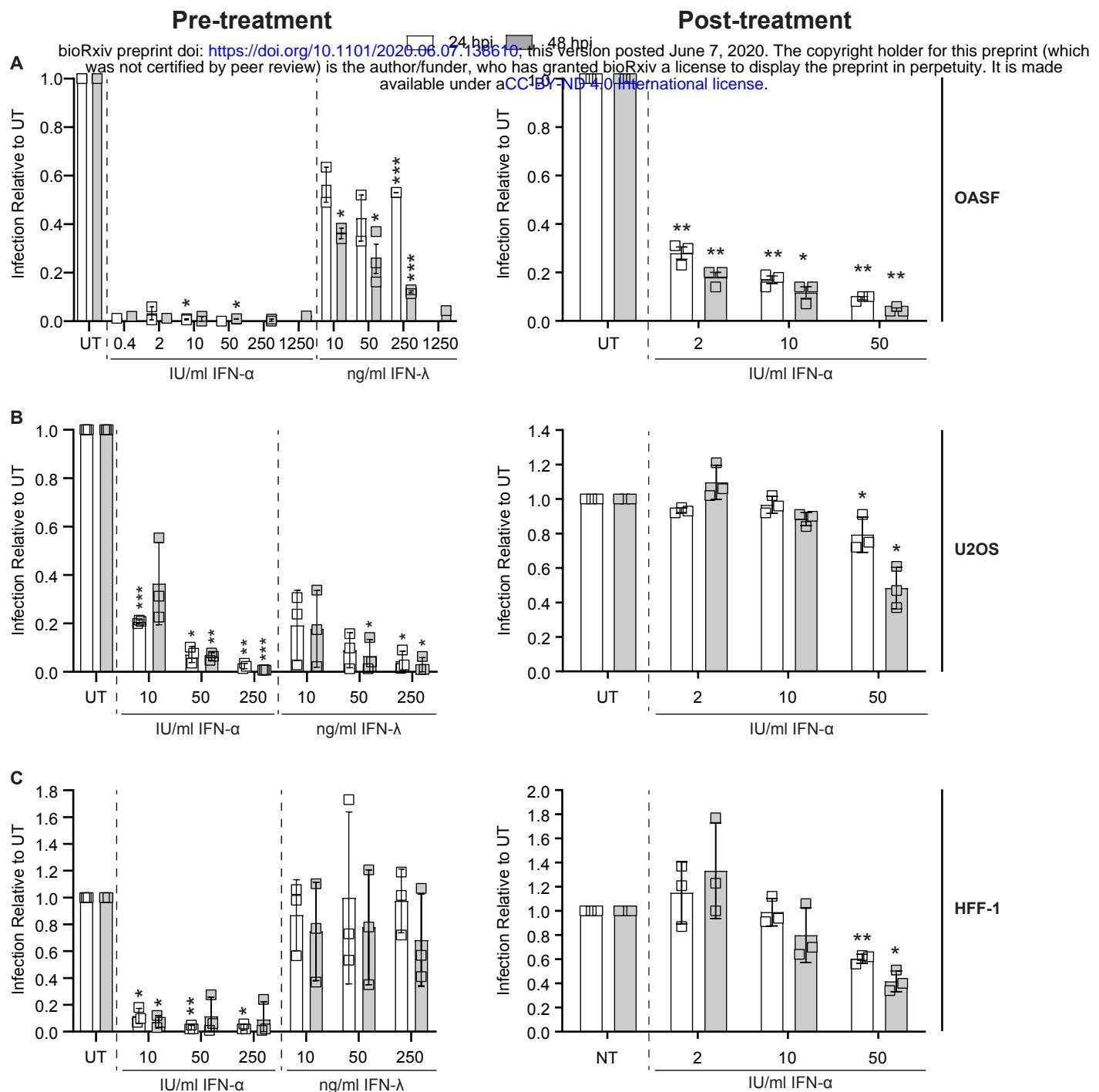

587


588 **Figure 5. Primary synovial fibroblast-specific sensitivities to type I and III IFN**
589 **treatment**

590 (A) For a pre-treatment setting, OASF were treated with IFN- α 2a or λ 1 for 48 h before
591 infection with 5'-EGFP-CHIKV (MOI 10) in the presence of IFN (left panel). For a post-
592 treatment setting, OASF were infected with 5'-EGFP CHIKV (MOI 10) and IFN- α 2a was


Pott et al., Innate Immunity to CHIKV Infection in Primary Synovial Fibroblasts


593 added 4 hpi (right panel). EGFP-positive cells were quantified by flow cytometry. **(B)** U2OS
594 cells were treated and analyzed as described in (A), but infected at an MOI of 0.5. **(C)** HFF-1
595 cells were treated, infected, and analyzed as described in (A). UT: untreated (n = 3 for all
596 experiments)



bioRxiv preprint doi: <https://doi.org/10.1101/2020.06.07.138610>; this version posted June 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [CC-BY-ND 4.0 International license](#).

