

1 Strain and lineage-level methylome heterogeneity in the multi-drug

2 resistant pathogenic *Escherichia coli* ST101 clone.

3
4 Melinda M. Ashcroft^{1,2,3}, Brian M. Forde^{1,2,3}, Minh-Duy Phan^{1,2}, Kate M. Peters^{1,2}, Leah W.
5 Roberts^{1,2,3}, Kok-Gan Chan^{4,5}, Teik Min Chong⁴, Wai-Fong Yin⁴, David L. Paterson^{2,6}, Timothy R.
6 Walsh⁷, Mark A. Schembri^{1,2*}, Scott A. Beatson^{1,2,3*}

7

⁸ ¹School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD,
⁹ Australia.

10 ²Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD,
11 Australia.

12 ³Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia.

13 ⁴Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science,
14 University of Malaya, Kuala Lumpur, Malaysia.

15 ⁵International Genome Centre, Jiangsu University, Zhenjiang, China.

¹⁶UQ Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia.

17 ⁷Department of Medical Microbiology and Infectious Disease, Cardiff University, Cardiff, United
18 Kingdom.

19 *Contributed equally

20

21 *Corresponding authors:

22 Scott A. Beatson, School of Chemistry and Molecular Biosciences, The University of Queensland, St
23 Lucia 4072, QLD, Australia; Telephone: +61-7-33654863; Email: s.beatson@uq.edu.au

24 Mark A. Schembri, School of Chemistry and Molecular Biosciences, The University of Queensland,
25 St Lucia 4072, QLD, Australia; Telephone: +61 7 336 53306; Email: m.schembri@uq.edu.au

26

27 **Short title:** *E. coli* ST101 methylome heterogeneity

28 **Keywords:**

29 DNA methylation; Restriction-Modification Systems; Pacific Biosciences; Mobile Genetic Elements;

30 epigenome

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51 **Abstract**

52 *Escherichia coli* Sequence Type (ST)101 is an emerging, multi-drug resistant lineage associated
53 with carbapenem resistance. We recently completed a comprehensive genomics study on mobile
54 genetic elements (MGEs) and their role in *bla*_{NDM-1} dissemination within the ST101 lineage. DNA
55 methyltransferases (MTases) are also frequently associated with MGEs, with DNA methylation
56 guiding numerous biological processes including genomic defence against foreign DNA and
57 regulation of gene expression. The availability of Pacific Biosciences Single Molecule Real Time
58 Sequencing data for seven ST101 strains enabled us to investigate the role of DNA methylation on
59 a genome-wide scale (methylome). We defined the methylome of two complete (MS6192 and
60 MS6193) and five draft (MS6194, MS6201, MS6203, MS6204, MS6207) ST101 genomes. Our
61 analysis identified 14 putative MTases and eight N6-methyladenine DNA recognition sites, with
62 one site that has not been described previously. Furthermore, we identified a Type I MTase
63 encoded within a Transposon 7-like Transposon and show its acquisition leads to differences in the
64 methylome between two almost identical isolates. Genomic comparisons with 13 previously
65 published ST101 draft genomes identified variations in MTase distribution, consistent with MGE
66 differences between genomes, highlighting the diversity of active MTases within strains of a single
67 *E. coli* lineage. It is well established that MGEs can contribute to the evolution of *E. coli* due to
68 their virulence and resistance gene repertoires. This study emphasises the potential for mobile
69 genetic elements to also enable highly similar bacterial strains to rapidly acquire genome-wide
70 functional differences via changes to the methylome.

71

72

73

74

75 **Impact Statement**

76 *Escherichia coli* ST101 is an emerging human pathogen frequently associated with carbapenem
77 resistance. *E. coli* ST101 strains carry numerous mobile genetic elements that encode virulence
78 determinants, antimicrobial resistance, and DNA methyltransferases (MTases). In this study we
79 provide the first comprehensive analysis of the genome-wide complement of DNA methylation
80 (methylome) in seven *E. coli* ST101 genomes. We identified a Transposon carrying a Type I
81 restriction modification system that may lead to functional differences between two almost
82 identical genomes and showed how small recombination events at a single genomic region can
83 lead to global methylome changes across the lineage. We also showed that the distribution of
84 MTases throughout the ST101 lineage was consistent with the presence or absence of mobile
85 genetic elements on which they are encoded. This study shows the diversity of MTases within a
86 single bacterial lineage and shows how strain and lineage-specific methylomes may drive host
87 adaptation.

88

89 **Data Summary**

90 Sequence data including reads, assemblies and motif summaries have previously been submitted
91 to the National Center for Biotechnology Information (<https://www.ncbi.nlm.nih.gov>) under the
92 BioProject Accessions: PRJNA580334, PRJNA580336, PRJNA580337, PRJNA580338, PRJNA580339,
93 PRJNA580341 and PRJNA580340 for MS6192, MS6193, MS6194, MS6201, MS6203, MS6204 and
94 MS6207 respectively. All supporting data, code, accessions, and protocols have been provided
95 within the article or through supplementary data files.

96

97

98

99

100

101 **Introduction**

102 *Escherichia coli* sequence type (ST)101 is a pathogenic clone that has recently been associated
103 with urinary tract and bloodstream infections in humans [1-4]. ST101 represents one of the major,
104 emerging *E. coli* clones associated with the carriage of the *bla*_{NDM-1} gene, causing carbapenem
105 resistance [1, 5-9]. Recently, we undertook the most comprehensive genomics study on mobile
106 genetic elements (MGEs) and their role in *bla*_{NDM-1} dissemination within the ST101 lineage to date
107 [10]. We sequenced the genomes of seven *bla*_{NDM-1}-positive ST101 isolates using Pacific
108 Biosciences (PacBio) Single Molecule Real Time (SMRT) sequencing, generating two complete
109 (MS6192 and MS6193) and five high-quality draft genomes (MS6194, MS6201, MS6203, MS6204,
110 MS6207) [10]. Using an additional thirteen previously published and publicly available draft ST101
111 genomes, we showed that ST101 strains formed two distinct clades (Clades 1 and 2) with
112 clustering based on infection site, *fimH* profile and antimicrobial resistance gene repertoire.
113 Notably multidrug resistance and the carriage of the *bla*_{NDM-1} gene were restricted to a subset of
114 Clade 1 isolates. ST101 strains have a variable mobile genetic element (MGE) complement
115 including prophages, genomic islands, transposons, and plasmids that encode genes for virulence,
116 fitness, and antimicrobial resistance. Many MGEs also contained DNA methyltransferase (MTase)
117 genes, which may result in differential methylation patterns.

118

119 In bacteria, DNA methylation is catalysed by MTases, where it guides many biological processes
120 including defence mechanisms against foreign DNA, DNA replication and repair, timing of
121 transposition and regulation of gene expression [11]. Three methylated nucleotides are known to
122 occur in bacteria: N6-methyladenine, (^{6m}A), N4-methylcytosine (^{4m}C) and C5-methylcytosine (^{5m}C)
123 [12]. MTases are often encoded alongside, or as part of, restriction endonucleases (REases), which
124 have the same DNA recognition site, forming restriction-modification (RM) systems that play a

125 central role in defence against foreign, invading DNA [13]. Additionally, MTases can act
126 independently of REases and such DNA-modifying enzymes are known as orphan MTases. MTases
127 and RM systems are ubiquitous and extremely diverse in prokaryotes, and are classified into four
128 major groups: Type I, II, III and IV based on subunit composition, DNA recognition site specificity,
129 site of cleavage and reaction substrates (for a comprehensive review: [14]). In *E. coli*, RM systems
130 and orphan MTases are most commonly Type I or Type II [14]. Type I systems are comprised of
131 three subunits: restriction (R), modification (M) and specificity (S) [15]. The S subunit contains the
132 DNA target recognition domain (TRD) and recognises bipartite asymmetric recognition sequences
133 separated by 4-9 degenerate bases [15]. Type II systems are the most widespread, and in their
134 simplest form comprise separate R and M genes with identical DNA binding specificity, and often
135 recognise 4-6 bp palindromic sequences [16]. Exceptions include Type IIIG, where the R and M
136 subunits are contained in one polypeptide and in general, bind to short, non-palindromic
137 sequences, resulting in hemi-methylation [17, 18]. Knowledge of MTase binding specificities is
138 critical for pairing motifs with their cognate MTase.

139
140 Genes encoding DNA MTases have been identified in most prokaryote genomes available to date
141 [13, 19]. However, despite the rapid growth of genomic information in public databases,
142 epigenomic information such as methylation has lagged due to methodological limitations of
143 previous technologies [20]. PacBio SMRT sequencing produces long reads, enabling the resolution
144 of complex genetic structures such as MGEs and *de novo* assembly of complete bacterial
145 chromosomes and plasmids [21]. Additionally, SMRT sequencing can be used to identify DNA
146 modifications such as methylation at a single base resolution, based on the kinetics of the
147 sequencing reaction [20]. PacBio SMRT sequencing can directly detect ^{6m}A and ^{4m}C modifications
148 due to their robust kinetic signatures, however it is only moderately sensitive for ^{5m}C
149 modifications [22]. The impact of SMRT sequencing on cataloguing genome-wide methylation in

150 bacteria has been demonstrated recently, with the complete methylome of hundreds of bacterial
151 pathogens and environmental species now characterised (for example [23]). MTases and RM
152 systems that have been characterised in bacteria are often encoded on MGEs [13, 19] and have
153 additional biological roles including the generation of genomic diversity required for host fitness
154 [13, 24]. However, there are relatively few studies on the genomic context and functional and
155 evolutionary consequences of most identified MTases.

156

157 Except for Ashcroft *et al.* [10], there have been limited genomics studies of the *E. coli* ST101
158 lineage and no methylome analyses to date. Here, we present the first methylome analysis of
159 ST101 using PacBio SMRT sequencing data for seven *E. coli* ST101 genomes. We defined the
160 patterns of DNA methylation across all seven ST101 genomes, pairing recognition sites with their
161 cognate MTase. Notably, we found a functional Type I RM system encoded within a Transposon 7-
162 like Transposon (Tn) was responsible for extensive methylome differences in otherwise identical
163 strains. By including an additional 13 previously published, draft ST101 genomes, we found that
164 the majority of MTases were encoded on variably distributed MGEs, giving the potential for an
165 unprecedented level of differential methylation within a single *E. coli* lineage.

166

167 **Methods**

168 **SMRT sequencing and whole-genome detection of methylated bases.** Genomic DNA (gDNA) of
169 seven *E. coli* ST101 strains; MS6192, MS6193, MS6194, MS6201, MS6203, MS6204 and MS6207
170 was extracted from overnight cultures and sequenced on either a PacBio RSI or RSII sequencer as
171 previously described [10]. Detection of methylated bases and the identification of associated
172 methyltransferase recognition sites across the seven genomes (2 complete, 5 draft), was
173 performed using the RS_Modification_and_Motif_Analysis protocol within the SMRT Analysis suite
174 v2.3.0. Interpulse durations (IPDs) were calculated based on the kinetics of the nucleotide

175 incorporation and were processed as previously described [20]. Sequence motifs were identified
176 using Motif Finder v1, implemented in the SMRT Portal v2.3.0. Quality value cut-offs of 20 and 30
177 were applied for the draft and complete genomes, respectively. Here we report only ^{6m}A
178 methylation. As the DNA was not Ten-eleven translocation (Tet) treated prior to sequencing, ^{5m}C
179 modifications were not quantitated and ^{4m}C modifications were not identified in any genome.

180

181 **Analysis of methyltransferase target site enrichment in gene regulatory regions.** Putative gene
182 regulatory (promoter) regions were defined as up to 300 bp upstream of the start codon of each
183 CDS. To identify RM.EcoST101V recognition sites that were within intergenic regions we used the
184 Bedtools v2.23.0 [25] closest flag, which reports the nearest genomic distance between
185 recognition sites and CDSs. Sites that were within or overlapped the ends of CDSs were removed.
186 A list of all protein-coding genes that contained a 5`-^{6m}ACGN₅GTG-3` site within 300 bp upstream
187 of a start codon in MS6193 was generated (Supplementary Dataset, Table S1). This was used as a
188 target gene list to compare with a background gene list formed by all genes within the *E. coli* K12
189 genome. If a gene was within an operon, all members of the operon were included. This target
190 and background gene list comparison was performed using the functional enrichment analysis
191 within the Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.7 [26, 27].
192 Genes were annotated based on known function, gene ontologies and pathways. Results were
193 determined as significant if post-hoc Benjamini-Hochberg correction for multiple testing reported
194 a P value of <0.05.

195

196 **Methyltransferase diversity.** To further analyse the distribution of MTases across the *E. coli* ST101
197 lineage, 13 additional published and publicly available ST101 draft genomes were downloaded
198 from Genbank or the SRA as previously described [10]. An additional eight ExPEC complete
199 genomes (accession details available in Supplementary Dataset, Table S2) were also included to

200 emphasise ST101 lineage specific MTases. Active MTase genes identified in the *E. coli* ST101 draft
201 genomes, all MTase genes from MS6192 and MS6193 and MTases from the REBASE Gold Standard
202 database were searched against the 20 ST101 genomes and eight ExPEC complete genomes
203 (Nucleotide Blast, $\geq 90\%$ nucleotide identity and $> 95\%$ sequence coverage) with redundancy
204 removed. The presence or absence of MTase genes were visualised using Seqfindr
205 (<http://github.com/mscook/seqfindr>).

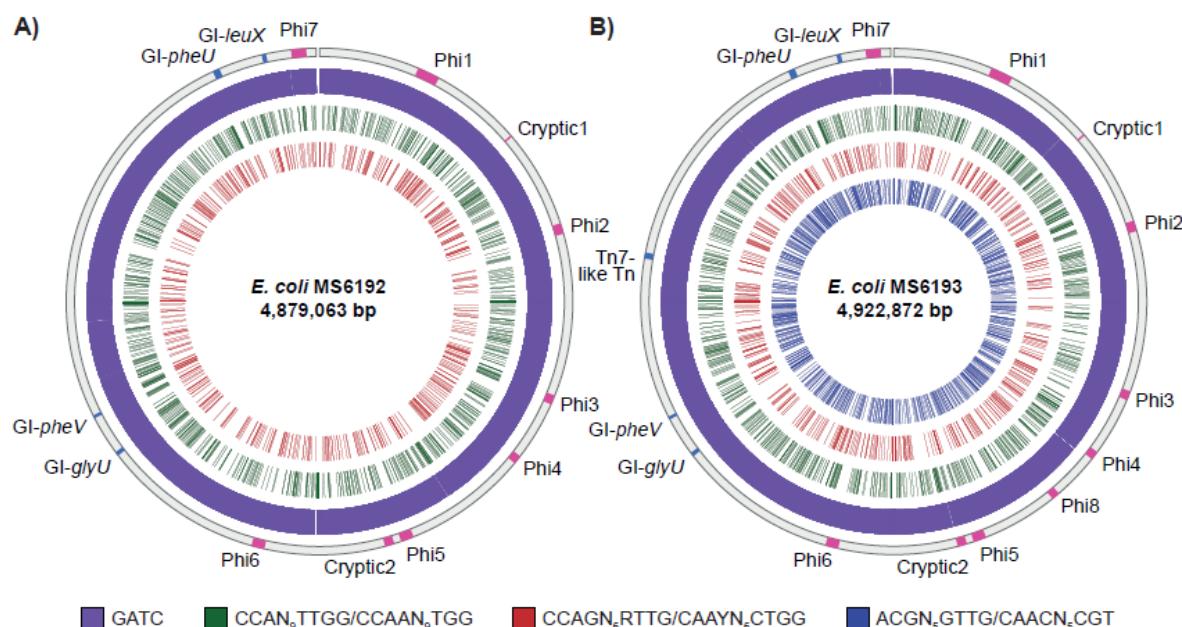
206

207 **Results**

208 ***E. coli* ST101 complete genomes MS6192 and MS6193 encode an almost identical complement**
209 **of DNA methyltransferases.** To characterise the role of methylation in shaping the *E. coli* ST101
210 lineage, we first defined the MTase complement of two near-identical Clade 1 *E. coli* ST101 strains
211 (MS6192 and MS6193) for which we had previously determined the complete genomes [10]. The
212 MS6192 genome encodes 12 putative MTases, with 8 on the chromosome, two on the large
213 *bla*_{NDM-1}-positive plasmid pMS6192A-NDM and one on each of the other large plasmids
214 (pMS6192B and pMS6192C) (Table 1). Three chromosomal MTases correspond to enzymes that
215 have been characterised in other *E. coli* strains, including Dam (5'-G^{6m}AT-C-3'), Dcm
216 (5'-C^{5m}CWGG-3') and a homolog of the orphan MTase gene *yhdJ* encoding M.EcoST101III
217 (5'-ATGC^{6m}AT-3') (by convention, underlined bases indicate methylation on the opposite strand),
218 which has previously been reported to be inactive in other *E. coli* [28]. Additionally, we identified
219 two Dam-like, orphan, Type II MTases (M.EcoST101I and M.EcoST101II) of unknown specificity
220 located on the prophages Phi2 and Phi6, respectively. Three orphan, Type II MTases with unknown
221 recognition sites also exist, with M.EcoST101VI and M.EcoST101VII encoded on Phi7 and
222 M.EcoST101VIII encoded on the *bla*_{NDM-1}-positive F-type plasmid pMS6192A-NDM. Also present
223 are two orphan, Type II MTases encoded on each of the plasmids pMS6192B (M.EcoST101X) and
224 pMS6192C (M.EcoST101XI); the recognition sites of these two MTases remains unknown. The

225 remaining two MTases correspond to Type I RM systems. RM.EcoST101V is carried on the
226 chromosome in an ST101 region of difference (RD12), with RM.EcoST101IX encoded on
227 pMS6192A-NDM.

228


229 Consistent with their close evolutionary relationship, MS6193 encodes all MTases found in
230 MS6192 except for the Type II MTase M.EcoST101XI, as there is no plasmid corresponding to
231 pMS6192C in the MS6193 genome. MS6193 also encodes an additional Type I RM system
232 RM.EcoST101IV, carried on the Tn7-like Transposon that is not found in the MS6192 genome.
233 Despite MS6193 also encoding an additional prophage (Phi8), no MTases were identified on this
234 MGE.

235

236 ***E. coli* ST101 MS6192 and MS6193 genomes are differentially methylated.** The genome-wide
237 distribution of methylated bases in the complete genomes of MS6192 and MS6193 was
238 determined using PacBio SMRT sequencing. Three distinct MTase recognition sites were detected
239 as ^{6m}A methylated in both genomes: 5'-G^{6m}ATC-3', 5'-CC^{6m}AN₉TGG-3' and 5'-CC^{6m}AGN₆RuTG-3'.
240 The recognition site 5'-^{6m}ACGN₅GTTG-3' was also detected in MS6193, but not MS6192 (Figure 1).
241 To assign methylated sites to their cognate enzyme we used a process of elimination. As expected,
242 one of the four recognition sites matched the well-characterised orphan, Type II MTase Dam
243 (M.EcoST101Dam), with known specificity: 5'-G^{6m}ATC-3'. Recently, the Type I RM recognition site
244 5'-CC^{6m}AN₉TGG-3' was identified in the *E. coli* strain GB089, however a cognate MTase was not
245 assigned in REBASE [14]. Nucleotide comparisons of all Type I RM systems in GB089 and MS6192
246 revealed a single match between RM.EcoG089ORF25920P and RM.EcoST101V (100% identity),
247 thus we deduce that the 5'-CC^{6m}AN₉TGG-3' recognition site is methylated by RM.EcoST101V. To
248 investigate the third recognition site shared by both MS6192 and MS6193 (5'-CC^{6m}AGN₆RuTG-3'),
249 we searched the motif against REBASE [14] and confirmed that it matches the recognition site of

250 RM.Eco067II, identified in the *E. coli* strain AR_0067 (Genbank accession: CP032258). This motif is
251 characteristic of a Type I RM system and with only one other Type I RM system identified in
252 MS6192, we deduce that RM.EcoST101IX is responsible for methylation of the 5'-CC^{6m}AGN₆R_{TTG}-3'
253 site. Amino acid comparisons of the specificities subunits (HsdS) S.Eco067II and S.EcoST101XI
254 confirm this match (99.77% identity, single amino acid substitution Y204H). The final ^{6m}A
255 recognition site 5'-^{6m}ACGN₅G_TTG-3', detected only in MS6193, has previously been identified in
256 the *Klebsiella pneumoniae* strain AATZP [29], and was assigned to the Type I RM system
257 RM.KpnAATIII in REBASE. A nucleotide comparison showed that RM.KpnAATIII and RM.EcoST101IV
258 share 100% nucleotide identity. Thus the Type I RM system RM.EcoST101IV in MS6193 must be
259 responsible for methylation at 5'-^{6m}ACGN₅G_TTG-3'. Also observed in both genomes were
260 variations of the 5'-C^{5m}CWGG-3' motif, which is characteristic of Dcm methylation. Despite the
261 presence of M.EcoST101Dcm in both genomes, the DNA was not Ten-eleven translocation (Tet)-
262 treated and the SMRT sequencing coverage is lower than 250X, therefore accurate detection and
263 quantification of ^{5m}C in these genomes was limited (Supplementary Dataset, Table S3).

264

266

267 **Figure 1. Circos plot displaying the distribution of ⁶A methylated bases in the *E. coli* MS6192**

268 and MS6193 chromosomes. The location of MGEs on the chromosome is indicated on the

269 outermost track; Prophages (Pink), Genomic Islands and Transposons (Blue). The remaining tracks

270 display the location of methylated recognition sites for each motif. A) For *E. coli* MS6192, from

271 outer to inner: GATC, purple (M.EcoST101Dam); CCAN₉TTGG/CCAAN₉TGG, green (RM.EcoST101V);

272 CCAGN₆RTTG/CAAYN₆CTGG, red (RM.EcoST101VIII). B) For *E. coli* MS6193, from outer to inner:

273 GATC, purple (M.EcoST101Dam); CCAN₉TTGG/CCAAN₉TGG, green (RM.EcoST101V);

274 CCAGN₆RTTG/CAAYN₆CTGG, red (RM.EcoST101VIII) and ACGN₅GTTG/CAACN₅CGT, blue

275 (RM.EcoST101V).

276

277 **RM.EcoST101IV may have acquired a secondary role in gene regulation.** The additional 18.9 Kb

278 Tn7-like Tn in MS6193 encoding RM.EcoST101IV (Supplementary Figure S1) is one of the major

279 differences between the two complete genomes MS6192 and MS6193. We hypothesised that the

280 acquisition of this additional RM system may lead to functional differences between the MS6192

281 and MS6193 strains. While the functional role of M.EcoST101IV is not currently known, the

282 majority of the 788 5'-^{6m}ACGN₅GTTG-3' sites (96%) are found in coding regions of the MS6193

283 genome. As methylation sites in intragenic regions are more likely to be associated with gene

284 regulation [23], this suggests a primary role for RM.EcoST101IV in defence against foreign DNA.

285 We also identified the presence of two methylated 5'-^{6m}ACGN₅GTTG-3' sites within the Tn7-like Tn

286 itself, found in MS6193_03822 encoding a putative DNA repair ATPase (UniProt), immediately

287 upstream of the *hsdS* gene of RM.EcoST101IV. Although the functional consequence of these

288 methylated sites is unknown, this may protect the Tn7-like Tn itself from degradation.

289

290 We identified 31 5'-^{6m}ACGN₅GTTG-3' sites on the MS6193 chromosome and four on the plasmid

291 pMS6193A-NDM that were in intergenic regions. Of these sites, all but one were within 300 bp of

292 a start codon, which highlights the potential for RM.EcoST101IV to have acquired a secondary role

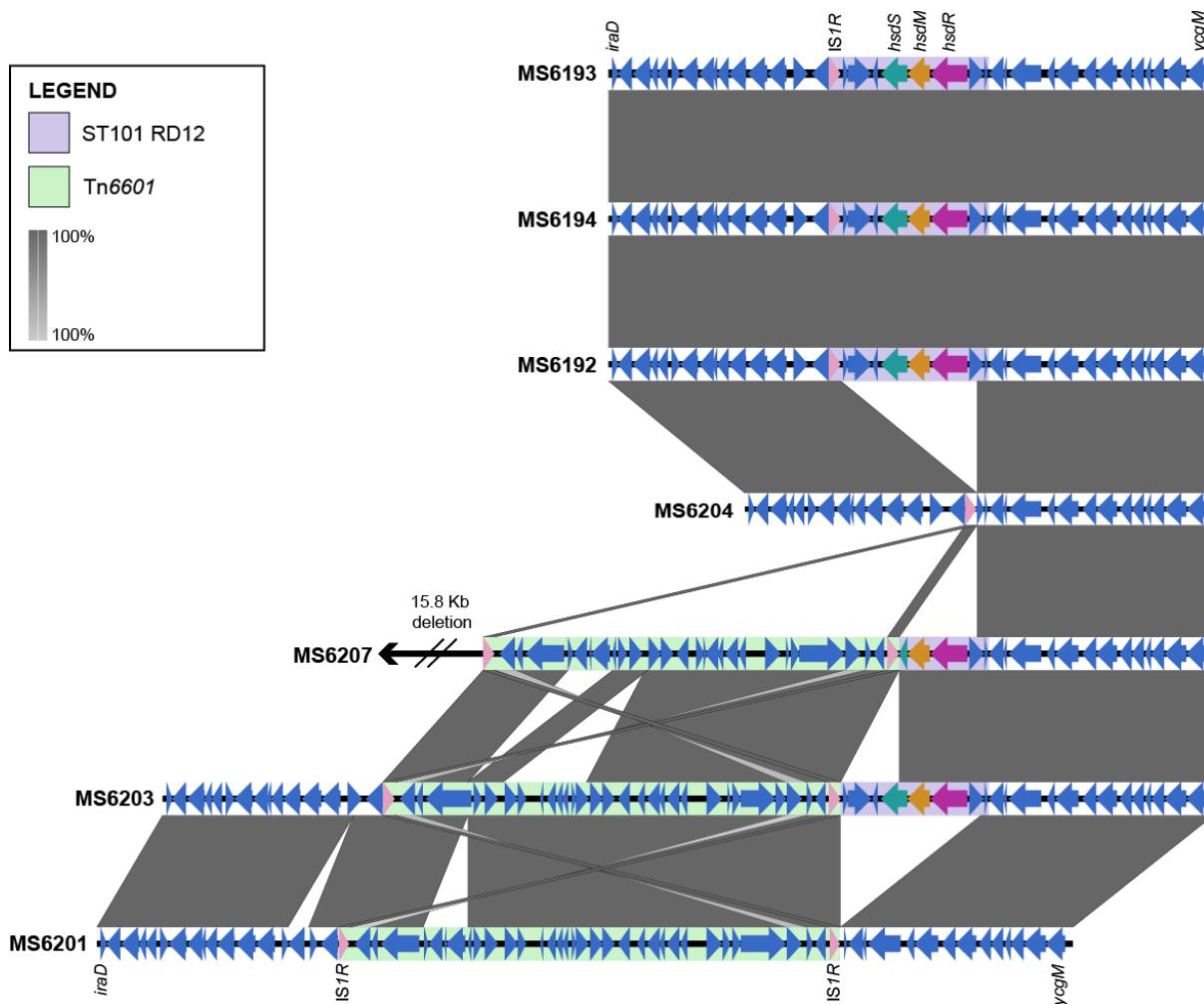
293 in gene regulation (Supplementary Dataset, Table S1). From this, we generated a target gene list

294 of 36 genes (including all genes within an operon if the RM.EcoST101IV site was within the

295 putative promoter region for that operon). These genes include the transcriptional regulators

296 *mcbR* and *fimZ*, *mntP* (putative manganese efflux pump), *yejO* (predicted autotransporter outer
297 membrane protein), *ydcM* (putative transposase and virulence-associated protein) and *pagN*
298 (outer membrane protein and virulence-associated protein). Notably, a single RM.EcoST101IV site
299 was overlapping the start of an IS26 element, which is 124 bp upstream of the truncated ISAb125
300 element that provides the -35 promoter region for the *blaNDM-1* gene [30], responsible for
301 carbapenem resistance in this lineage. Carbapenem Minimum Inhibitory Concentration (MIC)
302 values were however identical between MS6192 and MS6193 except for Doripenem, which was
303 lower in MS6192 by one serial dilution, yet still above the resistance breakpoint [10]. Despite no
304 significant enrichment of functional pathways, these genes were primarily associated with
305 cofactor binding, cell walls and membranes, ATP binding, nucleotide binding and metal ion binding
306 (Supplementary Dataset, Table S4).

307


308 **Variation in *E. coli* ST101 Clade 1 methylomes is associated with variability in the accessory
309 genome.** To further investigate the ST101 methylome diversity, we included in our analyses five
310 draft genome assemblies (MS6194, MS6201, MS6203, MS6204 and MS6207) that we have
311 previously described [10]. In total, we identified four active ^{6m}A MTases described above in
312 MS6192 and MS6193, plus an active Type I RM system (RM.EcoST101XII), found only in MS6201
313 and MS6203 (Table 2). We also identified a novel ^{6m}A Type II-like motif (5'-AGG^{6m}ANTT-3') in
314 MS6203, resulting in hemi-methylation, however we could not definitively match it to its cognate
315 MTase. The following cases illustrate several different scenarios that lead to differential
316 methylation due to MGE-borne MTases in the ST101 lineage.

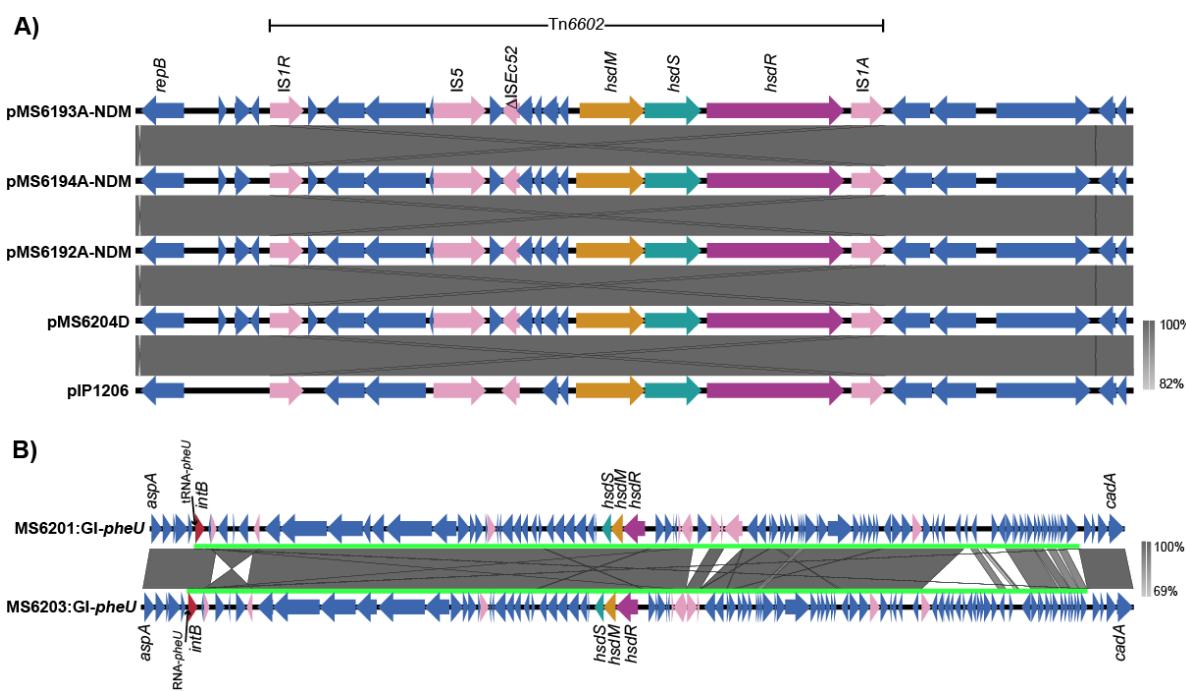
317

318 **Differential methylation due to truncation of the DNA specificity gene in RM.EcoST101V.**
319 Methylation at the 5'-CC^{6m}AN₉TTGG-3' site, which we have assigned to the Type I RM system
320 RM.EcoST101V, is also present in two of the five draft genomes: MS6194 and MS6203.

321 RM.EcoST101V is encoded within the 7.2 Kb ST101 region of difference 12 (RD12) of the complete
322 genomes MS6192 and MS6193 [10] and appears to be in the same location in MS6194 and
323 MS6203. We also identified a homolog of the MTase M.EcoST101V in MS6207 (100% nucleotide
324 ID), however in MS6207 no methylation was observed at the corresponding 5'-CC^{6m}**A**N₉**T**TGG-3'
325 recognition site. Further investigation revealed that the specificity gene (*hsdS*) of RM.EcoST101V in
326 the MS6207 genome was truncated at the 3' end by the upstream insertion of a large ~28 Kb
327 composite transposon: Tn6601 . This truncation resulted in the loss of DNA specificity and
328 therefore loss of methylation and restriction activity. Additionally, in MS6207, the acquisition of
329 this Tn6601 resulted in the deletion of a 15.8 Kb genomic region immediately upstream of the IS1R
330 (Figure 2). Tn6601 is also present in both MS6203 and MS6201. In MS6203, Tn6601 has also
331 inserted upstream of the original IS1R, leaving the RD12 locus intact, however in MS6201, Tn6601
332 has completely replaced the RD12 locus. In MS6204 however, Tn6601 is not present and the
333 absence of RM.EcoST101V is due to the absence of the RD12 locus, leaving only the conserved
334 IS1R element remaining.

335

336
337 **Figure 2. Conservation of RM.EcoST101V and the ST101 Region of Difference 12 (RD12) locus.**
338 Grey shading indicates nucleotide identity between sequences according to BLASTn (100%).
339 MS6201 was reverse complemented for easier visualisation. Strains are in order as they appear in
340 the ST101 phylogenetic tree [10]. ST101 Region of Difference (RD)12 (purple), IS1R flanked Tn6601
341 (pale green), CDSs (blue), IS1R (pale-pink), *hsdS* specificity gene (teal), *hsdM* methyltransferase
342 gene (orange), *hsdR* restriction gene (dark-pink). Image prepared using EasyFig.
343


344 To determine the distribution of Tn6601 in ST101 strains, we included an additional seven
345 published and publicly available Clade 1 ST101 draft genomes. All or most of this transposon is
346 present in subclade 1.2 strains (MS6207, PI7, MS6203, NA086, NA084, MS6201 and NA099)
347 (Supplementary Figure S2). This sequence of events is consistent with the acquisition of the IS1R
348 flanked Tn6601 into the same genomic locus as RD12 and then subsequent, independent
349 transposition events leading to a) no change to the RD12 locus, b) truncation of the RD12 locus or
350 c) loss of the RD12 locus. This result highlights how small recombination events at a single

351 genomic locus between otherwise highly similar bacterial strains can result in global methylome
352 changes within a single lineage.

353

354 **Differential methylation due to acquisition of plasmid-borne RM.EcoST101IX.** The
355 5'-CC^{6m}AGN₆RTTG-3' recognition site encoded by the Type I RM system RM.EcoST101IX was also
356 identified in the draft genomes of MS6194 and MS6204. In all four genomes that carry this Type I
357 RM system (MS6192, MS6193, MS6194 and MS6204), this system is encoded on a pIP1206-like
358 plasmid within the F-type plasmid backbone and is carried on the IS1-family flanked composite
359 transposon Tn6602 (Figure 3a). A BLAST comparison of RM.EcoST101IX confirmed that this Type I
360 RM system is also present (100% nucleotide ID) in the original plasmid pIP1206 (Genbank
361 accession: AM886293), with numerous homologs (>99% nucleotide ID) in other *E. coli*,
362 *K. pneumoniae* and *Salmonella enterica* plasmid sequences (Supplementary Dataset, Table S5),
363 highlighting the promiscuity of this RM system.

364

365

366

367 **Figure 3. Genomic context of the ST101 Type I RM systems RM.EcoST101IX and RM.EcoST101XII.**

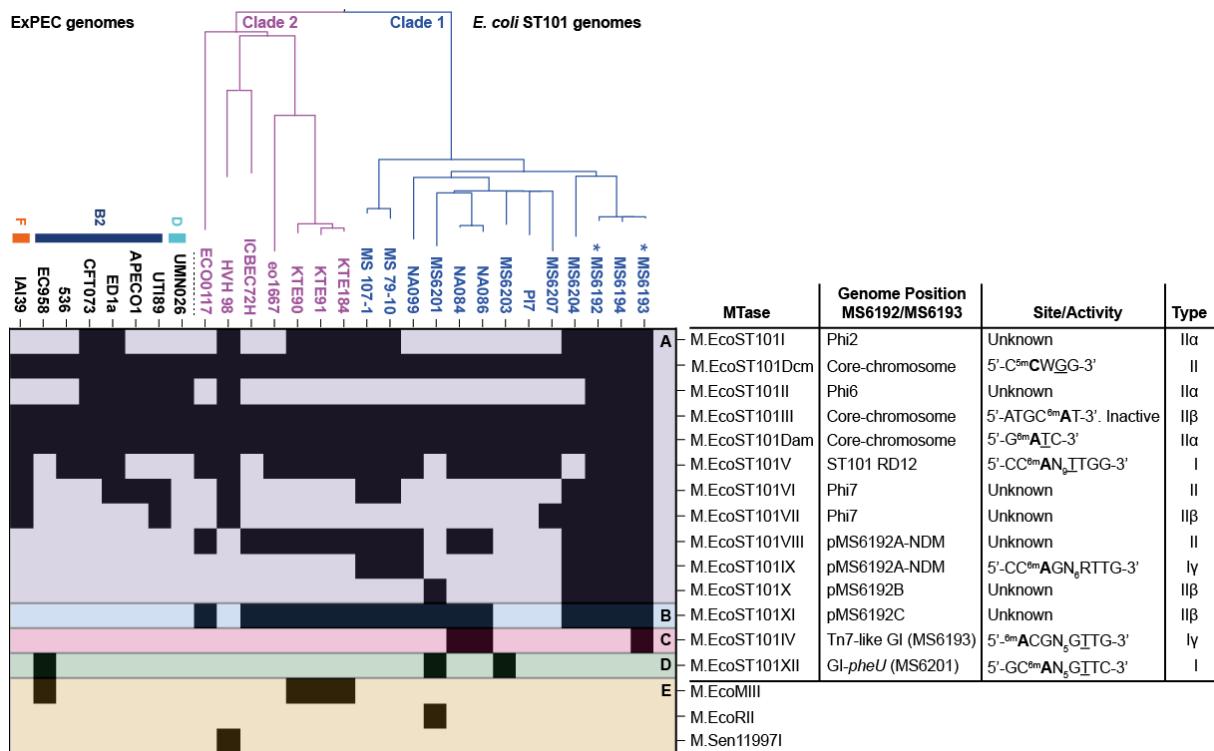
368 Schematic diagrams illustrating the genetic organisation and conservation of active RM systems.
369 A) Tn6602 encoded RM.EcoST101IX. B) Genomic Island GI-pheU encoded RM.EcoST101XII. Grey
370 shading indicates nucleotide identity between sequences according to BLASTn. Key genomic
371 features are indicated including integrase gene (red), Insertion sequences (pale-pink), *hsdS*
372 specificity gene (teal), *hsdR* restriction gene (orange), *hsdM* methyltransferase gene (dark-pink),
373 CDSs (pale blue). tRNA-pheU position labelled. GIs are indicated by the bright-green lines. Image
374 prepared using EasyFig.
375

376 **Differential methylation due to the acquisition of the chromosomal MGE-encoded**

377 **RM.EcoST101XII.** The methylated recognition site 5'-GC^{6m}AN₅GTTC-3' is also characteristic of a
378 Type I RM system and is present only in MS6201 and MS6203; it was not identified in MS6192 and
379 MS6193. We searched the motif against REBASE and confirmed that it matches the recognition
380 site of RM.Dso4321II, identified in the plant pathogen *Dickeya solani* D strain s0432-1 [31], a
381 member of the Enterobacterales. Only a single Type I RM system was identified in MS6201
382 (designated RM.EcoST101XII), thus this is the probable cause of methylation at the
383 5'-GC^{6m}AN₅GTTC-3' site. Comparisons of the specificity subunits S.Dso4321II and S.EcoST101XII
384 however, indicate that they share only 81.22% amino acid identity, with several substitutions in
385 the specificity domains (amino acids 4-183 and 244-366). While this recognition site has not
386 previously been characterised in *E. coli*, the specificity gene is present in several *E. coli* genomes in
387 REBASE (>99% amino acid identity) including one genome (*E. coli* O118:H16 str. 07-4255, Genbank
388 accession: JASP01000001) that has associated PacBio sequence data. Despite the presence of this
389 specificity gene in strain 07-4255, the recognition site was not identified in this genome. Further
390 investigation revealed that the S and M subunits were present, however the R subunit was missing.
391 It is currently unknown if the missing R subunit is the cause of the inactivity of this RM system in
392 strain 07-4255.

393

394 To determine the genomic context of RM.EcoST101XII in MS6201, we characterised the
395 surrounding genes. The presence of several IS elements, phage-like genes and hypothetical genes


396 in close proximity to RM.EcoST101XII suggested carriage on a MGE. Comparative genomic analysis
397 between our seven ST101 genomes characterised this region as a tRNA-*pheU* integrated GI
398 (GI-*pheU*), different to the GI-*pheU* encoded in MS6192 and MS6193. MS6203 also contained a
399 tRNA-*pheU* integrated GI, highly similar to that of the MS6201_GI-*pheU*, encoding the same Type I
400 RM system RM.EcoST101XII as MS6201 (Figure 3b).

401

402 **DNA MTase distribution is reflected by differences in the accessory genome.** To analyse the
403 distribution of MTases across the ST101 lineage, we supplemented the seven PacBio sequenced
404 genomes with 13 publicly available and published draft ST101 genomes and eight publicly
405 available extraintestinal pathogenic *E. coli* (ExPEC) complete genomes (Supplementary Dataset,
406 Table S2). *E. coli* ST101 genomes contain many MTases that are both conserved and variable
407 across the lineage and other complete, reference ExPEC strains (Figure 4 and Supplementary
408 Dataset, Table S6). M.EcoST101Dam, M.EcoST101Dcm and the YhdJ homolog M.EcoST101III are
409 encoded in syntenic positions in all genomes, with all seven ST101 PacBio sequenced genomes
410 showing methylation at the 5'-G^{6m}ATC-3' Dam recognition site. Aside from these core-genome
411 conserved MTases, the distribution of all other ST101 MTases is consistent with the presence or
412 absence of MGEs on which they are encoded (Supplementary Figure S3). For example, the Tn7-like
413 Tn-encoded Type I RM system RM.EcoST101IV in MS6193 is present in only two other ST101
414 genomes (NA086 and NA084) that also carry the Tn7-like Tn and is completely absent in all other
415 genomes surveyed. Likewise, the Type I RM system RM.EcoST101XII encoded on a tRNA-*pheU*
416 integrated GI is present only in the two draft ST101 genomes MS6201 and MS6203. Other ST101
417 MTases however, show a variable distribution. For example, M.EcoST101I is encoded on Phi2 and
418 shows a distribution consistent with the variability of this element in Clades 1 and 2 as well as the
419 ExPEC complete genomes ED1a and CFT073. In MS6192, MS6193 and MS6194, M.EcoST101II is
420 encoded on Phi6, however a homolog is also found in HVH 98 with several Phi6 gene modules also

421 conserved in HVH 98. Interestingly, while M.EcoST101VI and M.EcoST101VII are both encoded on
 422 Phi7 in the complete genomes MS6192 and MS6193, their distribution differs throughout the
 423 ST101 lineage, which is likely due to differences in Phi7 gene content across the lineage.

424

425

426

427

428 **Figure 4. Distribution of MTases in the *E. coli* ST101 lineage.** MTases conserved in *E. coli* MS6192
 429 and MS6193 (A: purple), MTases encoded only in MS6192 (B: blue), MTases encoded only in
 430 MS6193 (C: pink), MTases encoded on the ST101 draft genomes only (D: green) and accessory
 431 ST101 MTases not encoded in *E. coli* MS6192 or MS6193 (E: orange) are shown along the X-axis.
 432 Strain identifiers are listed on the Y-axis, with ST101 strains ordered according to phylogenetic
 433 relationship. Black shading indicates a match of >=90% nucleotide identity with a minimum of 95%
 434 query coverage. Calculated by comparing the query sequences of *E. coli* MS6192 and MS6193
 435 MTases and MTases defined as the gold standard from the REBASE database [14] to the complete
 436 genomes or draft assemblies of *E. coli* ST101 strains, as implemented in Seqfindr
 437 (<http://github.com/mscook/seqfindr>). Blastn results can also be found in Supplementary Dataset,
 438 Table S6.

439

440 Plasmid-borne MTases are also variably conserved throughout Clade 1 strains. The active, plasmid
 441 encoded Type I RM system RM.EcoST101IX is conserved across all Clade 1 strains that harbour
 442 Tn6601, carried on the pIP1206-like F-type plasmid. However, the Clade 1 isolates NA099,

443 MS 79-10 and MS 107-1 also encode a homologous MTase. Further investigations reveal that
444 NA099 shares an identical RM system to RM.EcoST101IX and contains an F-type plasmid, also
445 encoding the *bla*_{NDM-1} locus. The MTase in MS 79-10 and MS 107-1 however shares only 97%
446 nucleotide identity to the MTase M.EcoST101IX, with these genomes not encoding a *bla*_{NDM-1}-
447 positive F-type plasmid. Similarly, the Type II MTase M.EcoST101X is conserved across all Clade 1
448 strains that encode the pGUE-NDM-like FII plasmid, with an M.EcoST101X homolog (100%
449 nucleotide ID) also present in MS6201. M.EcoST101X homologs are also present in several publicly
450 available *E. coli* and *K. pneumoniae* plasmid sequences (Supplementary Dataset, Table S7),
451 suggesting that despite inactivity under normal laboratory growth conditions, this MTase may
452 have an important biological function. Lastly, homologs of M.EcoST101XI encoded on the Incl1
453 plasmid pMS6192C are present in the majority of ST101 strains, even in genomes that do not carry
454 Incl1 plasmids.

455

456 Using the REBASE Gold Standard database (MTases that have been experimentally validated) and
457 removing redundancy, we identified three additional accessory MTase genes that were not
458 encoded within the complete genomes MS6192 and MS6193 (Figure 4). One of these MTases,
459 M.EcoRII is part of a Type II RM system, present on an FII plasmid in MS6201 and is a predicted
460 Dcm homolog. The Clade 2 isolates KTE184, KTE91 and KTE90 contain a Type I MTase similar (96%
461 nucleotide ID) to M.EcoMII from the ExPEC complete genome EC958 [32]. Lastly, the Clade 2
462 strain HVH 98 also encodes a Type I MTase, homologous (92% nucleotide ID) to M.Sen11997I from
463 the *Salmonella enterica* subsp. *enterica* serovar Chester strain ATCC 11997 [33].

464

465 **Discussion**

466 We have previously characterised the role of MGEs in the carriage of *bla*_{NDM-1}, conferring
467 carbapenem resistance in the two *E. coli* ST101 complete genomes (MS6192 and MS6193) and five

468 draft genomes (MS6194, MS6201, MS6203, MS6204 and MS6207) [10]. In the present study, we
469 used these genomes and the kinetics of PacBio SMRT sequencing to bioinformatically characterise
470 DNA MTases, assign recognition sites with their cognate MTase and to define the genomic context
471 of MTases within our collection, facilitating the first comprehensive methylome analysis of the
472 ST101 lineage. We identified 14 DNA MTases and eight ^{6m}A recognition sites, including one novel
473 site that could not be assigned to its cognate MTase. We also showed that eight MTases shared by
474 MS6192 and MS6193 were either inactive under the growth conditions tested or responsible for
475 ^{5m}C methylation, which was not characterised in this study. Transcriptionally silent MTases may be
476 active under specific circumstances such as stress induction or changes in environment. It is
477 possible that cloning and expression of these genes via a plasmid system in a MTase-free strain of
478 *E. coli*, as has been performed previously for other MTases [34], could reveal their target
479 specificity. Overall, our capacity to resolve complex MGEs and define the genomic context of
480 MTases within the ST101 lineage has revealed strain, clade and lineage-wide methylome
481 heterogeneity.

482
483 There is an almost identical methylation profile between the two complete ST101 genomes
484 MS6192 and MS6193, however we show that the acquisition of a single, active RM system
485 (RM.EcoST101IV) encoded on the Tn7-like Tn (present only in MS6193) resulted in 788
486 differentially methylated sites. While more than 96% of sites were within intragenic regions of the
487 genome, 27 sites were within intergenic regions, with all but one located in putative promoter
488 regions (which we defined as ≤ 300 bp from a start codon). Thus, it is possible that methylation of
489 the RM.EcoST101IV site 5'-^{6m}ACGN₅GTTG-3' could result in an indirect role in gene regulation.
490 While the gene regulatory role of orphan MTases such as Dam has previously been demonstrated
491 [11], there are also examples of acquisitions of RM systems that have caused differential
492 methylation patterns and thus differential gene regulation. For example, comparisons of the

493 knockout mutant of the Type II RM system RM.EcoGIII encoded on the Shiga toxin phage, to the
494 wild-type *E. coli* C227-11 strain led to more than a third of all genes differentially expressed [34],
495 indicating that acquired MTases encoded on MGEs can result in significant changes to gene
496 expression. Future work will involve analysing the intersection of the methylome and
497 transcriptome via RNA sequencing methods.

498

499 Currently, it is unknown whether the additional RM system RM.EcoST101IV could generate
500 barriers of DNA exchange and influence the gene pool available to MS6193 however, RM systems
501 do have a role in maintaining species identity and restricting horizontal gene transfer in some
502 species. For example, in *Neisseria meningitidis*, the distribution of RM systems is consistent with
503 its phylogenetic clade structure [35]. Intraclade HGT was significantly more likely than interclade
504 HGT, highlighting that RM systems generate barriers to DNA exchange and are involved in the
505 evolution of distinct lineages [35]. In *Staphylococcus aureus*, a mutation in the restriction subunit
506 (*hsdR*) of the Type I RM system Sau1 is vital for plasmid transformation of the laboratory strain
507 *S. aureus* RN4220, allowing uptake of foreign DNA [36]. Additionally, distinct variants of two
508 specificity units (*hsdS*) encoded on GIs were identified across the different lineages of *S. aureus*,
509 indicating lineage-specific sequence specificity [36]. In *Burkholderia pseudomallei*, each lineage
510 contained a distinct complement of RM systems, which caused clade-specific methylation patterns.
511 Transformation with reporter plasmids that carried specific restriction sites impeded the ability of
512 the *E. coli* strains encoding distinct *B. pseudomallei* RM systems to be transformed [37]. It is
513 therefore predicted that these lineage-specific RM systems partition the species by restricting HGT
514 and inhibiting uptake of non-self-DNA [37]. Whether RM systems within ST101 present a
515 significant barrier to HGT between lineages has yet to be elucidated and represents an area of
516 future research interest.

517

518 In the seven PacBio sequenced genomes, we characterised only a single ST101 MTase capable of
519 ^{5m}C methylation (*dcm* encoded by M.EcoST101Dcm, which methylates 5'-C^{5m}CWGG-3' sites) that
520 has previously been characterised in *E. coli* [38]. However, our ability to detect ^{5m}C methylation
521 was limited. The kinetics of ^{5m}C methylation are subtle and spread over several bases as the
522 modification is hidden in the major groove of the DNA, limiting the effectiveness of the detection
523 algorithm [20]. This could have been overcome by increasing the number of SMRT cells used and
524 thus throughput, increasing the sequencing coverage to 250X [22]. Alternatively, enzymatic
525 conversion via Ten-eleven translocation (Tet) treatment to convert ^{5m}C to 5-carboxylcytosine
526 increases the size of the modification, enhancing the kinetic signal [39]. However, this conversion
527 is sometimes incomplete and even with complete conversion, ^{5m}C isn't always detected at
528 complete levels [40]. Thus, we focused our study on the dominant ^{6m}A modifications in *E. coli*.

529

530 To date, eleven *E. coli* methylomes have been published, including the *E. coli* strains DH5 α ,
531 BL21(DE3) and Bal225 [41], C277-11 [34], RM13514 and RM13516 [42], EC958 [32], CFT073 and
532 K-12 substr. MG1655 [23] and 95NR1 and 95JB1 [43]. These studies have highlighted the diversity
533 of MTases across *E. coli*, with the MTase complement and site specificities varying significantly
534 even between members of the same phylogroup and ST. However, in general, each study was
535 restricted to a very small number of genomes, limiting our knowledge of MTase conservation
536 across whole lineages. Currently, this is only the second study of the distribution of MTases within
537 strains of an *E. coli* lineage, where we first noted the importance of MGEs in the distribution of
538 MTases and showed lineage-specific methyltransferase patterns in the UPEC ST131 clone [32]. By
539 characterising the genomic context of all MTases in our two ST101 complete genomes and active
540 MTases in our five draft genomes, we showed that the majority are encoded on MGEs. Including
541 an additional 13 published and publicly available draft genomes confirmed that variation in
542 MTases within the ST101 lineage was mostly due to MGE differences between genomes.

543 Furthermore, there were limited numbers of accessory MTases identified that were not encoded
544 within either MS6192 or MS6193. While our identification of accessory MTases was restricted as
545 we only compared against MTases that have been experimentally shown to possess methylation
546 activity (REBASE Gold Standard) [14], these limited numbers of accessory MTases may indicate
547 that MTases act as a barrier to HGT within the lineage.

548

549 Our analysis of the ST101 methyome shows that even within a single clade, substantial differences
550 in MTase content can occur, highlighting the need for multiple PacBio genomes across all clades to
551 reveal the full extent of epigenomic diversity within a lineage. Additionally, our findings
552 demonstrate the significant role of MGEs in enabling very similar bacterial strains to rapidly
553 acquire genome-wide differences in their methylome, highlighting the expanding role of MGEs in
554 *E. coli* evolution. Further work studying the intersection between the methylome and
555 transcriptome will expand our understanding of the functional roles of DNA methylation in
556 bacteria and provide new insights into how strain and lineage-specific methylome changes drive
557 host adaptation.

558

559 **Acknowledgements**

560 Authors contributions: Conceptualisation: MMA, BMF, MAS and SAB. Investigation: MMA, BMF.
561 Formal Analysis: MMA. Visualisation: MMA. MDP, KMP and DLP assisted in clinical/wet-lab
562 experiments. BMF and LWR assisted in data analysis. KGC, TMC and WFY performed the PacBio
563 sequencing. Resources: TRW, KGC, MAS and SAB. Supervision: BMF, MAS and SAB. Writing
564 (Original Draft Preparation): MMA, BMF and SAB. Writing (Review and Editing): MMA, MDP, KGC,
565 MAS and SAB. All authors contributed to the final review and edits.

566

567 Funding: This work was supported by grants from the Australian National Health and Medical
568 Research Council (G1033799) and from the University of Malaya High Impact Research (HIR)
569 Grants (UM-MOHE HIR Grant UM.C/625/1/HIR/MOHE/CHAN/14/1, Grant H-50001-A000027 and
570 FP022-2018A). MAS is supported by a NHMRC Senior Research Fellowship (G1106930). SAB is
571 supported by a NHMRC Career Development Fellowship (G1090456). MMA and LWR were
572 supported by an Australian Government Research Training Program Scholarship. The funding
573 bodies had no role in the design of the study and the collection, analysis, and interpretation of
574 data or in writing of the manuscript.

575

576 **Conflicts of interest**

577 The authors declare that there are no conflicts of interest.

Table 1. Summary of DNA methyltransferases and Restriction-Modification systems identified in the *E. coli* ST101 complete genomes MS6192 and MS6193.

Protein or gene	Coordinates MS6192/MS6193	Genomic Location	Gene Cluster ¹	GC gene cluster (%)	Type	R-M/Orphan	Mod Type	Motif Site	Comments
M.EcoST101I	983527-984384/ 983525-984382	Phi2	M	47.55	II alpha	Orphan	^{6m} A	Unknown	Dam-like MTase; phage origin. Unknown activity
M.EcoST101Dcm	2135755-2137173/ 2160691-2162109	Core-Chr	M	51.86	II	Orphan	^{5m} C	5'-CCW <u>GG</u> -3'	Dcm. Active MTase, sites not quantified in this study
M.EcoST101II	2641213-2641740/ 2666149-2666676	Phi6	M	51.89	II alpha	Orphan	^{6m} A	Unknown	Dam-like MTase; phage origin. Unknown activity
M.EcoST101III	3601556-3602440/ 3626492-3627376	Core-Chr	M	48.02	II beta	Orphan	^{6m} A	5'-AT <u>GCAT</u> -3'	Not active in this study. 99% aa identity to YhdJ
M.EcoST101Dam	3684643-3685479/ 3709579-3710415	Core-Chr	M	49.58	II alpha	Orphan	^{6m} A	5'-GAT <u>C</u> -3'	Dam. Active MTase.
RM.EcoST101IV	3835989-3846759 ²	Tn7-like GI	M-x-S-x-x-R	54.79	I gamma	R-M	^{6m} A	5'-ACGN ₅ G <u>TTG</u> -3'	Active R-M system. 100% ID, 100% query cover to M.KpnAATIII in <i>K. pneumoniae</i> AATZP
<i>mcrCB</i>	4718391-4721806/ 4762204-4765615	GI-leuX	R-S	46.01	IV	R-M	^{5m} C	5'-RmC(N40-3000)RmC-3'	Activity undetermined. Cleaves DNA containing ^{5m} C on one or both strands
RM.EcoST101V	4761209-4721802/ 4805022-4810741	Chr - RD12 ³	S-M-R	48.06	I	R-M	^{6m} A	5'-CCAN ₉ <u>TTGG</u> -3'	Active RM system. <i>hsdS</i> , <i>hsdM</i> , <i>hsdR</i> . 100% ID, 100% query cover to RM.EcoG089ORF25920P in <i>E. coli</i> GB089
M.EcoST101VI	4811797-4812450/ 4855610-4856263	Phi7	M	54.28	II	Orphan	^{6m} A	Unknown	Unknown activity. 99.694% ID, 100% query cover to M.EcoACNORF4826P in <i>E. coli</i> ACN001

M.EcoST101VII	4817088-4818140/ 4860901-4861953	Phi7	M	47.86	II beta	Orphan	^{6m} A/ ^{4m} C	Unknown	Unknown activity. 100% ID, 100% query cover to M.EcoACNORF4834P in <i>E. coli</i> ACN001
M.EcoST101VIII	8143-8826/ 8148-8831	pMS6192A-NDM/ pMS6193A-NDM	M	56.58	II	Orphan	^{6m} A/ ^{4m} C	Unknown	Unknown activity. 100% ID, 100% query cover to M.KpnKF3ORF164P in <i>K. pneumoniae</i> strain KF3
RM.EcoST101IX	124879-130953/ 124883-130957	pMS6192A-NDM/ pMS6193A-NDM	M-S-R	43.52	I gamma	R-M	^{6m} A	5'-CCAGN ₆ R ₁ TG-3'	Active R-M system. <i>hsdS</i> , <i>hsdM</i> , <i>hsdR</i> . 99.936% ID, 100% query cover to M.Sen33676ORF4987P in <i>Salmonella enterica</i> subsp. <i>enterica</i> serovar Typhimurium 33676
M.EcoST101X	10410-11093/ 10410-11093	pMS6192B/ pMS6193B	M	55.4	II beta	Orphan	^{6m} A/ ^{4m} C	Unknown	Unknown activity. 93% ID, 100% query cover to M.Eco297870R26870P in <i>E. coli</i> plasmid pCFSAN029787_02
M.EcoMS6192XI	33422-34105 ³	pMS6192C	M	61.73	II beta	Orphan	^{6m} A/ ^{4m} C	Unknown	Unknown activity. 97% ID, 100% query cover to M.Eco6409ORF23710P in <i>E. coli</i> plasmid p6409-151.583kb

¹M=MTase, R=REase, S=Specificity subunit, x=any other gene. ²Only found in MS6193. ³ST101 Region of difference (RD) 12 - in complete genomes

MS6192 and MS6193. ⁴Only found in MS6192.

580

581

582

583

584

585

586

587

588

589

Table 2. Summary of DNA methyltransferase recognition sites identified in the PacBio sequenced *E. coli* ST101 strains in this study.

Motif ¹	Name	Position of MTase	Mod Type	Mod Pos	Strains	No. sites in genome	No. sites detected	Methylated (%)	Mean QV	Mean IPD Ratio	Mean Site coverage
GATC	M.EcoST101Dam	Core-genome	^{6m} A	2	MS6207	43154	38809	89.93	35.07	5.97	16.25
					MS6201	42732	39639	92.76	36.62	5.94	17.32
					MS6203	42144	39517	93.77	37.26	5.89	17.91
					MS6204	43182	37737	87.39	34.34	5.99	15.67
					MS6192	41748	41664	99.8	95.05	6.09	53.82
					MS6194	41956	39948	95.21	38.88	5.99	18.87
					MS6193	41646	41458	99.55	73.68	5.89	41.53
ACGN ₅ GTTG/ CAACN ₅ CGT	RM.EcoST101IV	Tn7-like GI	^{6m} A	1/3	MS6193	788	783/777	99.37/98.6	69.53/68.31	6.71/6.36	41.22/41.26
CCAN ₉ TTGG/ CCAAN ₉ TGG	RM.EcoST101V	RD12 ²	^{6m} A	3/4	MS6203	518	487/468	94.02/90.35	38.02/35.67	7.39/6.43	18.35/18.08
					MS6192	502	502/501	100/99.8	92.37/86	7.73/6.73	53.47/53.04
					MS6194	499	476/466	95.39/93.39	39.26/36.96	6.42/3.22	18.95/20.51
					MS6193	492	491/485	99.8/99.55	71.84/68.77	7.67/6.87	40.89/41.53
CCAGN ₆ RTTG/ CAAYN ₆ CTGG	RM.EcoST101IX	pIP1206-like FII plasmid	^{6m} A	3/3	MS6204	853	756/698	88.63/81.83	35.05/32.33	8.79/6.1	15.67/15.43
					MS6192	821	821/815	100/99.27	95.12/86.69	8.99/5.97	53.72/52.39
					MS6194	833	807/765	96.88/91.84	39.3/36.16	8.78/5.91	18.62/18.57
					MS6193	820	819/808	99.88/95.54	73.75/69.92	9.06/5.95	40.99/40.55
GCAN ₅ GTTC/ GAACN ₅ TGC	RM.EcoST101XII	GI-pheU	^{6m} A	3/3	MS6201	593	557/529	93.93/89.21	36.42/34.56	7.39/6.35	17.37/16.83
					MS6203	577	544/519	94.28/89.95	36.44/34.82	7.34/6.08	17.57/17.35
AGGANTT	N/A	Unknown	^{6m} A	4	MS6203	1986	1803	90.79	35.53	5.82	17.88

590

591

¹By convention, bold bases and underlined bases indicate methylation on the forward and reverse strand, respectively. ²ST101 Region of Difference (RD) 12 – defined in our complete genomes MS6192 and MS6193. QV = Quality Value

592 **References**

593 1. **Peirano G, Mulvey GL, Armstrong GD, Pitout JD.** Virulence potential and adherence
594 properties of *Escherichia coli* that produce CTX-M and NDM beta-lactamases. *Journal of medical*
595 *microbiology* 2013;62(Pt 4):525-530.

596 2. **Mora A, Blanco M, Lopez C, Mamani R, Blanco JE et al.** Emergence of clonal groups
597 O1:HNM-D-ST59, O15:H1-D-ST393, O20:H34/HNM-D-ST354, O25b:H4-B2-ST131 and ONT:H21,42-
598 B1-ST101 among CTX-M-14-producing *Escherichia coli* clinical isolates in Galicia, northwest Spain.
599 *International journal of antimicrobial agents* 2011;37(1):16-21.

600 3. **Hertz FB, Nielsen JB, Schonning K, Littauer P, Knudsen JD et al.** Erratum to: Population
601 structure of Drug-Susceptible,-Resistant and ESBL-producing *Escherichia coli* from community-
602 acquired urinary tract infections. *BMC microbiology* 2016;16(1):114.

603 4. **Wagner S, Gally DL, Argyle SA.** Multidrug-resistant *Escherichia coli* from canine urinary
604 tract infections tend to have commensal phylotypes, lower prevalence of virulence determinants
605 and ampC-relicons. *Veterinary microbiology* 2014;169(3-4):171-178.

606 5. **Mushtaq S, Irfan S, Sarma JB, Doumith M, Pike R et al.** Phylogenetic diversity of
607 *Escherichia coli* strains producing NDM-type carbapenemases. *The Journal of antimicrobial*
608 *chemotherapy* 2011;66(9):2002-2005.

609 6. **Yoo JS, Kim HM, Koo HS, Yang JW, Yoo JI et al.** Nosocomial transmission of NDM-1-
610 producing *Escherichia coli* ST101 in a Korean hospital. *The Journal of antimicrobial chemotherapy*
611 2013;68(9):2170-2172.

612 7. **Poirel L, Savov E, Nazli A, Trifonova A, Todorova I et al.** Outbreak caused by NDM-1- and
613 RmtB-producing *Escherichia coli* in Bulgaria. *Antimicrobial agents and chemotherapy*
614 2014;58(4):2472-2474.

615 8. **Toleman MA, Bugert JJ, Nizam SA.** Extensively drug-resistant New Delhi metallo-beta-
616 lactamase-encoding bacteria in the environment, Dhaka, Bangladesh, 2012. *Emerging infectious*
617 *diseases* 2015;21(6):1027-1030.

618 9. **Ranjan A, Shaik S, Mondal A, Nandanwar N, Hussain A et al.** Molecular Epidemiology and
619 Genome Dynamics of New Delhi Metallo-beta-Lactamase-Producing Extraintestinal Pathogenic
620 *Escherichia coli* Strains from India. *Antimicrobial agents and chemotherapy* 2016;60(11):6795-
621 6805.

622 10. **Ashcroft MM, Forde BM, Phan M-D, Peters KM, Henderson A et al.** Genomic
623 characterisation and context of the *bla*_{NDM-1} carbapenemase in *Escherichia coli* ST101. *bioRxiv*
624 2020:860726.

625 11. **Casadesus J, Low D.** Epigenetic gene regulation in the bacterial world. *Microbiology and*
626 *molecular biology reviews : MMBR* 2006;70(3):830-856.

627 12. **Korlach J, Turner SW.** Going beyond five bases in DNA sequencing. *Current opinion in*
628 *structural biology* 2012;22(3):251-261.

629 13. **Vasu K, Nagaraja V.** Diverse functions of restriction-modification systems in addition to
630 cellular defense. *Microbiology and molecular biology reviews : MMBR* 2013;77(1):53-72.

631 14. **Roberts RJ, Vincze T, Posfai J, Macelis D.** REBASE--a database for DNA restriction and
632 modification: enzymes, genes and genomes. *Nucleic acids research* 2015;43(Database issue):D298-
633 299.

634 15. **Murray NE.** Type I restriction systems: sophisticated molecular machines (a legacy of
635 Bertani and Weigle). *Microbiology and molecular biology reviews : MMBR* 2000;64(2):412-434.

636 16. **Tock MR, Dryden DT.** The biology of restriction and anti-restriction. *Current opinion in*
637 *microbiology* 2005;8(4):466-472.

638 17. **Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA et al.** A nomenclature for
639 restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. *Nucleic
640 acids research* 2003;31(7):1805-1812.

641 18. **Pingoud A, Wilson GG, Wende W.** Type II restriction endonucleases--a historical
642 perspective and more. *Nucleic acids research* 2014;42(12):7489-7527.

643 19. **Oliveira PH, Touchon M, Rocha EP.** The interplay of restriction-modification systems with
644 mobile genetic elements and their prokaryotic hosts. *Nucleic acids research* 2014;42(16):10618-
645 10631.

646 20. **Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC et al.** Direct detection of DNA
647 methylation during single-molecule, real-time sequencing. *Nature methods* 2010;7(6):461-465.

648 21. **Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al.** Nonhybrid, finished microbial
649 genome assemblies from long-read SMRT sequencing data. *Nature methods* 2013;10(6):563-569.

650 22. **Biosciences P.** 2015. White Paper - Detecting DNA Base Modifications Using Single
651 Molecule, Real-Time Sequencing. [http://www.pacb.com/wp-
652 content/uploads/2015/09/WP_Detecting_DNA_Base_Modifications_Using_SMRT_Sequencing.pdf](http://www.pacb.com/wp-content/uploads/2015/09/WP_Detecting_DNA_Base_Modifications_Using_SMRT_Sequencing.pdf)
653 [accessed 06/03/2017].

654 23. **Blow MJ, Clark TA, Daum CG, Deutschbauer AM, Fomenkov A et al.** The Epigenomic
655 Landscape of Prokaryotes. *PLoS genetics* 2016;12(2):e1005854.

656 24. **Davis BM, Chao MC, Waldor MK.** Entering the era of bacterial epigenomics with single
657 molecule real time DNA sequencing. *Current opinion in microbiology* 2013;16(2):192-198.

658 25. **Quinlan AR, Hall IM.** BEDTools: a flexible suite of utilities for comparing genomic features.
659 *Bioinformatics (Oxford, England)* 2010;26(6):841-842.

660 26. **Huang da W, Sherman BT, Lempicki RA.** Systematic and integrative analysis of large gene
661 lists using DAVID bioinformatics resources. *Nature protocols* 2009;4(1):44-57.

662 27. **Huang da W, Sherman BT, Lempicki RA.** Bioinformatics enrichment tools: paths toward the
663 comprehensive functional analysis of large gene lists. *Nucleic acids research* 2009;37(1):1-13.

664 28. **Broadbent SE, Balbontin R, Casadesus J, Marinus MG, van der Woude M.** YhdJ, a
665 nonessential CcrM-like DNA methyltransferase of *Escherichia coli* and *Salmonella enterica*. *Journal
666 of bacteriology* 2007;189(11):4325-4327.

667 29. **Conlan S, Lau AF, Palmore TN, Frank KM, Segre JA.** Complete Genome Sequence of a
668 *Klebsiella pneumoniae* Strain Carrying blaNDM-1 on a Multidrug Resistance Plasmid. *Genome
669 announcements* 2016;4(4).

670 30. **Poirel L, Bonnin RA, Nordmann P.** Analysis of the resistome of a multidrug-resistant NDM-
671 1-producing *Escherichia coli* strain by high-throughput genome sequencing. *Antimicrobial agents
672 and chemotherapy* 2011;55(9):4224-4229.

673 31. **Khayi S, Blin P, Chong TM, Chan KG, Faure D.** Complete Chromosome and Plasmid
674 Sequences of Two Plant Pathogens, *Dickeya solani* Strains D s0432-1 and PPO 9019. *Genome
675 announcements* 2018;6(17).

676 32. **Forde BM, Phan MD, Gawthorne JA, Ashcroft MM, Stanton-Cook M et al.** Lineage-Specific
677 Methyltransferases Define the Methylome of the Globally Disseminated *Escherichia coli* ST131
678 Clone. *mBio* 2015;6(6).

679 33. **Timme RE, Pettengill JB, Allard MW, Strain E, Barrangou R et al.** Phylogenetic diversity of
680 the enteric pathogen *Salmonella enterica* subsp. *enterica* inferred from genome-wide reference-
681 free SNP characters. *Genome biology and evolution* 2013;5(11):2109-2123.

682 34. **Fang G, Munera D, Friedman DI, Mandlik A, Chao MC et al.** Genome-wide mapping of
683 methylated adenine residues in pathogenic *Escherichia coli* using single-molecule real-time
684 sequencing. *Nature biotechnology* 2012;30(12):1232-1239.

685 35. **Budroni S, Siena E, Dunning Hotopp JC, Seib KL, Serruto D et al.** *Neisseria meningitidis* is
686 structured in clades associated with restriction modification systems that modulate homologous

687 recombination. *Proceedings of the National Academy of Sciences of the United States of America*
688 2011;108(11):4494-4499.

689 36. **Waldron DE, Lindsay JA.** Sau1: a novel lineage-specific type I restriction-modification
690 system that blocks horizontal gene transfer into *Staphylococcus aureus* and between *S. aureus*
691 isolates of different lineages. *Journal of bacteriology* 2006;188(15):5578-5585.

692 37. **Nandi T, Holden MT, Didelot X, Mehershahi K, Boddey JA et al.** *Burkholderia pseudomallei*
693 sequencing identifies genomic clades with distinct recombination, accessory, and epigenetic
694 profiles. *Genome research* 2015;25(1):129-141.

695 38. **Marinus MG, Morris NR.** Isolation of deoxyribonucleic acid methylase mutants of
696 *Escherichia coli* K-12. *Journal of bacteriology* 1973;114(3):1143-1150.

697 39. **Clark TA, Lu X, Luong K, Dai Q, Boitano M et al.** Enhanced 5-methylcytosine detection in
698 single-molecule, real-time sequencing via Tet1 oxidation. *BMC biology* 2013;11:4.

699 40. **Kozdon JB, Melfi MD, Luong K, Clark TA, Boitano M et al.** Global methylation state at
700 base-pair resolution of the *Caulobacter* genome throughout the cell cycle. *Proceedings of the*
701 *National Academy of Sciences of the United States of America* 2013;110(48):E4658-4667.

702 41. **Powers JG, Weigman VJ, Shu J, Pufky JM, Cox D et al.** Efficient and accurate whole
703 genome assembly and methylome profiling of *E. coli*. *BMC genomics* 2013;14:675.

704 42. **Cooper KK, Mandrell RE, Louie JW, Korlach J, Clark TA et al.** Comparative genomics of
705 enterohemorrhagic *Escherichia coli* O145:H28 demonstrates a common evolutionary lineage with
706 *Escherichia coli* O157:H7. *BMC genomics* 2014;15:17.

707 43. **Forde BM, McAllister LJ, Paton JC, Paton AW, Beatson SA.** SMRT sequencing reveals
708 differential patterns of methylation in two O111:H- STEC isolates from a hemolytic uremic
709 syndrome outbreak in Australia. *Scientific reports* 2019;9(1):9436.

710