

1 **Title:** Evidence for reduced long-term potentiation-like visual cortical plasticity in
2 schizophrenia and bipolar disorder

3 **Authors:** Mathias Valstad¹, Daniël Roelfs¹, Nora B. Slapø¹, Clara M.F. Timpe^{1,2},
4 Ahsan Rai³, Anna Maria Matziorinis⁴, Dani Beck^{1,2}, Geneviève Richard¹, Linn Sofie
5 Sæther¹, Beathe Haatveit¹, Jan Egil Nordvik⁵, Christoffer Hatlestad-Hall^{2,6}, Gaute T.
6 Einevoll^{7,8}, Tuomo Mäki-Marttunen^{1,9}, Marit Haram¹, Torill Ueland^{1,2}, Trine V.
7 Lagerberg¹, Nils Eiel Steen¹, Ingrid Melle¹, Lars T. Westlye^{1,2}, Erik G. Jönsson^{1,10},
8 Ole A. Andreassen¹, Torgeir Moberget^{1,2,*}, Torbjørn Elvsåshagen^{1,6,*}

9 *These authors contributed equally to this work

10 **Author affiliations:** ¹NORMENT, Division of Mental Health and Addiction, Oslo
11 University Hospital & Institute of Clinical Medicine, University of Oslo, Norway,
12 ²Department of Psychology, University of Oslo, Oslo, Norway, ³Division of Plastics
13 and Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada,
14 ⁴Faculty of Psychology, University of Bergen, ⁵The CatoSenteret Rehabilitation
15 Center, Son, Norway, ⁶Department of Neurology, Oslo University Hospital, Oslo,
16 Norway, ⁷Faculty of Science and Technology, Norwegian University of Life Sciences,
17 Ås, Norway, ⁸Department of Physics, University of Oslo, Oslo, Norway, ⁹Simula
18 Research Laboratory, Oslo, Norway, ¹⁰Centre for Psychiatric Research, Department
19 of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences,
20 Stockholm County Council, Stockholm, Sweden

21 **Corresponding authors:** Mathias Valstad & Torbjørn Elvsåshagen.

22 E-mails: mathias.valstad@medisin.uio.no; torbjorn.elvsashagen@medisin.uio.no

23 Postal address: Norwegian Centre for Mental Disorders Research, Oslo University
24 Hospital, PoBox 4956 Nydalen, Norway.

25 **Short title:** Reduced LTP-like plasticity in SZ and BD

26 **Keywords:** Schizophrenia, bipolar disorders, synaptic plasticity, long-term

27 potentiation, electroencephalography, visual evoked potentials

28 **Abstract**

29 *Background.* Several lines of research suggest that impairments in long-term
30 potentiation (LTP)-like synaptic plasticity might be a key pathophysiological
31 mechanism in schizophrenia (SZ) and bipolar disorder type I (BDI) and II (BDII).
32 Using modulations of visually evoked potentials (VEP) of the electroencephalogram,
33 impaired LTP-like visual cortical plasticity has been implicated in patients with BDII,
34 while there has been conflicting evidence in SZ, a lack of research in BDI, and mixed
35 results regarding associations with symptom severity, mood states, and medication.

36 *Methods.* We measured the VEP of patients with SZ spectrum disorders (n=31), BDI
37 (n=34), BDII (n=33), and other BD spectrum disorders (n=2), and age-matched
38 healthy control participants (n=200) before and after prolonged visual stimulation.

39 *Results.* Compared to healthy controls, modulation of VEP component N1b, but not
40 C1 or P1, was impaired both in patients within the SZ spectrum ($\chi^2=35.1$, $p=3.1\times 10^{-9}$)
41 and BD spectrum ($\chi^2=7.0$, $p=8.2\times 10^{-3}$), including BDI ($\chi^2=6.4$, $p=0.012$), but not BDII
42 ($\chi^2=2.2$, $p=0.14$). N1b modulation was also more severely impaired in SZ spectrum
43 than BD spectrum patients ($\chi^2=14.2$, $p=1.7\times 10^{-4}$). The reduction in N1b modulation
44 was related to PANSS total scores ($\chi^2=10.8$, $p=1.0\times 10^{-3}$), and nominally to number of
45 psychotic episodes ($\chi^2=4.9$, $p=0.027$). *Conclusions.* These results suggest that LTP-
46 like plasticity is impaired in SZ and BDI, but not BDII, and related to psychotic
47 symptom severity. Adding to previous genetic, pharmacological, and anatomical
48 evidence, these results implicate aberrant synaptic plasticity as a mechanism
49 underlying SZ and BD.

50 **Introduction**

51 Schizophrenia (SZ) and bipolar disorders (BD) are severe psychiatric disorders, with
52 a lifetime prevalence of ~0.7% (1) and ~2% (2,3), respectively. While their precise
53 neural substrates remain unknown despite decades of research, recent genetic,
54 pharmacological, and imaging evidence has implicated aberrant synaptic plasticity as
55 a leading candidate mechanism in SZ and BD (4-6).

56

57 Through genome-wide association studies, increased risk of SZ and BD have been
58 associated with single nucleotide polymorphisms (SNPs) at genes that are directly or
59 indirectly involved in glutamatergic synaptic plasticity, such as *GRIN2A* and
60 *CACNA1C* (5,7-9). Moreover, medical conditions affecting N-methyl-D-aspartate
61 (NMDAR) function, including systemic lupus erythematosus (4) and anti-NMDAR
62 encephalitis (5), are associated with distinct psychotic symptoms. Negative
63 symptoms as well as hallucinations, both characteristic of SZ, are reliably produced
64 by NMDAR antagonists such as phencyclidine (6) and ketamine (7), further
65 suggesting that aberrations in NMDAR-dependent synaptic function, and likely in
66 synaptic plasticity in particular (8), constitute a key pathophysiological mechanism in
67 psychotic disorders.

68

69 A well-characterized non-invasive marker for NMDAR-dependent LTP-like visual
70 cortical plasticity can be obtained in humans and other species by using EEG to
71 measure modulations of VEP after high-frequency or prolonged visual stimulation (9-
72 11). In rodents, NMDAR antagonists as well as α -amino-3-hydroxy-5-methyl-4-
73 isoxazolepropionic acid receptor (AMPAR) insertion-inhibitor GluR1-CT prevent VEP
74 modulation (12). Further, ζ inhibitory peptide, an inhibitor of Protein Kinase M ζ ,

75 which is crucial for maintenance of LTP, disrupts the retention of VEP modulation
76 (13). Further, electric tetanus-induced LTP in the primary visual cortex modulates
77 VEP, and inhibits further visual stimulation-induced VEP modulation (14). Such
78 results strongly suggest that visual stimulation-induced VEP modulation and LTP
79 share common underlying mechanisms.

80

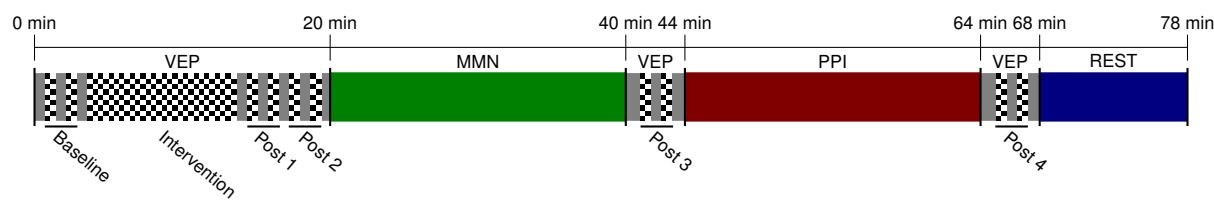
81 With the VEP modulation paradigm, aberrant LTP-like plasticity has been implicated
82 in BDII (15,16), and in major depression (MDD) (9). However, there is no previous
83 study of VEP modulation in BDI, and results in SZ have been inconsistent (17,18),
84 possibly due to differences in the visual stimulation applied (18). Efforts have been
85 made to associate VEP modulation with symptom severity, mood states, and
86 medication in order to assess the trait stability of VEP modulation impairments, with
87 mixed results (9,15,16). Thus, further evidence is required to establish impaired LTP-
88 like synaptic plasticity as a disease characteristic in psychotic disorders.

89

90 Here, we compared patients with SZ, BDI, or BDII, and healthy controls with respect
91 to VEP modulation after prolonged visual stimulation, with the primary aim to
92 examine whether LTP-like visual cortical plasticity is affected in these disorders.
93 Further, our secondary aims were to i) examine the pairwise differences in VEP
94 modulation between diagnoses, ii) examine the association between VEP modulation
95 and illness severity in patients, and iii) examine the association between VEP
96 modulation and current use of psychotropic medications.

97 **Methods and materials**

98 *Participants.* One hundred patients with BD type I (n=34), BD type II (n=33), SZ
99 (n=25), schizophreniform disorder (n=3), schizoaffective disorder (n=3), BD not
100 otherwise specified (NOS) (n=1), and cyclothymia (n=1), and 411 healthy volunteers
101 were included in this study. Since patients' ages ranged from 18 to 69 years, while
102 ages of healthy controls ranged from 20 to 90 years, with means of 36.1 and 49.0
103 years, respectively, all analyses were performed using an age-matched healthy
104 control sample (n = 200, age range: 20 to 70, mean age: 38.2), drawn using the
105 nearest neighbor method in the MatchIt package in R (19). Patients were recruited
106 through psychiatric in- and outpatient treatment units in the Oslo area, while healthy
107 controls were recruited through national records and advertisements in a regional
108 newspaper (20). Participants with known neurological disorders, in addition to those
109 who had been subjected to moderate to severe head injury at any time in their life,
110 were excluded from the study. All participants had normal or corrected-to-normal
111 vision. The study was approved by the Regional Ethical Committee of South-Eastern
112 Norway, and all participants provided written informed consent before the experiment
113 started. A detailed characterization of the sample is provided in Table 1.


114

115 *Clinical and neuropsychological assessment.* Patients were diagnosed by trained
116 clinicians using the Structured Clinical Interview for the DSM-IV, Axis I disorders
117 (SCID-I) (21). Both patients and healthy controls were evaluated for IQ, using the
118 Wechsler Abbreviated Scale of Intelligence (WASI) (22). Number of previous
119 psychotic episodes, defined as an episode with score of ≥ 4 on Positive and Negative
120 Syndrome Scale (PANSS) (23) items p1, p2, p3, p5, p6, or g9 for ≥ 1 week, was
121 assessed. Current symptoms severity were evaluated using the PANSS, the

122 Montgomery and Åsberg Depression Rating Scale (MADRS) (24), and the Young
123 Mania Rating Scale (YMRS) (25). Current sleep disturbances were evaluated with
124 the 4 sleep-related items of the Inventory of Depressive Symptoms (IDS) (26).

125

126 *Visual evoked potentials.* The VEP modulation paradigm was adopted from Normann
127 et al. (9), and all experimental procedures were performed exactly as described
128 previously (27), with postintervention VEPs assessed at 120 s and 220 s (post 1),
129 380 s and 480 s (post 2), ~30 min and ~32 min (post 3), and ~54 min and ~56 min
130 (post 4) after 10 minutes of checkerboard stimulation at a spatial frequency of 1
131 cycle/degree and a temporal frequency at 2 reversals per second (Fig. 1). To monitor
132 constant fixation throughout the experiment, all participants focused on a fixation
133 point at the centre of the screen and were asked to press a button when it changed
134 color. EEG was recorded from a BioSemi ActiveTwo amplifier, with 64 Ag-AgCl
135 sintered electrodes distributed across the scalp according to the international 10-20
136 system, and 4 electrodes located around the eyes to acquire horizontal and vertical
137 electro-oculograms. Potentials at each channel were sampled at 2048 Hz with
138 respect to a common mode sense, with a driven right leg electrode minimizing
139 common mode voltages.

140

141 **Figure 1.** Experimental timeline. **VEP**: visual evoked potential paradigm, **MMN**: mismatch
142 negativity paradigm, **PPI**: prepulse inhibition paradigm, **REST**: resting state EEG.
143

144 Signal processing was performed using MATLAB and the EEGLAB toolbox (28).
145 Offline, recordings were downsampled to 512 Hz. Noisy channels were removed
146 using PREP pipeline (29) with default settings, before re-referencing to remaining

147 channel average, interpolation of removed channels, and finally a second re-
148 referencing to the postinterpolation average. Data were band pass-filtered between
149 0.1 and 40 Hz. Event markers were adjusted to account for a latency of 20 ms in the
150 visual presentation, measured with a BioSemi PIN diode, before epoch extraction at
151 200 ms pre- to 500 ms post-stimulus, and subsequent baseline correction. Artifactual
152 muscle, eye blink, and eye movement components were removed with SASICA (30)
153 using default parameters after independent component analysis using the SOBI
154 algorithm. Epochs with a drift exceeding 100 μ V were removed, and channels were
155 rereferenced to the AFz electrode.

156

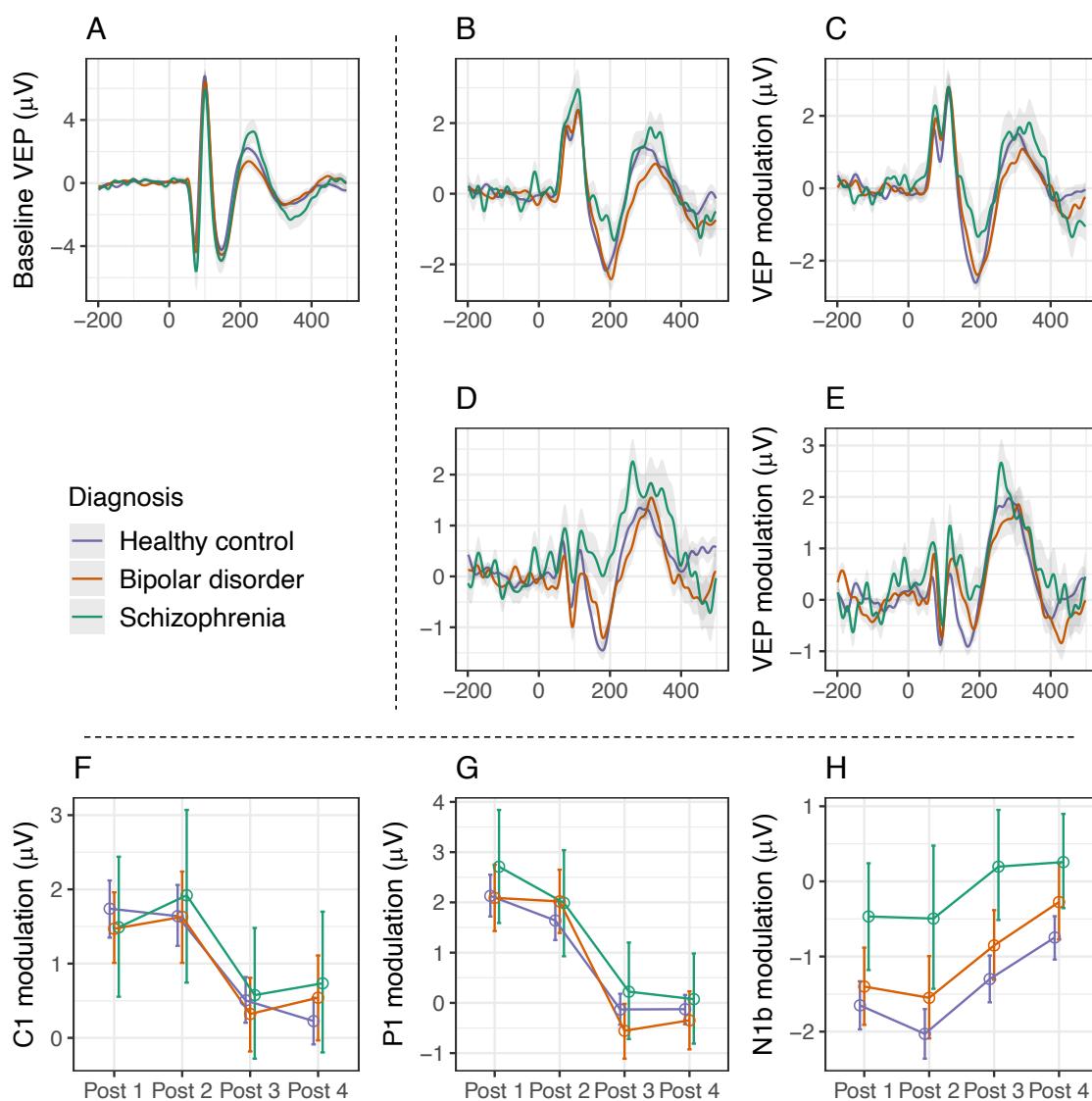
157 VEPs were averaged according to subject and pairs of blocks (baseline, post 1, post
158 2, post 3 and post 4), and components C1, P1, and N1b were extracted from the Oz
159 electrode as the minimum amplitude between 50-100 ms post-stimulus, maximum
160 amplitude between 80-140 ms, and mean amplitude between the first negative and
161 halfway to the first positive peak after P1 (~150-190 ms post-stimulus), respectively.

162

163 *Statistical analysis.* Statistical analysis was performed in R version 3.6.0 (31). For all
164 analyses except sensitivity analyses for separate diagnoses, patients with SZ,
165 schizopreniform disorder, and schizoaffective disorder were considered conjointly,
166 as were patients with BDI, BDII, BD NOS, and cyclothymia, with the resulting groups
167 being referred to as SZ spectrum disorders (n=31) and BD spectrum disorders
168 (n=69), respectively.

169

170 Participants with outlying difference scores (baseline amplitudes subtracted from
171 postintervention amplitudes) for a VEP component (C1, P1, or N1b) at one or more


172 postintervention assessments had all their postintervention assessments excluded
173 from analysis for that particular component. Outliers were identified according to the
174 median absolute deviation procedure implemented in R package *Routliers* (32),
175 with 3 median absolute deviations as threshold, yielding 13 outliers for N1b
176 modulation (SZ spectrum: 1, BD spectrum: 2, HC: 10). This procedure ensured a
177 normal distribution of linear model residuals.

178

179 All analyses, except tests of baseline VEP component amplitudes, were performed
180 directly on difference scores (baseline amplitudes subtracted from postintervention
181 assessment amplitudes). Linear models were evaluated with type-II analyses of
182 deviance implemented in R package *car* (33) to yield unbiased estimates of χ^2 along
183 with p-values for each predictor, or t-scores for intercepts. Outcomes that were not
184 changing over time were assessed with two-tailed t-tests. All p-values are reported in
185 uncorrected form, whereas significance thresholds were adjusted according to the
186 effective number of independent comparisons within sets of analyses, by Sidak (34)
187 or Bonferroni correction for continuous or categorical variables, respectively. This
188 procedure yielded an $\alpha = 0.020$ for primary analyses, i.e. modulation of C1, P1, and
189 N1b modelled by diagnosis, time, and diagnosis x time, and for secondary analyses:
190 i) $\alpha = 0.016$ in the pairwise comparisons of N1b modulation between diagnoses, ii) α
191 = 0.014 in the models of N1b modulation with clinical variables as predictors, and iii)
192 $\alpha = 0.010$ in the models of N1b modulation with groups of psychotropic medications
193 as predictors. Lastly, the series of sensitivity tests, that were performed to examine
194 the robustness of primary or secondary results, inherited significance thresholds from
195 their parent analysis.

196 **Results**

197 *N1b modulation is reduced in SZ and BD spectrum disorders.* In this sample, there
 198 was modulation of VEP components C1 ($t = 6.6$, $p = 7.3 \times 10^{-11}$), P1 ($t = 5.2$, $p = 2.9 \times$
 199 10^{-7}), and N1b ($t = -7.7$, $p = 4.1 \times 10^{-14}$) after prolonged visual stimulation (Figs. 2B-
 200 H). Further, there was no significant association between diagnosis and baseline
 201 amplitudes of either component C1 ($\chi^2 = 3.4$, $p = 0.18$), P1 ($\chi^2 = 1.1$, $p = 0.54$), or
 202 N1b ($\chi^2 = 4.56$, $p = 0.10$) (Fig. 2A).

203

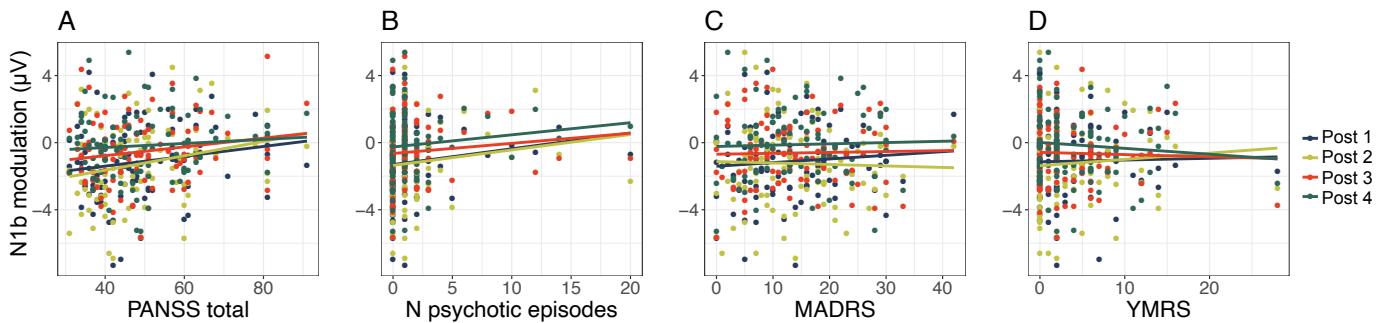
204 **Figure 2. A.** Visual evoked potentials (VEP) at baseline, by diagnostic group. VEPs were
 205 measured at the occiput (Oz), with anterior reference (AFz). **B.** VEP modulation (baseline
 206 VEP subtracted from postintervention VEP) at postintervention assessment 1 (2-4 min after
 207 prolonged visual stimulation), by diagnostic group. **C.** VEP modulation at postintervention
 208 assessment 2 (6-8 min after prolonged visual stimulation), by diagnostic group. **D.** VEP

209 modulation at postintervention assessment 3 (30-32 min after prolonged visual stimulation),
210 by diagnostic group. **E.** VEP modulation at postintervention assessment 4 (54-56 min after
211 prolonged visual stimulation), by diagnostic group. **F.** C1 modulation (baseline C1 amplitudes
212 subtracted from postintervention C1 amplitudes) at postintervention assessments 1-4, by
213 diagnostic group. No difference in C1 modulation was detected between diagnostic groups
214 ($\chi^2 = 0.5$, $p = 0.78$). **G.** P1 modulation at postintervention assessments 1-4, by diagnostic
215 group. No difference in P1 modulation was detected between diagnostic groups ($\chi^2 = 2.7$, p
216 = 0.25). **H.** N1b modulation at postintervention assessments 1-4, by diagnostic group. N1b
217 modulation was significantly different between healthy controls, BD patients, and SZ
218 spectrum patients ($\chi^2 = 37.9$, $p = 5.9 \times 10^{-9}$).
219

220 The general linear model for N1b modulation with diagnostic group (SZ spectrum vs
221 BD spectrum vs HC), time (postintervention assessments 1 vs 2 vs 3 vs 4), and
222 diagnostic group x time interaction as predictors revealed an effect of diagnostic
223 group ($\chi^2 = 37.9$, $p = 5.9 \times 10^{-9}$) and time ($\chi^2 = 51.1$, $p = 4.6 \times 10^{-11}$) on modulation of
224 VEP component N1b (Fig. 2H, Table 2, Supplementary fig. S1), with no interaction
225 effect ($\chi^2 = 1.4$, $p = 0.97$), demonstrating that N1b modulation was different between
226 the diagnostic groups, and that N1b modulation waned over time across diagnostic
227 groups. Corresponding general linear models did not demonstrate differences
228 between diagnostic groups in the modulation of components C1 ($\chi^2 = 0.5$, $p = 0.78$,
229 Fig. 2F) or P1 ($\chi^2 = 2.7$, $p = 0.25$, Fig. 2G), and further analyses for these
230 components were not pursued.

231
232 Pairwise comparisons showed that modulation of N1b after prolonged visual
233 stimulation was impaired in patients with SZ spectrum ($\chi^2 = 35.1$, $p = 3.1 \times 10^{-9}$) and
234 in patients with BD spectrum disorders ($\chi^2 = 7.0$, $p = 8.2 \times 10^{-3}$) relative to controls.
235 The impairment was more pronounced in SZ spectrum than in BD spectrum
236 disorders ($\chi^2 = 14.2$, $p = 1.7 \times 10^{-4}$, Fig. 2H). Moreover, sensitivity analyses of
237 separate diagnoses showed that N1b modulation was reduced in SZ alone ($\chi^2 =$

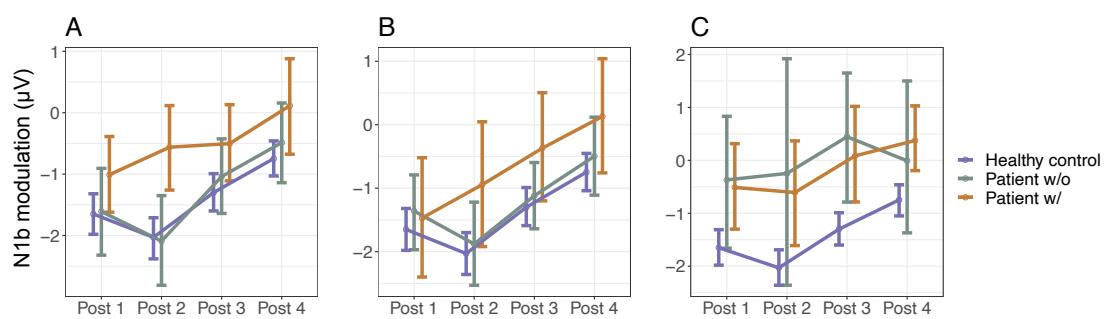
238 35.9, $p = 2.1 \times 10^{-9}$) and in BDI alone ($\chi^2 = 6.4$, $p = 0.012$), but not in BDII alone ($\chi^2 =$
239 2.2, $p = 0.14$).


240

241 We performed a series of sensitivity tests to examine the robustness of the effect of
242 diagnosis on N1b modulation. The effect of diagnosis on N1b modulation remained
243 significant when controlling for baseline amplitudes, sex, and age ($\chi^2 = 28.5$, $p = 6.6$
244 $\times 10^{-7}$), as well as when controlling for mood states, as indexed by MADRS and
245 YMRS ($\chi^2 = 19.6$, $p = 5.6 \times 10^{-5}$), and when controlling for IQ ($\chi^2 = 21.2$, $p = 2.5 \times 10^{-5}$),
246 current sleep disturbance ($\chi^2 = 30.2$, $p = 2.8 \times 10^{-7}$), and daily use of tobacco,
247 monthly use of cannabis, or use of alcohol within the last day before examination ($\chi^2 =$
248 $= 32.0$, $p = 1.1 \times 10^{-7}$). Further, the effect of diagnosis on N1b modulation remained
249 significant when considering only unmedicated patients ($n = 20$) against healthy
250 controls ($\chi^2 = 18.7$, $p = 8.7 \times 10^{-5}$). The effect of diagnosis on N1b modulation also
251 was significant in the model where outliers were included ($\chi^2 = 29.1$, $p = 4.8 \times 10^{-7}$).
252 Lastly, although due to an error in the gaming controller used for responses to on-
253 screen dot color changes, these response data were missing for 40.4% of the current
254 sample, there were no significant group differences in the proportion of correct
255 responses to the on-screen dot color changes ($t = -0.4$, $p = 0.71$), indicating that the
256 attention afforded to the prolonged visual stimulation did not differ between patients
257 and controls.

258

259 *Associations between N1b modulation and clinical states.* Within patients, decreased
260 N1b modulation was significantly associated with greater symptom severity, as
261 indexed with PANSS total ($\chi^2 = 10.8$, $p = 1.0 \times 10^{-3}$, Fig. 3A), and nominally with
262 number of psychotic episodes ($\chi^2 = 4.9$, $p = 0.027$, Fig. 3B). We performed a series


263 of sensitivity tests to examine whether these associations between psychotic illness
 264 severity and reduced N1b modulation remained within diagnostic spectra. The
 265 association between N1b modulation and PANSS total was not reproduced within the
 266 BD spectrum ($\chi^2 = 0.3$, $p = 0.56$), but did not remain significant within the SZ
 267 spectrum ($\chi^2 = 3.3$, $p = 0.07$). The association between N1b modulation and number
 268 of psychotic episodes remained only nominally significant within the BD spectrum (χ^2
 269 = 5.6, $p = 0.018$), and was absent within the SZ spectrum ($\chi^2 = 0.1$, $p = 0.72$). Finally,
 270 modulation of component N1b was unaffected by mood state as indexed either with
 271 MADRS ($\chi^2 = 0.3$, $p = 0.61$, Fig. 3C) or YMRS ($\chi^2 = 0.0$, $p = 0.99$, Fig. 3D).

272
 273 **Figure 3.** Associations between clinical states and N1b modulation in patients, at
 274 postintervention assessments 1-4. **A.** N1b modulation was associated with PANSS (Positive
 275 and Negative Syndrome Scale) total scores in patients ($\chi^2 = 10.8$, $p = 1.0 \times 10^{-3}$). **B.** N1b
 276 modulation showed a nominally significant association with number of psychotic episodes in
 277 patients ($\chi^2 = 4.9$, $p = 0.027$). **C.** N1b modulation was not associated with MADRS
 278 (Montgomery and Åsberg Depression Rating Scale) scores in patients ($\chi^2 = 0.3$, $p = 0.61$). **D.**
 279 N1b modulation was not associated with YMRS (Young Mania Rating Scale) scores in
 280 patients ($\chi^2 = 0.0$, $p = 0.99$).
 281

282 *N1b modulation is further reduced in patients using antiepileptic or antipsychotic
 283 medication.* Across all patients, N1b modulation was lower in users of antipsychotic
 284 medication ($\chi^2 = 8.3$, $p = 3.9 \times 10^{-3}$), with a similar trend observed in users of
 285 antiepileptic medication ($\chi^2 = 3.5$, $p = 0.062$), than in non-users. Thus, we performed
 286 a series of sensitivity tests to further examine the relationship between psychotropic
 287 medication use and N1b modulation. In BD patients, N1b modulation was more

288 severely impaired among users of antiepileptics ($\chi^2 = 9.3$, $p = 2.3 \times 10^{-3}$, Fig. 4A),
 289 and nominally in users of antipsychotics ($\chi^2 = 4.4$, $p = 0.035$, Fig. 4B). Further, the
 290 association in BD patients between lamotrigine and N1b modulation ($\chi^2 = 6.8$, $p = 8.9$
 291 $\times 10^{-3}$) was comparable to the effect of antiepileptics in general. Within BDII patients
 292 only, N1b modulation was still lower among users of antiepileptics ($\chi^2 = 9.1$, $p = 2.5 \times$
 293 10^{-3} , $n = 11$), and nominally lower among users of antipsychotics ($\chi^2 = 4.7$, $p = 0.03$,
 294 $n = 7$). However, within BDI patients only, N1b modulation did not remain significantly
 295 lowered among users of antiepileptics ($\chi^2 = 3.2$, $p = 0.07$, $n = 11$), nor among users
 296 of antipsychotics ($\chi^2 = 0.6$, $p = 0.45$, $n = 17$). There was no evidence for lowered N1b
 297 modulation among antipsychotics users with SZ ($\chi^2 = 0.1$, $p = 0.70$, Fig. 4C), and
 298 only one SZ patient used antiepileptics. Further, when controlling for psychotic
 299 symptom severity and diagnosis, the association with reduced N1b modulation
 300 remained for antiepileptics use ($\chi^2 = 11.4$, $p = 7.1 \times 10^{-4}$), but not for antipsychotics
 301 use ($\chi^2 = 2.4$, $p = 0.12$). Finally, there was no evidence for any change in N1b
 302 modulation among patients using either lithium ($\chi^2 = 0.6$, $p = 0.43$), antidepressants
 303 ($\chi^2 = 1.3$, $p = 0.25$), or anxiolytics/hypnotics ($\chi^2 = 1.5$, $p = 0.22$).

304
 305 **Figure 4. A.** Antiepileptics use in patients with BD. N1b modulation at postintervention
 306 assessments 1-4 was lower in BD patients using antiepileptics (w/) than in BD patients not
 307 using antiepileptics (w/o) ($\chi^2 = 9.3$, $p = 2.3 \times 10^{-3}$). N1b modulation for healthy controls is
 308 represented for comparison. **B.** Antipsychotics use in patients with BD. N1b modulation at
 309 postintervention assessments 1-4 was tendentially lower in BD patients using antipsychotics
 310 (w/) than in BD patients not using antipsychotics (w/o) ($\chi^2 = 4.4$, $p = 0.035$). **C.** Antipsychotics
 311 use in patients with SZ spectrum disorders. N1b modulation at postintervention assessments

312 1-4 was not significantly different between SZ spectrum patients using antipsychotics (w/)
313 and SZ spectrum patients not using antipsychotics (w/o) ($\chi^2 = 0.1$, $p = 0.70$).

314 **Discussion**

315 This study of LTP-like visual cortical plasticity in patients with SZ, BDI, and BDII, and
316 healthy controls, yielded four main results. First, relative to age-matched healthy
317 controls, modulation of the N1b component of the VEP after prolonged visual
318 stimulation was significantly reduced in SZ and BDI, but not BDII patients, with
319 stronger reductions seen in patients with more severe psychotic symptoms. Second,
320 we observed significant association between N1b modulation and current use of
321 medication, suggesting that N1b modulation is lower in patients using antiepileptic or
322 antipsychotic medication. Third, we did not observe any significant associations
323 between N1b modulation and mood states. Finally, we did not observe any significant
324 difference between patients with BD or SZ spectrum disorders and healthy controls in
325 the modulation of VEP components C1 or P1.

326

327 Modulation of VEP components in general, and the N1b component in particular, has
328 been implicated as a candidate index of NMDAR-dependent LTP-like plasticity in the
329 visual cortex. In humans, N1b modulation is dependent on high frequency or
330 prolonged visual stimulation (10), and seems to have more robust response and a
331 time-course more compatible with LTP than the modulation of other VEP
332 components (27). Further, N1b component modulation after visual stimulation is
333 orientation- and spatial frequency specific in humans, indicating a synapse specificity
334 of N1b modulation similar to LTP (35,36). The result that N1b component modulation
335 after visual stimulation is reduced in SZ and BDI patients is therefore in line with
336 previous genetic (37,38), molecular (39), pharmacological (6), and anatomical
337 evidence (40,41), strengthening the previously suggested hypothesis that NMDAR-
338 dependent synaptic plasticity is affected in these psychiatric disorders (8).

339

340 The present results provide a demonstration of reduced N1b modulation in patients
341 with BDI, an association which has not been examined previously. Further, the
342 present results provide a clear demonstration of reduced N1b modulation in patients
343 with SZ. Previously, two separate studies have compared VEP modulation between
344 SZ patients and healthy controls, with the first study showing evidence for reduced
345 N1b modulation in SZ (17), whereas the second study found no evidence for altered
346 VEP modulation in SZ (18). In the former study (17), modulation of component C1
347 was also decreased in schizophrenia patients, albeit with lower certainty than for the
348 N1b component. Rather than a checkerboard stimulus, the latter study used grating
349 stimulus, which is well suited for manipulating stimulus orientation and assessing the
350 input specificity of modulation effects, along with a higher frequency and shorter
351 duration of the intervention as compared to the present and other studies (9,16). One
352 or more of these conditions may have contributed to lower effect sizes and
353 accordingly lower power in detecting group differences (18). Previously, two studies
354 have compared VEP modulation between BDII patients and healthy controls, both
355 observing tendencies of reduced modulation of N1, a component that is highly
356 correlated with N1b (27) in BDII patients, comparable to the tendency of reduced N1b
357 modulation observed in the present sample. Taken together, these converging
358 results suggest that N1b modulation after prolonged visual stimulation, likely indexing
359 NMDAR-dependent synaptic plasticity in the visual cortex (12-14), is reduced in SZ
360 and BDI, but to a lesser extent in BDII.

361

362 Further, we observed that reduction in N1b modulation was associated with higher
363 psychotic symptom severity, as indexed with PANSS total and, nominally, as indexed

364 with number of psychotic episodes, but not with mood states, as indexed with
365 MADRS or YMRS. The association between N1b modulation and psychotic symptom
366 severity was, however, driven to a large degree by diagnosis, and did not remain
367 significant within diagnostic groups after controlling for multiple comparisons,
368 although tendencies were preserved in the associations with PANSS total within SZ
369 patients and with number of psychotic episodes within BD patients. Nevertheless,
370 since N1b modulation is more reduced among patients with higher PANSS total
371 scores and, nominally, among patients with a history of more psychotic episodes,
372 and since N1b modulation is more reduced in disorders defined by psychosis or with
373 higher prevalence of psychosis, there is reason to suggest that psychotic symptoms
374 in particular are related to reduced N1b modulation.

375

376 Reduced N1b modulation was also associated with use of psychotropic medication
377 among patients. First, use of antiepileptics, particularly lamotrigine, was associated
378 with reduced N1b modulation in BD patients. Further, the association between
379 antiepileptics use and reduced N1b modulation remained when controlling for
380 specific diagnosis and for PANSS total scores. Thus, the decreased N1b modulation
381 among antiepileptics users is likely not explained by diagnosis or by psychotic
382 symptom severity. Although the extent to which antiepileptics decrease the
383 probability of NMDAR-dependent synaptic plasticity remains to be clarified,
384 antiepileptics promote GABA_A-mediated inhibition, increase sodium channel
385 resistance, inhibit glutamate release (42,43), and have been shown to decrease LTP
386 in hippocampal slices (44). Lamotrigine likely inhibits glutamate release through
387 increasing sodium channel resistance, which could potentially contribute to the
388 reduced N1b modulation. However, future pharmacological studies using a

389 randomized controlled design would be needed to carefully test this hypothesis.
390 Second, antipsychotics use was associated with reduced N1b modulation among BD
391 patients, but not among schizophrenia patients. However, the association between
392 N1b modulation and antipsychotics use did not remain after controlling for diagnosis
393 and psychotic symptom severity, suggesting that this association could reflect
394 intrinsic differences in antipsychotics users vs non-users, rather than a direct effect of
395 antipsychotics use on LTP-like plasticity.

396

397 **Conclusion**

398 The present study demonstrated impaired LTP-like plasticity in patients with SZ and
399 BDI, but not in patients with BDII. Together with previous genetic, pharmacological,
400 and anatomical research, these results implicate aberrant synaptic plasticity as a
401 pathophysiological mechanism in SZ and BD.

402 **Acknowledgments**

403 This study was funded by the Research Council of Norway, the South-Eastern
404 Norway Regional Health Authority, Oslo University Hospital and a research grant
405 from Mrs. Throne-Holst. The authors report no biomedical financial interests or
406 potential conflicts of interest.

407 **References**

1. McGrath J, Saha S, Chant D, Welham J (2008): Schizophrenia: A concise overview of incidence, prevalence, and mortality. *Epidemiol Rev.* 30: 67–76.
2. Merikangas KR, Jin R, He J-P, Kessler RC, Lee S, Sampson NA, et al. (2011): Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. *Arch Gen Psychiatry.* 68: 241–251.
3. Dell'Aglio JC Jr, Basso LA, Argimon II de L, Arteche A (2013): Systematic review of the prevalence of bipolar disorder and bipolar spectrum disorders in population-based studies. *Trends in Psychiatry and Psychotherapy.* 35: 99–105.
4. Omdal R, Brokstad K, Waterloo K, Koldingsnes W, Jonsson R, Mellgren SI (2005): Neuropsychiatric disturbances in SLE are associated with antibodies against NMDA receptors. *European Journal of Neurology.* 1–7.
5. Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R (2011): Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. *Lancet Neurol.* 10: 63–74.
6. Javitt DC, Zukin SR (1991): Recent advances in the phencyclidine model of schizophrenia. *American Journal of Psychiatry.* 148: 1301–1308.
7. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, et al. (1994): Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. *JAMA Psychiatry.* 51: 199–214.
8. Stephan KE, Baldeweg T, Friston KJ (2006): Synaptic plasticity and dysconnection in schizophrenia. *Biological Psychiatry.* 59: 929–939.
9. Normann C, Schmitz D, Fürmaier A, Döing C, Bach M (2007): Long-term plasticity of visually evoked potentials in humans is altered in major depression. *Biol Psychiatry.* 62: 373–380.
10. Teyler TJ, Hamm JP, Clapp WC, Johnson BW, Corballis MC, Kirk IJ (2005): Long-term potentiation of human visual evoked responses. *European Journal of Neuroscience.* 21: 2045–2050.
11. Clapp WC, Hamm JP, Kirk IJ, Teyler TJ (2012): Translating long-term potentiation from animals to humans: A novel method for noninvasive assessment of cortical plasticity. *Biol Psychiatry.* 71: 496–502.
12. Frenkel MY, Sawtell NB, Diogo ACM, Yoon B, Neve RL, Bear MF (2006): Instructive effect of visual experience in mouse visual cortex. *Neuron.* 51: 339–349.
13. Cooke SF, Bear MF (2010): Visual experience induces long-term potentiation in the primary visual cortex. *J Neurosci.* 30: 16304–16313.
14. Cooke SF, Bear MF (2012): Stimulus-selective response plasticity in the visual cortex: An assay for the assessment of pathophysiology and treatment of cognitive impairment associated with psychiatric Disorders. *Biol Psychiatry.* 71: 487–495.
15. Zak N, Moberget T, Bøen E, Boye B, Waage TR, Dietrichs E, et al. (2018): Longitudinal and cross-sectional investigations of long-term potentiation-like cortical plasticity in bipolar disorder type II and healthy individuals. *Transl Psychiatry.* 8: 103.
16. Elvsåshagen T, Moberget T, Bøen E, Boye B, Englin NOA, Pedersen PØ, et al. (2012): Evidence for impaired neocortical synaptic plasticity in bipolar II disorder. *Biol Psychiatry.* 71: 68–74.

455 17. Çavuş I, Reinhart RMG, Roach BJ, Gueorguieva R, Teyler TJ, Clapp WC, *et al.*
456 (2012): Impaired visual cortical plasticity in schizophrenia. *Biol Psychiatry*. 71:
457 512–520.

458 18. Wynn JK, Roach BJ, McCleery A, Marder SR, Mathalon DH, Green MF (2019):
459 Evaluating visual neuroplasticity with EEG in schizophrenia outpatients.
460 *Schizophrenia Research*. doi: 10.1016/j.schres.2019.08.015.

461 19. Ho DE, Imai K, King G, Stuart EA (2011): Nonparametric preprocessing for
462 parametric causal inference. *Journal of Statistical Software*. 42: 1–28.

463 20. Richard G, Kolskår K, Sanders A-M, Kaufmann T, Petersen A, Doan NT, *et al.*
464 (2018): Assessing distinct patterns of cognitive aging using tissue-specific brain
465 age prediction based on diffusion tensor imaging and brain morphometry. *PeerJ*.
466 6: e5908.

467 21. First MB, Spitzer RL, Gibbon M, Williams J (1996): *Structured Clinical Interview
468 for DSM-IV Axis I Disorders, Clinician Version (SCID-CV)*. American Psychiatric
469 Press.

470 22. Wechsler D (2007): *Wechsler Abbreviated Scale of Intelligence (WASI)*.
471 Stockholm: Pearson Assessment.

472 23. Kay SR, Fiszbein A, Opler LA (1987): The Positive and Negative Syndrome
473 Scale (PANSS) for Schizophrenia. *Schizophrenia Bulletin*. 13: 261–276.

474 24. Montgomery SA, Åsberg M (1979): A new depression scale designed to be
475 sensitive to change. *Br J Psychiatry*. 134: 382–389.

476 25. Young RC, Biggs JT, Ziegler VE, Meyer DA (1978): A rating scale for mania:
477 Reliability, validity and sensitivity. *Br J Psychiatry*. 133: 429–435.

478 26. Trivedi MH, Rush AJ, Ibrahim HM, Carmody TJ, Biggs MM, Suppes T, *et al.*
479 (2004): The Inventory of Depressive Symptomatology, Clinician Rating (IDS-C)
480 and Self-Report (IDS-SR), and the Quick Inventory of Depressive
481 Symptomatology, Clinician Rating (QIDS-C) and Self-Report (QIDS-SR) in public
482 sector patients with mood disorders: a psychometric evaluation. *Psychol Med*. 34:
483 73–82.

484 27. Valstad M, Moberget T, Roelfs D, Slapø NB, Timpe CMF, Beck D, *et al.* (2020):
485 Experience-dependent modulation of the visual evoked potential: testing effect
486 sizes, retention over time, and associations with age in 415 healthy individuals.
487 *bioRxiv*. 2020.01.27.916692.

488 28. Delorme A, Makeig S (2004): EEGLAB: an open source toolbox for analysis of
489 single-trial EEG dynamics including independent component analysis. *Journal of
490 Neuroscience Methods*. 134: 9–21.

491 29. Bigdely-Shamlo N, Mullen T, Kothe C, Su K-M, Robbins KA (2015): The PREP
492 pipeline: standardized preprocessing for large-scale EEG analysis. *Front
493 Neuroinform*. 9: B153.

494 30. Chaumon M, Bishop DVM, Busch NA (2015): A practical guide to the selection of
495 independent components of the electroencephalogram for artifact correction.
496 *Journal of Neuroscience Methods*. 250: 47–63.

497 31. R Core Team (2019): R: A Language and Environment for Statistical Computing.
498 3rd ed.

499 32. Delacre M, Klein O (2019): Routliers: robust outliers detection. R package version
500 0.0.0.3.

501 33. Fox J, Weisberg S (2019): An {R} companion to applied regression.

502 34. Li J, Ji L (2005): Adjusting multiple testing in multilocus analyses using the
503 eigenvalues of a correlation matrix. *Heredity* 2005 95:3. 95: 221–227.

504 35. McNair NA, Clapp WC, Hamm JP, Teyler TJ, Corballis MC, Kirk IJ (2006): Spatial
505 frequency-specific potentiation of human visual-evoked potentials. *NeuroReport*.
506 17: 739–741.

507 36. Ross RM, McNair NA, Fairhall SL, Clapp WC, Hamm JP, Teyler TJ, Kirk IJ
508 (2008): Induction of orientation-specific LTP-like changes in human visual evoked
509 potentials by rapid sensory stimulation. *Brain Research Bulletin*. 76: 97–101.

510 37. Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014):
511 Biological insights from 108 schizophrenia-associated genetic loci. *Nature*. 511:
512 421–427.

513 38. Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, *et al.*
514 (2019): Genome-wide association study identifies 30 loci associated with bipolar
515 disorder. *Nat Genet*. 51: 793–803.

516 39. Akbarian S, Sucher NJ, Bradley D, Tafazzoli A, Trinh D, Hetrick WP, *et al.*
517 (2003): Selective alterations in gene expression for NMDA receptor subunits in
518 prefrontal cortex of schizophrenics. 1–12.

519 40. Garey L, Ong W, Patel T, Kanani M, Davis A, Mortimer A, *et al.* (1998): Reduced
520 dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia.
521 *Journal of Neurology, Neurosurgery & Psychiatry*. 65: 446–453.

522 41. Black JE, Kodish IM, Grossman AW, Klintsova AY, Orlovskaia D, Vostrikov V, *et*
523 *al.* (2004): Pathology of Layer V pyramidal neurons in the prefrontal cortex of
524 patients with schizophrenia. *American Journal of Psychiatry*. doi:
525 10.1176/appi.ajp.161.4.742.

526 42. Rogawski MA, Löscher W (2004): The neurobiology of antiepileptic drugs. *Nature
527 Reviews Neuroscience*. 5: 553–564.

528 43. Ikonomidou C, Turski L (2010): Antiepileptic drugs and brain development.
529 *Epilepsy Research*. 88: 11–22.

530 44. Lee GY-P, Brown LM, Teyler TJ (1996): The effects of anticonvulsant drugs on
531 long-term potentiation (LTP) in the rat hippocampus. *Brain Research Bulletin*. 39:
532 39–42.

533 **Tables**

534

535 *Sample characteristics*

	HC (n = 190)	SZ (n = 29)	BD (n = 68)	p
Age	37.3 (11.1)	36.7 (11.2)	36.0 (12.6)	0.24
Sex (f/m)	107/83	13/16	46/22	0.09
IQ	114.8 (10.8)	104.7 (13.9)	114.6 (11.9)	8.3 x 10 ⁻⁵
Illness duration (years)	—	11.0 (9.5)	10.4 (10.2)	0.81
MADRS	1.7 (2.6)	12.3 (6.4)	14.6 (9.6)	6.5 x 10 ⁻⁶⁷
YMRS	0.8 (1.5)	3.8 (4.8)	4.1 (5.0)	8.2 x 10 ⁻¹⁵
PANSS total	—	61.3 (13.7)	43.7 (8.4)	4.8 x 10 ⁻¹⁴
IDS sleep items	1.6 (1.8)	3.9 (2.2)	3.8 (2.5)	6.3 x 10 ⁻¹⁷
No psychotropics	190	5	15	5.6 x 10 ⁻⁴⁵
Antipsychotics	0	20	24	1.1 x 10 ⁻²⁶
Antiepileptics (T/L/V/Pr/U)	0	1/0/1/0/0	24/18/3/1/2	5.3 x 10 ⁻¹⁸
Antidepressants	0	4	28	2.2 x 10 ⁻¹⁹
Anxiolytics/hypnotics	0	2	6	2.7 x 10 ⁻⁴
Lithium	0	1	9	2.2 x 10 ⁻⁶
Tobacco daily (y/n)	40/141	12/16	27/39	0.003
Cannabis last month (y/n)	5/178	3/23	7/56	0.016
Alcohol last day (y/n)	37/146	1/25	10/53	0.11
Coffee daily (y/n)	131/52	21/8	46/20	0.95

536

537 **Table 1.** Values represent either number of participants, or mean and standard deviation.
538 **HC:** Healthy controls. **SZ:** Schizophrenia spectrum disorders. **BD:** Bipolar spectrum disorders.
539 **p:** Probability of no difference between the three groups. **MADRS:** Montgomery and Asberg
540 Depression Rating Scale. **YMRS:** Young Mania Rating Scale. **PANSS:** Positive and Negative
541 Symptoms Scale. **IDS:** Inventory of Depressive Symptoms. **T/L/V/Pr/U:** Total antiepileptics /
542 Lamotrigine / Valproate / Pregabalin / Unspecified.

543

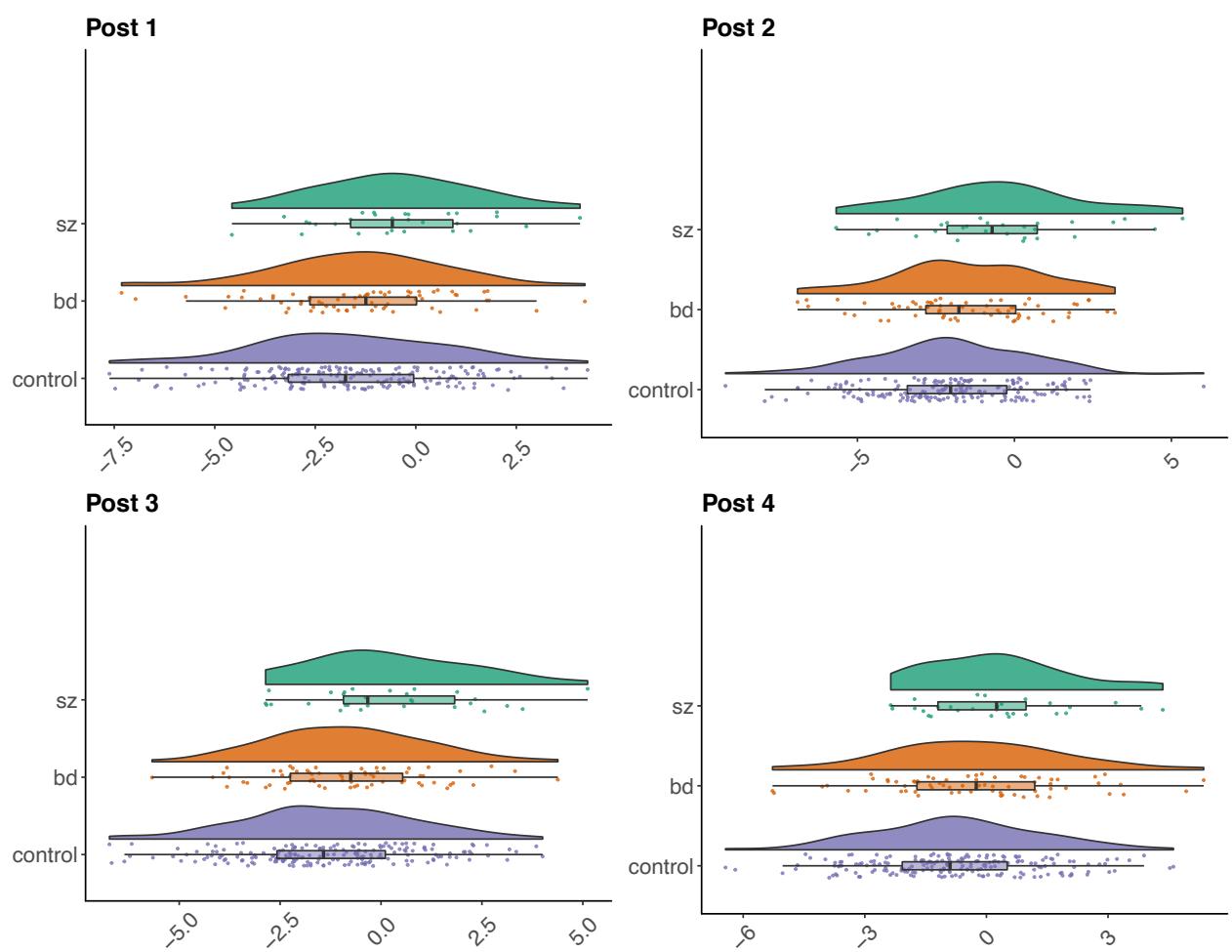
544

545 *N1b modulation by diagnosis*

	HC (d, 95% CI)	SZ (d, 95% CI)	BD (d, 95% CI)
Post 1	-0.71, [-0.85, -0.57]	-0.24, [-0.60, 0.12]	-0.65, [-0.88, -0.41]
Post 2	-0.86, [-1.00, -0.71]	-0.19, [-0.55, 0.18]	-0.66, [-0.90, -0.43]
Post 3	-0.60, [-0.75, -0.46]	0.10, [-0.27, 0.46]	-0.44, [-0.68, -0.20]
Post 4	-0.37, [-0.51, -0.22]	0.15, [-0.22, 0.51]	-0.13, [-0.36, 0.11]

546

547


548

549

550 **Table 2.** Modulation of VEP component N1b at post 1-4 assessments for participants with
551 schizophrenia spectrum disorder (SZ), bipolar spectrum disorders (BD), or healthy controls
552 (HC).

552 **Supplementary Figure**

553

554

555 **Supplementary Figure 1.** Raincloud plots of N1b modulation at post 1-4 assessments for
556 healthy controls, patients with bipolar spectrum disorder, or patients with schizophrenia
557 spectrum disorders.