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Jun Cheng1*, Muhammed Hasan Çelik1, Anshul Kundaje2,3 and Julien Gagneur1*

Abstract

Tissue-specific splicing of exons plays an important role in determining tissue identity. However, computational
tools predicting tissue-specific effects of variants on splicing are lacking. To address this issue, we developed
MTSplice (Multi-tissue Splicing), a neural network which quantitatively predicts effects of human genetic
variants on splicing of cassette exons in 56 tissues. MTSplice combines the state-of-the-art predictor
MMSplice, which models constitutive regulatory sequences, with a new neural network which models
tissue-specific regulatory sequences. MTSplice outperforms MMSplice on predicting effects associated with
naturally occurring genetic variants in most tissues of the GTEx dataset. Furthermore, MTSplice predicts that
autism-associated de novo mutations are enriched for variants affecting splicing specifically in the brain.
MTSplice is provided free of use and open source at the model repository Kipoi. We foresee MTSplice to be
useful for functional prediction and prioritization of variants associated with tissue-specific disorders.
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Introduction
Splicing is a fundamental biological process in which introns are cut out from pre-

cursor RNAs and exons are joined together. Alternative splicing refers to alternative

usage of exons. It is estimated that approximately 95% of human multi-exon genes

undergo alternative splicing [1]. Exon skipping (of so-called cassette exons) is the

most common alternative splicing pattern [2]. Skipping level of an exon is commonly

quantified with the percent spliced-in (PSI or Ψ) [3]. Percent spliced-in can be es-

timated from RNA-Sequencing (RNA-Seq) data as the number of split RNA-Seq

reads supporting the inclusion of the exon divided by the total number of split reads

supporting the skipping or the inclusion of the exon. Splicing is a complex process

which involves regulation by sequence elements in the exons and flanking introns

[4]. Moreover, alternative splicing is often tissue-specific [2, 3, 5, 6]. This means

that certain splicing isoforms are only present in certain tissues or that the relative

abundances of splice isoforms differ across tissues. Alternative splicing plays an im-

portant role in tissue development and shaping tissue identity [7, 8]. Analyzing the

protein-coding roles of tissue-specific exons revealed their critical role in rewiring

protein interaction networks in different tissues [9]. Tissue-specific splicing patterns

are associated with short RNA motifs [2, 10–13]. These short RNA motifs encode

tissue-specific splicing regulatory elements, typically intronic or exonic binding sites

for splicing factors with a tissue-specific activity. Mammalian tissue-specific splic-

ing factors include Nova1, Nova2, PTB/nPTB, RBFOX1 for nervous tissues, and

MBNL1 for muscles, among others. For a review, see Chen & Manley [14].

Splicing defects account for an important fraction of the genetic basis of hu-

man diseases [15–17]. Some of these splicing defects are specific to disease-relevant

tissues. For instance, individuals affected by autism spectrum disorder (ASD) fre-

quently present mis-splicing of brain-specific exons [18–20] as well as an enrichment

of de novo mutations in brain-specific exons [21]. Hence, computational tools that
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can predict the tissue-specific effects of genetic variants on splicing would be relevant

for understanding the genetic basis of tissue-specific diseases such as ASD.

Many computational tools have been developed to predict splice sites or splicing

strength from sequence [22–32]. However, tools are lacking for predicting tissue-

specific effects of human genetic variants on splicing. Barash et al. developed the

first sequence-based model predicting tissue-specific splicing in mouse cells [33]. The

model integrates regulatory sequence elements to qualitatively predict whether the

inclusion of a cassette exon increases, decreases, or remains at a similar level from

one tissue to another tissue. This model was further improved to predict directional

changes between tissues along with discretized Ψ categories (Low, -Medium, and

-High) within a tissue by using a Bayesian neural network with hidden variables

[34]. In a subsequent study, a similar Bayesian neural network (SPANR) was trained

on human data [28]. However, SPANR was evaluated only for predicting the largest

effect across all investigated tissues. Hence, the performance of SPANR on any given

tissue is unclear. Moreover, the publicly available SPANR does not allow performing

tissue-specific predictions.

We previously developed MMSplice, a neural network with a modular design that

predicts the effect of variants on splicing [29, 30]. Unlike SPANR, which has been

trained on natural endogenous genomic sequence, MMSplice leverages perturbation

data from a recently published massively parallel reporter assay [27]. MMSplice

outperformed SPANR and many other splicing predictors in predicting Ψ variations

associated with naturally occurring genetic variants as well as effects of variants on

percent spliced-in measured on reporter assays [29, 35]. MMSplice models the odds

ratio of a cassette exon to be spliced-in when comparing an alternative sequence to

a reference sequence.The predicted odds ratios are the same for all tissues because

MMSplice has been trained in a tissue-agnostic fashion and therefore does not

capture effects of variants affecting tissue-specific regulatory elements.

Deep learning models of tissue-specific regulatory elements have been developed

for other biological processes. These models include DeepSEA for chromatin-profiles

[36], Basset for DNase I hypersensitivity [37], ExPecto for tissue-specific gene ex-

pression [38], FactorNet for transcription factor binding [39], and ChromDragoNN

for chromatin accessibility [40]. A common denominator of these models is that

they are trained by multi-task learning, i.e. the models make joint predictions for

all tissues or cell types using a common set of underlying predictive features. This

strategy allows models to efficiently pool information about regulatory elements

that are shared across cell types or tissues.

Here, we developed MTSplice (Multi-tissue MMSplice), a model that predicts

tissue-specific splicing effects of human genetic variants. MTSplice adjusts the MM-

Splice predictions with the predictions of TSplice (Tissue-specific Splicing), a novel

deep neural network predicting tissue-specific variations of Ψ from sequence which

we trained on 56 human tissues using multi-task learning. Performance of MT-

Splice is demonstrated by predicting tissue-specific variations of Ψ associated with

naturally occurring genetic variants of the GTEx dataset as well as investigating

brain-specific splicing effect predictions for autism-associated variants. MTSplice is

open-source and freely available at the model repository Kipoi [41].
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Results
Tissue-specific alternatively spliced exons

To train a tissue-specific model of splicing, we considered the alternative splicing

catalog of the transcriptome ASCOT [42]. Because the ASCOT annotation and

quantification pipeline is annotation-free, it also covers non-annotated exons. Al-

together, ASCOT provides Ψ values for 61,823 cassette exons across 56 tissues in-

cluding 53 tissues from the GTEx dataset [43] and additional RNA-Seq data from

peripheral retina. Of note, these tissue-specific values are flagged as missing when

the corresponding gene is not expressed [42].

Overall, Ψ of 17,991 exons (29%) of the ASCOT dataset deviate by at least 10%

in at least one tissue from its exon-specific average across tissues. These deviations

from the exon-specific average Ψ by 10% often occurred in a single tissue (5,658

exons, 31%) and in at least 10 tissues for 4,398 exons (25%, Figure 1A). We in-

vestigated co-variations between tissues using these 4,398 exons (Figure 1B). This

revealed that samples from the central nervous system (brain, spinal cord, and

retina) have very distinct splicing patterns compared to other tissues, in agreement

with previous reports [23]. Moreover, skeletal muscle and the two heart tissues (left

ventrial and artial appendage) also clustered together with shared splicing patterns.

Altogether, this analysis indicates that the ASCOT dataset provides thousands of

tissue-specific splicing events that could be used to train a sequence-based predictive

model. Also, the ASCOT dataset provides the possibility for a multi-task model to

exploit shared splicing regulation of tissues of the central nervous system and, to a

lower extent, between skeletal muscle and cardiac tissues.
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Figure 1 Differential splicing of alternatively spliced exons across tissues. (A) Histogram of the
number of tissues with differential splicing (Ψ deviating by at least 10% from the exon-average
Ψ). Overall, 4,398 exons (light blue) are differentially spliced in at least 10 tissues. (B). Heatmap
of Ψ for the 4,398 exons that are differentially spliced in at least 10 tissues with exons (rows) and
tissues (columns) sorted by hierarchical clustering. Ψ is color-coded by a gradient from blue (0) to
red (1) via white (0.5). Gray entries are missing values and occur in tissues for which the
corresponding gene is not expressed. Hierarchical clustering was applied after imputing missing
values with row means.

Differential splicing associated with genetic variants show little tissue-specific

variations

The ASCOT dataset consists of data aggregated per tissue. In principle, the genetic

variations between donors of the original GTEx dataset provides further information

that a sequence-based model could exploit. We therefore next asked how much

genetic variation among individuals in GTEx associated with tissue-specific splicing

variations. To this end, we computed ∆Ψ, the difference between Ψ averaged across

individuals homozygous for the alternative allele and Ψ averaged across individuals

homozygous for the reference allele for exons with a single variant within the exon

body and 300 nucleotides flanking the exon either side (Methods). We estimated
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Ψ using the software for estimating splice isoform abundances MISO [44], which

only takes annotated and alternatively spliced exons into account. Over all these

1,767 single-nucleotide variants, little tissue-specific deviation of ∆Ψ compared to

its average across tissues was observed (Figure 2A). Specifically, less than 1,476

instances (3.4% of exon-variant-tissue pairs) of tissue-specific ∆Ψ deviated by 20%

from the tissue-averaged ∆Ψ (Figure 2B). This observation is consistent with the

fact that only a limited fraction (between 7% and 21%) of splicing QTLs are tissue-

specific [45]. Since GTEx samples are derived from healthy donors, this observation,

however, does not rule out the possibility that some disease-causing variants do

alter splicing in a tissue-specific way. Due to the small amount of tissue-specific

splicing variation associated with genetic variants in GTEx, we decided to train a

sequence-based model solely based the variations between exons using the ASCOT

aggregated data and to keep the genetic variations between donors of the GTEx

dataset to independently assess the model afterward.
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Figure 2 Tissue-specific variations of differential splicing associated with genetic variants in the
GTEx dataset. (A). Tissue-specific differential Ψ associated with a genetic variant (y-axis) against
differential Ψ associated with a genetic variant averaged across tissues (x-axis). Effects were
estimated using homozygous donors (B). Proportion of data points shown in A (y-axis) for every
cutoff on the deviation from the averaged Ψ across tissues (x-axis, decreasing).

TSplice predicts tissue-specific Ψ

We next developed a neural network, TSplice, to predict tissue-specific Ψ values

from sequence and tissue-averaged Ψ (Methods). TSplice considers the 300 nt flank-

ing either side of the exon and the first and last 100 nt of the exon body. TSplice is

a convolutional neural network (Figure 3) in which positional effects of sequence el-

ements relative to splice sites are modeled using spline transformations [46]. TSplice

was trained on the ASCOT dataset using all chromosomes except for chromosome

2, 3 and 5. We report our model prediction performances on these held-out chro-

mosomes.

The performance of TSplice was first assessed on test data by comparing the

observed against the predicted log odds ratios of tissue-specific Ψ for 1,621 exons

(“variable exons”) with Ψ deviating from the tissue-averaged Ψ by at least 0.2 in

at least one tissue and for which the gene is expressed in at least 10 tissues (Figure

4A for Retina eye as an example, Spearman ρ = 0.27). The predictions positively
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Figure 3 Model architecture to predict tissue-specific percent spliced-in. The model TSplice
consists of one convolution layer with 64 length-9 filters capturing sequence elements from
one-hot encoded input sequences. This is followed by two spline transformation layers modulating
the effect of sequence elements depending on their position relative to the acceptor splice sites
(leftmost layer) and the donor (rightmost layer). The outputs of the two spline transformation
layers are concatenated and global average pooling is applied along the sequence dimension. This
is then followed by feeding two consecutive fully-connected layers. The last fully-connected layer
outputs a 56 dimension vector which are the predicted log odds ratios of tissue-specific Ψ versus
tissue-averaged Ψ for the 56 tissues of the ASCOT dataset. Natural scale tissue-specific Ψ are
obtained by adding predicted odds ratios with measured tissue-averaged Ψ. Batch normalization
was used after all layers with trainable parameters except the last fully connected layer. In total,
the model has 8,024 trainable parameters.

correlated with the measurements in all tissues and showed a median Spearman

correlation of 0.22 (Figure 4B, Supplementary Figure 1). The performance was

higher for tissues of the central nervous system (Figure 4C), possibly because central

nervous system tissues harbor similar splicing patterns and because they are well

represented in the ASCOT dataset.

We had first assessed log odds ratio predictions because these are the actual

quantities the model was trained for. However, percent spliced-ins on the natural

scale often matter more for biological and medical applications. We hence next

evaluated how well TSplice performs on predicting tissue-specific Ψ on test exons.

A successful example is the 9th exon of the gene ABI2, which is included in brain,

heart, muscle, and retina tissues and for which TSplice predicts well the order of

the tissues (Figure 5A, Spearman ρ = 0.8) and the absolute values of tissue-specific

Ψ per-tissue (root-mean-square error, short RMSE, 0.11). For the majority of the

variable exons (73.9%, 1,198 out of 1,621) TSplice ranked tissue-specific Ψ in the

right direction (median ρ = 0.25, Figure 5B). We benchmarked TSplice against a

sequence-independent baseline model that predicts tissue- and exon-specific Ψ by

adding tissue-average Ψ and exon-average Ψ in the logit scale (Methods). TSplice

showed higher Spearman correlation than the baseline model for 65.9% of the exons

(P < 2.2×10−16, paired Wilcoxon test, Supplement Figure S2). Visualization of the

positional weights learned by the splines showed that some filters were important

for the 5′ half of the model, others for the 3′ half, while about a third of them were
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Figure 4 Evaluating TSplice on predicting tissue-associated differential splicing. (A) Predicted
versus measured tissue-associated differential splicing for the Retina-Eye tissue, representative of
the typical performance of our model. (B) Spearman correlation between predicted and measured
tissue-associated differential splicing for all tissues. (C) Distribution of Spearman correlations
between predicted and measured tissue-associated differential splicing for brain tissues and
non-brain tissues.

important for both halves. Moreover, positional effects were particularly marked

near the splice sites (Supplementary Figure S3). To further investigate the motif

features the model has learned, we visualized the model gradient on the input

sequence. We found the model activates in the presence of known splicing motifs

PTBP1, Nova1 and MBNL1 (Supplementary Figure S4). Altogether, these results

show that TSplice captured sequence features predictive of Ψ changes across tissues.

Tissue-specific variant effect prediction

We next considered combining MMSplice, which models tissue-independent effects

together with TSplice, which models differential effects between tissues, to predict

the effects associated with genetic variants for any GTEx tissue (Methods). We

name this combined model MTSplice. For amygdala, taken as a representative tis-

sue, the MMSplice predictions correlate well (ρ = 0.42, RMSE=0.188, Figure 6A)

with differences of Ψ observed between homozygous donors (Methods). This is con-

sistent with the observation that most variants have similar effects across tissues.

Nevertheless, MTSplice further improved the prediction accuracy when evaluated on

1,030 variants with ∆Ψ varying by at least 0.2 in at least one tissue (RMSE=0.140

for MMSplice alone, RMSE=0.138 for MTSplice, RMSE=0.141 versus 0.139 when

evaluated on all variant). When evaluated on the 51 tissues with at least 10 mea-

sured variant effects, MTSplice outperformed MMSplice for 39 out of 51 tissues in

terms of root-mean-square error (P = 1.76 × 10−5, paired Wilcoxon test, Figure

6B).

MTSplice predicts brain-specific signals for autism patients

To assess the potential of MTSplice on scoring tissue-specific disease variants, we

considered de novo mutations that were reported for 1,790 autism spectrum dis-

order (ASD) simplex families from the Simons Simplex Collection [47–51] and as
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Figure 5 Evaluating TSplice on predicting tissue-specific Ψ. (A). Predicted (x-axis) versus
measured (y-axis) Ψ for the 9-th exon of gene ABI2 across 56 tissues. (B). Histogram of the
Spearman correlation of the predicted versus measured Ψ for 1,621 test exons across 56 tissues.
(C) Root-mean-square error decreases between the TSplice model and the baseline model
(predicted with the mean Ψ across tissues).

provided by Zhou et al [52]. The data consists of 127,140 de novo mutations, with

65,147 from the proband group and 61,993 from the unaffected siblings. Of those,

we further considered the 3,884 mutations lying in exons or in their 300 nt flank-

ing intronic regions and predicted with MMSplice with a ∆ logit(Ψ) magnitude

greater than 0.05. Overall, MMSplice predicted that variants of the proband group

would disrupt splicing more strongly than variants of the control siblings (nega-

tive MMSplice scores, Figure 7A, P = 0.042, Wilcoxon rank-sum test). The effect

was even stronger for the 1,081 loss-of-function (LoF) intolerant genes (Figure 7A,

P = 0.0035, Wilcoxon rank-sum test, Methods). This result is consistent with the

report that LoF-intolerant genes are vulnerable to noncoding disruptive mutations

in ASD [52] and points to an important contribution of splicing.

We then asked whether MTSplice was able to identify tissue-specific effects of

ASD-associated de novo mutations. Consistent with the MMSplice results, the de

novo mutations of the proband group were predicted by MTSplice to more severely

disrupt splicing than the de novo mutations of the control group for all tissues

(Figure 7B). The effect size was larger for the brain tissues (Figure 7B). Since autism

is a neurological disorder, these results indicate that MTSplice may be used to

prioritize variants that could play a tissue-specific pathogenic role. Besides the brain
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Figure 6 Comparing MMSplice and MTSplice on predicting variant-associated differential
splicing. (A). Predicted (x-axis) versus measured (y-axis) ∆Ψ in Amygdala between alternative
and reference alleles for exons with between-tissue splicing variation (cyan) and other exons
(orange). (B). Root-mean-square error of MTSplice predictions (y-axis) against MMSplice
predictions (x-asis) for exons with between-tissue splicing variations (the cyan dots in A). Each
dot represents one of the 51 GTEx tissues with at least 10 measured variant effects. MTSplice
improves for 39 tissues, yet mildly, over MMSplice. Tissues for which the RMSE differences larger
than 0.002 are labeled with text.

tissues, the tissues with most pronounced differences were retina, which is also part

of the central nervous systems and muscle, which has been associated with autism

as well [53]. These differences were further amplified when restricting the analysis

to the de novo mutations in LoF intolerant genes (Figure 7B). Altogether, these

analyses demonstrate the value of MTSplice on predicting tissue-specific effects of

potentially disease causing mutations.

Discussion
We introduced the model MTSplice which quantitatively predicts effects of human

genetic variants on RNA splicing in 56 tissues. MTSplice has two components.

One component, MMSplice, models constitutive splicing regulatory sequences. The

other component, TSplice, models tissue-specific splicing regulatory sequences. The

combined model MTSplice outperforms MMSplice on predicting tissue-specific vari-

ations in percent spliced-in associated with naturally occurring genetic variants in

most tissues of the GTEx dataset. Applying MTSplice to de novo mutations from

autism spectrum disorder simplex families [52], we found a significantly higher bur-

den for the proband group compared to the control siblings, particularly in brain

tissues. These results suggest that MTSplice could be applied for scoring variants

with a tissue-specific pathogenic role.

The TSplice component was trained from tissue-specific alternative splicing ob-

served in the ASCOT dataset. This approach has two main limitations. First, only

less than ten thousand exons show tissue-specific alternative splicing in the AS-

COT dataset. This amount of data prohibits training of more complex models. In

comparison MMSplice was trained using over 2 million sequences of a massively

parallel reporter assay and over half a million naturally occurring splice sites. To

overcome this limitation one could leverage complementary data notably tissue-

specific expression of splicing-related RNA-binding proteins (RBPs) combined with
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Figure 7 Brain-specific mutational burden on splicing in ASD. (A). Tissue-agnostic variant effect
prediction with MMSplice. Splice-region de novo mutations (n=3,384, Methods) of the proband
group (gray) have significantly lower predicted ∆ logit Ψ according to MMSplice compared to
those of the unaffected sibling group (orange). The effect size is larger for variants in
LoF-intolerant genes (n=1,081). Shown are the means and standard 95% confidence intervals.
P-values from one-sided Wilcoxon test. (B). Tissue-specific variant-effect prediction with
MTSplice. Distribution of effect size (difference of average ∆ logit Ψ for proband versus control
siblings de novo mutations) for brain tissues (right boxes) and other tissues (left boxes), and for
all de novo mutations (left panel) or de novo mutations in LoF-intolerant genes (right panel) with
MTSplice. Individual tissue plots are shown Supplementary Figure S5. The predicted effect sizes
are more pronounced for brain tissues.

transcriptome-wide RBP binding profiles [54]. One example of a transfer learning

approach in this context is given by Jha et al.[55], who showed the benefits of inte-

grating CLIP-Seq data to predict splicing. The second limitation is that the ASCOT

dataset is an observational dataset. Models trained from observational data with

genomic sequences may learn sequence features that are correlative but not causal,

preventing the models from correctly predicting the effect of genetic variants. This

could lead to limited predictive performances of our current model.

One approach to overcome the issue of observational data is to perform massively

parallel reporter assays (MPRA) for different cell types. MPRA for human splicing

have been performed in HEK293 cells [25, 27, 56–58], K562 cells [59, 60], HepG2 cells

[59], and HELA and MCF7 cells [61]. These data provide powerful resources to train

complex models on splicing, but tissue and cell-type diversity is still lacking. Tissue-

specific MPRA data would also be of prime importance for benchmarking models.

Here we had to rely on naturally occurring variants in GTEx for benchmarking.

Tissue-specific alteration of splicing can be the outcome of genetic variation affect-

ing either i) constitutive splicing regulatory elements of tissue-specific exons, or ii)

tissue-specific splicing regulatory elements. Very few GTEx variants were from the

latter class. Hence, the mean square errors differences in GTEx between MTSplice

and MMSplice could only be very mild. Previous two-cell-line splicing MPRA exper-

iment did not find tissue-specific variant effects between K562 and HepG2 cells [59],

maybe also because the variants tested were selected randomly. A designed MPRA,

however, could specifically engineer variations of tissue-specific splicing regulatory

elements by using prior knowledge in order to more deeply probe the effect of

variants on tissue-specific splicing regulation. The generation of large-scale tissue
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or cell-type specific perturbation data could therefore be instrumental for probing

tissue-specific regulatory elements and could yield more sensitive benchmarks of

predictive models.

Materials and methods
Dataset

We split the 61,823 cassette exons from ASCOT into a training, a validation, and

a test set. The training set consisted of 38,028 exons from chromosome 4, 6, 8, 10-

23 and the sex chromosomes. The 11,955 exons from chromosome 1, 7 and 9 were

used as the validation set, and the remaining 11,840 exons were used as the test set

(chromosomes 2, 3 and 5). Models are evaluated based on their performance on the

test set.

Variant effect estimation

To compute variant effect, we first computed Ψ with MISO for all annotated alter-

natively spliced exons (MISO annotation v2.0, http://genes.mit.edu/burgelab/

miso/annotations/ver2/miso_annotations_hg19_v2.zip) in all GTEx RNA-

Seq samples. This led to Ψ estimates for 4,686 samples from 53 tissues. Second,

for each exon, we estimated variant effects using only those samples with a single

variant within the exon body and 300 nt flanking of the exon. Third, we estimated

the effect associated with the variants as the difference between Ψ averaged across

samples homozygous for the alternative allele and Ψ averaged across samples ho-

mozygous for the reference allele. We required at least 2 samples in each of these

two groups. For simplicity, we did not consider heterozygous samples for estimating

the effects because Ψ of heterozygous samples is confounded by allele-specific RNA

expression. Also, we did not consider indels.

The TSplice model

We denote Ψe,t the percent spliced-in value of the cassette exon e in tissue t. The

goal of the multi-tissue splicing model is to predict tissue-specific Ψe,t from the

nucleotide sequence of the given exon Se. We train the tissue-specific splicing model

with multi-task learning, where each task corresponds to a tissue. The model has

two input branches. The first input branch consists of the sequence 300 nt upstream

of the acceptor and 100 nt downstream of the acceptor (Figure 3). In a symmetric

fashion, the second input branch consists of the sequence from the donor side,

with 100 nt upstream of the donor and 300 nt downstream of the donor. All input

sequences are one-hot encoded. The input layer is followed by a 1D convolution layer

with 64 filters of length 9. Parameters of the convolution layer are shared by the two

input branches, based on the assumption that many sequence motifs are presented

both upstream and downstream of the exons. To model the positional effects of

splicing motifs, spline transformations [46] are fitted for each of the convolution

filters to weight the convolution activations based on the relative input position to

donor and acceptor sites. The spline transformations are fitted differently for the two

input branches to account for potential different positional effects of the upstream

and downstream introns. The weighted activations are then concatenated along the

sequence dimension. Two fully-connected layers are followed after the concatenated
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outputs. The last fully-connected layer output number of predictions equals the

number of tissues (T ), corresponding to predictions for each tissue. These are the

predictions of the TSplice model mentioned in the manuscript. During training,

logit of the mean Ψ per exon (logit(Ψe)) was added to these prediction outputs

followed by a sigmoid function. This encourages the model to learn sequence features

associated with differential splicing across tissues.

Formally, for each exon, TSplice predicts for each tissue its Ψe,t deviation from

the mean Ψe across tissues on logit level. Specifically, we define the tissue-associated

differential splicing as ∆tissue logit(Ψe,t)

∆tissue logit(Ψe,t) := logit(Ψe,t)− logit(Ψe) (1)

as the logit Ψ deviation for tissue t and exon e from the logit of Ψe := 1
T

T∑
t=1

Ψe,t,

the mean Ψ across tissues.

For exon e with input sequence Se, TSplice predicts the target in RT : TSplice(Se) :=(
∆tissue logit(Ψe,1), ...,∆tissue logit(Ψe,T )

)
corresponding to T tissues.

The tissue-specific Ψe,t can be predicted with TSplice and the given logit(Ψe)

computed from the data as:

Ψ̂e,t = σ

(
TSplice(Se)t + logit(Ψe)

)
(2)

where TSplice(Se)t is the TSplice predicted ∆tissue logit(Ψe,t), and σ is the sigmoid

function: σ(x) = 1
1+e−x . Note that in Equation 1 and elsewhere the average was

computed before and not after logit-transformation because it gave more robust

results.

Model training and selection

The model was implemented with keras (version 2.2.4). The Kullback–Leibler (KL)

divergence between the predicted and measured Ψ distribution was used as the loss

function (Equation 3), by considering the percent spliced-in as the probability of

the cassette exon to be included in any given transcript.

Loss =
1

T · E

T∑
t=1

E∑
e=1

γe,t

(
Ψe,t log(

Ψe,t

Ψ̂e,t

) + (1−Ψe,t) log(
1−Ψe,t

1− Ψ̂e,t

)
)
, (3)

where

γe,t =

1, if Ψe,t observed

0, otherwise
(4)

Missing values, which typically correspond to tissues in which the gene is not

expressed, were masked out in the loss function. Ψ values were clipped to be between

[10−5, 1−10−5]. Adam optimizer [62] with default parameters was used to optimize
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the model. Network weights were initialized with the He Normal initialization [63].

Hyperparameter search was performed with hyperopt [64] with the Tree Parzen

Estimators method along with the package kopt (https://github.com/Avsecz/

kopt). Hyperparameters were selected based on the loss on the validation set.

After finding the best hyperparameter combination, 20 models were trained with

the best hyperparameters but different random initialization. A forward model se-

lection strategy was used to select a set of models whose average predictions gives

the smallest loss on the validation set. To this end, models were first sorted based

on their performance on the validation set. Next, models were successively added

to an ensemble model, defined as the average over the selected models, until the

validation set performance no longer improved. This procedure yielded an ensem-

ble model composed of 8 individual models. TSplice predictions are made by this

ensemble model.

Baseline tissue-specific Ψe,t prediction model

The following model was considered as a baseline model to predict tissue-specific

Ψ̂e,t:

Ψ̂e,t = sigmoid

(
logit

( 1

T

T∑
t=1

Ψe,t

)
+ logit

( 1

E

E∑
e=1

Ψe,t

))
(5)

As for the TSplice model, logit-transformation was performed after averaging

rather than the other way round because it gave more robust results.

Tissue-specific variant effect prediction

Tissue-specific variant effect ∆Ψe,t is predicted as follows (we considered in this

study only homozygous cases as described in the Methods subsection “Variant effect

estimation”):

∆Ψe,t = Ψalt
e,t −Ψref

e,t (6)

where Ψref
e,t is the measured Ψ for exon e and tissue t with the reference sequence,

and Ψalt
e,t is the tissue-specific Ψ with the alternative sequence. We model the logit

level of Ψalt
e,t with the following linear model:

logit(Ψalt
e,t) = β0 + βtissue + βalt + βalt×tissue + ε, (7)
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where β0 is intercept, βtissue is the tissue effect, βalt is the effect of the variant on

an average tissue, βalt×tissue is the interaction term which we model the interaction

of the variant effect and the given tissue. We model each of the terms as follow:

β0 = logit(Ψref
e,average)

βtissue = TSplice(Sref, tissue)

βalt = MMSplice(Sref,Salt)

βalt×tissue = TSplice(Salt, tissue)− TSplice(Sref, tissue)

(8)

When we plug in Equation 8 into Equation 7, we obtain the MTSplice model

which combines MMSplice and TSplice to model tissue-specific variant effect:

logit(Ψalt
e,t) = logit(Ψref

e,average)+MMSplice(Sref,Salt)+TSplice(Salt, tissue)+ε (9)

Finally, the tissue specific ∆Ψe,t is predicted as follow:

∆Ψe,t =σ
(

logit(Ψref
e,average) + MMSplice(Sref,Salt) + TSplice(Salt, tissue)

)
−Ψref

e,t

(10)

Benchmark variant effect prediction on GTEx

On the benchmark of tissue-specific variant effect prediction, we further applied

four filters. First, we selected variants that have |∆Ψe,t| > 0.2 in at least one tissue.

Second ∆Ψ can be computed for at least 3 tissues. Third, we only considered tissues

with more than 10 variants satisfying the above criteria. Altogether, these filters

led to 1,030 variant-exon pairs and 51 tissues used for benchmarking tissue-specific

variant effect predictions.

Autism variants

The processed de novo mutations were downloaded from the link provided by Zhou

et al (Zhou et al. 2019) (https://hb.flatironinstitute.org/asdbrowser/). The

original whole genome sequencing data were accessed through the Simons Founda-

tion Autism Research Initiative (SFARI) [47–51]. The data provides 127,140 sin-

gle nucleotide variants (SNVs) from non-repeat-region. The variants were derived

from 7,097 whole genomes from the Simons Simplex Collection (SSC) cohort, which

consists of whole-genome sequencing data from 1,790 families (with probands and

matched unaffected siblings).

To predict variant effect on splicing, variants were mapped to exons if they are

within the annotated (ensembl gene annotation v75) exon body or within 300 nt

flanking. If a variant was mapped to multiple exons, the largest effect size was re-

ported as the effect of the variant. A total of 13,415 variants were mapped to known

exons and therefore were predicted by our models. Among those variants, 3,884 have

predicted |∆ logit(Ψ)| > 0.05. We classified the variants into loss-of-function (LoF)

group and loss tolerant group based on the loss-of-function observed/expected (oe)

upper bound fraction (LOEUF) scores [65]. We used the suggested cutoff of 0.35 on

the upper bound of the oe confidence interval to group the variants.
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