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Abstract

The rhizosphere microbiome (rhizobiome) plays a critical role in plant health and development.
However the processes by which the constituent microbes interact to form and maintain a
community are not well understood. To investigate these molecular processes, we examined
pairwise interactions between 11 different microbial isolates under selected nutrient-rich and
nutrient-limited conditions. We observed that when grown with media supplemented with 56 mM
glucose, 2 microbial isolates were able to inhibit the growth of 6 out of 11 other microbes tested.
The interaction between microbes persisted even after the antagonistic microbe was removed,
upon exposure to spent media. To probe the genetic basis for these antagonistic interactions,
we used a barcoded transposon library in a proxy bacterium, Pseudomonas putida, to identify
genes which showed enhanced sensitivity to the antagonistic factor(s) secreted by
Acinetobacter sp. 02. Iron metabolism-related gene clusters in P. putida were implicated by this
systems-level analysis. The supplementation of iron prevented the antagonistic interaction in the
original microbial pair supporting the hypothesis that iron limitation drives antagonistic microbial
interactions between rhizobionts. We conclude that rhizobiome community composition is
influenced by competition for limiting nutrients with implications for growth and development of
the plant.
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Introduction

Microbial communities are being increasingly appreciated for their impact on larger
biological systems, such as in relation to human health (e.g. the gut microbiome) (Chu et al.,
2016) or crop productivity (e.g. the rhizobiome) (Mendes et al., 2018). It is now understood that
antagonism between microbes can influence host fitness in various systems (Zhao et al., 2018;
Mendes et al., 2018). However, while some direct chemical interactions between hosts and their
microbiome are known (Stringlis et al., 2018), it is unclear how beneficial microbial communities
are assembled and maintained throughout host development. A better understanding of
microbial communities and their relation to the plant root is of specific interest to understand
plant development, biogeochemical carbon cycling, and applications in agriculture.

The environmental milieu of the plant root is distinct from that of bulk soil. Photosynthetic
bioproducts are exuded through the roots, modifying the rhizosphere through the accumulation
of sugars and secondary plant metabolites. The composition of root exudate is complex
(Chaparro et al., 2013; Kawasaki et al., 2016); however simple sugars (such as D-glucose) have
often been detected as major components of the root exudate in terrestrial plants such as the
model dicot Arabidopsis thaliana (Okubo et al., 2016). Changes in exudate profile correlate with
compositional and functional changes in the rhizobiome (Chaparro et al., 2013).

While many isolates have been identified across ecologically distinct rhizobiomes,
isolates from several major phyla tend to dominate any given rhizobiome (Vorholt, 2012; Bai et
al., 2015). The formation of the rhizobiome is likely a deterministic process, in which microbes
both synergize and antagonize each other in competition for limited resources from root exudate
(Hassani et al., 2018). A population equilibrium, where several microbial phyla dominate, is
eventually established. For example, specific microbes could be growth limited by the plant
through the secretion of iron sequestering siderophores or antibiotics (Joshi et al., 2006; van der
Meij et al., 2017). Alternatively, microbial inhibitory mechanisms such as secretion systems
capable of puncturing neighboring cell membranes, or the secretion of antimicrobial
compounds, have also been described (Alteri and Mobley, 2016; Nester, 2014). However, the
specific environmental cues that prime a microbial response to limit the growth of other
microbes remain poorly described.

In this study, we sought to understand if microbes from a model rhizobiome compete
with each other under defined glucose supplementation conditions. We chose 11 rhizobacteria
(Table 1, Supplemental Figure 1) representative of phyla previously detected as enriched
within the roots of A. thaliana relative to bulk soil (Lundberg et al., 2012; Levy et al., 2017).
These microbes are of general interest because they can improve plant health in the presence
of specific environmental stressors (Herbert et al., 2019). We hypothesized that microbe-
microbe interactions could be readily detected by tracking the frequency by which microbes
inhibited the growth of their neighboring species. Out of 37 pairwise microbial competition
assays in this format, we detected 3 microbes which either blocked colony formation of many
microbes or specific microbial isolates. To examine the molecular mechanism underlying an
inhibitory interaction, we used a pooled transposon mutant library (Wetmore et al., 2015) built in
the soil microbe Pseudomonas putida KT2440 to identify genes required for growth in
Acinetobacter sp. 02 spent medium, and validated our findings back in the synthetic rhizobiome
microbe pair. A summary of our experimental approach is described in Figure 1.
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Results

A concurrent inoculation screen to determine microbe-microbe interactions

We developed a rapid and reproducible assay to monitor microbe-microbe interactions based
on cell viability as an alternative to technically involved methods, such as metagenomic RNAseq
or microbial capture in microdroplets (Mutha et al., 2019; Jackman et al., 2019). We adapted an
established agar plate based assay used to monitor cell-cell interactions in Saccharomyces
cerevisiae (Abelson et al., 1990; Liu et al., 2019). When two microbial isolates are grown
together (Figure 2A), it should be possible to observe one of four types of interactions based on
growth. First, there could be no detectable interaction between the two microbes. Second, both
strains could still form colonies, but exhibit morphological changes or exhibit synergistic
improved growth. Third, one of the microbes could fail to grow in the presence of the other
microbe. Finally, both microbes could be growth-inhibited when co-cultivated. Bioinformatic
analysis of these microbial genomes (Weber et al., 2015) to identify putative secreted gene
clusters indicated that many of these species had the capacity to produce a range of secreted
molecules, but it was unclear what conditions would be needed to induce production, or if any
given microbe would be sensitive to a given secreted molecule (Supplemental Table 1). A
representative agar plate is shown in Figure 2B, where Acinetobacter sp. 02 is the primary
species and tested for interactions with six secondary species. Finally, we modified this method
to allow if the continued presence of cells was required for an antagonistic interaction with a
staggered plating regime (see Materials and Methods).

When the primary and secondary microbes were inoculated at the same time, we
detected two pairwise interaction types. The majority of microbes tested for interactions showed
no detectable change in growth when co-cultured (Figure 3A). The following six isolates were
screened for interactions (A. rhizogenes, Acinetobacter sp. 02, Arthrobacter sp.,
Flavobacterium sp., Paenibacillus sp., and Ralstonia sp.) against seven others (A. rhizogenes,
Acinetobacter sp. 01, Acinetobacter sp. 02, Bacillus flexus, Brevundimonas sp., Flavobacterium
sp., and Paenibacillus sp.; n > 3) on solid LB (“limited glucose”). However, both Acinetobacter
sp. 02 and Flavobacterium sp. specifically inhibited the growth of Brevundimonas sp. under the
concurrent growth regimen (Figure 3A).

Increasing the concentration of available glucose to 55 mM in the media allowed us to
detect several additional cases of antagonistic interactions. We examined a larger set of
pairwise microbial interactions (Acinetobacter sp. 01, Acinetobacter sp. 02, Bacillus flexus,
Brevundimonas sp., Flavobacterium sp., and Paenibacillus sp., n > 3 replicates) against the
same set and added the following microbes: A. rhizogenes, Arthrobacter sp., Chryseobacterium
sp., Leifsonia sp., and Ralstonia sp.; n > 2).

Under the glucose supplemented media conditions additional inhibitory interactions were
observed. Specifically, Acinetobacter sp. 01 inhibited the growth of seven different microbes:
Arthrobacter sp., Brevundimonas sp., Chryseobacterium sp., Flavobacterium sp., Leifsonia sp.,
Paenibacillus sp., and Ralstonia sp. (Figure 3B). Acinetobacter sp. 02 inhibited a similar set of
microbes to Acinetobacter sp. 01 (Figure 3B), with the exception of Chryseobacterium sp. In
contrast, Flavobacterium sp., which was able to inhibit the growth of Brevundimonas sp. when
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grown in glucose supplemented conditions (Figure 3A), had no effect when cultivated on LB
media (Figure 3B). However there were a number of interactions, e.g. between B. flexus and
either of the Acinetobacter spp., wherein the order of inoculation could have a deterministic
effect.

We also observed a range of morphological changes in the concurrent inoculation assay
under glucose supplemented conditions. Examples include Chryseobacterium sp. changing
colony morphology and color in the co-culture assay when grown with 6 of the 11 isolates tested
(Figure 3B, Supplemental Figure 2). Ralstonia sp. appeared to rapidly overtake cells of both
A. rhizogenes or Chryseobacterium sp., but not other species such as Arthrobacter sp. or
Leifsonia sp., consistent with our definition of a non-inhibitory microbial interaction
(Supplemental Figure 3). Bacillus flexus also appeared to grow more rapidly along
Brevundimonas sp. (n=4 out of 6). Finally, Flavobacterium sp. formed an irregular border when
co-cultured with A. rhizogenes (Supplemental Figure 3). Together, these results suggest a
variety of interactions may occur between different rhizobacterial pairs and the identification of
three of the four types of potential microbial interactions.

A staggered microbe inoculation screen identifies founder effects

Having identified three microbes with clear growth inhibitory phenotypes in our
concurrent inoculation assay (Flavobacterium sp. and two isolates of Acinetobacter spp.), we
next sought to understand the mechanism underlying these interactions. Of the three, both
Flavobacterium sp. and Acinetobacter sp. 02 were able to inhibit growth of other microbes at a
distance. We hypothesized that these strains could be secreting an environment-modifying
molecule (e.g. an antimicrobial compound) or depleting a nutrient. This is in contrast to
microbial type VI secretion systems, which requires direct cell contact to lyse competitors (Alteri
and Mobley, 2016). In addition, while we did not detect any cell-cell interactions using
Paenibacillus sp. in the concurrent inoculation assay (Figure 3), evidence from the literature
suggested that members of the genus can produce growth inhibitory antimicrobials (Shaheen et
al., 2011; Meng et al., 2018). Therefore, we chose these three microbes to test whether they
could alter the growth media such that it was not inhibitory to other microbes.

We first used the staggered inoculation regime to test for microbial interactions.
Acinetobacter sp. 02, Flavobacterium sp., and Paenibacillus sp. were grown for two days either
on a sterile nitrocellulose membrane placed on top of the solid agar media. After two days, the
membrane and cells were removed, resulting in spent solid media. Alternatively, the microbes
were plated directly onto solid media (refer to Figure 2 for diagram and representative plate).
The second microbe was then streaked onto the plate (Figure 2). Being able to directly assess
growth conditions on the same agar plate strengthens our ability to detect microbial interactions
in spent agar media. Flavobacterium sp. and Paenibacillus sp. grew poorly on the nitrocellulose
membrane under nutrient-poor conditions (data not shown), and so standard LB media was
used for these assays instead. Following removal of Acinetobacter sp. 02, Flavobacterium sp.
was still inhibited (Figure 4A), the only case in which this antagonism of Flavobacterium sp.
was observed. As a primary strain, Flavobacterium sp. pretreatment inhibited the growth of both
Brevundimonas sp., as well as freshly plated Flavobacterium sp. itself, however this antagonism
not was observed on the spent solid media (Figure 4A). Similarly, Paenibacillus sp. was
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inhibitory against Bacillus flexus in the presence of Paenibacillus sp. cells only (Figure 4A). No
other interactions between other microbe pairs in the staggered assay were detected.

Next, we repeated the staggered inoculation assay with glucose supplemented media to
determine if the spent solid media was now more or less toxic. We observed that in this
experiment, Acinetobacter sp. 02 was inhibitory to all six tested microbes both with and without
the cells present (see representative plate in Figure 2B, Figure 4B). Flavobacterium sp.
inhibited the growth of Brevundimonas sp. and no other (Figure 4B). Finally, spent solid media
from Paenibacillus sp. was inhibitory to both Brevundimonas sp. and Flavobacterium sp.
(Figure 4B). This data suggests that specific microbial interactions do not require direct cell-cell
contact, and can persist even after a microbe is removed from the environment. These
interactions are differentially mediated by D-glucose concentration/ availability. These
observations support our hypothesis that growth inhibition arises through depletion of an
essential nutrient or the secretion of an antimicrobial compound.

Using RB-TnSeq in P. putida to identify secreted factors from Acinetobacter sp. 02

Having established that Acinetobacter sp. 02 modified its environment such that it was
inhibitory to a range of different microbes, we sought to identify the secreted factor(s) that
conferred this growth inhibitory phenotype. Since genetic tools are not yet available for these
recently isolated microbes, we used Pseudomonas putida KT2440 as a proxy. P. putida KT2440
is an established soil microbe found in similar environments as many microbes in our
representative rhizobiome (Molina, 2000). Wild-type P. putida KT2440 is not sensitive to the
Acinetobacter sp. 02 supernatant (Supplemental Figure 4). Accordingly, we hypothesized that
individual genes in P. putida KT2440 which are responsive to the potential antagonistic agent/
condition present in the media would provide insight into the phenotype being observed in the
rhizobacterial pairs. Using a barcoded transposon library for parallel fithess assays is an ideal
method for the rapid identification of such mutants (Wetmore et al., 2015), which has been
generated for P. putida KT2440. This barcoded library contains ~100,000 unique transposon
mutants with coverage of most nonessential genes (Thompson et al., 2019; Rand et al., 2017).
By growing these mutants in a pooled format, P. putida mutants which are sensitive to the toxic
agents in the supernatant will be outcompeted by more fit strains, and the absolute abundance
of each mutant can be determined using lllumina sequencing specific to each barcoded
transposon mutant. Analysis of transposon abundances are used to implicate gene functions
that are correlated with resistance/ susceptibility to the secreted molecule (Figure 5A).

In the RB-TnSeq data, 10 genes had a statistically significant fitness defect, relative to
the control conditions. Interestingly, many of these genes with phenotypes are involved in metal
ion transport or metabolism. Both genes in a two gene operon, PP_2645 and PP_2646, were
sensitive to the Acinetobacter sp. 02 supernatant. PP_2645 shows sequence similarity to ATP-
dependent magnesium transporters (Figure 5B) while PP_2646 remains uncharacterized
(Figure 5B). Mutants in the metal responsive transcriptional regulator, PP_5140 (merR, (Miller
et al., 2009)) and a metal-responsive outer membrane protein PP_1185 were also sensitive to
this supernatant (Figure 5B). Moreover, we also recovered mutants in PP_2378, a candidate
FelS related protein (NfuA) (Figure 5B). A comparison with an additional biological replicate of
the control condition also implicated two other metal ion related genes, PP_3244 and PP_5139,
which may be related to magnesium and cadmium transport. Both full, gene-for-gene
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comparisons can be found in Supplementary Data Set 1. Together, these gene targets
suggested that the Acinetobacter sp. 02 supernatant was growth-limiting due to the absence or
inactivation of an essential metal cofactor such as magnesium or iron.

Validation of iron requirement in synthetic rhizobiome pair

Next, we tested whether Acinetobacter sp. 02 could be reducing iron availability in the
media, for example by sequestering metal ions with a siderophore like pyoverdine (Drehe et al.,
2018). Elemental iron is a limiting and essential nutrient in all cells (Cairo et al., 2006). Our
bioinformatics analysis (Supplemental Table 1) indicated that several of the representative
microbes had the capacity to produce siderophores, and Acinetobacter sp. 02 encodes a
putative siderophore that was weakly similar (22% identity) to vicibactin (Wright et al., 2013)
(Supplemental Table 1). We tested this hypothesis by repeating our concurrent inoculation
assay with Acinetobacter sp.02 and several secondary strains, but examined conditions where
cells were grown in nutrient-rich, dilute glucose medium with or without supplemental iron. LB
media contains approximately 9.6 UM iron from yeast peptone and tryptone. Consistent with our
predictions from our functional genomics analysis, iron supplementation of the media restored
growth of Brevundimonas sp. and Leifsonia sp. (Figure 6A and 6B). The effect of iron
supplementation was dose-dependent, as 10 and 100 uM FeClI3 were sufficient to improve
Brevundimonas sp. and Leifsonia sp. growth in the presence of Acinetobacter sp. 02, but 1 uM
FeClI3 was not (Supplemental Figure 5).

Discussion

Microbes interact with the root and each other to play an important role in the
architecture of the root-associated microbial communities and their function. However, the
relationship between the root and its associated microbes is complex and remains to be
disentangled. In this report we dissect the pairwise interactions which may occur between
several representative bacterial members of the Arabidopsis root microbiome. We tested
predictions generated from analyzing the behavior of a proxy soil microbe in response to a
complex spent growth media using a systems biology approach. This analysis generated
predictive insights on the potential growth inhibitory molecule in the Acinetobacter sp. 02
supernatant, which in turn helped our understanding of microbial interactions between two
genetically unmodified rhizobacterial species. From this analysis, we provide evidence that
competition for iron in the culture media can physiological changes in Acinetobacter sp. 02 such
that it acts to limit competition from other microbes in its vicinity. Our work sheds light on the
context by which individual microbes may respond to the specialized nutrient cues from the
nutritional environment near the root, as the broad growth inhibitory activity of Acinetobacter sp.
02 is dependent on specific nutrient conditions. Moreover, the founder effects we observed in
this study could confound higher degree microbial interaction studies if the order of species
arrival in an environment is not carefully controlled.

Competition for essential metals beyond iron represents a general mechanism likely to
affect rhizobiome assembly. Both plant and animal hosts have been observed to engage in
nutritional immunity, wherein hosts sequester essential metals in order to limit the growth of
potential opportunistic pathogens. Therefore, the ability of these bacteria to compete for metals,
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both in relation to their host and other microbes, could be general mechanisms that influence
host colonization. For instance, iron and zinc homeostasis are essential for colonization of
mammalian host tissues by the pathogen Acinetobacter baumannii (Lonergan et al., 2019; Hood
et al., 2012). Similarly, root-associated Acinetobacter sp. have been observed to sequester
metals such as copper (Rojas-Tapias et al., 2012, 2014), thereby affecting plant growth. In our
system, we deduced that iron was a key driver of microbial antagonism; iron has been shown to
be a key factor in shaping both plant exudates and the microbiome (Butaité et al., 2017; Voges
et al., 2019). If we consider the context of the root, Arabidopsis roots secrete coumarins under
alkaline conditions, where iron is less bioavailable. Coumarins can both mobilize iron and act as
selective antimicrobials (Voges et al., 2019). Secretion of coumarins is regulated by the
transcription factor MYB72 (Stringlis et al., 2018), the expression of which can be induced by
certain (coumarin-resistant) rhizobacteria (Stringlis et al., 2018). With both direct and indirect
effects of iron limitation in plant/microbe communities described, identifying interactions that
occur between microbes in the community can clarify the interplay between plant root and
microbial community.

We had also expected to identify antibiotic compounds as active growth inhibitors in
these pairwise microbe interaction assays, as our bioinformatic analysis had predicted the
existence of several candidate antibiotic gene clusters in their genomes. Our functional
genomics assay of Acinetobacter sp. 02 supernatant with the P. putida RB-TnSeq library did not
implicate efflux pump gene clusters, which are a common resistance mechanism to protect
against inhibitory small molecules (Mukhopadhyay, 2015; Eng et al., 2018). As the microbes
tested in this study are representative of a synthetic model microbiome, we speculate that
activation of such gene clusters would require the presence of a pathogenic or otherwise
invasive microbial species. Introducing chemical or physical stressors, such as changes in
temperature or humidity, DNA damaging agents, or plant hormones, could reveal new
interactions between otherwise stable populations.

The methodology developed in this study enabled the examination of interactions
between relevant rhizobacterial strains and revealed the role of nutrient limitation. This
approach can be expanded to a much larger number of microbes and also higher order (greater
than pairs) interactions. While metagenomic sequencing has identified the correlating microbial
association networks present in the plant-microbe holobiont (Agler et al., 2016; Marupakula et
al., 2016; Nguyen and Bruns, 2015), our study could provide the evidence to establish causal
relationships which have been identified in these high throughput studies.

Methods

Microbial strains and cultivation

Rhizobacterial strains (Table 1) and Pseudomonas putida KT2440 were maintained in
glycerol stocks stored at -80 °C. Microbes were routinely cultivated on lysogeny broth (LB; 10
g/L tryptone, 5 g/L yeast extract, and 5 g/L NaCl) with 10g/L agar. For nutrient-rich microbe-
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microbe interaction experiments, 1X LB was used with or without supplementation with 10 g/L
glucose. For nutrient-poor experiments, 0.1X LB was prepared by dilution with sterile water,
then supplemented with glucose (final concentration: 1 g/L tryptone, 0.5 g/L yeast extract, 0.5
g/L NaCl, 10 g/L glucose). All reagents were purchased from BD Biosciences (San Jose, CA)
and were of molecular biology grade. Single colonies were obtained by streaking the desired
microbe onto LB agar and incubating for 1-3 days at 30 °C, depending on the species. Liquid
cultures were inoculated using single colonies from these plates. To verify taxonomy, strain
identification was confirmed by analysis of 16S ribosomal sequences using the following two
primers for amplification followed by Sanger sequencing: 27F: 5-
AGAGTTTGATCMTGGCTCAG-3'; 1510R: 5-GGTTACCTTGTTACGACTT-3. Standard
protocols for PCR were followed using Q5 polymerase (New England Biolabs, Ipswitch MA).
PCR was performed using manfacturer’s guidelines, and the annealing temperature was set to
50 °C for 30 cycles and a 120 second extension step at 72°C. Phylogenetic trees were
generated using NCBI taxonomy IDs and visualized using iTOLv4 (Letunic and Bork, 2019) .

Bioinformatics Analysis of Candidate Secondary Metabolite Gene Clusters

Microbial genomes in this study were analyzed using bacterial antiSMASH 3.0 (Weber et
al., 2015). Genomes were inputted into the algorithm using the appropriate NCBI TaxonID with
the following activated parameters: default strictness; KnownClusterBlast; ActiveSiteFinder;
SubClusterBlast.

Characterization of Microbe-Microbe Interactions

For both the concurrent and staggered inoculation assays, microbe-microbe interactions
were characterized based on inhibition of colony formation on an agar plate (Figure 1). Due to
the order in which primary and secondary strains were applied to the agar plate, regions were
formed for each secondary strain in which plated cells were inoculated alone and mixed with
other microbial species (see Figure 2). Microbial growth was inspected every 24 hours for the
appearance of colony forming units (CFUs) or when many viable cells were present, bacterial
lawns. If both microbes showed similar CFU formation when comingled or free from the
presence of a second microbe, there was no observed interaction. Where we observed
apparent reductions in growth of one or both microbes, these interactions were classified as
inhibitory. We further defined a category for morphological changes wherein both microbes
could grow in each other’'s presence, but had a change in colony or lawn formation. With few
exceptions, plate based assays were repeated with >3 biological replicates over many weeks,
using different batches of prepared solid agar media. Experiments were typically started using
single colonies struck out from glycerol stocks no longer than 5 days prior.

Concurrent inoculation assays

Agar (1% wi/v) plates were prepared containing either 1X or 0.1X LB + 55 mM D-glucose
as previously described (Nguyen et al., 2011; Rigali et al., 2008). A representative plate is
shown in Figure 2. The concentration of iron in LB was calculated using specifications provided
in the “Bionutrients Technical Manual Vol 3” supplied by the manufacturer (BD Biosciences). For
assays testing the role of iron availability, plates were supplemented with 1, 10, or 100 uM
FeCl;. Single colonies of a candidate microbe, designated the primary species, were first
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streaked along a plate in two parallel, vertical lines. Immediately afterwards, colonies from 4-6
secondary candidate microbes were blotted at a small point roughly equidistant from each
streak of the primary species. A sterile toothpick was then used to streak the secondary species
in a line perpendicular to the primary species such that they intersect and mix. Plates were then
incubated at 30 °C, imaged daily for 1-3 days using a Canon 550D camera, and images were
saved as JPEG files for further analysis. The brightness was adjusted uniformly to maximize
visibility. This experimental design allowed for observation of both direct cell-cell contact, as well
as effects that happen at a distance. Antagonism between microbes was defined as a visible
zone of growth inhibition in one or both species as a result of their co-culture.

Assessment of Microbial Interactions on Spent Solid Media

A sterile 0.44 um nitrocellulose membrane (1 x 5 cm) was applied to one half of the agar
plate, prepared as described above. The primary species was inoculated vertically along the
plate, with one streak on top of this membrane, and one directly onto the agar surface. Plates
were incubated for 2 days at 30 °C, after which the nitrocellulose membrane was removed
along with any associated bacteria. At this point, the inoculation of secondary species, imaging,
and analysis proceeded as in the concurrent growth assays described above.

Generation of Liquid Spent Culture Media

To test if a growth inhibitory compound was present in liquid culture media,
Acinetobacter sp. 02 was inoculated into 5 mL of 0.1X LB + 55 mM D-glucose and grown for 3
days (200 RPM, 30 °C). Spent medium was obtained by centrifuging the saturated culture and
filtering the supernatant at 0.22 um. Spent media was kept at room temperature until use, which
was no longer than 1 month. Either WT P. putida KT2440 or a P. putida KT2440 pooled
transposon library (described in (Rand et al., 2017)) was inoculated into this spent media.
Cultures were incubated at 30°C shaking at 200 RPM and samples for fitness analysis were
taken 3 hours post inoculation.

RB-TnSeq Fitness Analysis

A 1 mL aliquot of the P. putida RB-TnSeq library described previously was used to
inoculate 25 mL of 0.1X LB + 55 mM D-glucose in a 250 mL baffled flask and grown, shaking at
200 RPM, at 30°C overnight. Spent liquid media from Acinetobacter sp.02 was generated by
growing Acinetobacter sp.02 in 25 mL 0.1X LB + 55 mM D-glucose for 3 days in a baffled shake
flask at 200 rpm. After 3 days of growth, the culture was pelleted by centrifugation at 4000 rcf for
10 min and supernatant was recovered by sterile filtration through a 0.45 pM filter. The P.
putida RB-TnSeq pooled mutant library was inoculated into either 0.1X LB + 55 mM D-glucose
or the spent media. Samples were taken as a “Time 0” and the preculture was used to inoculate
700 L of 100% Acinetobacter sp.02 spent media or control media per well of a 48 well plate.
Plates were sealed with a gas-permeable membrane and incubated at 30°C overnight, shaking
at 200 RPM. Undiluted Acinetobacter sp. 02 spent media used here does not allow for the
growth of P. putida KT2440; therefore after a 24 hour incubation we back-diluted the inoculated
spent media 1:10 into fresh 0.1X LB + D-glucose in a 48 well plate. After an overnight outgrowth
samples were pelleted and frozen at -80C for barcode sequencing. We performed DNA barcode
sequencing as previously described (Wetmore et al., 2015). The fithess of a strain is defined
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here as the normalized log; ratio of barcode reads in the experimental sample to barcode reads
in the time zero sample. The fitness of a gene is defined here as the weighted average of strain
fithess for insertions in the central 10% to 90% of the gene. All fithess data in this work is
publicly available at http://fit.genomics.Ibl.gov.
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Tables
Table 1. Summary of microbes used in this study.
Figure Legends

Figure 1. Workflow for bacterial chemical genomic screen. Rhizobacteria mediate complex
interactions in the rhizosphere (green-shaded box). After isolation, rhizobacteria are screened
for potential interactions and an RB-TnSeq library of a model microorganism (orange-shaded
box). Finally, RB-TnSeq data are analyzed and used to characterize and validate microbe-
microbe interactions.

Figure 2. Methodology for microbial interaction screen. (A) Multiple rhizobacteria are used to
inoculate LB plates, either concurrently or staggered such that the vertical, “primary” species
was grown for 2 days before the introduction of a secondary species. For staggered inoculation
assays, half of the primary inoculum was grown on top of a nitrocellulose membrane that was
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removed prior to secondary inoculation. (B) Representative images of staggered inoculation
assays with Acinetobacter sp. 02 grown in co-culture with six rhizobacterial species. Dashed
lines indicate the location of a 0.44 um nitrocellulose membrane prior to removal. Brightness
and contrast have been uniformly edited to increase visibility.

Figure 3. Results of concurrent inoculation interaction screen. Interactions observed on (A) LB
or (B) 0.1X LB supplemented with 55 mM D-Glucose. Rows represent primary, vertically-
streaked species and columns represent secondary, horizontally-streaked species.

Figure 4. Results of staggered inoculation interaction screen. Interactions observed on (A) LB
or (B) LB supplemented with 55 mM D-Glucose. Rows represent primary, vertically-streaked
species and columns represent secondary, horizontally-streaked species. n = 3. Where

interactions were variable by colony, the most frequently observed interaction is displayed.

Figure 5. Pseudomonas putida KT2440 RB-TnSeq results. (A) Scatterplot of gene fithess
values from P. putida KT2440 grown in Acinetobacter sp. 02 supernatant vs. control media. (B)
The top ten depleted genes in library populations grown in supernatant and relevant log,-fold
decreases relative to the population at Time 0.

Figure 6. Iron supplementation in Acinetobacter sp. 02 concurrent interaction assay.
Acinetobacter colonies were streaked vertically on LB with or without 100 uM supplemental

FeCl; followed by the perpendicular inoculation of the secondary species indicated. Dashed

lines indicate interactions that change depending on iron supplementation. n = 3.

Supplemental Data Legends

Supplemental Figure 1. Phylogeny of rhizobacteria used in this study. Genus-level description
of selected rhizobacteria and their representation within major bacterial phyla. The phylogenetic
tree was generated using NCBI taxonomy IDs and visualized using iTOL V4.

Supplemental Figure 2. Representative images of Chryseobacterium sp. grown in co-culture
with other rhizobacteria. Chryseobacterium biomass changes color and opacity when co-
cultured with A. rhizogenes or Arthrobacter sp., but not when co-cultured with itself.

Supplemental Figure 3. Representative images of Ralstonia sp. growing along the biomass of
other rhizobacteria.

Supplemental Figure 4. P. putida KT2440 grows in Acinetobacter sp. 02 supernatant. A log
phase culture of P. putida KT2440 was back-diluted into fresh 1/10x LB + glucose, or spent
liquid media from Acinetobacter sp. 02. After 3 hours of growth at 30°C, cultures were serially
diluted and plated onto LB solid agar media to assess colony formation.
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Supplemental Figure 4. The effect of iron on interactions between Acinetobacter sp. 02 and

other rhizobacteria is dose dependent. N = 3.

Supplemental Table 1. Summary of anti-SMASH gene clusters identified from microbes in this
study.
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Growth in 0.1X LB + 55 mM D-glucose
Gene LocusID Description Acinetobacter sp. 02 0.1XLB + 55 mM
supernatant D-glucose
1 PP_2645 magnesium transporter, ATP-dependent -4.369 -0.124
2 PP_5017 Sec-independent protein translocase -2.670 0.300
protein TatB
3 PP_2646 @ conserved protein of unknown function -2.638 0.140
4 PP_5140 @ Transcriptional regulator, MerR family -2.617 -0.970
5 PP_1185 Outer membrane protein H1 -2.582 -0.561
6 PP_2378 Fe/S biogenesis protein NfuA -2.480 0.233
7 PP_2088 RNA polymerase sigma factor SigX -2.336 -0.877
8 PP_5155 D-3-phosphoglycerate dehydrogenase / -2.329 -0.585
alpha-ketoglutarate reductase
9 PP_t12 tRNA-Thr -2.274 -0.294
10 | PP_0691 Glutamate 5-kinase -2.003 -0.853
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Ralstonia sp.

Brevundimonas sp.

Flavobacterium sp.

Leifsonia sp.

Acinetobacter sp. 02

LB Only LB + 100 uM FeCls

Brevundimonas sp.

Leifsonia sp.

Acinetobacter sp. 02
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Arthrobacter sp.
Leifsonia sp.

Bacteroidetes:
Chryseobacterium sp.
Flavobacterium sp.

Firmicutes:
Bacillus flexus
Paenibacillus sp.

a-Proteobacteria:

Agrobacterium rhizogenes
Brevundimonas sp.

B-Proteobacteria:
Ralstonia sp.

y-Proteobacteria:
Acinetobacter sp. 01
Acinetobacter sp. 02

I
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Chryseobacterium sp.

A. rhizogenes

Arthrobacter sp.
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A. rhizogenes Chryseobacterium sp.

Arthrobacter sp. | Arthrobacte

r sp. .
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B

Ralstonia sp. Ralstonia sp.

Leifsonia sp. Leifsonia sp.
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LB LB + 1 uM FeCl3
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