bioRxiv preprint doi: https://doi.org/10.1101/2020.06.05.136119; this version posted June 5, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

TITLE

A unifying framework disentangles genetic, epigenetic, and stochastic sources of drug-response
variability in an in vitro model of tumor heterogeneity

AUTHORS

Corey E. Hayford?!, Darren R. Tyson?, C. Jack Robbins 1117, Peter L. Frick*, Vito Quaranta®3, and
Leonard A. Harris?

!Chemical and Physical Biology Graduate Program, 2Department of Biochemistry, and
3Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN USA

*Current address: MD-PhD Graduate Program, Yale University School of Medicine, New Haven,
CT USA
#Current address: Intuit Inc., Mountain View, CA USA

ABSTRACT

Tumor heterogeneity is a primary cause of treatment failure and acquired resistance in cancer
patients. Even in cancers driven by a single mutated oncogene, variability of targeted therapy
response is observed. Additional genetic mutations can only partially explain this variability,
leading to consideration of non-genetic factors, such as “stem-like” and “mesenchymal”
phenotypic states, as critical contributors to tumor relapse and resistance. Here, we show that
both genetic and non-genetic factors contribute to targeted drug-response variability in an
experimental tumor heterogeneity model based on multiple versions and clonal sublines of PC9,
the archetypal EGFR-mutant non-small cell lung cancer cell line. We observe significant drug-
response variability across PC9 cell line versions, among sublines, and within sublines. To
disentangle genetic, epigenetic, and stochastic components underlying this variability, we adopt
a theoretical framework whereby distinct genetic states give rise to multiple epigenetic “basins
of attraction”, across which cells can transition driven by stochastic factors such as gene
expression noise and asymmetric cell division. Using mutational impact analysis, single-cell
differential gene expression, and semantic similarity of gene ontology terms to connect genomics
and transcriptomics, we establish a baseline of genetic differences explaining drug-response
variability across PC9 cell line versions. In contrast, with the same approach, we conclude that in
all but one of the clonal sublines, drug-response variability is due to epigenetic rather than
genetic differences. Finally, using a clonal drug-response assay and stochastic simulations, we
attribute drug-response variability within sublines to intracellular stochastic fluctuations and
confirm that one subline likely contains a genetic resistance mutation that emerged in the
absence of selective pressures. We propose that a theoretical framework deconvolving the
complex interplay among genetic, epigenetic, and stochastic sources of intratumoral
heterogeneity will lead to novel therapeutic strategies to combat tumor relapse and resistance.
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INTRODUCTION

Cancer is a complex and dynamic disease characterized by intertumoral and intratumoral
heterogeneities that have been implicated in treatment avoidance and acquired resistance to
therapy’?. Genetic differences among cancer cells within and across tumors have long been
appreciated®2. Indeed, genomic instability is a hallmark of cancer®'° and is considered to be the
primary source of this genetic heterogeneity''*2. However, it is becoming increasingly apparent
that genetics alone cannot fully explain the wide ranges of responses observed in patient
populations to anticancer therapies'®'#. Researchers are, therefore, increasingly looking to non-
genetic sources of tumor heterogeneity for explanations. Broadly speaking, non-genetic
heterogeneity comes in two forms:'3'>1% epigenetic, which is heritable>'’ (at least for a few
generations), and stochastic, which is not heritable and is due to intrinsic factors such as noise in
gene expression?%-2* and asymmetric cell division?>?®. Non-genetic heterogeneity has been linked
to drug tolerance and decreases in drug sensitivity in vitro>?’=3°, in vivo?”-?431, and clinically3%33,

A theoretical framework for understanding the connections between genetic and non-genetic
sources of tumor heterogeneity is the “epigenetic landscape,” which was proposed by
Waddington over 50 years ago* but has received renewed attention recently'®173>3¢_|n analogy
to the potential energy landscape of physical chemistry, Waddington posited that a cellular state
can be assigned a “quasi-potential” energy and placed within a landscape where local minima
correspond to cellular phenotypes. Phenotypic state transitions occur when cells traverse the
barriers separating adjacent basins, driven by intrinsic or extrinsic sources of noise3”%%,
Importantly, the topography of the epigenetic landscape depends on a complex set of
biochemical interactions within (and possibly spanning?) cells and the values of associated rate
parameters?®4!, Many of these parameters depend strongly on protein structure (e.g., the
accessibility of a binding domain), which is encoded within the DNA. Thus, an epigenetic
landscape can be thought of as deriving from a particular “genetic state”!63¢ (see below). Typical
tumors comprise numerous genetic states®*? and, thus, in this framework have numerous
overlapping epigenetic landscapes, each of which is subject to noise-induced phenotypic
transitions (FIG. 1A). Over time, the composition of a tumor is expected to evolve through a series
of genetic mutations and expansions, as in the standard picture of clonal evolution®'’, but with
the important distinction that each genetic clone comprises numerous epigenetic states (FIG.
1B), among which cells can interconvert and some of which may be well suited to survive future
stressors, such as drug treatments3%43,

This “systems” view of tumor heterogeneity, as a three-tiered amalgamation of genetic,
epigenetic, and stochastic sources of variability, has been proposed previously'®17:3536 tg explain
the wide ranges of responses to, and failures of, anticancer therapies within genomically
stratified patient populations*#°. For instance, epidermal growth factor receptor (EGFR)
inhibitors are not equally effective across patients with EGFR-mutant lung cancer and in almost
all cases tumors eventually acquire resistance*®*’. However, without strong experimental
evidence to support it, this framework has yet to achieve broad acceptance within the cancer
research community3®. Here, we tackle this issue by performing extensive drug-response
profiling, followed by genomic and transcriptomic characterization and mathematical population
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dynamics modeling, of multiple “versions” and single cell-derived sublines of an archetypal non-
small cell lung cancer (NSCLC) cell line. We chose this family of cell line versions and sublines
because we suspected, based on the individual lineages and the conditions under which each
member was derived, that it would effectively mimic the constitution of a genetically and
epigenetically heterogeneous tumor (see Supplementary Note for further discussion). The cell
line versions include two variants that have been maintained independently for many years at
separate institutions and one (derived from one of these variants) with a known genetic
resistance mutation acquired through systematic dose escalation. Single cell-derived sublines,
isolated from one of these versions and passaged numerous times prior to experimental
interrogation, model epigenetic variation within an individual genetic state. We use bulk genomic
and single-cell RNA sequencing of the cell line versions to provide a benchmark for genetic
variability (differences across populations; see Supplementary Table S1) against which we
compare genomic and transcriptomic differences seen among the sublines. Our analysis suggests
that all but one of the sublines are genetically identical but differ epigenetically, i.e., they
constitute distinct basins within a common epigenetic landscape. The monoclonality of these
sublines is further supported by stochastic simulations that indicate drug response variability
seen across isolated colonies can be explained by intrinsic randomness in cell division and death.
We also detail a case where one subline appears to contain at least two distinct genetic states,
the second presumably acquired after establishment of the subline. Below, we provide a detailed
description of the genetic-epigenetic-stochastic (G/E/S) framework on which this work is based,
with precise definitions of relevant terms and concepts, followed by experimental and theoretical
analyses at the genomic, transcriptomic, and cell population levels. We conclude with a
discussion of the consequences of this view of tumor heterogeneity for how we think about
cancer and for devising effective anticancer strategies in the future.

RESULTS

A theoretical framework for deconvolving intratumoral heterogeneity into genetic, epigenetic,
and stochastic components

Based on prior work in this area®1617.19,364148 '\ye view intratumoral heterogeneity as comprised
of genetic, epigenetic, and stochastic components (FIG. 1A) that are broadly distinguished based
on characteristic timescale of change: functional genetic mutations are acquired on the order of
weeks to months**°°, transitions between epigenetic states occur on the order of hours to
weeks!, and stochastic fluctuations in protein concentrations, and other sources of intracellular
noise, operate on the order of seconds to minutes>?. Separating processes based on characteristic
timescale is a common approach in physics®® and has a long history in biology>*. Note that we
distinguish between “heterogeneity”, defined as differences (genetic, epigenetic, or stochastic)
that exist within a cell population, and “variability”, which are differences seen across
populations. A tumor is heterogeneous if it is composed of subpopulations that display
variabilities amongst each other. Below, we describe in detail each of these levels of
heterogeneity, with precise definitions of terms that will be important for later analyses (see also
Supplementary Table S1).
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Genetic level (FIG. 1A, left): Genomic instability is a hallmark of cancer®. For cancer cells in
culture, it has been estimated that approximately five million cell divisions are necessary to
acquire at least one mutation per gene*. With more than 20,000 genes in the genome, this
amounts to one mutation every two weeks on average. These mutations can be single-nucleotide
polymorphisms (SNPs), insertions/deletions (InDels), and larger structural variations (see
Supplementary Note and Supplementary FIG. S1). While mutations in the genome are relatively
frequent, many do not have functional consequence, so-called “passenger” mutations®®.
Therefore, we make a distinction between the genomic state of a cell and the genetic state: the
genomic state is the full sequence of nucleotides that make up the DNA whereas the genetic
state is the subset of this sequence that contributes to a specific cellular phenotype®>°8. In other
words, two cells may differ genomically but be genetically identical if the mutations that
differentiate them occur in portions of the genome that have no functional consequence on the
phenotype of interest (see Supplementary FIG. S1A). As such, the timescale for generating genetic
heterogeneity within a population of cancer cells can be quite slow (much slower than the
acquisition of genomic heterogeneity), on the order of weeks to months*>°. Note that
enumerating the subset of the genome that defines the genetic state can be difficult (if not
impossible) in practice and depends on the phenotypic context®’. Here, we use drug response as
the phenotype of interest. Thus, the genetic state is, in principle, defined over all genes
associated with drug response, which includes those involved in stress response, metabolism,
cell cycle regulation, and many others.

Epigenetic level (FIG. 1A, middle): Conceptualized as a quasi-potential energy surface where local
minima, or “basins of attraction,” correspond to cellular phenotypes, epigenetic landscapes were
first proposed by Waddington as an abstract tool for understanding phenotypic plasticity and
cellular differentiation during development3*. The genetic state of a cell sets the topography of
the landscape®3® and intrinsic (e.g., gene expression?®) or extrinsic'*>® sources of noise drive
transitions between phenotypes. In cancer, rather than a well-defined hierarchy, multiple
epigenetic states of comparable stability can coexist>®®°, often with differential drug
sensitivities?”®162, A population of cancer cells would thus be expected to spread out across these
phenotypes, producing a highly heterogeneous mix, even among isogenic cells>. Phenotypic
state transitions have been observed to occur on the order of hours to weeks3%®?, meaning
epigenetic diversification occurs on a much faster timescale than genetic diversification. From a
molecular perspective, the epigenetic landscape is the consequence of the complex biochemical
interaction networks underlying cellular function®*%4. Complex dynamical networks can harbor
multiple stable states, termed “attractors”, towards which a system will tend to return (relax
back) in response to small perturbations®>%. This property underlies epigenetic heritability:
daughter cells inherit similar molecular contents as their parent; hence, they tend to remain
within the region of influence of the parental attractor. Here, we use the transcriptional state of
a cell, revealed through single-cell transcriptomics, as a proxy for the epigenetic state, with the
understanding that mRNA is only one lens through which to view epigenetics. Indeed, this
definition of an epigenetic state, i.e., as a stable state of a complex biochemical network, differs
from the traditional molecular biology definition in terms of “epigenetic marks”®” (e.g., DNA
methylation, regions of open chromatin). The two are related, however, in the sense that the
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same biochemical network that defines the epigenetic landscape also sets the epigenetic marks
on the DNA? (see Supplementary Note for an in depth discussion).

Stochastic level (FIG. 1A, right): Fluctuations, or noise, in intracellular species concentrations have
long been recognized as a source of non-genetic heterogeneity in isogenic cell populations, first
in bacteria®?®® and then in yeast®®’? and mammalian cells®>¢271, Intracellular noise can be
“intrinsic”, i.e., due to the probabilistic nature of biochemical interactions’?>73, or “extrinsic”3,
affecting the rates of interactions, synthesis, and degradation within a biochemical network.
Intrinsic sources of noise include transcriptional bursting’47°, translational bursting’®, and
randomness in mRNA/protein degradation’’, oligomerization’®, and post-translational
modification’®. Extrinsic noise includes randomness in the distribution of molecular contents
upon cell division?®8% environmental factors such as inhomogeneities in cell culture media®,
fluctuations in temperature®? and pH2, and spatial variations in the microenvironment®*
Importantly, fluctuations at the molecular level can drive probabilistic cell fate decisions?%21.23.85-
8 including division and death®3®°, at the single-cell level and phenotypic diversification at the
epigenetic (population) level>®®, Experimentally, at the intracellular level, intrinsic and extrinsic
noise are difficult to distinguish, generally requiring multiple fluorescent reporters and the ability
to fine-tune the external environment32. Theoretically, the chemical Master Equation®*°? (CME)
is the construct upon which all stochastic dynamical analyses are based. Since the CME is difficult
to solve in general, a number of stochastic algorithms have been developed for simulating

fluctuations at both the single cell and cell population levels’3°3,

Cell line versions and single cell-derived sublines exhibit drug-response variability at the cell
population level

We chose canonical NSCLC cell line PC9°* as the model system to substantiate the G/E/S
heterogeneity framework described above. The PC9 cell line is characterized by an EGFR-ex19del
mutation (Supplementary FIG. S2A), making it sensitive to inhibition of the mutant EGFR protein.
We utilized three versions of the cell line: PC9-VU, originating from Vanderbilt University®>; PC9-
MGH, maintained at Massachusetts General Hospital®%°%; and PC9-BR1, derived from PC9-VU and
containing a known secondary resistance mutation (EGFR-T790M) obtained through dose
escalation therapy in the EGFR inhibitor (EGFRi) afatinib®>. Although it is unclear when the PC9-
VU and PC9-MGH versions, which originate from a common founder cell population, were
independently established (see Supplementary FIG. S2B), both maintain the oncogenic mutation
in the EGFR gene and show sensitivity to EGFR inhibition®?°. In the absence of drug, PC9-VU and
PC9-BR1 have essentially identical proliferation rates, while PC9-MGH grows at a slightly lower
rate (Supplementary FIG. S3A). However, in response to the EGFRi erlotinib (see Methods), the
three cell line versions display drastically different drug sensitivities (FIG. 2A): PC9-MGH exhibits
substantial cell death after an initial “drug stabilization” phase (~72h), PC9-VU settles into a near-
zero rate of growth, and PC9-BR1 displays insensitivity to EGFRI, as expected. These results are
consistent with the high sensitivity of PC9-MGH to erlotinib reported in Sharma et al.®? and the
lower sensitivity of PC9-VU observed in Harris et al.88°
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We also quantified clonal drug response variability using clonal Fractional Proliferation®” (cFP),
an assay that tracks the growth of many single cell-derived colonies over time and quantifies drug
sensitivity for each colony in terms of the drug-induced proliferation (DIP) rate®®2°, defined as
the stable rate of proliferation achieved after extended drug exposure (see Methods and
Supplementary Note). We performed cFP on each cell line version treated with erlotinib and
observed wide ranges of drug responses across colonies (Supplementary FIG. S3B) and
substantial differences in the aggregate responses across versions (FIG. 2B). The distribution of
DIP rates for PC9-BR1 lies almost entirely in the positive DIP rate range and is clearly distinct from
the others. The PC9-VU and PC9-MGH distributions have significant overlap but the PC9-MGH
distribution has a marked shoulder in the negative DIP rate region while the PC9-VU distribution
extends further into the positive range. These distributions are consistent with and explain the
differential drug responses observed between the cell line versions (FIG. 2A): PC9-BR1 is resistant
to EGFRi because its DIP rate distribution is entirely in the positive range, PC9-VU goes into a
near-zero (slightly positive) growth phase because its DIP rate distribution is centered near zero,
and the large shoulder in the PC9-MGH distribution explains why it exhibits significant cell death
in the period immediately following drug treatment.

In addition, several single cell-derived discrete sublines (DS1, DS3, DS4, DS6, DS7, DS8, DS9) were
isolated from PC9-VU and subjected to the same analyses as above. In the absence of drug, all
sublines grow at almost equal rates in culture (Supplementary FIG. S3C). However, in the
presence of EGFRI, the sublines exhibit a wide range of responses, from positive growth to
negative (FIG. 2C). When overlaid with the cFP results for PC9-VU, we see that the subline
responses broadly recapitulate the observed variability seen in the parental line (Supplementary
FIG. S4A). A notable exception is DS8, which is essentially resistant to EGFRI, having only a slightly
lower proliferation rate than the fully resistant PC9-BR1 (Supplementary FIG. S4B). We also
performed cFP assays on the sublines under erlotinib treatment (FIG. 2D). Interestingly, similar
to the cell line versions, we found that the sublines also exhibit distributions of DIP rates, albeit
generally narrower than those for the versions. The subline distributions have a large degree of
overlap with one another but the medians of the distributions are statistically distinct
(Supplementary FIG. S4C). DS8 is again an exception, exhibiting a bimodal DIP rate distribution
with a major mode centered close to zero and a large shoulder in the positive DIP rate region.

Cell line versions differ significantly at the genetic and transcriptomic levels

Given how long the PC9-VU and PC9-MGH cell line versions have been maintained separately, it
is virtually certain that they differ genetically*?. We also know that PC9-BR1 contains a known
genetic resistance mutation and likely numerous additional mutations acquired during dose
escalation. Thus, we perform bulk whole exome sequencing (WES) and single-cell RNA
sequencing (sc-RNA-seq) on the cell line versions in order to establish a benchmark for genetic
variation against which we can compare the sublines.

From WES, we identify mutations (SNPs and InDels) in each cell line version that pass a specified
threshold for variant detection (see Methods and Supplementary FIG. S5A,B) and calculate the
number of mutations per chromosome (FIG. 3A). We see a large amount of variability in the
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number of called variants between cell line versions (average coefficient of variation (CV) per
chromosome = 12.84). We also identify mutations unique to each cell line version
(Supplementary FIG. S5C) and calculate the proportionality of uniqgue mutations compared to the
total number of mutations (FIG. 3B). Although a majority of the mutations are shared between
versions, a significant number are unique: PC9-BR1 has the largest proportional representation
of unique mutations, followed by PC9-MGH and then PC9-VU. Furthermore, we annotate unique
mutations within each cell line version with an IMPACT score, calculated using the Variant Effect
Predictor®® (VEP), which classifies severity of variants based on genetic variant annotation and
predicted effects (e.g., amino acid change, protein structure modification; see Methods). The
IMPACT score differentiates mutations based on a variety of factors to predict whether a
mutation is likely to have a phenotypic effect. Categorizing mutations into low, moderate, and
high IMPACT score shows that PC9-BR1 has many more impactful mutations than PC9-MGH and
PC9-VU, which have similar numbers to each other (FIG. 3C). However, as a percentage, only 1%
of PC9-MGH unique mutations are predicted to be impactful, compared to 11% in PC9-VU (FIG.
3C), suggesting that PC9-MGH harbors a large number of passenger mutations.

We also perform a mutational significance analysis on the unique mutations. Based on
nonsynonymous mutational load, genes are selected to create a mutational signature of genetic
differences within each cell line version and displayed as a heatmap (see Methods). We see that
multiple mutations in the signature distinguish the cell line versions (FIG. 3D). Additionally, we
generate a literature-curated, cancer-associated gene signature that includes mutations
predicted to be implicated in cancer?®® (see Methods). Only PC9-BR1, which has a known
resistance mutation (EGFR-T790M; noted as a missense mutation in the heatmap), harbors any
of the mutations in the signature (FIG. 3E). Breakdowns of mutations by type provide additional
evidence that PC9-VU mutation representation is distinct and proportionally impactful (FIG. 3F).
Together, these genomic data (FIG. 3A—F) starkly illustrate the genetic differences among the cell
line versions.

At the transcriptomic level, we use sc-RNA-seq to identify gene expression differences between
the cell line versions (see Methods and Supplementary FIG. S6A). After feature selection
(Supplementary FIG. S6B), we used Uniform Manifold Approximation and Projection®®10!
(UMAP) to project the transcriptional states for each cell into two-dimensional space (FIG. 3G
and Supplementary FIG. S6C). We see a clear separation of the features for the cell line versions
in this space, with minimal overlap (FIG. 3G, right). Pairwise distances between the centroids of
the single-cell features quantify transcriptomic similarities between the cell line versions (FIG.
3H). We see that PC9-VU and PC9-BR1 are more similar to each other than either is to PC9-MGH,
which is unsurprising given that PC9-BR1 was derived from PC9-VU (Supplementary FIG. S2B).
These results are further supported by alternative dimensionality reduction techniques
(Supplementary FIG. S7) and bulk RNA expression data (Supplementary FIG. S8).

The results above illustrate that genetic differences among cell line versions translate to
epigenetic differences at the transcriptomic level. However, this genetic-to-epigenetic
connection is not one-to-one, i.e., most genetic mutations do not result in an altered expression
level of that genel®. Instead, mutations that modify protein structure, for example, can alter
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expression of downstream genes!® within the same or related pathways due, e.g., to various

feedback mechanisms. Thus, rather than comparing genomic mutations and differential gene
expression on a gene-by-gene basis, we establish a baseline for genetic-to-epigenetic connection
in terms of biological process and molecular function within the cell line versions. We use a
semantic similarity metric'® for comparing gene ontology (GO) terms!%>1% for high consequence
genetic variants (low, moderate, and high IMPACT score; FIG. 3C) and significantly differentially
expressed genes (DEGs; p<0.05) at the transcriptomic level (FIG. 3G). For each cell line version,
we calculate pairwise similarity scores between GO terms for each genomic variant and each DEG
based on their “distance” within the GO term network?* (a directed acyclic graph). Terms within
closely related branches of the network are more similar in terms of biological process or function
and, hence, receive higher scores than those in different branches (see Methods and
Supplementary Note for further details). An aggregate score (between 0 and 1) is then obtained
that quantifies the overall relationship between the genetic and transcriptomic states of the cell
line versions. For all cell line versions, we get semantic similarity scores close to 0.4 and 0.3 for
the “Biological Process” and “Molecular Function” GO categories'®>1%, respectively (FIG. 3l).
These are used as benchmarks against which genetic-to-epigenetic connections for single cell-
derived PC9-VU sublines can be compared (see below).

Single cell-derived sublines are genomically similar but transcriptomically distinct

We perform the same genomic and transcriptomic analyses as above on four PC9-VU sublines
(DS3, DS6, DS7, DS9) that exhibit differential responses to EGFRi (FIG. 2C,D). Analysis of the total
number of mutations by chromosome (FIG. 4A) shows significantly less variability in the variant
count for the sublines relative to the cell line versions (average CV per chromosome = 6.05 vs.
12.84; cf. FIG. 3A). Additionally, unlike the cell line versions, all sublines exhibit similar
proportions of unique mutations (FIG. 4B) and numbers of IMPACT mutations (FIG. 4C), with only
about 1% of unique mutations predicted to be impactful in all cases. Mutational significance
analysis using the same genomic signature as for the cell line versions (see FIG. 3D) shows fewer
total and impactful mutations in the sublines (FIG. 4D). This is true for the cancer-associated
genes as well (FIG. 4E). The sublines also exhibit a nearly identical mutation class distribution
(FIG. 4F). Taken together, these genomic data (FIG. 4A—F) illustrate that there is significantly less
genomic variability among the four PC9-VU sublines than among the cell line versions. From the
perspective of the G/E/S framework (FIG. 1A), this provides support for the view that the sublines
are, in fact, genetically identical and represent basins within a common epigenetic landscape
defined by the genetic state of PC9-VU.

Comparing single-cell transcriptomes (FIG. 4G), we see distinctions among the sublines but to a
much lesser extent than among the cell line versions. Interestingly, two of the sublines (DS7 and
DS9) overlap almost entirely in transcriptional space, despite the fact that they were
independently cloned and cultured. A k-means clustering analysis (k=3) shows a near-equivalent
distribution of DS7 and DS9 in one cluster, while DS3 and DS6 are highly represented in their own
clusters, with some degree of overlap from the other sublines (FIG. 4G, right). This is in contrast
to the cell line versions, where there is much less overlap among clusters and virtually none
between PC9-MGH and PC9-VU/PC9-BR1 (FIG. 3G, right). Pairwise distances between subline
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centroids shows a separation between DS3, DS6, and DS7/DS9 but essentially no separation
between DS7 and DS9 (FIG. 4H). Importantly, the distances between subline centroids are all
markedly smaller than the distances between centroids for the cell line versions (compare FIGS.
3H and 4H). From the perspective of the G/E/S framework (FIG. 1A), these results suggest that
DS7 and DS9 may actually occupy the same basin within the PC9-VU epigenetic landscape while
DS3 and DS6 likely occupy different basins. Also note that the subline transcriptomes overlap
almost entirely with the parental PC9-VU transcriptome (Supplementary FIG. S7A), as expected,
supporting the view that the cell line versions harbor multiple epigenetic states (basins).
Moreover, the overlap between the transcriptomic features for the sublines suggests that
phenotypic state transitions are occurring between these states. These results are further
supported by alternative dimensionality reduction methods (Supplementary FIG. S7B,C) and bulk
RNA sequencing (Supplementary FIG. S8).

Semantic similarity analysis between GO terms associated with genetic variants and differentially
expressed genes in each of the four sublines (FIG. 4l) reveals a much weaker genetic-to-
epigenetic connection as compared to the cell line versions (FIG. 3l). In almost every case (with
one exception, DS7: “Biological Process”), the semantic similarities for the sublines are
significantly lower than those for all three cell line versions. This can be seen as evidence that the
small genomic variations present in the sublines do not translate to the transcriptomic level and,
therefore, further supports the view from the perspective of the G/E/S framework (FIG. 1A) that
the sublines are genetically identical and represent distinct epigenetic states within a common
epigenetic landscape.

Stochastic birth-death simulations suggest sublines are epigenetically monoclonal

The PC9-VU sublines exhibit variability in drug response, not just at the population level (FIG. 2C)
but also at the clonal level, as evidenced by variable colony growth in cFP assays (FIG. 5A and
Supplementary FIG. S9A) and quantified as distributions of DIP rates (FIG. 2D). To explore the
origin of this intra-clonal variability, we perform stochastic simulations'®” on a simple birth-death
model of cell proliferation to ascertain whether intrinsic noise alone is sufficient to explain the
experimental observations (see Methods). We perform a battery of in silico cFP assays where
untreated single cells grow into colonies of variable size at a fixed proliferation rate (division rate
— death rate) and are then treated with drug, modeled by reducing the proliferation rate. Colony
sizes are tracked over time (FIG. 5B and Supplementary FIG. S9B) and DIP rate distributions are
calculated and statistically compared against experimental distributions (FIG. 5C and
Supplementary FIG. S9C). We repeat this procedure for a wide range of division and death rates
to identify ranges of parameter values that can statistically reproduce (p>0.1) experimental DIP
rate distributions. For all PC9-VU sublines (except DS8, see below), we find ranges of parameter
values that are physiologically plausible (FIG. 5D and Supplementary FIG. S9D). The fact that a
birth-death model with fixed rates of division and death, when simulated stochastically, can
reproduce experimental DIP rate distributions supports the view that these sublines (DS1, DS3,
DS4, DS6, DS7, DS9) are, in fact, epigenetic clones, i.e., individual basins within the PC9-VU
epigenetic landscape (FIG. 1A). Moreover, that many values of division and death rates can
reproduce experimental results is consistent with the idea that the molecular states of cells
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fluctuate within basins of attraction (FIG. 1A). In other words, rates of division and death
themselves fluctuate because they are fundamentally driven by biochemical signaling pathways
that are susceptible to stochastic fluctuations in intracellular species concentrations?021:23:85-87,

One single cell-derived subline likely harbors a second genetic state

As mentioned above, the PC9-VU subline DS8 differs significantly from the other sublines,
exhibiting near total resistance to EGFRi (FIG. 2C) and a bimodal DIP rate distribution under cFP
(FIG. 2D). To investigate the origin of these differences, we perform on DS8 the same multi-omic
and simulation analyses as reported above (FIGS. 3-5). On a per chromosome basis, DS8 tends
to have more mutations than the average subline (although this is true of DS3 and DS6 as well;
Supplementary FIG. 10A). It also has a larger proportion of unique mutations relative to all other
sublines (FIG. 6A) and substantially more unique IMPACT mutations (total and as a percentage;
FIG. 6B). In terms of mutational significance and class distribution (Supplementary FIG. S10B-D),
DS8 does not differ significantly from the other sublines. However, it is important to note that
DS8 does not have the same resistance conferring mutation (EGFR-T790M) as PC9-BR1
(Supplementary FIG. S10C), indicating a different (unknown) resistance mechanism is at play (see
Supplementary Note for further discussion). Transcriptomically, DS8 differs significantly from the
other sublines (FIG. 6C,D) and cell line versions (Supplementary FIG. S7A). This is evident in other
dimensionality reduction projections as well (Supplementary FIG. S7B,C) and bulk RNA expression
profiles (Supplementary FIG. S8). GO semantic similarity analysis shows a strong genetic-to-
epigenetic connection in DS8 (FIG. 6E), on par with the baselines set by the cell line versions (FIG.
31) and significantly higher than the other sublines (FIG. 4l).

Taken together, these multi-omics data (FIG. 6A—E and Supplementary FIGS. S7, S8, and S10A-D)
strongly suggest that DS8 is genetically distinct from the other PC9-VU sublines and from the
other cell line versions (PC9-MGH and PC9-BR1). We further support this claim by performing
stochastic simulations on an expanded version of the birth-death model described above that
contains two clones with distinct rates of division and death (see Methods and Supplementary
Note). As for the other sublines, we perform in silico cFP assays (Supplementary FIG. S10E) and
compare the simulated DIP rate distributions against the bimodal distribution seen
experimentally (FIG. 6F). We find ranges of rate parameter values that can statistically reproduce
the experimental result (FIG. 6G). Note that the mathematical model is agnostic as to whether or
not the two in silico clones are genetically distinct (i.e., it simply posits that the clones have
distinct proliferation rates). Thus, while the weight of the evidence points to DS8 as harboring a
distinct genetic state, it is an open question as to whether that state emerged prior to
establishment of the subline or subsequently (Supplementary FIG. S11; see below for further
discussion).

DISCUSSION
Many modern cancer therapies have focused on targeting specific genetic mutations within a

tumor. However, recent studies have shown that a complex interplay between genetic and non-
genetic factors likely plays a key role in targeted treatment failure®°6. Genetic and non-genetic
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heterogeneities in cancer have been extensively studied over the past decade or more>20:22,52,108-

111 but most studies have lacked a clear theoretical framework to understand them jointly. Here,
we have utilized the framework of Waddington3*, extended by Huang!31>19:3536,64 pglygk®16:17,
and others***8, to deconvolve the roles of genetic, epigenetic, and stochastic variabilities on drug
response phenotypes. This G/E/S framework (FIG. 1) posits that tumors are composed of multiple
genetic states, each of which emanates an epigenetic landscape comprising multiple phenotypes
(basins of attraction), within which cell states fluctuate due to intrinsic and extrinsic sources of
noise that can occasionally drive phenotypic state changes.

To provide substantive experimental support for this framework, we used an in vitro tumor
heterogeneity model comprising multiple versions of the NSCLC cell line PC9 (VU, MGH, BR1) that
were propagated separately from each other over extended periods of time (Supplementary FIG.
S2B) and exhibit drastically different drug responses (FIG. 2A,B). We made the forthright
assumption that the cell line versions are genetically distinct (Supplementary FIG. S1) and used
whole-exome sequencing to establish a baseline for mutational differences, which were
significant (FIG. 3A—F). According to the G/E/S framework, the PC9 cell line versions lie along a
“genetic axis” (FIG. 7A, left), with PC9-BR1 having been derived from PC9-VU (FIG. 7B), and each
has an associated epigenetic landscape comprising multiple discrete phenotypic states (FIG. 7A,
right). These epigenetic landscapes are revealed as distinct transcriptional features by sc-RNA-
seq (FIG. 3G,H) and their connections to the underlying genetic states are established by semantic
similarity analysis between mutated and differentially-expressed genes (FIG. 3l). However,
individual basins are not discernable in the parental PC9 transcriptional features (FIG. 3G).
According to the theory, this can be explained by cell-state fluctuations that “smear” the
individual features together (FIG. 1A, right). This view is substantiated by sc-RNA-seq for four
single cell-derived PC9-VU sublines whose transcriptomic features overlap significantly with
different portions of the parental PC9-VU feature (FIG. 4G,H and Supplementary FIG. S7A).
Moreover, overlap among the subline transcriptomic features provides some evidence for
fluctuation-driven phenotypic state changes. Genomic differences among these sublines (FIG.
4A—F) are substantially smaller than the baseline established by the cell line versions, as is the
genetic-to-epigenetic connection (FIG. 4l), further supporting the assertion that these sublines
are genetically identical (Supplementary Table S1) and constitute basins of a common epigenetic
landscape (FIG. 7A, right). Differential drug responses across the PC9-VU sublines (FIG. 2C) can
be attributed to the different molecular (transcriptomic) states of the sublines (FIG. 4G; except
for DS8, see below) and drug-response variability seen at the clonal level within the sublines (FIG.
2D) can be similarly attributed to fluctuations in molecular states, captured using stochastic
simulations at the cell population level (FIG. 5 and Supplementary FIG. S9).

Throughout our analyses, DS8 was a persistent outlier among the PC9-VU sublines: it is almost
entirely resistant to EGFRi (FIG. 2C and Supplementary FIG. S4B); it displays a bimodal DIP rate
distribution at the clonal level (FIG. 2D and FIG. 6F,G); it has significantly more unique and
IMPACT mutations than the other sublines (FIG. 6A,B); its transcriptomic state is substantially
distinct from the other sublines (FIG. 6C,D), on par with the other cell line versions
(Supplementary FIG. S7A); and its genetic-to-epigenetic similarity scores are comparable to those
of the cell line versions (FIG. 6E). Furthermore, DS8 does not carry the classic EGFR-T790M
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mutation that confers EGFRi resistance, as found in PC9-BR1 (Supplementary FIG. S10C). All this
points to DS8 harboring a distinct genetic state that emerged out of PC9-VU at some point in the
past in the absence of selective pressure (FIG. 7B). Within the G/E/S framework, this places DS8
on the genetic axis alongside the other cell line versions (FIG. 7A, left) and asserts the existence
of an associated epigenetic landscape (FIG. 7A, right). An open question remains, however, as to
whether the DS8 genetic state emerged subsequent to establishment of the subline, in which
case DS8 would likely comprise two distinct genetic states (the mutant and the PC9-VU state from
which it arose; Supplementary FIG. S11A), or prior to its establishment, which would stipulate
that mutant cells also remain in the parental line (Supplementary FIG. S11B). The bimodal DIP
rate distribution for DS8 seems to favor the former scenario: the left mode of the distribution
largely overlaps with the PC9-VU distribution, while the right mode, presumably associated with
the new genetic state, is distinct, lying between PC9-VU and PC9-BR1 (FIG. 2B and Supplementary
FIG. S4C). However, we cannot entirely discount the latter possibility since a small proportion of
PC9-VU and DS9 cells reside in the same region of transcriptional space as DS8 (FIGS. 3G, 4G, and
6C). It is possible, therefore, that the emergent DS8 genetic state associates with an epigenetic
landscape comprising basins lying in distant regions of transcriptional space (Supplementary FIG.
S11B; see Supplementary Note for further discussion). Whatever the case, the weight of the
evidence reported here supports the view that DS8 is genetically distinct from the other PC9 cell
line versions and sublines and has access to phenotypic states that are either completely or
largely unavailable to PC9-VU, consistent with the G/E/S perspective on the complex interplay
between genetic and non-genetic heterogeneities in cancer (FIG. 1).

In addition to the experimental evidence presented here, the G/E/S framework is wholly
consistent with numerous prior reports in the literature. Ben-David et al.*? showed that
numerous “strains” (comparable to our cell line versions) of human cancer cell lines, obtained
from different institutions, display extensive genetic heterogeneity and that genetically similar
strains exhibit similar transcriptomic signatures and drug-response profiles. Thus, they argued
that cancer cell lines can drift genetically when kept in culture independently, consistent with
our results for the PC9 cell line versions (FIG. 3). Moreover, the spontaneous emergence of the
drug-resistant DS8 genetic state out of PC9-VU in the absence of selective pressure (FIG. 6) aligns
with observations by Ramirez et al.? and Hata et al.?®, who independently reported diverse
resistance-conferring mutations arising in drug-treated and untreated PC9-MGH clones. Shaffer
et al.*? described a transient, transcriptionally-encoded pre-resistance state in two BRAF-mutant
melanoma cell lines that they attributed to epigenetic mechanisms (both gene expression states
and chromatin accessibility). Although presented phenomenologically, we can interpret their
results through the lens of the G/E/S framework: similar to our single cell-derived sublines, the
observed pre-resistant state can be viewed as a basin within a BRAF-mutant melanoma
epigenetic landscape that, based on its molecular make up, is insensitive to BRAF inhibition.
Moreover, the observation that individual cells transition into and out of this state is consistent
with the idea that stochastic fluctuations drive phenotypic state transitions over epigenetic
landscapes. Since only a small minority of cells seem to have access to the pre-resistant state at
any given time''?, we can infer that the basin is shallow because outward transitions would be
easily driven by intracellular noise. This view is consistent with seminal works by Arkin and co-
workers?1:237>8586,113 "\who detailed the role of gene expression noise in probabilistic cell fate
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decisions and variations in phenotypic identity using stochastic simulations and experimentation.
Elowitz et al.°2 demonstrated how noise in transcription and translation can lead to phenotypic
switching in bacterial populations. Similar behaviors have been observed by Raj and van
Oudenaarden in yeast?? and more recently by Magklara and Lomvardas’! in mammalian systems.
In cancer, cell-to-cell variability in protein concentrations'** and stochastic phenotypic state
switching®®'*> have been proposed as survival mechanisms against treatment, in line with our
observations of unimodal DIP rate distributions and small proportions of positive-DIP rate clones
in isogenic PCI cell populations (FIGS. 2 and 5 and Supplementary FIGS. S3, S4, and S9).

It is now abundantly clear that therapies based on evaluating tumor genetics alone cannot solve
the growing problems of increasing rates of cancer incidence and mortality worldwide!*®%’, The
G/E/S framework presented here offers an alternative to the traditional gene-centric view of
cancer that may transform how we understand and treat the disease. For example, that each
genetic state emanates an epigenetic landscape with numerous accessible phenotypic states may
explain why genetic screening alone has not produced effective, durable anticancer therapies:
some phenotypes may have molecular compositions that enable their survival under drug
treatment. Cells pre-existing in these states (e.g., that observed by Shaffer et al.1*?), and/or those
that escape into them upon drug addition, may act as a refuge from which genetic resistance
mutations can arise. This “bet hedging” strategy of non-genetic phenotypic diversification in the
absence of stressors has been observed in bacteria!?®113118119 3nd proposed as a survival strategy
in cancer3%%2, Furthermore, alternative treatment strategies have been proposed that focus on
identifying and targeting so-called “cancer stem cells”*2° (CSCs), rare cell types that do not differ
genetically from bulk tumor cells but are phenotypically distinct and capable of seeding new
tumors. Unfortunately, these treatments have so far been unsuccessful*?l. The G/E/S framework
provides a possible explanation as to why: CSCs can be viewed as residing in a shallow basin
within an epigenetic landscape; killing cells in this basin does not eradicate the basin, leaving it
available to be repopulated by cells from “adjacent” basins. This suggests that a better approach
is not to target individual phenotypic states but rather to target the epigenetic landscape as a
whole'??, This process, termed “targeted landscaping”3%*, would aim to use drugs, in
combination or succession, to alter the topography of a landscape to favor transitions out of
drug-tolerant states and into drug-sensitive states. The rationality of this approach is supported
by multiple studies, including in cancer, where resistance to one drug has been shown to confer
sensitivity to a different drug (or drug class), commonly referred to as “collateral sensitivity” 123"
125 Several studies have also demonstrated that alternative drug scheduling regimens may have
benefits compared to traditional single-agent applications or up-front combinations*>'26, Our
work suggests extending these approaches to account for all levels of heterogeneity in tumors,
i.e., genetic profiling to enumerate dominant genetic states, followed by characterization of the
associated epigenetic landscapes using single-cell experimental approaches, possibly aided by
advanced theoretical and computational modeling techniques®\/646573127-132 These |andscapes
can then be screened against batteries of available drugs, in vitro and in silico, to devise
individualized treatments that can be tested against patient-derived xenografts in vivo before
being administered clinically. This approach would leverage novel technologies and currently
available drugs to offer the possibility of profound improvements to anticancer therapies.
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METHODS
Cell culture and reagents

PC9-VU and PC9-BR1 were obtained as a gift from Dr. William Pao (Roche, formerly of Vanderbilt
University Medical Center). PC9-MGH was obtained as a gift from Dr. Jeffrey Settleman
(Massachusetts General Hospital). PC9-VU, PC9-MGH, and PC9-BR1 were individually
fluorescently labeled with histone H2B conjugated to monomeric red fluorescent protein
(H2BmRFP), as previously described3%81.888%.133 The PC9 cell line versions and derivatives were
cultured in Roswell Park Memorial Institute (RPMI) 1640 Medium (Corning) with 10% Fetal Bovine
Serum (Gibco). Cells were incubated at 37°C, 5% CO;, and passaged twice a week using TrpLE
(Gibco). Cell lines and sublines were tested for mycoplasma contamination using the MycoAlert™
mycoplasma detection kit (Lonza), according to manufacturer’s instructions, and confirmed to be
mycoplasma-free. Cell line identity was confirmed using mutational signatures in whole exome
sequencing. Approximately 99% of the PC9-VU mutations were also seen in PC9-MGH, but PC9-
MGH exhibited a large number of unique and total mutations independently (Supplementary FIG.
S5C). Additionally, using the SNPRelate R package (version 1.18.1), sample genotypes were
projected into low dimensional space and clustered based on similarity (Supplementary FIG. S12).
PC9-VU and PC9-MGH clustered together and were represented closely in reduced dimensional
space, further suggesting that they arose from the same parent cell population. Erlotinib was
obtained from Selleck Chemicals (Houston, TX) and solubilized in dimethyl sulfoxide (DMSO) at a
stock concentration of 10mM and stored at -20°C. Cell lines were originally stored at -80°C, then
moved into liquid nitrogen.

Derivation of single-cell sublines

The PC9-VU sublines were generated by limiting dilution of the parental cell line in 96-well plates.
Wells with single cells were expanded for multiple weeks until large enough to be saved as frozen
cell stocks. A single stock of each subline was brought back into culture, passaged for two weeks,
and used for drug-response experiments. After 3-4 weeks of continued passaging, sublines were
used for whole exome sequencing, bulk RNA sequencing, and single-cell RNA sequencing
experiments. Since sublines were isolated from PC9-VU, they retained the same H2BmRFP
nuclear label as cell line versions.

Population-level DIP rate assay

Cells were seeded in black, clear-bottom 96-well plates (Falcon) at a density of 2500 cells per well
with six replicates for each sample. Plates were incubated at 37°C and 5% CO.. After cell seeding,
drug was added the following morning and was changed every three days until the end of the
experiment or confluency. Untreated samples were allowed to grow in DMSO-containing media
until confluency, with media changes every three days. Plates were imaged using automated,
fluorescence microscopy (Cellavista Instrument, Synentec). Twenty-five non-overlapping
fluorescent images (20X objective, 5x5 montage) were taken twice daily for a total of 500 hours,
or until confluency. Cellavista image segmentation software (Synentec) was utilized to calculate
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nuclear count (i.e., cell count) per well at each time point (Source = Cy3, Dichro = Cy3, Filter =
Texas Red, Emission Time = 800us, Gain = 20x, Quality = High, Binning = 2x2). Cell nucleus count
across wells was used to calculate mean and 95% confidence intervals and normalized to time of
drug treatment. Data was visualized using the ggplot2 R package (version 3.2.0).

Clonal Fractional Proliferation assay

Cells were single-cell seeded in a black, clear-bottom 384-well plate (Greiner) using fluorescence-
activated cell sorting (FACS Aria lll, RFP*). Plates were incubated at 37°C, 5% CO>, and cells were
allowed to grow into small colonies over eight days in complete media (no media change). Drug
was then added to cell colonies and changed every three days. Plates were imaged using the
Cellavista Instrument (Synentec). Nine non-overlapping fluorescent images (3x3 montage of the
whole well at 10X magnification) were taken once daily for a total of seven days. Cellavista image
segmentation software (Synentec) was utilized to calculate nuclear count (i.e., cell count) per
well at each time point (Source = Cy3, Dichro = Cy3, Filter = Texas Red, Emission Time = 800us,
Gain = 20x, Quality = High, Binning = 2x2). Depending on the number of wells that passed quality
control thresholding (at least 50 cells per colony at the time of treatment), 160-280 replicates
were included for each sample (FIG. 5A and Supplementary FIGS. S3B,D,E, S4A, S9A, and S10E).
DIP rates were calculated from 48h post-treatment to the end of the experiment (single-colony
traces in FIG. 5A and Supplementary FIGS. S3D-E, S4A, S9A, and S10E; linear model fits in
Supplementary FIG. S3B) using the Im function in R. DIP rates for each sample were combined
and plotted as a kernel density estimate (FIGS. 2D, 5C, and 6F and Supplementary FIGS. S4C and
S9C). Mood’s median test'3* was performed to determine statistical difference between subline
DIP rate distributions (Supplementary FIG. 4C) using the RVAideMemoire R package. Data was
visualized using the ggplot2 package.

DNA and RNA extraction

Genomic DNA was extracted using the DNeasy Blood and Tissue Kit (Qiagen), according to the
manufacturer’s protocol. Total RNA was extracted using a Trizole extraction (ThermoFisher),
according to the manufacturer’s protocol.

DNA bulk whole exome sequencing

Libraries were prepared using 150 ng of genomic DNA by first shearing the samples to a target
insert size of 200 bp. lllumina's TruSeq Exome kit (lllumina, Cat: 20020615) was utilized per
manufacturer’s instructions. The samples were then captured using the IDT xGen® Exome
Research Panel v1.0 (IDT, Cat: 1056115). The resulting libraries were quantified using a Qubit
fluorometer (ThermoFisher), Bioanalyzer 2100 (Agilent) for library profile assessment, and qPCR
(Kapa Biosciences Cat: KK4622) to validate ligated material, according to the manufacturer’s
instructions. The libraries were sequenced using the NovaSeq 6000 with 150 bp paired end
reads. RTA (version 2.4.11; Illumina) was used for base calling and sequence-specific quality
control (QC) analysis was completed using MultiQC v1.7. Reads were aligned to the University of
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California, Santa Cruz (UCSC) hg38 reference genome using ‘BWA-MEM’*3> (version 0.7.17) with
default parameters.

DNA whole exome sequencing analyses

Genomic mutational analysis: Mutation analysis for single nucleotide polymorphisms (SNPs) and
insertion/deletions (InDels) was performed using an in-house variant calling pipeline based on
the Genome Analysis Toolkit (GATK, Broad Institute) recommendations. Duplicate reads were
marked and replaced using PICARD (Broad Institute). Base recalibration and variant calling were
performed using GATK version 3.8 (Broad Institute). Variants were selected and filtered based on
gold standard SNPs and InDels, as well as a hard filtration according to GATK recommendations
(SNPs: QD<2, QUAL<30, SOR>3, FS$>60, MQ<40, MQRankSum<-12.5, ReadPosRankSum<-8;
InDels: QD<2, QUAL<30, FS>200, ReadPosRankSum<-20). Total variants were counted using
VCFtools'3® (version 0.1.15; Supplementary FIG. S5A). Sequencing metrics were calculated using
vcfR¥ (version 1.8.0). These metrics included read depth, mapping quality, and a Phred quality
score®3®139 (Supplementary FIG. S5B). Variants were annotated by Variant Effect Predictor®® (VEP;
Ensembl Genome Browser version 95, available at ensembl.org) with multiple indicators,
including chromosome name, gene symbol, mutation class, mutation type, and IMPACT rating
(see Methods and Supplementary Note). Variant distribution was organized as a mean-centered
mutation count per chromosome for samples within each comparison set (cell line versions — FIG.
3A, sublines — FIG. 4A, sublines with DS8 — Supplementary FIG. S10A). Variants were categorized
by mutation class (FIGS. 3F and 4F and Supplementary FIG. S10D). Variant overlap analysis was
conducted using VCFtools and visualized using the UpSet (version 1.4.0) R package
(Supplementary FIG. S5C—E). Variants unique to each sample were plotted as proportions of the
total mutations in that sample (FIGS. 3B, 4B, and 6A). One of the VEP annotations used was an
IMPACT rating, a variant consequence classifier. Variants were categorized into modifier (no
evidence of impact), low (unlikely to have disruptive impact), moderate (non-disruptive but might
have effect), and high (assumed to have disruptive impact). Impact ratings were identified for
mutations unique to each population in the cell line version (FIG. 3B) and subline (FIG. 4B and 6A)
comparisons. Modifier variants were not plotted but represented a majority of variants in all
samples. Variants categorized into low, moderate, or high are hereafter referred to as IMPACT
mutations.

Automatic generation of a genetic mutational signature: Unique cell line version mutations were
input into dNdScv'®® to generate a mutational signature that could define the genetic
heterogeneity within the PC9 cell line family. In this analysis, genes are first annotated by type
(synonymous, nonsynonymous - missense, nonsense, splice site, unknown; Supplementary FIG.
S1). dNdScv then uses a maximume-likelihood model to detect genes under positive selection (i.e.,
potential driver mutations). For each gene, a variety of models are utilized to identify genes that
have substantially more nonsynonymous mutations than expected in each of the
nonsynonymous mutation types, as compared to synonymous mutational load. These metrics
are combined together to calculate a global p-value (see original publication!*° for details). We
use this approach, without the default covariates (because they were not available for hg38) and
a maximum number of mutations per gene per sample = 50 (to limit a hyper-mutator phenotype)
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to determine genes with a global p-value less than 0.05 in the cell line versions. Since we assume
these cell lines are genetically distinct, this analysis sets the baseline for the genetic
heterogeneity within other cell populations. We visualized the mutation data as a heatmap of
these significant genes and cell line versions (FIG. 3D), sublines (FIG. 4D), and sublines with DS8
(Supplementary FIG. S10B), colored by annotated mutation type and number of mutations.

Literature-curated, cancer-associated mutational signature: A cancer-associated gene list was
established to supplement the predicted genetic heterogeneity signature above. The gene list
was created from the NIH Genetics Home Reference (GHR) key lung cancer genes
(ghr.nlm.nih.gov/condition/lung-cancer#tigenes) and two additional publications of key mutations
in lung cancer?%. Associated heatmaps were generated of this gene list for cell line versions (FIG.
3E), sublines (FIG. 4E), and sublines with DS8 (Supplementary FIG. S10C), colored by annotated
mutation type and number of mutations.

RNA single-cell transcriptome sequencing

sc-RNA-seq libraries were prepared using the 10X Genomics gene expression kit (version 2, 3’
counting'*!; Supplementary FIG. S6) and cell hashing!*? (Supplementary FIG. S13). Cells were
prepared according to recommendations from the cell hashing protocol on the CITE-seq website
(cite-seg.com/protocol). After cell preparation, 1 ng of eight different cell hashing antibodies
(TotalSeg-A025(1-8) anti-human Hashtag, Biolegend) were used to label each of the eight
samples (labeling efficiency in Supplementary FIG. S13). Hashed single-cell samples were
combined in approximately similar proportions and ‘super-loaded’ (aiming for ~20,000 cells;
~15,400 cells were obtained) onto the Chromium instrument. Cells were encapsulated according
to manufacturer guidelines. Single-cell mMRNA expression libraries were prepared according to
manufacturer instructions. The leftover eluent of the mRNA expression library, containing the
hashtag oligonucleotides (HTOs), was utilized to further size select the HTO library. The size-
selected HTO library was PCR amplified to obtain higher quality reads. Libraries were cleaned
using SPRI beads (Beckman Coulter) and quantified using a Bioanalyzer 2100 (Agilent). The
libraries were sequenced using the NovaSeq 6000 with 150 bp paired-end reads targeting 50M
reads per hashed sample for the mRNA library and a spike-in fraction for the HTO library. RTA
(version 2.4.11; lllumina) was used for base calling and MultiQC (version 1.7) for quality control.
Gene counting, including alignment, filtering, barcode counting, and unique molecular identified
(UMI) counting was performed using the count function in the 10X Genomics software Cell
Ranger (version 3.0.2) with the GRCh38 (hg38) reference transcriptome (Supplementary FIG.
S6A). We utilized CITE-seg-Count (github.com/Hoohm/CITE-seg-Count) to count hashtags from
the HTO library. We then used the Demux function in the R package Seurat!#?
(satijalab.org/seurat) to demultiplex the HTO and mRNA libraries, and pair cells to their
associated hashtag. Data was integrated into a count matrix with genes and cells, with hashtag
identity as a metadata tag.

RNA single-cell transcriptome analyses
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After creating the demultiplexed, single-cell gene expression matrix, we removed multiplets (at
least two different hashtags detected with a single cell barcode) from the dataset to leave just
singlets or 2+ of the same hashtag. Feature selection was performed (0.1 < average gene
expression < 8, log variance-to-mean ratio > 1; 574 genes met criteria; Supplementary FIG. S6B).
A cell cycle score was regressed out of the expression matrix, and did not have a large effect on
the analysis, at least in terms of sample groupings (Supplementary FIGS. S6C and S7A). Therefore,
non-regressed data was used for all visualizations and analyses reported here. Data were
visualized using the Uniform Manifold Approximation and Projection (UMAP) dimensionality
reduction algorithm (FIGS. 3G, 4G and 6C and Supplementary FIG. S7A) as implemented in the
Seurat!®® R package. To facilitate comparisons across cell line versions and sublines, we
performed the UMAP projections in the space of all eight cell line versions and PC9-VU sublines.
To quantify overlap of cells between transcriptomic features, we performed k-means clustering
(k=3) of the cell line versions (FIG. 3G) and sublines (FIG. 4G) using the kmeans function of the R
stats package (for the sublines, only values with UMAP1 < 0 and UMAP2 < 5 were considered).
We also calculated distances between the medoid (centroid) of each sample in a common UMAP
space (FIGS. 3H, 4H, and 6D) using the dist function (Euclidian) in base R. Differential expression
analysis was then performed between a single sample (i.e., PC9-VU) and the rest of the members
of the comparison set (i.e., cell line versions, sublines, or sublines including DS8) using the
Wilcoxon rank sum test'** (see Supplementary Note). Differentially expressed genes (DEGs,
adjusted-p < 0.05) were used for downstream analyses (see GO Semantic Similarity below). In
addition to UMAP, we also performed t-distributed Stochastic Neighbor Embedding (t-SNE;
Supplementary FIG. S7B) and Principal Component Analysis (PCA; Supplementary FIG. S7C) using
the Seurat'*® R package.

RNA bulk transcriptome sequencing

RNA-seq libraries were prepared using 200 ng of total RNA and the NEBNext rRNA Depletion
Kit (NEB, Cat: E6310X), per manufacturer’s instructions. This kit employs an RNaseH-based
method to deplete both cytoplasmic (55 rRNA, 5.85 rRNA, 18S rRNA and 28S rRNA) and
mitochondrial ribosomal RNA (12S rRNA and 16S rRNA). The mRNA was enriched via poly-A-
selection using oligoDT beads and then the RNA was thermally fragmented and converted to
cDNA. The cDNA was adenylated for adaptor ligation and PCR amplified. The resulting libraries
were quantified using a Qubit fluorometer (ThermoFisher), Bioanalyzer 2100 (Agilent) for library
profile assessment, and gqPCR (Kapa Biosciences Cat: KK4622) to validate ligated material,
according to the manufacturer’s instructions. The libraries were sequenced using the NovaSeq
6000 with 150 bp paired-end reads. RTA (version 2.4.11; lllumina) was used for base calling and
MultiQC (version 1.7) for quality control. Reads were aligned using STAR® (version 2.5.2b) with
default parameters to the STAR hg38 reference genome. Gene counts were obtained using the
featureCounts'*® package (version 1.6.4) within the Subread package. The gene transfer format
(GTF) file for the genes analyzed in the sc-RNA-seq data (provided by 10X Genomics and used in
the Cell Ranger pipeline, generated from the hg38 reference transcriptome) was used to better
facilitate internal comparison between sc-RNA-seq and bulk RNA-seq datasets.

RNA bulk transcriptome sequencing analysis
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RNA-seq data was analyzed using the DESeq2'%’ R package. Counts were transformed using the
regularized logarithm (rlog) normalization algorithm. PCA was performed using the prcomp
functionin R (Supplementary FIG. S8A) and hierarchical clustering using the hclust R function with
a Ward’s minimum variance method (Supplementary FIG. S8B). Data was visualized using the
ggplot2 R package.

GO semantic similarity analysis

Genes associated with unique IMPACT mutations (classified as low, moderate, or high IMPACT
scores, see above) were identified for each comparison set (i.e., cell line versions, sublines, or
sublines including DS8). Additionally, DEGs from the sc-RNA-seq statistical comparisons for each
comparison set were determined (see above). The two gene lists were independently subjected
to a GO enrichment analysis using EnrichR**® (version 2.1). Genes were compared to ontology
databases GO Biological Process 2018 and GO Molecular Function 2018. The GO terms
significantly enriched in the IMPACT mutations (p < 0.05) and in DEGs (adjusted-p < 0.05) were
identified and stored independently as separate GO term lists. The significant GO term lists were
further separated into GO types, which created GO term lists unique for each combination of
sample (cell line version or subline), dataset (IMPACT mutations or DEGs), and GO type
(“Biological Process” or “Molecular Function”). For each sample, the mutation and DEG GO term
lists associated with each GO type were compared using the semantic similarity metric from
Wang et. al.l%, as calculated in the GOSemSim package'®®. This approach compares two
individual GO terms using the underlying GO term network structure (see Supplementary Note).
Pairwise similarities were calculated on the lists of terms to generate similarity matrices for each
sample (e.g., Supplementary Table S2). These similarity matrices were summarized into a single
number using the best match average (BMA) method (default in GOSemSim; see Supplementary
Note). The single metric provides a relative score (between zero and one) that indicates how well
the significant GO terms from the IMPACT mutations agree with the significant GO terms from
the DEGs. Intuitively, the similarity score quantifies how predictive differences in the genomic
states of samples (cell line versions, sublines) are of differences in the transcriptomic states, with
high scores suggesting a genetic basis for the differences and low scores indicating an epigenetic
explanation, i.e., molecular differences between basins within a common epigenetic landscape,
in accordance with the G/E/S heterogeneity framework (FIG. 1A). Data were visualized using the
ggplot2 R package.

In silico modeling of clonal Fractional Proliferation
Birth-death population growth models. Mathematical models of population growth dynamics

were constructed using PySB*°, a Python-based kinetic modeling and simulation framework. We
modeled cell proliferation as a simple birth-death process,

kaiv,i

Cell, =3 Cell; + Cell, (1)
kach,i

Celll- — Q) (2)
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where i is an integer index, kqi,i and kq:s,i are division and death rate constants, respectively, for
cell type i, and @ denotes cell death. Note that there is no state switching included in the model.
Models with one cell type were used to compare against experimental cFP data for the majority
of the PC9-VU sublines (DS1, DS3, DS4, DS6, DS7, DS9), while a two-cell-type model was used in
one case (DS8; see Supplementary Note for additional details).

Stochastic simulations and in silico DIP rate distributions. All model simulations were run using
the stochastic simulation algorithm’31%7 (SSA; see Supplementary Note), as implemented in
BioNetGen®! (invoked from within PySB), to capture the effects of random fluctuations in
division and death on cell population proliferation. We performed in silico cFP assays, where
numerous single cells (run as independent simulations) were grown into colonies of variable size
over eight days of simulated time using the SSA and fixed rate constants for division and death
(kgiv = 0.04-In(2) h%, kan = 0.005-In(2) h''; Supplementary Table S3), based on vehicle-control
proliferation data (Supplementary FIG. S3C; in the case of two cell types, both types were
assumed to grow at the same rate outside drug). We ran as many simulations as there were
experimental cFP trajectories for the PC9-VU subline being compared against (FIG. 5A and
Supplementary FIGS. S9A and S10E). Drug treatment was then modeled by changing the rate
constants for division and death (for two cell types, each was assumed to proliferate at different
rates in drug; Supplementary Table S3) and running for an additional nine days of simulated time.
Simulated time courses were plotted at the same time points as in the corresponding
experimental cFP assays for direct comparison (FIG. 5B and Supplementary FIGS. S9B and S10E).
In silico DIP rates were obtained by taking log. of the total cell counts and calculating the slope
of a linear fit to the time course from the time of drug addition to the end of the simulation using
the SciPy*®? linregress function. DIP rates for all in silico colonies were compiled into a distribution
and compared to the corresponding experimental cFP distribution using the Kolmogorov-
Smirnov (K-S) test!>3 (FIG. 5C and 6F and Supplementary FIG. S9C).

Parameter scans. To account for fluctuations in rates of division and death due to fluctuations in
molecular concentrations within and across cells within a population, we repeated the simulation
procedure above over ranges of physiologically plausible division and death rate constant values
(Supplementary Table S3). For each parameter set (either one or two pairs of post-drug
division/death rate constants, depending on subline), we plotted p-values from K-S tests for
simulated vs. experimental DIP rate distributions in a heatmap using the ggplot2 R package (FIGS.
5D and 6G and Supplementary FIG. S9D). We defined a threshold of p<0.1 for statistical
significance (i.e., the null hypothesis that the DIP rates are drawn from the same distribution can
be rejected) and set the shade of the heatmap element on a graded scale between 0.1 and 1 (the
degree of shading has no statistical significance, it is for visualization purposes only). Thus, all
colored elements in the heatmap represent sets of division/death rate constants that produce
DIP rate distributions statistically indistinguishable from the experimental distributions obtained
from cFP assays. Note that the scan for the two-cell-type model (DS8) was performed in four
dimensions (two division and two death rate constants) but results were plotted in two
dimensions for visual simplicity (FIG. 6G).
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Model and Experimental Analysis Code Availability. The codes used to generate model
simulations and analyze experimental data are publicly available via GitHub (github.com/QulLab-
VU/GES 2020), or from the corresponding author upon request.

Data Availability. The sequencing datasets generated in this study can be found in the gene
expression omnibus (GEO; GSE150084) and sequence read archive (SRA; PRINA631050 and
PRINA632351). Additional experimental data will be available from the corresponding author
upon request.
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FIGURE LEGENDS

Figure 1. Conceptual G/E/S framework of tumor heterogeneity. (A) Multiple levels of
heterogeneity operate within tumors. (left) The genetic (G) “axis” defines mutational differences
that have an effect on phenotype (e.g., drug sensitivity). (middle) Each genetic clone has an
associated epigenetic (E) landscape, where cells are distributed amongst basins, known as
attractors. The topography of the epigenetic landscape is defined by the dynamical biochemical
network that controls cell fate and function. Molecular state (defined as x) is the x-axis and quasi-
potential energy (defined as U(x)) is the y-axis. (right) Cell states experience stochastic (S)
fluctuations within epigenetic basins. Most fluctuations are minor and do not significantly change
the cell state but occasionally a large fluctuation results in a barrier crossing, leading to a
phenotypic state change. (B) Schematic view of genetic clonal evolution, where clones initiate
and expand from a recent common ancestor (grey) at different points in time during progression.
The evolution of a single genetic clone (right) is highlighted to illustrate that cells populate
different epigenetic states during expansion, some of which may be drug tolerant.

Figure 2. Phenotypic differences among PC9 cell line versions and discrete sublines quantified
in terms of drug response. (A) Population growth curves for three cell line versions treated with
3uM erlotinib for approximately three weeks, plus vehicle control. (B) Drug-induced proliferation
(DIP) rate distributions compiled from single-colony growth trajectories under erlotinib
treatment (3uM) in a cFP assay. DIP rates are calculated from the growth curves 48h post-drug
addition to the end of the experiment. (C) Seven discrete sublines (DS), derived from PC9-VU,
were treated with 3uM erlotinib for three weeks. (D) DIP rate distributions from a cFP assay of
the sublines in 3uM erlotinib. In A and C, dots are the means of six experimental replicates at
each time point; solid lines are best fits to the drug response trajectories with point-wise 95%
confidence intervals. In B and D, DIP rate distributions are plotted as kernel density estimates;
dashed black lines signify zero DIP rate, for visual orientation.

Figure 3. Genomic and transcriptomic characterizations of PC9 cell line versions. (A) Mean-
centered mutation count by chromosome for all cell line versions. For each chromosome,
versions with fewer mutations than the mean have a bar pointing inwards, while those with more
mutations point outwards. Chromosome numbers are noted on the outside edge of the circle.
Average coefficient of variation (COV) across all chromosomes is noted. (B) Proportions of unique
mutations for all cell line versions. (C) Numbers of IMPACT mutations unique to each cell line
version, stratified by IMPACT classification (low, moderate, high). Percentage of unique IMPACT
mutations relative to the total number of unique mutations for each cell line version is denoted
above each bar. (D) Quantification of mutational differences between cell line versions based on
a signature of genes with a high nonsynonymous mutational load. Heatmap elements are colored
based on type of mutation: Essential Splice Site, Missense, Nonsense, Synonymous, and Unknown.
Transparency of heatmap elements corresponds to the number of mutations in the gene-
mutation type pair (more mutations, less transparent). Total numbers of mutations (stratified by
mutation type) across genes and cell line versions are shown as bar plots to the right and above
of the heatmap, respectively. (E) Same as D, but for a literature-curated set of cancer-associated
genes implicated in lung cancer. (F) Mutation class pie charts. All unigue mutations in each cell
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line version were classified as single nucleotide polymorphisms (SNPs), insertions, deletions,
indels (combinations of insertions and deletions), or sequence alterations. (G) Uniform Manifold
Approximation and Projection (UMAP) visualization of single-cell transcriptomes for cell line
versions. For comparison purposes, the UMAP space is defined over all eight PC9 samples
(including cell line versions and PC9-VU sublines; see Methods). Proportions of cells in defined
clusters (k=3) are shown as bar plots to the right, colored by cell line version (cluster 1: 0.1% BR1,
99.9% MGH, 0% VU; cluster 2: 7.4% BR1, 2.5% MGH, 90.1% VU; cluster 3: 95.5% BR1, 0.1% MGH,
4.4% VU). (H) Pairwise (Euclidian) distances between the centroids of the transcriptional features
in G for all cell line versions. (I) Gene ontology (GO) semantic similarity analysis of differentially
expressed genes (DEGs) and unique IMPACT mutations in each cell line version for “Biological
Process” (left) and “Molecular Function” (right) ontology types.

Figure 4. Genomic and transcriptomic characterizations of PC9-VU discrete sublines. (A) Mean-
centered mutation count by chromosome for four (of the seven) sublines. Average coefficient of
variation across all chromosomes is noted. (B) Proportions of unique mutations in cell sublines.
(C) Numbers of IMPACT mutations unique to each subline, stratified by IMPACT classification
(low, moderate, high). Percentage of unique IMPACT mutations relative to the total number of
unigue mutations in each subline is denoted above each bar. (D) Quantification of mutational
differences between sublines based on genes that distinguish cell line versions. Heatmap
elements are colored based on type of mutation (see FIG. 3D). (E) Same as D, but for a literature-
curated set of cancer-associated genes implicated in lung cancer. (F) Mutation class pie charts
(see FIG. 3F). (G) UMAP visualization of single-cell transcriptomes for sublines plotted in the
common UMAP space of all eight PC9 samples (including cell line versions and PC9-VU sublines;
see Methods). Proportions of cells in defined clusters (k=3; only points with UMAP1 < 0 and
UMAP2 < 5 were considered) are shown as bar plots to the right, colored by subline (cluster 1:
0.5% DS3, 2.2% DS6, 54.8% DS7, 42.5% DS9; cluster 2: 0.2% DS3, 94.5% DS6, 1.0% DS7, 4.3% DS9;
cluster 3: 83.6% DS3, 2.4% DS6, 9.7% DS7, 4.3% DS9). (H) Pairwise (Euclidian) distances between
the centroids of the transcriptional features in G for all sublines. (I) GO semantic similarity
analysis of DEGs and unique IMPACT mutations in each subline for “Biological Process” (left) and
“Molecular Function” (right) ontology types. DS6 is not included for “Molecular Function”
because it did not produce enough significant GO terms to render a value. Semantic similarity
scores for each cell line version (FIG. 3G) are shown as dashed horizontal lines for reference.

Figure 5. Stochastic simulations of a simple birth-death model reproduce DIP rate distributions
from PC9-VU sublines. (A) Experimental cFP time courses for two representative sublines (DS3
and DS4) in response to 3uM erlotinib (same data used to generate the corresponding DIP rate
distributions in FIG. 2D). Each trace corresponds to a single colony, normalized to 72h post-drug
treatment. Only colonies with initial cell counts greater than 50 at the time of treatment are
shown. (B) In silico cFP time courses with division and death rate constants that closely reproduce
the experimental time courses in A. Trajectories are normalized to the time at which the
simulated drug treatment was initiated, simulated cell counts are plotted only at experimental
time points, and only colonies with initial cell counts greater than 50 at the time of simulated
drug treatment are shown. (C) Comparison of experimental and simulated DIP rate distributions
from calculated from time courses in A and B. Distributions are compared statistically using the
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Kolmogorov-Smirnov (K-S) test?>3. Dashed black line signifies zero DIP rate, for visual orientation.
(D) Parameter scan of division and death rate constants for the two sublines in A—C. For each pair
of rate constants, we ran the same number of model simulations as the associated experimental
cFP time courses in A, calculated DIP rates and compiled them into a distribution, and then
statistically compared against the corresponding experimental DIP rate distribution using the K-
S test. Color shades correspond to p-values; all p<0.1 are colored white, indicating lack of
statistical correspondence to experiment. x denotes a division and death rate constant used in
B.

Figure 6. Genomic and transcriptomic analyses of DS8 identify a genetically-distinct state. (A)
Proportions of unique mutations in all PC9-VU sublines, including DS8. Bars for all other sublines
are displayed with reduced transparency to emphasize the distinction with DS8. (B) Numbers of
IMPACT mutations unique to each subline, stratified by IMPACT classification (low, moderate,
high). Percentage of unique IMPACT mutations relative to the total number of unique mutations
in each subline is denoted above each bar. Again, DS8 is emphasized. (C) UMAP visualization of
single-cell transcriptomes for all sublines, including DS8. Sublines are plotted in the common
UMAP space of all samples, with DS8 highlighted. (D) Pairwise (Euclidian) distances between the
centroids of the transcriptional features in C, including distances from DS8. (E) GO semantic
similarity analysis of sublines, including DS8, for “Biological Process” (top) and “Molecular
Function” (bottom) ontology types. DS6 is not included for “Molecular Function” because it did
not produce enough significant GO terms to render a value. The semantic similarity scores for
each PC9 cell line version (FIG. 3l) are shown as dotted horizontal lines for reference. DS8 is
highlighted for emphasis. (F) Comparison of experimental and simulated DIP rate distributions
for DS8. Statistical analysis was performed using a K-S test. Dashed line signifies zero DIP rate for
visual orientation. (G) Parameter scan of division and death rate constants for a two-state birth-
death model. A four-dimensional (two division-death rate constant pairs) parameter scan was
performed and projected into two dimensions. x denotes parameter values used to generate the
simulated DIP rate distribution in F.

Figure 7. Application of the G/E/S heterogeneity framework to a hypothetical tumor composed
of PC9 cell line family members. (A) Cell line versions PC9-MGH (light green), PC9-BR1 (red), and
PC9-VU (blue) fall in different regions of the genetic axis (left). Each of these versions has a
corresponding epigenetic landscape (only PC9-VU shown; right). Due to a mutation in PC9-VU
(denoted by the arrow) a new genetic state emerged (dark green), which we hypothesize is the
origin of DS8. The new genetic state also has an associated epigenetic landscape with basins that
appear as a large shoulder in the positive region of the bimodal DIP rate distribution for DS8
(FIGS. 2D and 6F). It is still unclear whether DS8 comprises one or multiple genetic states (see
Supplementary FIG. S11 and Supplementary Note). (B) Schematic view of genetic clonal evolution
for the PC9 cell line family. From the recent common ancestor (grey; assumed to be from the
original PC9 patient tumor), PC9-VU and PC9-MGH evolved independently in the absence of
selective pressures. PC9-BR1 was derived from PC9-VU and acquired mutations (including, but
not limited to EGFR-T790M) in the presence of selective pressure (i.e., dose-escalation therapy).
The DS8 subline contains a distinct genetic state that emerged from PC9-VU in the absence of
selective pressure and is resistant to EGFRi (absent EGFR-T790M).
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SUPPLEMENTARY NOTE
Building an in vitro model system to mimic tumor heterogeneity

To provide experimental evidence for the G/E/S heterogeneity framework, an
experimental system was needed that could explain both an independent level of heterogeneity
and other levels dependent upon it (if necessary). For example, if a cell population is genetically
distinct, the experimental system must have the capacity to explain genetic differences but also
the underlying epigenetic heterogeneity in that cell population and the stochastic variability in
those epigenetic basins. For genetically identical but epigenetically distinct cell populations, the
framework must be able to explain the epigenetic differences between them and stochastic
variability within each epigenetic basin. For cells that are genetically identical and epigenetically
identical (i.e., cells derived from an expanded clone), only stochastic variability must be
explained. With this idea in mind, we aimed to generate a family of cell line ‘versions’ and
‘sublines’ that could capture different levels of heterogeneity. This cell line family can be viewed
as a proxy for a heterogeneous tumor composed of multiple genetic states, each of which has
multiple epigenetic states, within which stochastic fluctuations occur and occasionally drive
phenotypic state changes.

For the cell line family, our goal was to minimize the extent of genetic variability up front,
so as not to complicate the potential range of genetic variability that could be identified. Different
cancers'?, driver oncogenes3>, and patient cohorts®’ exhibit varying degrees of genetic
variability, so much so that the field of cancer heterogeneity was originally pioneered just based
on genetic variations. However, we limited our study to just genetic variability that arose from a
recent common ancestor derived from a single patient with non-small cell lung cancer (NSCLC)
and a driver mutation in the epidermal growth factor receptor (EGFR) gene. Therefore, the extent
of our genetic heterogeneity exploration was restrained to the recent progression of mutations,
specifically those that led to drug-response variability. We also needed a system that could
identify non-genetic variability, specifically epigenetic variability in a single common genetic
background. Although non-genetic variability is a recent addition to the study of cancer
heterogeneity®, it has been shown to have distinct and diverse impacts on phenotype®*..
Therefore, we aimed to find a system with distinct epigenetic basins that exhibit variable drug-
response phenotypes. Finally, we sought to identify non-genetic stochastic variability in clones
derived from single epigenetic basins. Previous work has shown that stochastic state transitions
can drive daughter cells derived from the same parent to exhibit distinct phenotypes'>™4. Here,
we sought to show that stochasticity alone can lead to some variability in drug-response
phenotypes.

Based on the restrictions imposed above and resources available in the laboratory, NSCLC
cell line PC9'2'5' was identified as a promising candidate. In addition to fulfilling the
requirements above, PC9 has a mutation (exon 19 deletion) in the EGFR gene that makes it
sensitive to EGFR inhibitors (EGFRi) 1718, a common treatment for NSCLC. Consequently, response
to EGFR inhibition was a natural way to identify phenotypic changes, which we measure in terms
of drug response to EGFRi erlotinib. We first identified two versions of the PC9 cell line cultivated
at different academic institutions (Supplementary FIG. S2; Massachusetts General Hospital—
MGH*%16:18. anderbilt University—VU?°?9) in an effort to capture multiple levels of heterogeneity
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(genetic, epigenetic, and stochastic) in the family. We felt the extended period of separate
evolution in cell culture likely allowed for extensive genomic evolution. Therefore, comparison
between these two cell line versions allowed for the potential identification of novel genetic, as
well as epigenetic, features that differentiate phenotype. PC9-BR1, which had been generated
from PC9-VU through dose-escalation therapy in the EGFRi afatinib and became resistant to EGFR
inhibition?®, would serve as a positive control for genetic heterogeneity. We next isolated
multiple single-cell derived clones of cell line version PC9-VU, which we call “discrete sublines”?!
(DS). These sublines were derived to avoid genetic heterogeneity completely, by starting from a
single clone and therefore a single genetic background, that of PC9-VU. Additionally, the sublines
were meant to identify individual epigenetic basins in the underlying PC9-VU epigenetic
landscape. Variability within the sublines themselves were used to understand stochastic
variability. Since the sublines were (presumably) genetically and epigenetically identical, the only
way to explain variability in our framework was through extrinsic or intrinsic stochastic variability.
In this way, we built a system designed to capture multiple levels of heterogeneity: genetic,
epigenetic, and stochastic.

Definition of phenotype using the DIP rate

We previously described the drug-induced proliferation (DIP) rate as an unbiased metric
to quantify drug effect in vitro?°. This metric, which measures the stable cell proliferation rate of
a cell population achieved during prolonged treatment, quantifies cellular fitness in a way that
can be tied to phenotype. However, the metric is neutral to the molecular properties that
differentiate populations and define fitness. Therefore, we needed to leverage the DIP rate as to
better differentiate types of heterogeneity. To supplement the standard DIP rate assay (indicated
hereafter as population-level; FIG. 2A,C; Supplementary FIGS. S3A,C, S4A,B), we developed a
single-cell DIP rate assay. Originally published as the clonal fractional proliferation (cFP) assay??,
this approach tracks the DIP rates of many single-cell derived colonies of a cell population to
generate a distribution of rates. We modified this method slightly from the original publication
by flow-sorting single cells into individual wells in a multi-well plate (384-well), as opposed to
having multiple colonies in a single well of a plate. This modification removes some of the
subjective aspects of the assay, as well as any influence of other cell types (microenvironment,
signaling, etc.) on clonal proliferation. The resulting single-cell distribution of DIP rates,
specifically the variance of the distribution, shows the extent of drug-response heterogeneity
present in a population (FIGS. 2B,D, 5A,C, 6F and Supplementary FIGS. S3B,D,E, S4A,C, S9A,C,
S10E). Conversely, the population-level assay provides a single DIP rate, which is reflective of the
proliferation rate of the most fit clones in the distribution.

Considering the types of information that can be conferred by the different assays,
different types of heterogeneity (and variability) can be broadly distinguished using a
combination of the methods. In the case of a single molecular state (same genetic and epigenetic
profiles), the population would have a single DIP rate and a narrow DIP rate distribution,
reflective of only stochastic noise in the drug-response dynamics. Conversely, a heterogeneous
cell population, composed of multiple genetic or epigenetic states, would exhibit a broader
(possibly multi-modal) DIP rate distribution, but still a single DIP rate reflective of the most fit
states. However, distinguishing between molecular states resulting from genetic versus
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epigenetic heterogeneity is more difficult. In general, it is not difficult to imagine that genetically
identical, epigenetically distinct cell populations (i.e., single-cell derived clones, basins in the
same epigenetic landscape) should each have narrow unimodal DIP rate distributions that fall
within the broad parental (i.e., entire landscape) distribution. In this case, it would be concluded
that the parent cell line exhibits only epigenetic heterogeneity, as seen by the clones. But, in the
case of genetically and epigenetically distinct cell populations, the population may still exhibit a
broad DIP rate distribution and single DIP rate reflective of the most fit cells. However,
epigenetically distinct clones of each genetic background are less likely to overlap with clones of
other genetic backgrounds, due to the inherent fitness advantage of genetic instead of genomic
mutations (see next section). Therefore, clones that differ epigenetically are more likely to exhibit
phenotypic variability such that their DIP rate distributions are closer to one another, while clones
that differ genetically are more likely to have distinct DIP rate distributions. However, the
subtlety of these differences necessitates the need for other types of data (genomic,
transcriptomic, etc.) to better characterize cell populations, one of the bases for this paper. We
address these topics below.

Distinguishing genomics from genetics

The following issues related to mutational events and their predicted impact on
phenotype should be considered to distinguish events that lead to genetic heterogeneity. In
short, not all mutational events generate genetic heterogeneity, insofar as a phenotypic impact.

Phenotypic context of mutational events

Mutational events do not all have the same phenotypic consequence. Depending on the
phenotype measured, mutations have a contextual dependence. In these cases, we seek to clarify
the terminology (see Supplementary Table S1).

Consider a case where two genomes exhibit extensive mutations that distinguish one
from the other. In this example, the measured phenotype is the response to drug treatment.
However, these mutations fall in regions that do not have an effect on the drug response
(functional genomic regions, see Supplementary FIG. S1A). Although this case seems specific, it
is actually rather ubigquitous. Among the tens of thousands of coding genes in the human genome,
multiple orders of magnitude fewer have been heavily implicated in cancer drug resistance’. This
means that mutations in a large number of genes will have a negligible effect on phenotype. In
this case, based on our terminology (Supplementary Table S1), these two genomes would be
considered genetically identical, but genomically distinct. We use this language because the term
‘genomics’ includes the universe of all potential DNA variations, but ‘genetics’ has implications
on heredity and function. Since the mutations that differentiate populations in this case do not
fall in functional genomic regions, we do not consider these genomic variations to encode for
genetic differences.

Conversely, consider the case where two genomes have widespread mutational
differences that do fall in functional genomic regions. In this case, these genomes would be both
genomically distinct and genetically distinct. Depending on the phenotype observed, there may
be many or few of these key regions. In the case of cancer, mutations in these functional genomic
regions aid survival in a specific treatment®. Additionally, functional genomic regions have been
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shown to be different for distinct drugs and cancer types. The work in this manuscript provides a
practical example in which the differentiation between mutations depending on phenotypic
context does play a role on phenotype. Therefore, we use the terms genetic and genomic to
distinguish mutational context, and to be consistent with the G/E/S theoretical framework.

Differential nature of mutational events

Mutational events, by definition, are changes in the structure of a gene. However, these
changes can take many different forms. The first scheme to categorize mutations is variant
classification. Variant classification falls into two primary forms, sequence variants and structural
variants. Sequence variants pertain to mutations of one or a few nucleotides, while structural
variants deal with modification of larger genomic regions. In this study, we focus on the sequence
variants (examples in Supplementary FIG. S1B-D). Within the sequence variant category, there is
a further breakdown into substitutions and indels. Substitutions are alterations where the length
of the variant change is the same as the reference region (Supplementary FIG. S1B). Substitutions
can occur in a range of nucleotide lengths, but most occur as single nucleotide substitutions,
called single nucleotide polymorphisms (SNPs). SNPs are the most common form of sequence
variation, and heavily outweigh other length substitutions. The other type of sequence variation,
indels, are broken down into insertions, deletions, and combinations (also referred to as indels)
(Supplementary FIG. S1C). As the name suggests, insertions are an insertion of one or many
nucleotides, while deletions are a deletion of one or several nucleotides.

A second categorization scheme is variant consequence. Variants of any classification can
encode for any consequence (Supplementary FIG. S1D). Variant consequence can initially be
separated into synonymous and nonsynonymous mutations. Synonymous mutations, otherwise
known as silent mutations, are changes in the DNA structure that encode for the same amino
acid as the reference versions of the gene. Therefore, these genes are considered to have no
impact on phenotype. Nonsynonymous mutations, conversely, are the class of all other mutations
that encode for a different amino acid than the reference gene. These mutations can have an
impact on phenotype, depending on the type of mutation and aforementioned phenotypic
context. Nonsynonymous mutations can be further broken down into missense and nonsense
mutations. Missense mutations encode for a different amino acid compared to the reference,
while nonsense mutations encode specifically for a start or stop codon where one was not
encoded in the reference. Missense mutations can be further subdivided into conservative (same
amino acid type — e.g. polar) and non-conservative (different amino acid type — e.g. polar
changing to non-polar). In terms of impact, the general rankings of variant consequence (from
low to high) is: synonymous/silent, conservative missense, non-conservative missense, and
nonsense mutations (Supplementary FIG. S1D). But, depending on the phenotypic context, these
rankings can be variable. For example, the canonical EGFR T790M mutation that encodes for
resistance to EGFRI, is a missense mutation that has profound impact (FIG. 3E).

Determination and quantification of IMPACT mutations

Defining the consequence of all possible mutations in cancer is intractable, and likely not
particularly useful®. This is primarily because mutations can have an impact on various regions of
molecular networks not directly adjacent to the mutated gene. In this paper, we have made an
attempt to extend the scope of key mutations driving genetic heterogeneity in the PC9 cell line
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family. Here, we have used classifiers defined by the Ensembl Variant Effect Predictor (VEP)?? to
better understand phenotypic effect. To this end, we utilized the VEP IMPACT score to rate the
predicted effect of individual mutations. The IMPACT score is a subjective classification of
mutational severity based on mutation classification, consequence, and predicted protein
structure impact, similar to other tools like SnpEff?3. Therefore, the IMPACT classifier helps
narrow the entire field of mutations to ones more likely to have a phenotypic effect. We used
the IMPACT score to determine the total number and relative proportion (compared to the
number of unique mutations in each sample; FIGS. 3C, 4C, 6B) of consequential mutations, with
the rationale that more IMPACT mutations lead to a greater chance that a single mutation may
initiate genetic heterogeneity. This score was utilized to establish a baseline number of
consequential mutations (FIG. 3C) by which to compare sublines (FIGS. 4C, 6D), and played a
significant role in the determination that DS8 is genetically distinct.

Using nonsynonymous mutational load to predict distinguishing mutations

An additional layer of mutational significance was utilized to identify gene sets that
differentiate cell populations. We used dNdScv?*, a method that compares the nonsynonymous
and synonymous mutational of individual genes to identify genes under positive selection (see
Methods). Similar to other methods that quantify mutational significance®>, dNdScv uses a
statistical model to predict genes that have a high relative nonsynonymous mutational load and
therefore could be phenotypically significant (e.g., mutations enriched in a cell population
resistant to treatment). In our case, we used this method to identify a list of candidate genes in
which the mutational load could distinguish samples within our comparison groups (FIG. 3B - cell
line versions, FIG. 4B — sublines without DS8, FIG. 6A — all sublines). This metric confirmed the
large number phenotypically significant genes mutated in cell line versions (specifically PC9-BR1,
FIG. 3D) and the fewer mutations by the same signature in sublines (FIG. 4D, Supplementary FIG.
S10B). In principle, methods like these can be utilized to determine mutations that drive
phenotype.

Connecting transcriptomics to epigenetics

Like mentioned in the main text, the definition of epigenetics used in the context of this
paper is derived from the traditional definition, which roughly translates to anything other than
genetics®>. Ergo, the epigenetic landscape we present here is a theoretical construct that
attempts to encapsulate that definition of epigenetics. Some researchers have attempted to put
a mathematical formalism to this definition of epigenetics?®?7, with variable success. Contrary to
expectation, the best way to currently measure the epigenetic landscape is with gene expression
data, specifically sc-RNA-seq. The rationale for this conclusion has several components. First,
since gene expression is a count of all measurable genes, it is considered to be a snapshot of the
molecular network at a point in time. Because the steady-states of the network encode for basins
in the epigenetic landscape, gene expression information is necessary to construct the landscape,
although not limited to just that information, in principle. Second, a single-cell approach provides
some insight into transition rate probabilities between epigenetic states, another feature of the
landscape?®. The number of cells that have a similar transcriptomic signature can be used to
calculate landscape features such as depth of the well and barrier heights, as well as predict


https://doi.org/10.1101/2020.06.05.136119
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.05.136119; this version posted June 5, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

potential transition events. Other omics-based data, such as epigenomics, proteomics, and
metabolomics, could be considered as additional reflections of the landscape (not genetics
because it establishes the landscape, see next section for details). Unfortunately, none of these
approaches have been developed at the single-cell level with high quality, genome-wide
coverage like sc-RNA-seq. Also, although it may seem like epigenomics may be the best way to
calculate the epigenetic landscape, approaches like ATAC-seq and ChlP-seq (i.e., epigenomics
assays) only capture one or a few types of epigenetic marks (e.g. chromatin accessibility,
methylation, etc.), and therefore do not capture the breadth of information necessary to
calculate an entire landscape. In principle, an epigenetic landscape could be calculated from most
types of measurable epigenetic information. However, it would lack the information necessary
to understand the entire molecular state of a cell, one of the defining factors of the epigenetic
landscape.

The genetic-to-epigenetic connection

In the context of the G/E/S heterogeneity framework, genetics are fundamentally tied to
epigenetics. The genetic state encodes for a complex biochemical network that determines the
epigenetic landscape. Significant research has been put into this idea, only to find that the
connection does not exhibit a 1:1 correlation?’. Due to this problem, it is virtually impossible to
perform a gene-by-gene comparison of genomics (encodes for genetics) to transcriptomics
(encodes for epigenetics) data that provides rational information. Instead, we aimed to develop
a broader way to identify this connection. In the main text of the paper, we make several claims
with different types of data that support the idea that populations are genetically and/or
epigenetically distinct. However, these claims were made at the level of one measurable
phenotype (drug response, genomics, transcriptomics). We wanted to supplement this data with
a metric that connects genetics to epigenetics, but not at the level of single genes (for reasons
mentioned above). We settled on the process level, which we attempted to reflect in gene
ontology (GO) term similarity.

GO terms are structured as directed acyclic graphs, composed of nodes and edges
This graph-based structure is made to model pairwise relationships between objects, in this case
GO terms, where the terms are the nodes and relationships between terms are the edges. These
GO terms broadly fall into levels, with the lowest number level (one) reflective of the most
general term and the highest-level term (variable) as the most specific. For example, in the case
of the cellular component ontology type, the level one term would be “cellular component,” and
an edge connects to “cell,” followed by “intracellular,” “intracellular organelle,” and so on. The
complexity of these graphs can be immense and enriched GO terms often arise from different
levels, making direct comparisons between individual GO terms largely ineffective.

For these reasons, we decided to use a score that compares GO terms as node-edge
graphs. Specifically, we utilize GoSemSim3!, an R-based tool to calculate GO term semantic
similarity. We employed the implementation developed by Wang et al.32 that compares the GO
term graph structure. In this implementation, a similarity score is returned for the comparison of
two GO terms. This score is calculated by comparing the similarity between subsets of the
ontology graph associated with the individual terms and their upstream (lower level) terms. In
our case, we generated two lists of GO terms for each sample, one from the genomics (unique
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genes with IMPACT mutations) and one from transcriptomics (differentially expressed genes
from sc-RNA-seq) data (see Methods). We fed these genes into independent GO enrichment
analyses to get two lists of these GO terms that were statistically enriched for each data type
(genomics and transcriptomics). We then calculated the semantic similarity between the
genomics- and transcriptomics-defined statistically significant GO term lists, which generated a
matrix of similarity scores (example matrix in Supplementary Table S2). We used a modified
averaging metric (Best Match Average (BMA) - recommended by the authors of GoSemSim3?!) to
generate a single similarity term between the genomics and transcriptomics for each cell
population (FIGS. 3I, 41, 6E). The BMA metric identifies the maximum semantic similarity score
for each row and column in the aforementioned similarity matrix, and averages those maxima to
determine the final score. Using this approach, scores are not heavily weighted by the other
similarities in the matrix, many of which are low and skew the differences between GO term lists.
In this way, we achieved an indication for the amount of influence genetics had on epigenetics in
a single cell line version or subline, with the expectation that populations with a larger genetic
influence would exhibit a higher score than those that did not.

Simple growth model of stochastic birth and death

Monoclonal growth model and connection to DIP rate

Biological noise, often referred to as stochasticity, can be broken down into extrinsic and
intrinsic components. Extrinsic noise pertains to variations in the environment, while intrinsic
noise refers probabilistic division and death events that results in fluctuations, especially at low
cell numbers3334, Many models of cell population dynamics have simulated drug response
dynamics with extrinsic noise, using deterministic simulations with various factors influencing
cellular dynamics (initial conditions, mutation rates, etc.)3>3¢. However, few (especially in cancer)
have studied the intrinsic noise associated with cell fate decisions (i.e., division and death). We
previously described the drug-induced proliferation (DIP) rate, which was derived using a simple
mathematical model of cell division and death?°. Here, we extend that framework to include
intrinsic stochastic variation using the Gillespie stochastic simulation algorithm (SSA)3=%°. The
SSA was specifically employed to test whether the DIP rate variability seen in subline clonal
fractional proliferation (cFP) assays were indeed due to fluctuations in single epigenetic basins
(i.e., sublines).

To generate a model of stochastic cell population dynamics, we started with a simple
model of cell division and death, encoded by the following chemical reactions:

kaiv

Cell — Cell + Cell

kath

Cell — @

These reactions encode for the ordinary differential equation (ODE):

dCell
- (Kaiv — kaen) - Cell
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In a deterministic solution, the equation above would be solved over individual time steps to
simulate a trajectory. However, since we are simulating this model stochastically, we use a
different method to generate a solution. Specifically, we aim to solve the chemical master
equation (CME), the general form of which is:

0P (x,
P8 = 3l — )Pl - ) — o PGy0)
]

where P(x,t) is the probability of being is state x in time t, aj is the probability that a reaction will
occur sometime between time t and the next infinitesimal stochastic time step, and v is the state
change vector. Generally, the equation determines the probability that a molecular state will
have a certain population at a future point in time by calculating the flux into and out of that
state. In the case of our MGM, the equation would be calculated:

% = P([Cell] = 1,t) - kqip, - ([Cell] = 1) + P([Cell] + 1,t) - kgep, - ([Cell] + 1)

— P([Cell], t) " kg, - [Cell] — P([Cell], t) - kg, - [Cell]

where [Cell] is the number of cells at any point in time t. As follows, this system generates a
system of coupled ODEs, which generally cannot be solved analytically. Many attempts have been
made to approximate the CME, such as reducing the state space with the finite state projection
method*!. Here, we use the Gillespie SSA3”7%°, which works off the fundamental assumption that
a reaction of a certain type will fire randomly, but proportionally to the reaction rate. Specifically,
stochasticity is generated from two randomly drawn numbers. The first random number (ri) is
drawn from a uniform distribution in the unit interval to determine 7, the stochastic time step:

—Inn

2 a

T

The second random number (r) is drawn proportionally to the reaction rate, where:

Zu au < Z,u+1 au+1

=L
2 2

so that r, will direct the u+1" reaction to fire (j is the final reaction). However, the proportionality
of these reactions is determined by the reaction rate, which is a function of the reaction rate
constant (kdiv and kgeath here). This proportionality is broken down in the term a,, which is
calculated:

Ay =y "¢y
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where hy is the number of reaction combinations and ¢, is the reaction rate constant for the pt
reaction. In our case, we are simulating a first-order reaction, so h,=1. ¢, is the summation of all
the reaction rate constants, making it kgiv + kawn. @j is a function of the concentration of state x at
any given time t, so in the case of the model:

a; = (kg + kqen)[Cell]

So, r1 will determine T and r, will determine the decision for a simulated cell to divide or die
(based on a). The system then updates, and the algorithm determines whether to stop or
continue proceeding (called a check-stop). If determined to continue, it will redefine the reaction
rate, recalculate the random numbers, and simulate a result again.

Together, we call this the monoclonal growth model (MGM) because it is meant to reflect
the growth dynamics of a single clone (or clonal-derived subline). More specifically, the MGM
was designed to simulate the stochastic growth of cells residing in a single basin in the epigenetic
landscape, making these cells both genetically and epigenetically identical, hence the single
division and death rates. Therefore, the only source of variability expected in these cells would
be stochastic fluctuations. As noted in the main text and above, this approach was used to explain
the DIP rate distribution of single-cell derived clonal sublines (FIG. 5), with the exception of DS8
(see below). In an effort to exhaustively simulate the parameter space, we ran a large parameter
scan across a wide array of division and death rates, with minimal spacing between parameter
combinations (FIG. 5D and Supplementary FIG. S9D). The scan identifies many division and death
rate combinations where the simulated distribution cannot be statistically distinguished from
experimental subline distributions, showing that the model is not overly sensitive to chosen
parameters. Importantly, it also indicates that fluctuations in molecular state (i.e., small
differences in the division and death rate constants) can vary within epigenetic basins.

The polyclonal growth model

In the case of DS8, the MGM (one division and death rate plus stochasticity) could not
explain the variability in the DIP rate distribution, specifically the bimodal distribution. So, we
generalized the one-state model into multiple states, which we call the polyclonal growth model
(PGM). The PGM is an extension of the MGM to include multiple cell types, each with different
division and death rate combinations. Therefore, the PGM is identical to the MGM shown above,
but just multiple MGMs in parallel.

To explain the DS8 DIP rate distribution, we first attempted a two-state model, which
consisted of two sets of division and death rates (four total rate parameters). In order to generate
the DS8 bimodal distribution, the underlying DIP rates (i.e., division minus death rate) needed to
be appreciably different, so we sampled distinct regions of parameter space for each state,
corresponding to the DIP rates underlying each mode of the DS8 distribution. We performed a
four-dimensional parameter scan (two division, two death rates), and projected into two
dimensions, where two discrete states could be identified (FIG. 6F) based on concordance
between the experimental DS8 and simulated PGM distributions. Similar to the MGM, the PGM
parameter scan identifies many division and death rates that result in DIP rate distributions that
statistically agree with experimental results (FIG. 6G). Although the PGM is agnostic to how the
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population achieved the two states (i.e., genetic or epigenetic, see below), this is another
example of fluctuations in molecular state due to intrinsic stochasticity.

A natural extension of the PGM would be to include transitions between cell states, but
we do not include them here to simplify the model and results. Future studies will aim to
incorporate models that simulate PGMs with transitions (i.e., epigenetic landscapes), each with
multiple states (i.e., epigenetic basins).

Justification for multiple genetic states in DS8

As noted in FIG. 7, DS8 seems to have evolved a genetic mutation that made it nearly
resistant to EGFRI. This process could have happened two different ways. First, DS8 could have
acquired a key genetic mutation after single-cell cloning, meaning that both the PC9-VU and a
new genetic state exist in DS8 (FIG. 7, Supplementary FIG. S10A). In this case, each genetic state
would have an epigenetic landscape and therefore multiple sets of epigenetic basins available.
Another possibility is that DS8 could have genetically evolved prior to single-cell isolation as a
single genetically distinct clone within PC9-VU (Supplementary FIG. S10B). In this case, the DS8
bimodal DIP rate distribution is reflective of two (or more) epigenetic basins in a single epigenetic
landscape (i.e., one common genetic background). We believe that the former option is the case.
The similarity of the DS8 left distribution with all other PC9-VU sublines suggests that the PC9-
VU epigenetic landscape is present in DS8. Alternatively, in the latter case, the new DS8
epigenetic landscape would likely be different from the PC9-VU epigenetic landscape (because
genetic mutations change the underlying biochemical network), leading to distinct division and
death rates and DIP rate profiles. Although it is possible that DS8 could have acquired a mutation
that resulted in an epigenetic landscape similar to PC9-VU, it is unlikely that a similar network
would have such a distinctly different DIP rate in EGFRi (FIG. 2C). Additionally, a new state is
clearly present in DS8 as the right mode of the DIP rate distribution, which has no overlap with
any subline DIP rate distribution, and minimal with the PC9-VU DIP rate distributions, lying
predominately between PC9-VU and PC9-BR1. This is consistent with a new genetic state that
was not present in PC9-VU or sublines.

Therefore, we believe that DS8 encapsulates two genetic states, one from PC9-VU and
another new, each with epigenetic landscapes. In these landscapes, a large proportion of cells
likely lie in a single epigenetic basin, but potentially multiple basins theoretically exist and would
be available for future epigenetic state transitions (driven by stochastic fluctuations). As DS8
expanded (drug-naive), both the sensitive and non-sensitive genetic states co-existed, with likely
similar proliferation rates (since the drug response phenotype is revealed in EGFRi, we cannot
know the drug-naive proliferation rate of each state a priori). At the time of treatment in the
population-level DIP rate assay, the more fit genetic state (and its epigenetic basin(s)) was
reflected in the DIP rate (FIG. 2C) due to clonal selection. However, in the cFP assay, multiple
genetic states were identified because single cells were randomly measured from the population
and therefore no clonal selection could skew the DIP rates (FIG. 2D), resulting in the DS8 bimodal
DIP rate distribution.

In addition to the PGM, multiple genetic states in DS8 are reflected in its genomic
signature. Although DS8 does not show significant genetic heterogeneity as shown by the cell
line version genetic signature (Supplementary FIG. S10B), it does have two mutations in cancer-
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associated genes (Supplementary FIG. S10C), one of which is a missense mutation in ABC5, a
component of transmembrane ATP-binding cassette (ABC) transporters, which utilize ATP
binding and hydrolysis to transport organic material across membranes*?. Considering the drug-
resistance implications of ABC transporters®, it is possible that ABC5 is a key genetic mutation
that establishes a new genetic state within DS8. DS8 also exhibits a mutation in the RELN gene,
but considering it is synonymous, the G/E/S heterogeneity framework considers it genomic
(instead of genetic, see Supplementary Table S1) and therefore it is not predicted to have an
effect on phenotype. Interestingly, DS3 also exhibits one unknown mutation type (i.e., cannot be
defined by substitution or indel) in DACH1, which has been implicated in tumor growth
suppression**. However, DS3 showed no clear functional change in terms of the DIP rate (FIG.
2C,D), overall genomic (FIG. 3A-F), or transcriptomic profiles (FIG. 3G,H), as well as no clear
genetic-to-epigenetic connection (FIG. 31), suggesting that the genomic change is not encoding a
genetic change. Additionally, a clear distinction in the DS8 genetic state can be seen in our
identity-by-state analysis of the SNV profiles (Supplementary FIG. S12A), which shows DS8 in a
completely separate region of the reduce dimensionality PCA space. Taken together, the genomic
information alone points to clear genetic differences in DS8.

To supplement the model and genetic information that distinguishes DS8, we also identify
key transcriptomic differences. First, we see a clear distinction between DS8 and all other cell line
versions and sublines using bulk RNA-seq (Supplementary FIG. S8). We then use sc-RNA-seq to
determine the proportionality of DS8 cells in a common transcriptomic space (bulk RNA-seq does
not capture the proportionality, hence the need for single-cell resolution). For example, do all
DS8 cells reside together, like PC9-MGH? Or are they split across different regions of the space?
As mentioned in the main text, DS8 mainly occupies a completely distinct region of the single-
cell transcriptomic UMAP space (FIG. 6C and Supplementary FIG. S7A), as well as in other
dimensionality reduction approaches (Supplementary FIG. 7B,C). However, some DS8 cells do lie
in regions of the UMAP space occupied by PC9-VU and other sublines, suggesting that DSS8 is
composed of a genetic state inside PC9-VU (see above). This result provides further confirmation
for the proposed hypothesis above, that DS8 is composed of at least two genetic states, one from
PC9-VU and another newly acquired after single-cell isolation. Interestingly, DS9 is the only other
subline that has cells overlapping with the larger cohort of DS8 cells in the UMAP space, especially
considering it exhibited the largest initial death of any subline following EGFRi (FIG. 2C). This small
minority of cells are less than 0.1% of the sampled DS9 population, and therefore did not show
up appreciably in other analyses (presumably due to lack of single-cell approaches and detection
power). However, it is possible that sublines, such as DS9, have small minorities of cells that
exhibit genetic differences but do not play a large role in the drug response phenotypes, at least
in the short term. Additionally, in line with the postulated views of Huang*>, it is possible that
cell populations that fall into minority regions of the epigenetic landscape may actually lie in close
proximity to unoccupied regions of the landscape. These unoccupied regions may be opened by
a major event, such as a key genetic mutation, that lowers the activation energy and allows for
more probabilistic transitions into the unoccupied regions (Supplementary FIG. S11B). Further
information and analysis would need to be performed to determine if that hypothesis is indeed
a possibility.

All said, the majority of the evidence points to DS8 being composed of two genetic states,
one from PC9-VU and another novel drug-resistant state. However, the discrepancy between a
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one- vs. two- genetic state DS8 does not modify the findings within the paper or change the
underlying heterogeneity framework (Supplementary FIG. S11). Cancer cells are constantly
acquiring new genomic mutations, which may or may not lead to functional differences. In the
case of DS8, genetic changes were identified and the DIP rate profiles are distinct, leading to the
rational conclusion that the genetic changes caused the resistance to EGFRi.

The role of stochasticity on the epigenetic landscape

The results of the MGM and PGM show that intrinsic stochasticity alone can explain
variability within subline DIP rate distributions. Although variability could always result from a
number of hidden factors, our finding that noise alone can explain the variability should help
change the narrative that every aspect of biological variability in cancer must be genetic. Intrinsic
stochasticity both exists, and can have an effect on phenotype.

Evidence in this paper of intrinsic stochastic fluctuations has provided a mechanism by
which cells can move between epigenetic basins. Although not explicitly proven here, the work
of others suggests cells residing in epigenetic basins in a common landscape exhibit plasticity®”48,
meaning that cells can transition between basins reversibly, which we suggest here are due to
stochastic fluctuations. Specifically, basins in which PC9-VU sublines reside fall within the wider
PC9-VU epigenetic landscape (with the likely exception of DS8) and have the potential to
transition between basins. Here, we have captured clones early in the diversification process and
therefore cells may not have had enough time to transition between basins, although larger
proportional overlap between sublines that cell line versions (FIGS. 3G and 4G) may provide some
evidence for this phenomenon. Since the time necessary to diversify between epigenetic basins
cannot be known a priori, it is difficult to effectively determine the stability of these basins, which
would be reflected in transition events. However, considering the speed of drug-induced state
transitions identified in our previous work in BRAF-mutant melanoma®, we can extrapolate that
the basins in PC9 are relatively deeper and more stable. It is for this reason that we could capture
stable drug-response differences between sublines in the first place (FIG. 2C-D), as opposed to
all sublines eventually stabilizing into a common DIP rate. It is also the reason we have not
captured explicit transition events. There exists a tradeoff between determination of epigenetic
basins and identification of epigenetic state transitions: ability to see many of one type inherently
means one can see few of the other. In the case of this paper, we could clearly find epigenetic
basins, at the expense of observation of explicit state transitions. Provided unlimited time or
more precise tools for lineage tracing®®°, we could identify rare, discrete transition events
between epigenetic basins. But, provided the theory (FIG. 1) and observations in this paper, we
can extrapolate that because of the stochasticity identified within epigenetic basins, there must
exist a mechanism where that noise can push cells over the boundary into new basins. Future
publications will explore these transitions in systems where plasticity is more prevalent and
happens over a shorter time period.

The G/E/S heterogeneity framework provides a clearer understanding of cellular plasticity
and survival by detailing a mechanism by which cells can survive treatment. Cells stochastically
transition between basins in the epigenetic landscape, and acquire genetic mutations to create
new landscapes with different inherent plasticity. Therefore, the modified model of cellular
plasticity in response to treatment is as follows: (1) Cells exist and reversibly transition between
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epigenetic states in the epigenetic landscape in drug-naive conditions (proportional to the
transition rates). These epigenetic basins can have differential fitness in a single drug treatment,
and are different depending on the type of drug; (2) Drug treatment changes the landscape so
that cells can preferentially transition into different states, some of which have better fitness in
the presence of drug, depending on their previous location in the landscape. Cells that survive
the treatment serve as a reservoir for potential new genetic mutations, which happen over many
cell divisions while cells reside in the drug-tolerant basins; (3) Key genetic mutations open new
genetic state(s) that have distinct epigenetic landscapes. The new epigenetic landscapes have
epigenetic basins that exhibit greater fitness in the presence of that drug, making the cells
insensitive to that treatment.
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SUPPLEMENTARY TABLES

Supplementary Table S1 | Glossary of terms

Heterogeneity Differences (genetic, epigenetic, or stochastic) that exist within
a cell population.

Variability Differences (genetic, epigenetic, or stochastic) that exist across
cell populations.

Phenotype An observable property of a cell population, in the absence or

in response to environmental perturbations. In the context of
this work, our phenotype of interest is response to EGFR
inhibition (EGFRi), which we quantify in terms of single-cell
transcriptomic features (no drug) and drug-induced
proliferation (DIP) rates. Since cell population-level quantities
like DIP rate are driven by underlying molecular regulatory
networks, we consider these to be two different presentations
of the same phenotype.

Genomic state The full sequence of nucleotides that comprise a genome. With
four types of nucleotides (A, C, T, G) and ~3.2 billion nucleotides
per genome, the number of possible nucleotide configurations
is massive (effectively infinite, even when excluding non-viable
configurations). Therefore, it is exceedingly rare for two cells to
reside in the same genomic state.

Functional genomic regions | Locations in the DNA sequence that encode for genes that
impact the phenotype of interest in some quantifiable way.

Genomic variability Differences in the genomic-state compositions across two or
more cell populations. Since every cell in a population is likely
to exist in a unique genomic state, cell populations will always
exhibit genomic variability with respect to each other. In this
work, we quantify genomic variability in terms of differences in
distributions of called variants between populations in bulk
whole-exome sequencing data.

Genetic state The sequence of nucleotides that comprise only functional
genomic regions of the DNA. Because the scope is much more
limited, the number of possible genetic states available to a cell
is significantly smaller than the number of genomic states, i.e.,
many cells, up to and including an entire cell population, may
share the same genetic state.

Genetic heterogeneity The degree to which cells within a population are distributed
across different genetic states.
Genetic clone A group of cells that all occupy the same genetic state.
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Genetic variability Differences in the genetic-state compositions of two or more
cell populations (the populations may be genetically
heterogeneous). Importantly, cell populations that are
genetically identical will still display some degree of genomic
variability.

Molecular state Populations (or concentrations) of all intracellular biochemical
species (e.g., mRNAs, proteins, small molecules) associated with
a phenotype of interest. Because copy numbers can be large
and fluctuate due to intrinsic and extrinsic sources of
intracellular noise, it is exceedingly rare for two cells to occupy
the same molecular state.

Epigenetic landscape A conceptual and mathematical construct that assigns a “quasi-
potential energy” to all possible molecular states of a cell.
Fundamentally, the epigenetic landscape is the consequence of
the complex biochemical interaction networks that underlie the
phenotype of interest (i.e., different phenotypes will have
different associated landscapes). Altering the molecular
species, interactions, or rate parameters (e.g., binding affinities,
synthesis and degradation rates) within these networks will
change the nature of the landscape. Since many rate
parameters depend on the molecular structures of gene
products, the epigenetic landscape can be seen as associated
with a specific genetic state. Relatedly, mutations that change
the structures of gene products change the topography of the
associated epigenetic landscape.

Epigenetic state Often wused interchangeably with “phenotypic state,” a
molecular steady state of a cell and all neighboring molecular
states that tend to gravitate towards it in response to small
perturbations. Mathematically, the steady state is known as an
“attractor” and the collection of states associated with it a
“basin of attraction.” Conceptually, an epigenetic landscape can
be seen as a collection of epigenetic states (local minima)
separated by barriers, with traversal of these barriers
corresponding to phenotypic state transitions. Importantly,
cells can differ in their molecular states (e.g., due to fluctuations
in gene expression) but still occupy the same epigenetic state.
Experimentally, epigenetic states can be revealed by examining
subsets of the molecular species that define the epigenetic
landscape (mathematically, low-dimensional projections of the
phenotypic state space), e.g., with single-cell transcriptomics.
Epigenetic heterogeneity The degree to which cells within a population of genetically
identical cells are distributed across different epigenetic states
within a common epigenetic landscape.
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Epigenetic clone A group of genetically identical cells that all occupy the same
epigenetic state.
Epigenetic variability Differences in the epigenetic-state compositions of two or more

cell populations (not necessarily genetically identical). Because
stochastic fluctuations drive phenotypic state transitions, there
is almost always some degree of epigenetic variability between
cell populations (an important exception being low-passage
number single cell-derived colonies from the same epigenetic

state).
Stochastic heterogeneity The degree to which cells within a population of genetically and
epigenetically identical cells vary across molecular states.
Stochastic variability Differences in the molecular-state compositions across two or

more genetically and epigenetically identical cell populations
arising from fluctuations in gene expression, randomness in cell
division, and other sources of biological noise. Importantly,
stochastic variability can present as phenotypic differences
across epigenetically identical populations, e.g., differences in
DIP rates across single cell-derived colonies in clonal Fractional
Proliferation assays.

Genetic-to-epigenetic The degree to which mutations unique to a cell population, with
connection respect to one or more other cell populations, are predictive of
epigenetic differences seen among the cell populations. For
example, cells occupying two epigenetic states within a
common epigenetic landscape are, by definition, genetically
identical. Therefore, any genomic differences seen between
them should have no bearing on epigenetic differences. In
practice, however, there is likely to be some correlation, simply
by chance, between mutated genes and epigenetic (e.g.,
transcriptomic) differences. Thus, in this work, we assess the
degree of the genetic-to-epigenetic connection of a cell
population by comparing against the genetic-to-epigenetic
connections of cell populations within a group of populations
known to be genetically distinct (the cell line versions).
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Supplementary Table S2 | Example GO (molecular function) semantic similarity matrix for DS8

G0:0003723 G0:0045296 G0:0004866 GO:0061135 GO:0030414

GO0:0016878 0.111 0.122 0.087 0.122 0.109
G0:0004321 0.084 0.092 0.065 0.092 0.083
GO:0003996 0.087 0.094 0.068 0.094 0.085
GO:0016405 0.111 0.122 0.087 0.122 0.109
G0:0016408 0.096 0.105 0.074 0.105 0.094
GO:0042162 0.589 0.196 0.062 0.087 0.079
GO:0015645 0.111 0.122 0.087 0.122 0.109
G0:0016820 0.103 0.111 0.084 0.111 0.102
GO:0015405 0.096 0.105 0.074 0.105 0.094
GO0:0042626 0.059 0.062 0.049 0.062 0.059
GO:0046966 0.198 0.36 0.071 0.094 0.086
GO:0043492 0.064 0.069 0.048 0.069 0.063
G0:0003697 0.659 0.219 0.07 0.097 0.088
GO:0008191 0.067 0.072 0.798 0.56 0.65
GO:0015075 0.102 0.111 0.081 0.111 0.1

G0:0042809 0.198 0.36 0.071 0.094 0.086
GO:0030676 0.096 0.105 0.167 0.235 0.211
GO:0010485 0.058 0.063 0.043 0.063 0.057
GO.:0005261 0.063 0.067 0.05 0.067 0.062
GO:0005158 0.209 0.383 0.074 0.1 0.091
GO:0030507 0.25 0.465 0.087 0.122 0.109
G0:0043015 0.216 0.399 0.074 0.105 0.094
GO:0098641 0.182 0.713 0.064 0.087 0.079
G0:0016864 0.111 0.122 0.087 0.122 0.109
GO:0003756 0.096 0.105 0.074 0.105 0.094
GO:0035254 0.25 0.465 0.087 0.122 0.109
GO0:0070628 0.23 0.424 0.081 0.111 0.1

GO:0004198 0.07 0.076 0.054 0.076 0.069
GO:0098632 0.25 0.465 0.087 0.122 0.109
G0:0008375 0.087 0.094 0.068 0.094 0.085

18


https://doi.org/10.1101/2020.06.05.136119
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.05.136119; this version posted June 5, 2020. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supplementary Table S3 | Rate parameters used for growth models. Ranges are shown in
square brackets, units are in hrl.

0.0625]*In(2)

0.0598]*In(2)

0.0653]*In(2)

0.0613]*In(2)

0.0630]*In(2)

0.0621]*In(2)

Subline PC9-DS1 PC9-DS3 PC9-DS4 PC9-DS6 PC9-DS7 PC9-DS9 PC9-DS8
Parameter (two-state)
Kaiv,pre-drug | 0-04*In(2) 0.04%In(2) 0.04%In(2) 0.04%In(2) 0.04%In(2) 0.04%In(2) 0.04%In(2)
Kathpre-drug | 0-005*In(2) 0.005*In(2) 0.005*In(2) | 0.005*In(2) | 0.005*In(2) | 0.005*In(2) | 0.005%In(2)
Kaivapost-drug | [0-022,0.060] [ [0.018,0.060] | [0.023,0.060] | [0.018,0.060] | [0.018,0.060] | [0.018,0.060] | [0.021,0.04]

*In(2) *In(2) *In(2) *In(2) *In(2) *In(2) *In(2)
Katht post-drug | 10-0227, [0.0155, 0.0259, [0.0173, [0.0196, [0.0185, 0.0205,

0.0615]*In(2)

kdin,post-drug

N/A

N/A

N/A

N/A

N/A

N/A

[0.021, 0.040]
*In(2)

kdthz,post-drug

N/A

N/A

N/A

N/A

N/A

N/A

[0.0255,
0.0675]*In(2)
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SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure S1. Clarification on the impact of mutational events on phenotype. (A)
Cartoon illustration of two genomes that are genomically distinct but genetically identical, with
respect to phenotype (i.e. drug-response sensitivity). In this illustration, functional genomic
regions are highlighted with a solid black box, while non-functional regions are denoted with a
dotted line. (B) Highlighted genomic region (from A) with substitutions, specifically single
nucleotide variants (SNVs, most common variant type), and their resulting consequences.
Nucleotide mutations are highlighted in red, and their resulting amino acid changes are
highlighted based on the expected level of impact (green = no impact, yellow = minimal impact;
orange = moderate impact; red = high impact). An impact column is provided as well,
representing the same information. (C) Highlighted genomic region (from A,B) with
insertion/deletion (indel) variants and their resulting consequences. Nucleotide insertions are
noted in red, while deletions are shown with a shorter ‘genotype’ and open region of the amino
acid sequence. Amino acid changes are colored as in B. Example indel types (inframe or
frameshift) are shown as examples, but each type can lead to different levels of impact depending
on the change to the underlying amino acid sequence. An impact column is provided for
clarification (D) Example categorization of mutations with varying context (i.e., functional
genomic regions), classification (i.e., substitution or indel), and consequence (i.e., synonymous,
nonsynonymous — missense, nonsense). Functional genomic regions and non-functional regions
(same as A) are highlighted in the same genotype. Nucleotide mutations, amino acid changes,
and impact are noted in the same way as B and C. The combination of context, classification, and
consequence define whether a mutation falls into the genomic or genetic category, noted in the
figure.

Supplementary Figure S2. Understanding the PC9 Cell Line Family. (A) Identification of canonical
EGFR-ex19del in PC9 cell line family members. As a positive control, we detected the same exon
19 deletion (common in EGFR-mutant non-small cell lung cancer (NSCLC)) mutation. Plotted as a
screenshot from the Integrative Genomics Viewer (IGV). Red corresponds to potential deletions
and blue corresponds to potential insertions. (B) Schematic representation of PC9 cell line family.
Two ‘versions’ of NSCLC cell line PC9 were separately maintained in culture without selective
pressure at two different universities (VU — Vanderbilt University; MGH — Massachusetts General
Hospital). A resistant cell line was derived in EGFR inhibition (EGFRi, afatinib) from PC9-VU,
named PC9-BR1. Several discrete sublines (DSn) were single-cell isolated from the PC9-VU cell
line version. Together, these cell line versions and sublines make up the PC9 cell line family.
Coloration is consistent with data visualizations in main and supplementary information.

Supplementary Figure S3. Visualizations of drug-naive DIP rate assays and cFP trajectories. (A)
Cell proliferation trajectory of cell line versions with vehicle (DMSO) treatment. Versions all grow
exponentially, with PC9-VU and PC9-BR1 growing at the exact same rate. Dots represent means
of six experimental replicates with a linear model fit and 95% confidence interval. (B) Linear
model fits of clonal fractional proliferation (cFP) assay trajectories for each experimentally tested
cell line version and subline in EGFRi (Erlotinib). Number of colonies (n) in each assay are noted
within plot. Model fits were normalized to ~48h post drug treatment. (C) Cell proliferation
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trajectory of discrete sublines (single-cell derived clones of PC9-VU) in vehicle treatment.
Sublines grow at nearly the same exponential growth rate. Dots represent means of six
experimental replicates with a linear model fit and 95% confidence interval. (D) cFP trajectories
for PC9-MGH cell line version in EGFRi. Data are normalized to approximately 72 hours post EGFRI
treatment. (E) cFP trajectories for PC9-BR1 cell line version in EGFRi. Data are normalized to
approximately 72 hours post EGFRi treatment. Experiment was stopped after multiple colonies
reached confluency.

Supplementary Figure S4. Direct comparison of cell line versions and sublines drug response
profiles. (A) cFP trajectories for PC9-VU cell line version (grey) compared to population-level
responses of PC9-VU sublines (colors) in EGFRi (Erlotinib). cFP trajectories are normalized to
approximately 72 hours post EGFRi treatment. Sublines are normalized to approximately 125
hours post EGFRi treatment, with the exception of DS8. DS8 was normalized to the time of
treatment (time = 0, reached confluency during the course of experiment because resistant to
EGFRi). Means of subline time point replicates are plotted. (B) Full population-level drug-
response trajectories of cell line versions and sublines in EGFRi. Data are normalized to the time
of treatment. The loess linear fit is shown through time point replicate means (points), with a
95% confidence interval. (C) cFP DIP rate distributions for PC9-VU (blue) and sublines (DS1, DS3,
DS4, DS6, DS7, DS9 = grey; DS8 = seagreen). A Mood’s median test was performed between all
sublines, and medians were found to be statistically significant (p<0.001).

Supplementary Figure S5. Metrics of whole exome sequencing data comparison across PC9 cell
line family. (A) Total number of mutations identified through variant calling compared to hg38
reference genome. Mutations are separated into substitutions, specifically single-nucleotide
polymorphisms (SNPs), and insertions and deletions (InDels). (B) Sequencing quality metrics for
PC9 cell line family (considered together as one group). Read depth (DP) is a measure of sequence
coverage; Mapping quality (MQ) details how well the sequencing reads are mapped to the
reference genome; Quality (QUAL) is a score developed for Phred base calling that measures the
confidence in called variants based on sequencing error probabilities; Variant count is a reflection
of the variants per site identified over small sections (windows) of the reference genome. (C)
Quantified Venn diagram (i.e., UpSet plot) of unique, and intersections of, mutations in cell line
versions. (D) UpSet plot of unique, and intersections of, mutations in sublines, excluding DS8. (E)
UpSet plot of unique, and intersections of, mutations in sublines, including DS8. Unique
mutations in C-F are also represented in FIGS. 3B, 4B, and 6A.

Supplementary Figure S6. Metrics for sc-RNA-seq comparison across PC9 cell line family. (A) Cell
Ranger (i.e., computational tool for generating count matrix) output file detailing metrics of
sequencing run (quality, mapping, barcode identification, etc.). (B) Feature identification for
genes that transcriptomically differentiate PC9 cell line family. Variable genes are projected on a
plot of dispersion vs. average gene expression, and gene names that pass feature selection
threshold are noted (0.1 < average gene expression < 8, log variance-to-mean ratio > 1; 499
genes). (C) UMAP projection of PC9 cell line family (see same projection in Supplementary FIG.
S7), colored by cell cycle score. No discernible separation was identified between members of
the family on this scale, and therefore regressed data was not used for further analyses.
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Supplementary Figure S7. Additional sc-RNA-seq visualizations of PC9 cell line family using
different dimensionality reduction approaches. (A) UMAP projection of PC9 cell line family,
colored by family member. This visualization is the same space visualized in FIG. 3G, 4G, and 6C
of the main text, but with all PC9 family members (cell line versions and sublines) included. (B) t-
distributed Stochastic Neighbor Embedding (t-SNE) representation of sc-RNA-seq data. Similar
separation and overlap can be seen as in the UMAP projection, but relative differences are not
as discernible. (C) PCA representation of sc-RNA-seq data. This projection shows the clear
transcriptomic differences between PC9-MGH and cell populations derived from PC9-VU.

Supplementary Figure S8. Confirmatory bulk RNA sequencing of PC9 cell line family. RNA
sequencing (RNA-seq) was used to confirm sc-RNA-seq transcriptomic phenotypes. (A) PCA of
single-replicate normalized RNA-seq count data. Similar distinctions and distances exist between
this reduction and the UMAP projection in FIG. S7A. (B) Hierarchical clustering of RNAseq
normalized count data. Clustering was performed on the pairwise Euclidian distance matrix
created from the relative log transformed gene counts using the Ward’s minimum variance
method. The clustering is consistent with the distances seen in A.

Supplementary Figure S9. Monoclonal growth model (MGM) simulations and comparison to
experimental cFP data. (A) Experimental cFP time courses for additional PC9-VU sublines (DS1,
DS6, DS7, and DS9) in response to 3uM Erlotinib (trajectories corresponding to DIP rate
distributions in FIG. 2D). Each trace corresponds to a single colony, normalized to 72 hours post-
drug treatment. Only colonies with cell counts greater than 50 at the time of treatment were
kept. (B) In silico cFP time courses with division and death rate constants that closely reproduce
the experimental time courses in A. Trajectories are normalized to the time at which the
simulated drug treatment was initiated, and simulated cell counts are plotted only at
experimental time points. Although the simulation was initiated with the same number of
trajectories as colonies in the corresponding experiment (for that subline, n), only colonies with
initial cell counts greater than 50 at the time of simulated drug treatment are shown. (C)
Comparison of experimental and simulated DIP rate distributions calculated from time courses
in A and B. Distributions are compared statistically using the Kolmogorov-Smirnov (K-S) test (see
Methods). A dashed black line signifies zero DIP rate, for visual orientation. (D) Parameter scan
of division and death rate constants for the four sublines in A—C. For each pair of rate constants,
we ran model simulations (same number as corresponding subline), calculated DIP rates and
compiled them into a distribution, and then statistically compared against the corresponding
experimental DIP rate distribution using the K-S test. Color shades correspond to p-values; all
p<0.1 are colored white, indicating lack of statistical correspondence to experiment. x denotes a
division and death rate constant used in B.

Supplementary Figure S10. Additional visualizations of DS8 genomic, drug-response, and model-
simulated data. (A) Mean-centered mutation count by chromosome for all sublines, including
DS8. For each chromosome, sublines with fewer mutations than the mean have a bar pointing
inwards, while those with more mutations point outwards. Chromosome numbers are noted on
the outside edge of the circle. (B) Quantification of mutational differences between sublines,
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including DS8, based on a signature of genes with a high nonsynonymous mutational load in cell
line versions. Heatmap elements are colored based on type of mutation: Essential Splice Site,
Missense, Nonsense, Synonymous, and Unknown. Transparency of heatmap elements
corresponds to the number of mutations in the gene-mutation type pair (more mutations, less
transparent). Total numbers of mutations (stratified by mutation type) across genes and cell line
versions are shown as bar plots to the right and above of the heatmap, respectively. (C) Same as
B, but for a literature-curated set of cancer-associated genes implicated in lung cancer. (D)
Mutation class pie charts. All unigue mutations in each cell line version were classified as single
nucleotide polymorphisms (SNPs), insertions, deletions, indels (combinations of insertions and
deletions), or sequence alterations. (E) Example experimental (top) and simulated (bottom) cFP
time courses for DS8, using the same scheme as Supplementary FIG. 59. Two sets of division-
death rate pairs are included in the simulated data, to represent the two states.

Supplementary Figure S11. Potential explanations for DS8 genetic variability. DS8 exhibits
extensive genetic, transcriptomic, and drug response differences compared to other members of
the PC9 cell line family. DS8 also exhibits heterogeneity in the sc-RNA-seq (representation in
different regions of UMAP projection) and cFP data (bimodal DIP rate distribution), which are the
assays that can identify heterogeneity at the single-cell level. Therefore, this heterogeneity
corresponds to at least one new genetic state. According to the G/E/S heterogeneity framework,
this heterogeneity could come from the following two sources: (A) DS8 is composed of two
distinct genetic states, each with their own epigenetic landscapes. In this explanation, the left
mode of the DS8 DIP rate distribution corresponds to remnants of a subline isolated from the a
single epigenetic basin associated with the PC9-VU genetic state. The right mode of the
distribution corresponds to a new genetic state, also with its own epigenetic landscape. Each of
these genetic states may have multiple epigenetic basins occupied at biased, but potentially
varying proportions (see also FIG. 7). Given this hypothesis, the mutation would have happened
after single-cell isolation, in order to retain the PC9-VU epigenetic basin. (B) Alternatively, DS8
could be composed of a single genetic state with multiple basins heavily occupied in its epigenetic
landscape. In this case, DS8 developed a genetic mutation while growing within the PC9-VU cell
line version, and was isolated during single-cell cloning. The mutation could have modified the
associated epigenetic landscape so as to lower the energy barrier between stable basins. In this
case, the bimodal DIP rate distribution corresponds to two epigenetic basins of the same genetic
state, as opposed to two distinct genetic states. Either way, DS8 incorporates a new genetic state.

Supplementary Figure S12. Genomic relatedness between PC9 cell line family members. (A) PCA
of PC9 genotypes. Using a subset of single nucleotide polymorphisms (SNPs) in approximate
linkage equilibrium, a genetic covariance matrix was calculated. The covariance matrix was
converted to a correlation matrix to achieve appropriate scaling, and PCA was run to identify SNP
eigenvectors (loadings of the principal components). (B) Hierarchical clustering of PC9 genotypes.
Using an identity-by-state analysis, a matrix of genome-wide pairwise identities was calculated.
Hierarchical clustering was performed on these identities to determine sample relatedness.

Supplementary Figure S13. Sample identification in “hashed” PC9 cell line family members.
Proportional representation of cell populations with each of eight specific “hashtag” antibodies
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based on the hashtag oligonucleotide (HTO) expression level. Each sample has a single
corresponding HTO, while a minority of the HTOs reads were unmapped.
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Figure S10
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Figure S11
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