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Abstract

Tissue-specific splicing of exons plays an important role in determining tissue identity. However, computational
tools predicting tissue-specific effects of variants on splicing are lacking. To address this issue, we developed
MTSplice (Multi-tissue Splicing), a neural network which quantitatively predicts effects of human genetic
variants on splicing of cassette exons in 56 tissues. MTSplice combines the state-of-the-art predictor
MMSplice, which models constitutive regulatory sequences, with a new neural network which models
tissue-specific regulatory sequences. MTSplice outperforms MMSplice on predicting effects associated with
naturally occurring genetic variants in most tissues of the GTEx dataset. Furthermore, MTSplice predicts that
autism-associated de novo mutations are enriched for variants affecting splicing specifically in the brain.
MTSplice is provided free of use and open source at the model repository Kipoi. We foresee MTSplice to be
useful for functional prediction and prioritization of variants associated with tissue-specific disorders.
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cursor RNAs and exons are joined together. Alternative splicing refers to alternative

undergo alternative splicing [1]. Exon skipping (of so-called cassette exons) is the
most common alternative splicing pattern [2]. Skipping level of an exon is commonly
quantified with the percent spliced-in (PSI or ¥) [3]. Percent spliced-in can be es-
timated from RNA-Sequencing (RNA-Seq) data as the number of split RNA-Seq
reads supporting the inclusion of the exon divided by the total number of split reads
supporting the skipping or the inclusion of the exon. Splicing is a complex process
which involves regulation by sequence elements in the exons and flanking introns
[4]. Moreover, alternative splicing is often tissue-specific [2, 3, 5, 6]. This means
that certain splicing isoforms are only present in certain tissues or that the relative
abundances of splice isoforms differ across tissues. Alternative splicing plays an im-
portant role in tissue development and shaping tissue identity [7, 8]. Analyzing the
protein-coding roles of tissue-specific exons revealed their critical role in rewiring
protein interaction networks in different tissues [9]. Tissue-specific splicing patterns
are associated with short RNA motifs [2, 10-13]. These short RNA motifs encode
tissue-specific splicing regulatory elements, typically intronic or exonic binding sites
for splicing factors with a tissue-specific activity. Mammalian tissue-specific splic-
ing factors include Noval, Nova2, PTB/nPTB, RBFOX1 for nervous tissues, and
MBNLI1 for muscles, among others. For a review, see Chen & Manley [14].
Splicing defects account for an important fraction of the genetic basis of hu-
man diseases [15-17]. Some of these splicing defects are specific to disease-relevant
tissues. For instance, individuals affected by autism spectrum disorder (ASD) fre-
quently present mis-splicing of brain-specific exons [18-20] as well as an enrichment

of de novo mutations in brain-specific exons [21]. Hence, computational tools that
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can predict the tissue-specific effects of genetic variants on splicing would be relevant
for understanding the genetic basis of tissue-specific diseases such as ASD.

Many computational tools have been developed to predict splice sites or splicing
strength from sequence [22-32]. However, tools are lacking for predicting tissue-
specific effects of human genetic variants on splicing. Barash et al. developed the
first sequence-based model predicting tissue-specific splicing in mouse cells [33]. The
model integrates regulatory sequence elements to qualitatively predict whether the
inclusion of a cassette exon increases, decreases, or remains at a similar level from
one tissue to another tissue. This model was further improved to predict directional
changes between tissues along with discretized ¥ categories (Low, -Medium, and
-High) within a tissue by using a Bayesian neural network with hidden variables
[34]. In a subsequent study, a similar Bayesian neural network (SPANR) was trained
on human data [28]. However, SPANR was evaluated only for predicting the largest
effect across all investigated tissues. Hence, the performance of SPANR on any given
tissue is unclear. Moreover, the publicly available SPANR, does not allow performing
tissue-specific predictions.

We previously developed MMSplice, a neural network with a modular design that
predicts the effect of variants on splicing [29, 30]. Unlike SPANR, which has been
trained on natural endogenous genomic sequence, MMSplice leverages perturbation
data from a recently published massively parallel reporter assay [27]. MMSplice
outperformed SPANR and many other splicing predictors in predicting ¥ variations
associated with naturally occurring genetic variants as well as effects of variants on
percent spliced-in measured on reporter assays [29, 35]. MMSplice models the odds
ratio of a cassette exon to be spliced-in when comparing an alternative sequence to
a reference sequence.The predicted odds ratios are the same for all tissues because
MDMSplice has been trained in a tissue-agnostic fashion and therefore does not
capture effects of variants affecting tissue-specific regulatory elements.

Deep learning models of tissue-specific regulatory elements have been developed
for other biological processes. These models include DeepSEA for chromatin-profiles
[36], Basset for DNase I hypersensitivity [37], ExPecto for tissue-specific gene ex-
pression [38], FactorNet for transcription factor binding [39], and ChromDragoNN
for chromatin accessibility [40]. A common denominator of these models is that
they are trained by multi-task learning, i.e. the models make joint predictions for
all tissues or cell types using a common set of underlying predictive features. This
strategy allows models to efficiently pool information about regulatory elements
that are shared across cell types or tissues.

Here, we developed MTSplice (Multi-tissue MMSplice), a model that predicts
tissue-specific splicing effects of human genetic variants. MTSplice adjusts the MM-
Splice predictions with the predictions of TSplice (Tissue-specific Splicing), a novel
deep neural network predicting tissue-specific variations of ¥ from sequence which
we trained on 56 human tissues using multi-task learning. Performance of MT-
Splice is demonstrated by predicting tissue-specific variations of ¥ associated with
naturally occurring genetic variants of the GTEx dataset as well as investigating
brain-specific splicing effect predictions for autism-associated variants. MTSplice is

open-source and freely available at the model repository Kipoi [41].
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Results

Tissue-specific alternatively spliced exons

To train a tissue-specific model of splicing, we considered the alternative splicing
catalog of the transcriptome ASCOT [42]. Because the ASCOT annotation and
quantification pipeline is annotation-free, it also covers non-annotated exons. Al-
together, ASCOT provides ¥ values for 61,823 cassette exons across 56 tissues in-
cluding 53 tissues from the GTEx dataset [43] and additional RNA-Seq data from
peripheral retina. Of note, these tissue-specific values are flagged as missing when
the corresponding gene is not expressed [42].

Overall, ¥ of 17,991 exons (29%) of the ASCOT dataset deviate by at least 10%
in at least one tissue from its exon-specific average across tissues. These deviations
from the exon-specific average ¥ by 10% often occurred in a single tissue (5,658
exons, 31%) and in at least 10 tissues for 4,398 exons (25%, Figure 1A). We in-
vestigated co-variations between tissues using these 4,398 exons (Figure 1B). This
revealed that samples from the central nervous system (brain, spinal cord, and
retina) have very distinct splicing patterns compared to other tissues, in agreement
with previous reports [23]. Moreover, skeletal muscle and the two heart tissues (left
ventrial and artial appendage) also clustered together with shared splicing patterns.
Altogether, this analysis indicates that the ASCOT dataset provides thousands of
tissue-specific splicing events that could be used to train a sequence-based predictive
model. Also, the ASCOT dataset provides the possibility for a multi-task model to
exploit shared splicing regulation of tissues of the central nervous system and, to a
lower extent, between skeletal muscle and cardiac tissues.
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Figure 1 Differential splicing of alternatively spliced exons across tissues. (A) Histogram of the
number of tissues with differential splicing (¥ deviating by at least 10% from the exon-average
W). Overall, 4,398 exons (light blue) are differentially spliced in at least 10 tissues. (B). Heatmap
of W for the 4,398 exons that are differentially spliced in at least 10 tissues with exons (rows) and
tissues (columns) sorted by hierarchical clustering. W is color-coded by a gradient from blue (0) to
red (1) via white (0.5). Gray entries are missing values and occur in tissues for which the
corresponding gene is not expressed. Hierarchical clustering was applied after imputing missing
values with row means.

Differential splicing associated with genetic variants show little tissue-specific
variations

The ASCOT dataset consists of data aggregated per tissue. In principle, the genetic
variations between donors of the original GTEx dataset provides further information
that a sequence-based model could exploit. We therefore next asked how much
genetic variation among individuals in GTEx associated with tissue-specific splicing
variations. To this end, we computed AW, the difference between ¥ averaged across
individuals homozygous for the alternative allele and ¥ averaged across individuals
homozygous for the reference allele for exons with a single variant within the exon
body and 300 nucleotides flanking the exon either side (Methods). We estimated


https://doi.org/10.1101/2020.06.07.138453
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.07.138453; this version posted June 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Cheng et al. Page 5 of 17

U using the software for estimating splice isoform abundances MISO [44], which
only takes annotated and alternatively spliced exons into account. Over all these
1,767 single-nucleotide variants, little tissue-specific deviation of AW compared to
its average across tissues was observed (Figure 2A). Specifically, less than 1,476
instances (3.4% of exon-variant-tissue pairs) of tissue-specific AU deviated by 20%
from the tissue-averaged AW (Figure 2B). This observation is consistent with the
fact that only a limited fraction (between 7% and 21%) of splicing QTLs are tissue-
specific [45]. Since GTEx samples are derived from healthy donors, this observation,
however, does not rule out the possibility that some disease-causing variants do
alter splicing in a tissue-specific way. Due to the small amount of tissue-specific
splicing variation associated with genetic variants in GTEx, we decided to train a
sequence-based model solely based the variations between exons using the ASCOT
aggregated data and to keep the genetic variations between donors of the GTEx
dataset to independently assess the model afterward.
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Figure 2 Tissue-specific variations of differential splicing associated with genetic variants in the
GTEXx dataset. (A). Tissue-specific differential ¥ associated with a genetic variant (y-axis) against
differential ¥ associated with a genetic variant averaged across tissues (x-axis). Effects were
estimated using homozygous donors (B). Proportion of data points shown in A (y-axis) for every
cutoff on the deviation from the averaged ¥ across tissues (x-axis, decreasing).

TSplice predicts tissue-specific ¥

We next developed a neural network, TSplice, to predict tissue-specific ¥ values
from sequence and tissue-averaged ¥ (Methods). TSplice considers the 300 nt flank-
ing either side of the exon and the first and last 100 nt of the exon body. T'Splice is
a convolutional neural network (Figure 3) in which positional effects of sequence el-
ements relative to splice sites are modeled using spline transformations [46]. T'Splice
was trained on the ASCOT dataset using all chromosomes except for chromosome
2, 3 and 5. We report our model prediction performances on these held-out chro-
mosomes.

The performance of TSplice was first assessed on test data by comparing the
observed against the predicted log odds ratios of tissue-specific ¥ for 1,621 exons
(“variable exons”) with ¥ deviating from the tissue-averaged ¥ by at least 0.2 in
at least one tissue and for which the gene is expressed in at least 10 tissues (Figure

4A for Retina eye as an example, Spearman p = 0.27). The predictions positively
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Figure 3 Model architecture to predict tissue-specific percent spliced-in. The model TSplice
consists of one convolution layer with 64 length-9 filters capturing sequence elements from
one-hot encoded input sequences. This is followed by two spline transformation layers modulating
the effect of sequence elements depending on their position relative to the acceptor splice sites
(leftmost layer) and the donor (rightmost layer). The outputs of the two spline transformation
layers are concatenated and global average pooling is applied along the sequence dimension. This
is then followed by feeding two consecutive fully-connected layers. The last fully-connected layer
outputs a 56 dimension vector which are the predicted log odds ratios of tissue-specific ¥ versus
tissue-averaged W for the 56 tissues of the ASCOT dataset. Natural scale tissue-specific ¥ are
obtained by adding predicted odds ratios with measured tissue-averaged W. Batch normalization
was used after all layers with trainable parameters except the last fully connected layer. In total,
the model has 8,024 trainable parameters.

correlated with the measurements in all tissues and showed a median Spearman
correlation of 0.22 (Figure 4B, Supplementary Figure 1). The performance was
higher for tissues of the central nervous system (Figure 4C), possibly because central
nervous system tissues harbor similar splicing patterns and because they are well
represented in the ASCOT dataset.

We had first assessed log odds ratio predictions because these are the actual
quantities the model was trained for. However, percent spliced-ins on the natural
scale often matter more for biological and medical applications. We hence next
evaluated how well TSplice performs on predicting tissue-specific ¥ on test exons.
A successful example is the 9" exon of the gene ABI2, which is included in brain,
heart, muscle, and retina tissues and for which TSplice predicts well the order of
the tissues (Figure 5A, Spearman p = 0.8) and the absolute values of tissue-specific
U per-tissue (root-mean-square error, short RMSE, 0.11). For the majority of the
variable exons (73.9%, 1,198 out of 1,621) TSplice ranked tissue-specific ¥ in the
right direction (median p = 0.25, Figure 5B). We benchmarked TSplice against a
sequence-independent baseline model that predicts tissue- and exon-specific ¥ by
adding tissue-average ¥ and exon-average ¥ in the logit scale (Methods). TSplice
showed higher Spearman correlation than the baseline model for 65.9% of the exons
(P < 2.2x 10716, paired Wilcoxon test, Supplement Figure S2). Visualization of the
positional weights learned by the splines showed that some filters were important
for the 5’ half of the model, others for the 3’ half, while about a third of them were
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Figure 4 Evaluating TSplice on predicting tissue-associated differential splicing. (A) Predicted
versus measured tissue-associated differential splicing for the Retina-Eye tissue, representative of
the typical performance of our model. (B) Spearman correlation between predicted and measured
tissue-associated differential splicing for all tissues. (C) Distribution of Spearman correlations
between predicted and measured tissue-associated differential splicing for brain tissues and
non-brain tissues.

important for both halves. Moreover, positional effects were particularly marked
near the splice sites (Supplementary Figure S3). To further investigate the motif
features the model has learned, we visualized the model gradient on the input
sequence. We found the model activates in the presence of known splicing motifs
PTBP1, Noval and MBNL1 (Supplementary Figure S4). Altogether, these results
show that T'Splice captured sequence features predictive of ¥ changes across tissues.

Tissue-specific variant effect prediction

We next considered combining MMSplice, which models tissue-independent effects
together with TSplice, which models differential effects between tissues, to predict
the effects associated with genetic variants for any GTEx tissue (Methods). We
name this combined model MTSplice. For amygdala, taken as a representative tis-
sue, the MMSplice predictions correlate well (p = 0.42, RMSE=0.188, Figure 6A)
with differences of ¥ observed between homozygous donors (Methods). This is con-
sistent with the observation that most variants have similar effects across tissues.
Nevertheless, MTSplice further improved the prediction accuracy when evaluated on
1,030 variants with AU varying by at least 0.2 in at least one tissue (RMSE=0.140
for MMSplice alone, RMSE=0.138 for MTSplice, RMSE=0.141 versus 0.139 when
evaluated on all variant). When evaluated on the 51 tissues with at least 10 mea-
sured variant effects, MTSplice outperformed MMSplice for 39 out of 51 tissues in
terms of root-mean-square error (P = 1.76 x 107>, paired Wilcoxon test, Figure
6B).

MTSplice predicts brain-specific signals for autism patients

To assess the potential of MTSplice on scoring tissue-specific disease variants, we
considered de novo mutations that were reported for 1,790 autism spectrum dis-
order (ASD) simplex families from the Simons Simplex Collection [47-51] and as
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Figure 5 Evaluating TSplice on predicting tissue-specific ¥. (A). Predicted (x-axis) versus
measured (y-axis) ¥ for the 9-th exon of gene ABI2 across 56 tissues. (B). Histogram of the
Spearman correlation of the predicted versus measured W for 1,621 test exons across 56 tissues.
(C) Root-mean-square error decreases between the TSplice model and the baseline model
(predicted with the mean ¥ across tissues).

provided by Zhou et al [52]. The data consists of 127,140 de novo mutations, with
65,147 from the proband group and 61,993 from the unaffected siblings. Of those,
we further considered the 3,884 mutations lying in exons or in their 300 nt flank-
ing intronic regions and predicted with MMSplice with a Alogit(¥) magnitude
greater than 0.05. Overall, MMSplice predicted that variants of the proband group
would disrupt splicing more strongly than variants of the control siblings (nega-
tive MMSplice scores, Figure TA, P = 0.042, Wilcoxon rank-sum test). The effect
was even stronger for the 1,081 loss-of-function (LoF) intolerant genes (Figure 7A,
P = 0.0035, Wilcoxon rank-sum test, Methods). This result is consistent with the
report that LoF-intolerant genes are vulnerable to noncoding disruptive mutations
in ASD [52] and points to an important contribution of splicing.

We then asked whether MTSplice was able to identify tissue-specific effects of
ASD-associated de novo mutations. Consistent with the MMSplice results, the de
novo mutations of the proband group were predicted by MTSplice to more severely
disrupt splicing than the de novo mutations of the control group for all tissues
(Figure 7B). The effect size was larger for the brain tissues (Figure 7B). Since autism
is a neurological disorder, these results indicate that MTSplice may be used to
prioritize variants that could play a tissue-specific pathogenic role. Besides the brain


https://doi.org/10.1101/2020.06.07.138453
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.07.138453; this version posted June 8, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Cheng et al. Page 9 of 17
A Amygdala B Root mean square error
/’ 0.20 « Testis
0.4 S
3 0.18 e
< L7
° i Cerebellar Hemisphere
= g i
@ & 0.16
S = Suhsmmla{lgrﬂ HJp/ campus
= = . ,yNuc\eus accumbens
~0.41 Frontal CO”?,X’: ** Muscle Skeletal
- 0.14 . "'Arﬂm
. it oHie Lortex
// . ,,":’\’ Amyg%()audam
05 0.0 05 (_4/'" Pancreas
MTSplice Predicted AW 0.12 4 Sfm - Sun Pmsllale i i
0.12 0.14 0.16 0.18
vary between tissues yes -+ no MMSplice

Figure 6 Comparing MMSplice and MTSplice on predicting variant-associated differential
splicing. (A). Predicted (x-axis) versus measured (y-axis) AW in Amygdala between alternative
and reference alleles for exons with between-tissue splicing variation (cyan) and other exons
(orange). (B). Root-mean-square error of MTSplice predictions (y-axis) against MMSplice
predictions (x-asis) for exons with between-tissue splicing variations (the cyan dots in A). Each
dot represents one of the 51 GTEx tissues with at least 10 measured variant effects. MTSplice
improves for 39 tissues, yet mildly, over MMSplice. Tissues for which the RMSE differences larger
than 0.002 are labeled with text.

tissues, the tissues with most pronounced differences were retina, which is also part
of the central nervous systems and muscle, which has been associated with autism
as well [53]. These differences were further amplified when restricting the analysis
to the de novo mutations in LoF intolerant genes (Figure 7B). Altogether, these
analyses demonstrate the value of MTSplice on predicting tissue-specific effects of

potentially disease causing mutations.

Discussion

We introduced the model MTSplice which quantitatively predicts effects of human
genetic variants on RNA splicing in 56 tissues. MTSplice has two components.
One component, MMSplice, models constitutive splicing regulatory sequences. The
other component, TSplice, models tissue-specific splicing regulatory sequences. The
combined model MTSplice outperforms MMSplice on predicting tissue-specific vari-
ations in percent spliced-in associated with naturally occurring genetic variants in
most tissues of the GTEx dataset. Applying MTSplice to de novo mutations from
autism spectrum disorder simplex families [52], we found a significantly higher bur-
den for the proband group compared to the control siblings, particularly in brain
tissues. These results suggest that MTSplice could be applied for scoring variants
with a tissue-specific pathogenic role.

The TSplice component was trained from tissue-specific alternative splicing ob-
served in the ASCOT dataset. This approach has two main limitations. First, only
less than ten thousand exons show tissue-specific alternative splicing in the AS-
COT dataset. This amount of data prohibits training of more complex models. In
comparison MMSplice was trained using over 2 million sequences of a massively
parallel reporter assay and over half a million naturally occurring splice sites. To
overcome this limitation one could leverage complementary data notably tissue-
specific expression of splicing-related RNA-binding proteins (RBPs) combined with
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Figure 7 Brain-specific mutational burden on splicing in ASD. (A). Tissue-agnostic variant effect
prediction with MMSplice. Splice-region de novo mutations (n=3,384, Methods) of the proband
group (gray) have significantly lower predicted A logit ¥ according to MMSplice compared to
those of the unaffected sibling group (orange). The effect size is larger for variants in
LoF-intolerant genes (n=1,081). Shown are the means and standard 95% confidence intervals.
P-values from one-sided Wilcoxon test. (B). Tissue-specific variant-effect prediction with
MTSplice. Distribution of effect size (difference of average Alogit ¥ for proband versus control
siblings de novo mutations) for brain tissues (right boxes) and other tissues (left boxes), and for
all de novo mutations (left panel) or de novo mutations in LoF-intolerant genes (right panel) with
MTSplice. Individual tissue plots are shown Supplementary Figure S5. The predicted effect sizes
are more pronounced for brain tissues.

transcriptome-wide RBP binding profiles [54]. One example of a transfer learning
approach in this context is given by Jha et al.[55], who showed the benefits of inte-
grating CLIP-Seq data to predict splicing. The second limitation is that the ASCOT
dataset is an observational dataset. Models trained from observational data with
genomic sequences may learn sequence features that are correlative but not causal,
preventing the models from correctly predicting the effect of genetic variants. This
could lead to limited predictive performances of our current model.

One approach to overcome the issue of observational data is to perform massively
parallel reporter assays (MPRA) for different cell types. MPRA for human splicing
have been performed in HEK293 cells [25, 27, 56-58], K562 cells [59, 60], HepG2 cells
[59], and HELA and MCF7 cells [61]. These data provide powerful resources to train
complex models on splicing, but tissue and cell-type diversity is still lacking. Tissue-
specific MPRA data would also be of prime importance for benchmarking models.
Here we had to rely on naturally occurring variants in GTEx for benchmarking.
Tissue-specific alteration of splicing can be the outcome of genetic variation affect-
ing either i) constitutive splicing regulatory elements of tissue-specific exons, or ii)
tissue-specific splicing regulatory elements. Very few GTEx variants were from the
latter class. Hence, the mean square errors differences in GTEx between MTSplice
and MMSplice could only be very mild. Previous two-cell-line splicing MPRA exper-
iment did not find tissue-specific variant effects between K562 and HepG2 cells [59],
maybe also because the variants tested were selected randomly. A designed MPRA,
however, could specifically engineer variations of tissue-specific splicing regulatory
elements by using prior knowledge in order to more deeply probe the effect of
variants on tissue-specific splicing regulation. The generation of large-scale tissue
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or cell-type specific perturbation data could therefore be instrumental for probing
tissue-specific regulatory elements and could yield more sensitive benchmarks of
predictive models.

Materials and methods

Dataset

We split the 61,823 cassette exons from ASCOT into a training, a validation, and
a test set. The training set consisted of 38,028 exons from chromosome 4, 6, 8, 10-
23 and the sex chromosomes. The 11,955 exons from chromosome 1, 7 and 9 were
used as the validation set, and the remaining 11,840 exons were used as the test set
(chromosomes 2, 3 and 5). Models are evaluated based on their performance on the
test set.

Variant effect estimation

To compute variant effect, we first computed ¥ with MISO for all annotated alter-
natively spliced exons (MISO annotation v2.0, http://genes.mit.edu/burgelab/
miso/annotations/ver2/miso_annotations_hgl9_v2.zip) in all GTEx RNA-
Seq samples. This led to ¥ estimates for 4,686 samples from 53 tissues. Second,
for each exon, we estimated variant effects using only those samples with a single
variant within the exon body and 300 nt flanking of the exon. Third, we estimated
the effect associated with the variants as the difference between ¥ averaged across
samples homozygous for the alternative allele and ¥ averaged across samples ho-
mozygous for the reference allele. We required at least 2 samples in each of these
two groups. For simplicity, we did not consider heterozygous samples for estimating
the effects because ¥ of heterozygous samples is confounded by allele-specific RNA
expression. Also, we did not consider indels.

The TSplice model

We denote W, ; the percent spliced-in value of the cassette exon e in tissue ¢. The
goal of the multi-tissue splicing model is to predict tissue-specific ¥.; from the
nucleotide sequence of the given exon S.. We train the tissue-specific splicing model
with multi-task learning, where each task corresponds to a tissue. The model has
two input branches. The first input branch consists of the sequence 300 nt upstream
of the acceptor and 100 nt downstream of the acceptor (Figure 3). In a symmetric
fashion, the second input branch consists of the sequence from the donor side,
with 100 nt upstream of the donor and 300 nt downstream of the donor. All input
sequences are one-hot encoded. The input layer is followed by a 1D convolution layer
with 64 filters of length 9. Parameters of the convolution layer are shared by the two
input branches, based on the assumption that many sequence motifs are presented
both upstream and downstream of the exons. To model the positional effects of
splicing motifs, spline transformations [46] are fitted for each of the convolution
filters to weight the convolution activations based on the relative input position to
donor and acceptor sites. The spline transformations are fitted differently for the two
input branches to account for potential different positional effects of the upstream
and downstream introns. The weighted activations are then concatenated along the
sequence dimension. Two fully-connected layers are followed after the concatenated
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outputs. The last fully-connected layer output number of predictions equals the
number of tissues (T"), corresponding to predictions for each tissue. These are the
predictions of the TSplice model mentioned in the manuscript. During training,
logit of the mean W per exon (logit(¥.)) was added to these prediction outputs
followed by a sigmoid function. This encourages the model to learn sequence features
associated with differential splicing across tissues.

Formally, for each exon, TSplice predicts for each tissue its W, deviation from
the mean U, across tissues on logit level. Specifically, we define the tissue-associated

differential splicing as Atissue l0git(Ue +)

Aissue logit(¥, ¢) = logit(¥, ;) — logit(¥,) (1)

_ T
as the logit ¥ deviation for tissue ¢ and exon e from the logit of ¥, := % S Wy,

the mean W across tissues.

For exon e with input sequence S., TSplice predicts the target in R TSplice(S,.) =
(Atissue logit(We 1), ..., Atissue logit(\Ile,T)) corresponding to 7' tissues.

The tissue-specific ¥.; can be predicted with TSplice and the given logit(0.)
computed from the data as:

b, = (TSplice(Se)t + logit(\Ile)> (2)

where TSplice(S.); is the TSplice predicted Ayissye logit(Pe .), and o is the sigmoid

function: o(z) = Note that in Equation 1 and elsewhere the average was

1
computed before and not after logit-transformation because it gave more robust

results.

Model training and selection

The model was implemented with keras (version 2.2.4). The Kullback—Leibler (KL)
divergence between the predicted and measured ¥ distribution was used as the loss
function (Equation 3), by considering the percent spliced-in as the probability of
the cassette exon to be included in any given transcript.

S

(- W) lor( ), (3)

e, - ¥e,t

;] I E
Loss = T B Z Z Ve,t (‘I’e,t log(

t=1e=1

E()

where

1, if ¥, observed
Vet = , (4)
0, otherwise

Missing values, which typically correspond to tissues in which the gene is not
expressed, were masked out in the loss function. W values were clipped to be between
[107°,1—107°]. Adam optimizer [62] with default parameters was used to optimize
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the model. Network weights were initialized with the He Normal initialization [63].
Hyperparameter search was performed with hyperopt [64] with the Tree Parzen
Estimators method along with the package kopt (https://github.com/Avsecz/

kopt). Hyperparameters were selected based on the loss on the validation set.

After finding the best hyperparameter combination, 20 models were trained with
the best hyperparameters but different random initialization. A forward model se-
lection strategy was used to select a set of models whose average predictions gives
the smallest loss on the validation set. To this end, models were first sorted based
on their performance on the validation set. Next, models were successively added
to an ensemble model, defined as the average over the selected models, until the
validation set performance no longer improved. This procedure yielded an ensem-
ble model composed of 8 individual models. TSplice predictions are made by this

ensemble model.

Baseline tissue-specific ¥, ; prediction model

The following model was considered as a baseline model to predict tissue-specific

\Ijeﬂfl

U, ; = sigmoid <logit (% Z ‘I’e,t) + logit (% i \Ileyt)> (5)

t=1 e=1

As for the TSplice model, logit-transformation was performed after averaging

rather than the other way round because it gave more robust results.

Tissue-specific variant effect prediction

Tissue-specific variant effect AU, ; is predicted as follows (we considered in this
study only homozygous cases as described in the Methods subsection “Variant effect

estimation”):

A, = et ()

where W is the measured W for exon e and tissue ¢ with the reference sequence,
and \Ilg‘1§ is the tissue-specific ¥ with the alternative sequence. We model the logit

level of \I/f;‘],? with the following linear model:

IOgit(\I’z}g) = BO + ﬁtissue + ﬁalt + ﬁaltxtissue + €, (7)
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where Sy is intercept, Biissue i the tissue effect, 8,14 is the effect of the variant on
an average tissue, Baitxtissue 1S the interaction term which we model the interaction
of the variant effect and the given tissue. We model each of the terms as follow:

Bo = logit(Wie, )

e,average
Brissue = TSplice(S;ef, tissue)
Bait = MMSplice(Syef, Sait)
Baltxtissue = TSplice(Sart, tissue) — TSplice(Sef, tissue)

When we plug in Equation 8 into Equation 7, we obtain the MTSplice model
which combines MMSplice and TSplice to model tissue-specific variant effect:

logit(\Ilg}tt) = logit(wref ) +MMSplice(Syet, Sait) + TSplice(Sait, tissue) +€ (9)

e,average

Finally, the tissue specific AW, ; is predicted as follow:

AW, :cf(logit(\Ilref ) + MMSplice(Syef, Sais) + TSplice(Sart, tissue))

e,average

(10)
- v

Benchmark variant effect prediction on GTEx

On the benchmark of tissue-specific variant effect prediction, we further applied
four filters. First, we selected variants that have |AW¥, ;| > 0.2 in at least one tissue.
Second AW can be computed for at least 3 tissues. Third, we only considered tissues
with more than 10 variants satisfying the above criteria. Altogether, these filters
led to 1,030 variant-exon pairs and 51 tissues used for benchmarking tissue-specific
variant effect predictions.

Autism variants

The processed de novo mutations were downloaded from the link provided by Zhou
et al (Zhou et al. 2019) (https://hb.flatironinstitute.org/asdbrowser/). The
original whole genome sequencing data were accessed through the Simons Founda-
tion Autism Research Initiative (SFARI) [47-51]. The data provides 127,140 sin-
gle nucleotide variants (SNVs) from non-repeat-region. The variants were derived
from 7,097 whole genomes from the Simons Simplex Collection (SSC) cohort, which
consists of whole-genome sequencing data from 1,790 families (with probands and
matched unaffected siblings).

To predict variant effect on splicing, variants were mapped to exons if they are
within the annotated (ensembl gene annotation v75) exon body or within 300 nt
flanking. If a variant was mapped to multiple exons, the largest effect size was re-
ported as the effect of the variant. A total of 13,415 variants were mapped to known
exons and therefore were predicted by our models. Among those variants, 3,884 have
predicted |Alogit(¥)| > 0.05. We classified the variants into loss-of-function (LoF)
group and loss tolerant group based on the loss-of-function observed/expected (oe)
upper bound fraction (LOEUF) scores [65]. We used the suggested cutoff of 0.35 on
the upper bound of the oe confidence interval to group the variants.
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