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Abstract

The tumour stroma regulates nearly all stages of carcinogenesis. Stromal heterogeneity in
human triple-negative breast cancers (TNBCs) remains poorly understood, limiting the
development of stromal-targeted therapies. Single cell RNA-sequencing of five TNBCs
revealed two cancer-associated fibroblast (CAF) and two perivascular-like (PVL)
subpopulations. CAFs clustered into two states, the first with features of myofibroblasts and
the second characterised by high expression of growth factors and immunomodulatory
molecules. PVL cells clustered into two states consistent with a differentiated and immature
phenotype. We showed that these stromal states have distinct morphologies, spatial
relationships and functional properties in regulating the extracellular matrix. Using cell-
signalling predictions, we provide evidence that stromal-immune crosstalk acts via a diverse
array of immunoregulatory molecules. Importantly, the investigation of gene signatures from
inflammatory-CAFs and differentiated-PVL cells in independent TNBC patient cohorts
revealed strong associations with cytotoxic T-cell dysfunction and exclusion, respectively.
Such insights present promising candidates to further investigate for new therapeutic

strategies in the treatment of TNBCs.
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Introduction

Heterotypic interactions between stromal, immune and malignant epithelial cells play
important roles in solid tumour progression and therapeutic response. Cancer-associated
fibroblasts (CAFs) play an integral part in the tumour microenvironment (TME), and can
influence many aspects of carcinogenesis including extracellular matrix (ECM) remodelling,
angiogenesis, cancer cell proliferation, invasion, inflammation, metabolic reprogramming
and metastasis [1]. Recent studies have described roles for CAFs in mediating immune
suppression and chemo-resistance, establishing CAFs as novel and attractive targets for
anti-cancer therapies in advanced breast cancer [2-6]. Despite their well-described roles in
cancer biology, CAFs remain enigmatic: limited studies suggest phenotypic heterogeneity,
plasticity and functional diversity, with both tumour-promoting and tumour-suppressive
properties [1]. The multi-faceted nature of CAFs suggests that they are comprised of diverse
subpopulations, and an improved understanding of stromal heterogeneity may explain how
CAFs contribute to the dynamic complexity and functional malleability of the tumour

ecosystem.

CAFs of the tumour parenchyma are routinely studied using a handful of markers including
a-smooth muscle actin (a-SMA), fibroblast activation protein (FAP), CD90 (THY-1), platelet
derived growth factor receptor a and  (PDGFRa and PDGFR}), podoplanin (PDPN) and
fibroblast specific protein 1 (FSP-1, also named S100A4) [1, 7-9]. However, these markers
are not necessarily co-expressed, nor specific to the fibroblast lineage [4]. For instance, a-
SMA not only identifies CAFs with a myofibroblast morphology but also serves as a general
marker for myoepithelial cells and perivascular cells. a-SMA+ cells in the breast tumour
stroma can also arise from different mesenchymal lineages including resident fibroblasts,
smooth muscle cells and pericytes [10]. In addition, FSP1 is also expressed in

macrophages, other immune cells and even cancer cells [11]. Thus, a categorical definition
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of cancer associated stromal cells and specific cell surface markers remains challenging

and is urgently needed [1].

Three broad CAF subtypes have been recently profiled in mouse models of pancreatic
ductal adenocarcinoma (PDAC) [12-14]. These are characterised by a myofibroblast-like
(myCAFs) phenotype, inflammatory properties (iCAFs) and antigen presenting capabilities
(apCAFs) [12-14]. Although little is known about the mechanistic role and clinical relevance
of iCAFs and apCAFs, an accumulation of the myCAF marker a-SMA has been shown to
correlate with poor outcome in breast and pancreatic cancer [15, 16]. We have shown that
targeting Hedgehog-activated CAFs, which have a myofibroblast-like phenotype in ECM
regulation, results in markedly improved survival, chemosensitivity and reduced metastatic
burden in pre-clinical models of TNBC [3]. In addition, myofibroblast-like CAFs have been
shown to contribute to an immunosuppressive microenvironment by attracting T-regulatory
cells in breast and ovarian cancer [4, 5]. While these studies point towards the therapeutic
targeting of myofibroblast-like CAFs, genetic ablation of a-SMA+ cells in a mouse model of
PDAC resulted in more aggressive tumours and reduced mouse overall survival, indicating

complex stromal functionalities across distinct tissue sites [17].

Recent advances in single-cell RNA sequencing (scRNA-Seq) have overcome some of the
technical hurdles in the investigation of cellular heterogeneity amongst complex tissues such
as carcinomas. Recent patient studies have dissected the TME in head and neck squamous
cell carcinomas and lung tumours, revealing new insights into stromal and immune subsets
associated with disease progression [18, 19]. Single-cell studies of human breast cancers
have been limited to immune cells, while studies in mouse models have revealed four

subclasses of CAFs [20]. Although CAFs from human breast carcinomas have been profiled
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by flow cytometry and bulk sequencing, comprehensive single-cell profiling has yet to be

performed in TNBC patients [4].

TNBC is an aggressive breast cancer subtype, which is lacking in effective targeted
therapeutic options. It is clinically defined by negative status for targetable hormone
receptors (estrogen receptor and progesterone receptor) or HER2 amplification. Studies in
mice and humans have demonstrated that TNBC progression can be influenced by stromal
cells however, a comprehensive understanding of the stromal hierarchy is yet to be
established [2-6]. To investigate this in more detail, we performed unbiased high-throughput
scRNA-Seq to profile the TME directly in patient tumour tissues. In addition to CAFs, we
identified stromal cells with a perivascular-like (PVL) profile, which were not necessarily
associated with blood vessels. Our study focuses exclusively on CAFs and PVL cells, which
we collectively refer to as ‘stroma’. Using orthogonal methods, we found that functions
previously ascribed to CAFs as unitary cell types are actually performed by specialised
subsets of stromal cells with distinct morphological, spatial and functional properties [20]. In
addition, by sampling cells from the entire TME, we were able to predict paracrine signalling
between stromal and immune cell subsets. From this, we analysed large patient gene
expression datasets to show significant association between inflammatory-like CAFs and
differentiated-PVL cells with immune evasion. Our human TNBC single-cell datasets provide
a new taxonomy of human cancer-associated stromal cells, which we envisage can be used

to further develop TME-directed therapies.

Results
Composition of triple-negative breast cancers at cellular resolution
We performed scRNA-Seq on primary breast tumours collected from five patients (Fig.

EV1A-B) using a marker free approach. Fresh tissues were dissociated into single cell
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suspensions prior to single-cell capture on the Chromium controller (10X Genomics) and
sequencing on the NextSeq 500 (lllumina) (Fig. 1A; Fig. EV1C). In total, we sequenced
24,271 cells, with an average of 4,854 cells per patient (Fig. EV1D). A total of 28,118 genes
were detected with an average of 1,658 genes expressed, and 6,215 unique molecular
identifiers (UMIs) detected per cell (Fig. EV1E-H). Data from individual tumours were

integrated and clustered using canonical correlation analysis (CCA) in Seurat [21].

Epithelial cells (Fig. 1B-C) and stromal-immune cells (Fig 1D-E) were first annotated through
the expression of canonical cell type gene markers. This revealed four major cell states
within the epithelial compartment (Fig. 1B-C), including a major cluster of 4,095 cancer cells
(16.9% of all cells; EPCAM*, ESR1") and a second cluster of 614 cancer cells with high
proliferation (2.5%; MKI67*). The remaining two smaller epithelial clusters had gene
expression features consistent with normal luminal (277 cells, 0.9%; EPCAM*, ESR1%) and
myoepithelial cells (212 cells, 0.9%; EPCAM®°, KRT5*, KRT14* and ACTAZ2*). Neoplastic or
normal status of these cell clusters was confirmed by inferring genome copy number
alterations over large genomic regions using InferCNV (Appendix Fig. S1) [22]. In addition
to marker genes, stromal and immune clusters were further classified through scoring
against published cell type signatures from the XCell database with an area under the curve
approach (AUCell) (Fig. EV2A) [23, 24]. In the immune compartment (Fig 1D-E), we
identified 7,990 T-lymphocytes (32.9%; CD3D), 1,245 B-cells (5.1%; MS4A1), 1,955 plasma
cells (8.1%; JCHAIN) and 4,606 myeloid cells (19.0%; CD68). Through re-clustering of the
T- lymphocytes (Fig. EV2B-D), we identified 175 T-follicular helper cells (2.2%; CXCL13 and
CDZ200), 994 T-Regulatory cells (12.4%; FOXP3 and BATF), 2,003 other CD4+ T-cells
(25.1% of all T-cells; CD4, IL7TR and CD40LG), 3,691 CD8+ T-cells (46.2%; CD8A and
GZMH), 605 proliferating T-cells (7.6%; MKI67), 358 NK Cells (4.5%; GNLY, KLRD1, NCR1,

XCL1 and NCAM1) and 164 NKT cells (2.1%; GNLY, KLRD1, NCR1 and CD3D"). The
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remaining cells consisted of 610 endothelial cells (2.5%; PECAM1) and two distinct clusters
(with 1,409 and 320 cells, 5.8% and 1.3%, respectively) sharing the expression of common
stromal markers including PDGFRB, S100A4 (FSP-1), ITGB1 (CD29) and THY1 (CD90).
These non-endothelial nor immune cells (collectively referred to as stromal in this study)
were enriched for a fibroblast cell type signature from XCell (Fibroblasts FANTOM_1; Fig.
EV2A). All annotated cell types were detected in each patient, with varying proportions of
cell types between cases, indicating no patient specific sub-populations in our integrated

dataset (Fig. 1F).

Reclustering stromal cells revealed four distinct sub-clusters in human TNBCs

Although the stromal clusters shared many common markers used to study CAFs, we further
inspected their heterogeneity through reclustering each population (Fig. 2A). Sub-clusters
were detected across multiple clustering resolutions in the FindClusters function in Seurat
(resolutions 0.2, 0.3 and 0.4), with varying proportions from each patient (Fig. 2B). The first
cluster, which was classified as CAFs through the expression of fibroblast-specific markers
(PDGFRA, COL1A1, FAP and PDPN), formed two sub-clusters (Fig. 2A-C). The first CAF
sub-cluster was comprised of 280 cells (16.2% of all stromal; red cluster) and was classified
as myofibroblast-like CAFs (myCAFs) through the elevated expression of activated
fibroblast markers (ACTA2, FAP and PDPN) and collagen-related genes (COL1A71 and
COL1A2) (Fig. 2C-D) [12-14]. The second CAF sub-cluster comprised of 1,129 cells (65.3%;
orange cluster; Fig. 2A-C) and resembled inflammatory-CAFs (iCAFs) through the
enrichment of the CAF chemokine marker CXCL12 (also known as SDF-1) (Fig. 2C-D) [12-
14]. We next compared our CAF clusters to the subsets previously reported in pancreatic
cancer [12-14]. This was performed by scoring published CAF gene signatures across our
stromal clusters using the AUCell method (Fig. EV2E) [23]. This revealed the enrichment of

pancreatic myCAF and iCAF signatures in our breast myCAF and iCAF clusters,
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respectively, suggesting similar phenotypes likely exist across both tissue sites (Fig. EV2E).
While the signatures were largely conserved, a number of human PDAC CAF markers were
detected in opposing cell types, for example IL6 was expressed by PVL cells rather than
iCAFs (Fig. EV2F). No clusters showed any particular enrichment for signatures of antigen-
presenting CAFs, potentially because they are a rare cell type that was not sampled, or are

unique to pancreas tumours (Fig. EV2E).

In contrast, the second stromal cluster was enriched for perivascular markers, including
genes associated with pericytes and smooth muscle cells (ACTA2, MCAM, CAV1, TAGLN,
MYH11, MYLK and RGS5; Fig. 2C-D) [25]. MCAM (also known as CD146) has shown to be
a robust marker to differentiate perivascular cells from fibroblasts in human tissues [26-29].
PVL cells were further classified as either differentiated-PVL (dPVL; 122 cells in light blue,
7.1%), characterised through the enrichment of myogenic differentiation genes (TAGLN,
MYH11 and MYLK), orimmature-PVL (imPVL; 198 cells in dark blue; 11.5%), characterised
by the elevated expression of genes associated with an immature phenotype (PDGFRB,
CD36 and RGS5) (Fig. 2C-D) [30]. To our surprise, both PVL subsets were also enriched
for the human PDAC myCAF signature, suggesting PVL cells share some similarities in
gene expression profile with myCAFs (Fig. EV2E-F). All four stromal subsets were detected
in all five patients, however there were differences in the proportions between the patients
(Fig. 2B; Fig. EV3A-B). The stromal profiles of Patient-1 (P1) and P2 were predominantly
comprised of iCAFs, myCAFs were highest in P3, whilst PVL cells were highly abundant in

P4 and P5 (Fig. 2B; Fig. EV3A-B).

Next, we identified differentially expressed genes (DEGs) between the four subsets using
the MAST method, which compares each subset against all other subsets [31]. This

identified a total of 894, 610, 258 and 289 DEGs (log fold change threshold of 0.1, p-value
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threshold of 1x10-° and FDR threshold of 0.05) by myCAFs, iCAFs, dPVL and imPVL cells,
respectively (Fig. 2D; Appendix Table S1). We performed gene ontology (GO) analysis using
the top 250 DEGs from each subset using the clusterProfiler tool (Fig. 2E; Appendix Table
S2) to determine the pathway level differences driving stromal heterogeneity [32]. This
revealed an enrichment of collagen biosynthesis and ECM-regulatory pathways in myCAFs,
which included fibrillar collagen genes COL1A71 and COL1A2 and ECM remodelling
metalloproteinases MMP1 and MMP11 (Fig. 2D-E). We identified the enrichment of
developmental signalling pathways and chemotactic regulation in iCAFs, including soluble
factors such as /IGF1, FIGF and PDGFD, and the chemokines CXCL712 and CXCL13 (Fig.
2D-E). Stem cell markers including ALDH1A1 and ID2, and the growth factor receptor EGFR
were also upregulated in iCAFs (Fig. 2D). Within the PVL cells, the dPVL cluster was
enriched for pathways related to the muscle system and contractility, while the imPVL cluster
was enriched for pathways related to focal and substrate adhesion, including the integrin
molecule ITGA1 (Fig. 2D-E). No stromal clusters expressed canonical markers for
proliferation, including MKI/67 and AURKA. As many of the genes and pathways identified
were related to cell activation and contractility, we hypothesised that the stromal sub-clusters
resembled cell differentiation stages rather than distinct subpopulations. Cell trajectories
were examined using the Monocle method, which revealed subsets of CAFs and PVL cells
distributed across pseudotemporal space (Fig. EV3C-D) [33]. For example, COL1AT1,
ACTAZ2 and CXCL12 expression transitioned throughout CAF differentiation (Fig. EV3C),
while CD36, RGS5 and MYH11 transitioned throughout PVL differentiation (Fig. EV3D). Our
findings indicate that the stroma in TNBC is comprised of four major transcriptional states
related to cell differentiation, which branch from the two major fibroblast and perivascular-

like lineages.

Transcription factor pathways enriched across stromal subclasses

10
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We next sought to investigate if gene regulatory networks could further explain the
underlying heterogeneity in stromal subpopulations. To examine the activity of CAF and PVL
transcription factors (TFs), we applied the SCENIC method to build gene regulatory
networks from scRNA-Seq data and identify activating cis-regulatory elements [23, 34].
Through applying this to the normalised stromal gene expression matrix, SCENIC identified
a total of 190 activated TFs, of which 166 were identified to be significantly different across
the four stromal subsets (one-way ANOVA; p-value threshold of 1x10-°). We focused on the

top 50 strongest candidates based on their average AUC values (Fig. 3; Appendix Fig. S2).

In examining the top candidate TFs (Fig. 3; Appendix Fig. S2), ZEB1 and FOXP1 were
enriched in myCAFs. A recent study inhibiting stromal ZEB1 in the PyMT mouse model of
breast cancer reduced tumour growth, invasion and impaired ECM deposition [35]. In other
tissue contexts, FOXP1 was reported to regulate the fibrotic potential of stromal cells via the
Whnt/beta-catenin pathway, including myCAF marker genes such as ACTA2 and COL1A1
[36]. Known roles of such TFs are consistent with the predicted ECM-regulating phenotype
of myCAFs. The EGRZ2 and TCF7LZ2 regulons were enriched in iCAFs (Fig. 3). EGR2 is
known to regulate the expression of immunomodulatory molecules in mesenchymal stem
cells [37]. The TCF family including TCF7L2 (also known as TCF4) are Wnt-regulated TFs
that are highly expressed during early development [38]. As iCAFs also expressed the stem
cell markers ALDH1A1 and ID2, we hypothesised that they resemble a stem or progenitor-

like state.

For PVL cells, MEF2C was a highly enriched driver in both subsets (Fig. 3). Myocyte
enhancer factor 2 (MEF2) is a well-defined regulator for the development of vascular smooth
muscle cells [39, 40]. We identified KLF2 enriched in dPVL cells, and NR2F2 enriched in

imPVL cells (Fig. 3). KLF2 is required for smooth muscle cell migration and maturation in

11
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blood vessel formation, consistent with the predicted differentiation state of dPVL cells [41].
Furthermore, NR2F2, also known as COUP-TFII, is highly expressed by myogenic
precursors and is known to inhibit muscle development, which is consistent with the
predicted immature state of imPVL cells [42]. In summary, we identified unique and novel
TF drivers in each of the four stromal subclasses, providing further insights into the

transcriptional drivers underlying stromal heterogeneity.

Validation of stromal subsets in primary breast cancer tissue

To validate the existence of the four stromal subclasses described above in TNBC patient
tissue (Fig. 4A), we first performed fluorescence-activated cell sorting (FACS) isolation on
scRNA-Seq matched human tissue sections (Fig. 4B). Our gating strategy used EPCAM,
CD45 and CD31 as negative markers to exclude epithelial, immune and endothelial cells,
respectively (Fig. 4B). We additionally used PDGFRp to positively select all stromal
populations and avoid contaminations from cancer stem cells and breast myoepithelial cells
which have low EPCAM expression [43, 44]. Based on our initial SCRNA-Seq findings, we
determined PDGFRa and CD146 (MCAM) as good markers to discriminate CAFs and PVL
cells, respectively. Following the initial isolation and culturing of CAFs
(PDGFRB*/PDGFRa*/CD1467) and PVL cells (PDGFRB*/PDGFRa/CD146*), we next
performed simultaneous FACS analysis of additional stromal markers to validate the
presence of the four stromal subsets in culture. We show that myCAFs and iCAFs could be
distinguished by FAPH!CH/CD90H!CH and FAP-°W/CD90-°W expression, respectively (Fig. 4B,
Fig. EV3E-F), whilst imPVL cells could be discriminated from dPVL cells by CD36"
expression (Fig. 4B, Fig. 4B). We validated the gene expression of cultured bulk and sorted
CAF fractions using quantitative real time PCR (qPCR) (Fig. EV3G). As controls, PDGFRA
and PDGFRB were expressed in both the FAP-high and FAP-low populations. Consistent

with the FACS sorting strategy and scRNA-Seq findings, FAP and ACTAZ2 were enriched in
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FAPHICH(myCAF) sorted cells, while CXCL72 and EGFR were enriched in FAP-OW (iCAF)
sorted cells (Fig. EV3G). We next performed immunofluorescence (IF) to further validate
additional markers and explore potential morphological differences. Here, o-SMA
expression was used to identify myCAFs from iCAFs (Fig. 4C; Fig. EV4A), and CD36 to
distinguish imPVL from dPVL cells (Fig. 4D; Fig. EV4B). From our observations, myCAFs
and dPVL cells had a more elongated morphology in comparison to iCAFs and imPVL cells
(Fig. 4C; Fig. EV4A), which is consistent with the predicted differentiation state of each
subset. Importantly, we defined a novel gating strategy that allowed us to purify the four

stromal subsets for subsequent in vitro functional characterisation.

Myofibroblast-like CAFs have elevated capabilities for collagen secretion and
alignment

From the above results, we predicted myCAFs to be the predominant subset synthesising
ECM components. To investigate this, we generated cell-derived matrices (CDMs) to
compare the ability of each human stromal subset to lay down collagen, as previously
described [45]. Purified stromal subsets were seeded and cultured onto glass for 7 days. To
assess Collagen | deposition, we used Second Harmonic Generation (SHG) microscopy,
which is a sensitive method for quantifying fibrillar collagen density and orientation in an
unlabelled manner. This revealed FAP"'®" myCAFs had a significant increase in SHG signall
intensity compared to FAP-°WiCAFs, while PVL cells had a significantly lower SHG signal
compared to both CAF subsets (Fig. 4E). Higher densities of stromal collagen is a hallmark
of breast tumour growth, invasiveness, and risk of disease development [46-48]. Our
findings also indicate that PVL cells do not adopt fibroblast-like traits in contributing to the
collagenous TME. Further analyses of collagen fibre orientation also revealed that in
addition to increased amounts, the orientation of the collagen fibres deposited by myCAFs

was more uniformly aligned compared to iCAFs and PVL cells (indicated by the higher,
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narrow peak in Fig. 4F). It has been previously shown that tumour associated collagen
signatures (TACs), characterised by the alignment of collagen fibres, is a good factor for
predicting breast cancer survival [49]. In further parallels to pancreatic cancers, FAP-
overexpressing fibroblasts have been shown to produce more parallel aligned fibres,
enhancing the directionality and velocity of cancer cell invasion [50]. Importantly, these data
highlights that the regulation of the ECM, namely in collagen density and orientation, is
mainly regulated by the specialised myCAF subsets. In summary, our findings demonstrate
that the stromal subclasses described here are functionally distinct, and provide a novel

strategy for their purification from breast cancers.

Stromal subclasses are spatially distinct

To investigate the spatial localisation of CAFs and PVL cells, we performed
immunohistochemistry (IHC) with markers identified by scRNA-Seq on data matched patient
tissues. We also wanted to validate that CAFs and PVL cells localise to the intratumoural
regions of tumour specimens and are not from adjacent normal tissue or blood vessels. We
stained serial 4 ym sections and identified stromal cell types using a combination of markers
identified previously by scRNA-Seq and DGE (Fig. 2C): pan-stromal (PDGFR*), myCAFs
(PDGFRB*, a-SMAHICH and CD146°), iCAFs (PDGFRp*, a-SMA-, CD34M¢H and CD146°) and
PVL cells (PDGFRB*, a-SMAM'®H CD34- and CD146*). As CD34 and CD146 are commonly
used markers of the endothelium but are mutually exclusive in CAFs and PVL cells, we used
their co-localisation in combination with PDGFR staining and morphology (rings
surrounding lumen) to identify endothelial cells [26]. This IHC strategy revealed regions
where myCAFs (a-SMAHCH) were located in close proximity to the invasive tumour interface,
while iCAFs (CD34M'®H) were relatively distal to this interface (Fig. 4G). In these particular
cases, no PVL cells were present in these regions and CD146 was completely restricted to

blood vessels (Fig. 4G). In distal regions which were enriched for iCAFs, we also identified
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a high co-localisation of tumour-infiltrating lymphocytes as identified by morphology (Fig.

4G).

By definition vascular smooth muscle cells (vSMCs) and pericytes should be localised
around arteries and veins to facilitate vascular development and stability. To examine
whether PVL cells are vessel-associated, we used co-IF staining for CD31 and CD146 to
mark endothelial cells and PVL cells, respectively. We readily detected PVL cells at non-
blood vessel regions in the stroma of 4 out of 5 matched patient tissue sections (all cases
except P3), including P4 where it was highly abundant (Fig. 4H-I; Fig. EVAC). Consistent
with the cell proportions identified by scRNA-Seq, PVL cells were highly abundant in P4,
and lowly detected in P3 (Fig. 2B). PVL cells were highly dispersed throughout the tumour
stroma with no obvious co-localisation to the invasive malignant borders. Importantly, our
findings suggest that these smooth muscle-like cells, like CAFs, can be readily identified

disseminated throughout the stroma, independent of blood vessels.

To understand how the four stromal subpopulations correspond to their normal tissue
counterparts, we repeated the staining of PDGFRp, CD34, a-SMA and CD146 on healthy
breast tissue collected from four women. This revealed a high abundance of iCAF-like
fibroblasts (PDGFRp*, a-SMA-, CD34M¢H and CD146°) surrounding ductal regions, while
myCAF-like fibroblasts (PDGFRB*, a-SMAM!®H and CD146°) were sparsely detected across
all four cases (Fig. EV4D). While this small panel of markers do not highlight the large
transcriptional changes that may occur upon CAF activation, it does suggest that the broad
iCAF-like and myCAF-like fibroblast subsets are resident cell types which are reactivated
during carcinogenesis. For PVL cells, IHC staining of CD146 was completely restricted to
blood vessels (Fig. EV4D). This further confirmed using co-IF staining for CD31 and CD146

on the normal tissue cases, where CD146 was completely restricted to CD31-positive blood
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vessels (Fig. EV4E). Our findings suggest that disseminated PVL cells are a distinct feature

in a subset of TNBCs.

Distinct ligand receptor expression predicts diverse stromal crosstalk to the tumour
microenvironment

We next sought to investigate how spatially distinct stromal subclasses may interact with
other cells within the TME. Here, we annotated our scRNA-Seq dataset using a published
set of curated human ligand-receptor pairs [51]. We used these annotations to construct a
cell-to-cell communication network and predict intratumoral signalling between the four
stromal clusters, and the surrounding neoplastic, immune and endothelial
microenvironment. This revealed diverse stromal signalling profiles (Fig. 5A), with myCAFs
and iCAFs having the highest overall predicted ligand activity out of all the cell types (Fig.
5B). The ‘interaction strength’, or the weight of each edge, was defined as the product of
expression levels of the corresponding ligand and receptor. All ligand-receptor pairs with an
arbitrary ‘interaction strength’ cut-off of 0.1 were classified as candidate signalling
molecules, which revealed a total of 570, 482, 437 and 357 unique predicted interactions
between stromal clusters with cancer epithelial cells, endothelial cells, myeloid cells
(Appendix Fig. S3A-C) and T-cell subpopulations, respectively (Appendix Fig. S3D;

Appendix Table S3).

Consistent with the enrichment of growth factor signalling gene ontologies in iCAFs (Fig.
2E), we identified a strong upregulation of crosstalk via the FGF (FGF7 and FGF10), BMP
(BMP4 and BMP7), HGF and IGF1 pathways to their cognate receptors across cancer cells
and endothelial cells (Fig. 5C; Appendix Fig. S3A-B). These factors are known to be highly
expressed in breast tumours and associated with breast cancer proliferation, invasion and

inducing cancer stem-cell (CSC) phenotypes [52-55]. Different ligands from these pathways
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were also identified from myCAFs and dPVL cells, suggesting that neoplastic phenotypes
could also be influenced by different stromal cells (Appendix Fig. S3A). As we identified
iCAFs to be located more distal to the invasive tumour interface, we hypothesize that these
secreted factors function from a distance. For signalling to the endothelial compartment,
iCAFs and PVL cells were both enriched for well-characterised growth factors involved in
angiogenesis (Appendix Fig. S3B). Classical angiogenic pathways including VEGFs (FIGF,
also known as VEGFD), PDGFs (PDGFC), IGFs (IGF1 and IGF2) and Notch signalling
(DLK1) were enriched in signals emanating from iCAFs (Appendix Fig. S3B). These
pathways suggest that the inflammatory CAF phenotype is also associated with tumour
neovascularisation [56, 57]. In addition, PVL-derived signals were enriched for the canonical
ANGPT1/ANGPT2-TIE1 pathway, which are known stimuli that can induce the sprouting of

new vessels during the formation of new endothelial tubes [58].

Given the reported immunoregulatory properties of mesenchymal cells [4, 5], we next
focused on the signalling of stromal cytokines and checkpoint molecules to immune
populations. Here, we identified an enriched interaction between iCAFs and myeloid cells
via the complement cascade activation interaction C5-C5AR1 (Fig. 5D; Appendix Fig. S3C).
C5 activation in the TME acts as a chemotactic factor for the recruitment of
immunosuppressive myeloid cells to suppress T-cell activities [59]. In addition, myCAFs and
iCAFs were enriched for TGFB1-TGFBR1 and TGFB2-TGFBR1 interactions with myeloid
cells, respectively (Fig. 5D; Appendix Fig. S3C). As TGFp-activated myeloid cells have been
shown to enhance breast cancer progression and metastasis in vivo, it suggests that both
CAF subsets could influence myeloid phenotypes [60]. While the TGFBR1 receptor was
predominantly enriched on myeloid clusters, it is worth noting that its expression was also
detected by cancer and endothelial clusters (Fig. 5D). Although PVL cells had lower ligand

expression profiles compared to CAFs, several immunomodulatory cytokine interactions
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were predicted between PVL cells and myeloid cells, including an enrichment of the CCL8-
CCR1, IL6-IL6R and CCL2-CCR1 pathways (Fig. 5D; Appendix Fig. S3C). CCL2 produced
by the microenvironment in other cancers has been shown to be essential for the recruitment
of T-Regs and tumour-associated macrophages, supporting an additional role of PVL cells

in recruiting immunosuppressive cells [61].

For the signalling to the lymphocyte compartment, iCAFs had a strong upregulation of the
chemo-attractant pathways CXCL12-CXCR4 and CXCL13-CXCRS5 with T- and B-cells (Fig.
5E; Appendix Fig. S3D). CAF derived CXCL12 has been shown to recruit and regulate the
activity of CD4+/CD25+ T-Regs in breast cancers, suggesting iCAFs may have a direct role
in recruiting immunosuppressive populations [4, 5]. CXCL12 and CXCL13 signalling axes
have also been shown to mediate lymphocyte recruitment to tertiary lymphoid structures
(TLS) [62]. MyCAFs were also enriched for secreted immunoregulatory molecules and
checkpoints including CXCL9-CXCR3, CXCL11-CXCR3 and CD274-PDCD1 (PDL1-PD1)
with T-cells (Fig. 5E; Appendix Fig. S3D). Lastly, only few candidates were identified
between PVL cells with T-cells, including the enrichment of CCL27-CCR7, which is
associated with immune tolerance in favour of tumour progression (Fig. S5E; Appendix Fig.
S3D) [63]. It is evident from our signalling predictions that diverse immunoregulatory
molecules are expressed in the stroma, highlighting that immune evasion can be regulated

by distinct stromal subpopulations in TNBC.

Inflammatory-CAFs associated with cytotoxic T-lymphocyte dysfunction

To further investigate the influence of stromal subsets on immune evasion, we explored the
association between distinct stromal gene signatures and immune content in three large
independent TNBC patient cohorts with associated bulk gene expression data (METABRIC,

GSE8812 and GSE21653) [64-66]. Using a computational model called Tumour Immune
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Dysfunction and Exclusion (TIDE), we examined two primary mechanisms of immune
evasion. The first examines factors driving the ‘dysfunction’ of cytotoxic T-lymphocytes
(CTLs), while the second examines factors preventing the infiltration of CTLs to the tumour,
known as ‘exclusion’ (described below) [67]. TIDE first estimates CTL levels in each sample
within a bulk-sequencing cohort using the averaged expression of CTL-specific genes (See
Methods). Patients are then stratified into high and low CTL groups based on comparisons
to the mean CTL level within the cohort. For dysfunction, we then evaluated whether gene
signatures from each of the stromal subsets influences the beneficial effect of CTL levels on
patient prognosis [67]. This analysis revealed a strong enrichment of genes from the iCAF
signature that were significantly associated with CTL dysfunction in all three bulk tumour
cohorts (Fig. 6A). In patients with a low iCAF dysfunction signature level, a significant
survival benefit was associated with high CTL levels (Fig. 6B; Fig. EV5A). This is consistent
with previous clinical observations in TNBCs where lymphocyte infiltration is a robust
prognostic factor for improved disease-free survival and overall survival benefit [68].
Remarkably, in patients with a high iCAF dysfunction signature level, CTL levels were not
associated with prognosis in any of the three cohorts (Fig. 6B; Fig. EV5A), suggesting a role
for stromal iCAFs in driving dysfunctional CTLs in TNBC. Other stromal subset signatures

did not show a significant enrichment of prognostic genes in the context of CTL dysfunction.

To investigate whether CTLs in each patient were indeed dysfunctional, we scored a
published T-cell exhaustion gene signature in our CD8+ T-cell populations from each patient
using an AUC approach (Fig. 6C) [69]. This gene set includes canonical markers of
exhausted T-cells including PDCD1 (PD-1), LAG3, TIGIT and CTLA4 [69]. This revealed
heterogeneity for exhausted CD8+ T-cell populations in all 5 patients (Fig. 6C), with P2 and
P4 having the highest average exhausted gene signature score. In contrast, the exhaustion

signature was not enriched in any other cell population with the exception of the myeloid cell
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cluster (Fig. 6C). Myeloid cells, which can include tumour-associated macrophages and
myeloid derived suppressor cells, are known to hold immunosuppressive properties, and

can also express inhibitory molecules associated with T-cell suppression [70].

Differentiated-PVL cells associated with cytotoxic T- lymphocyte exclusion

We next explored whether particular stromal subsets were associated with CTL exclusion,
a cold ‘immune-desert’ phenotype with ‘low CTL’ activity. This was examined using the
Pearson correlations between all CTL levels and the respective correlation score between
the bulk tumour sample and the single-cell cluster of interest. The averaged expression of
all genes from the single-cell cluster are referred to as a signature in this section. Previous
studies have reported an association between CAFs and CTL exclusion [67]. Consistent
with this, the collective bulk signature from all stromal cells correlated negatively with CTL
levels in four TNBC patient cohorts (Fig. 6D; Fig. EV5B). As a positive control, CD4+ and
CD8+ T-cell signatures from our dataset positively correlated with CTL levels as expected
(Fig. 6D; Fig. EV5B). To investigate if this was predominantly driven by one stromal subset,
we repeated this analysis with the averaged gene expression of myCAFs, iCAFs, dPVL and
imPVL clusters independently (Fig. 6E; Fig. EV5C). This revealed that dPVL cells were the
only subset with a significant negative correlation with CTL level in three of four cohorts,
suggesting they are the primary subset associated with T-cell exclusion (Fig. 6E; Fig. EV5C).
To further explore this correlation in our five patients, tumour infiltrating lymphocytes (TILs)
and CTLs were scored in matched tumour sections by a specialist breast pathologist. Total
TILs were estimated using standard H&E-based assessment (Fig. 6F), whilst stromal CTLs
were accurately quantified by CD8 staining and scored as previously described (Fig. 6G)
[71]. The latter measurements were performed as TILs can also be comprised of non-CTL
populations including CD4+ T-cells, T-Regs and B-cells. TILs and CTL scoring revealed that

2 out of 5 patients (P4 and P5) had very low CTL infiltration (<5% TILs and <50 CD8+ T-
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cells per 1 mm?), whereas P3 had a very high infiltration (>70% TILs and >200 CD8+ T-cells
per 1 mm?) (Fig. 6F-H). In support of dPVL cells as drivers of T-cell exclusion, only 4% of
stromal cells from P3 were annotated as dPVL cells, while P4 and P5 had the two largest
proportions of dPVL profiles with 35.5% and 26.8% (Fig. 2B). Furthermore, no disseminated
PVL cells could be readily detected in P3 using co-IF (Fig. EV4C). While small numbers, our
findings are consistent with the proposal that specialised stromal subclasses are associated

with immune evasion.

Discussion

Our study describes a detailed taxonomy of human stromal subclasses in TNBC at cellular
resolution. The activated tumour stroma is classically described using a broad ‘CAF’
classification. Here, we provide evidence that it is also comprised of functionally distinct
perivascular-like cells which are not necessarily associated with the endothelium. We show
that stromal heterogeneity diverges to four distinct states: myofibroblast-like, inflammatory-
like CAFs and differentiated- and immature-PVL cells. Similar to CAFs described in
pancreatic ductal adenocarcinoma, we find stromal subclasses are spatially distinct, with
myCAFs localised to the invasive tumour front, whilst iCAFs are located distal to this
interface [12]. From our systematic scRNA-Seq of the TME, we used receptor expression
on other cell types to predict diverse stromal-immune crosstalk via an array of
immunoregulatory molecules to immune populations. We go on to show that iCAF and dPVL
subsets are highly associated with immune evasion in multiple independent TNBC cohorts,

suggesting a clinical relevance for unique stromal subsets [64-66].

Few studies have investigated the functional heterogeneity of the cancer stroma. A recent
scRNA-Seq study profiled CAFs in a mouse model of breast cancer and defined matrix-,

vascular-like-, cycling- and developmental-CAF subsets [20]. We did not find a cycling-CAF
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cluster driven by proliferation markers (Appendix Fig. S4A), likely reflecting unique features
of animal models. In addition, the authors proposed mouse ‘developmental-CAFs’ to be of
epithelial to mesenchymal transition origin [20]. In contrast, we found the expression of
proposed developmental-CAF markers Scrg?, Sox9, and Sox710 exclusively in cancer
epithelial clusters, which are classified based on the expression of epithelial lineage
exclusive keratins (Appendix Fig. S4B-C). Our comparisons suggest that developmental-
CAFs are either unique to mouse models or are cancer cells whose expression of EPCAM
is down-regulated, which was a negative marker used for CAF isolation in these studies [43,

44].

Despite well-characterised roles in cancer progression, the cellular origins of CAFs remain
poorly understood. Our results support the notion that dispersed stromal cells can also arise
from perivascular cells, likely delaminated from vascular structures. Although PVL cells
clustered distinctly from CAFs and express perivascular markers including MCAM (CD146),
CAV1, RGS5, MYH11 and TAGLN (SM-22-Alpha), they also expressed an array of markers
commonly used to classify CAFs, including ACTA2 (a-SMA), PDGFRB, THY1 (CD90),
S100A4 (FSP-1) and ITGB1 (CD29) [4, 25]. Similar PVL subsets were identified in a
previous mouse model of breast cancer [20]. The authors defined these cells as ‘vascular-
like CAFs’ through the expression of vessel development markers such as CD146 [20].
Although the authors hypothesised that vascular-like CAFs are derived from perivascular
cells such as pericytes, the concept of pericyte-to-fibroblast transition has been debated
[72]. Our findings from functional assays suggest PVL cells do not possess the defining
fibroblast trait of collagen deposition and remain phenotypically distinct from the fibroblast

lineage (Fig. 4E).
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The functional role of perivascular cells in breast cancer is poorly understood. A very early
study found that 4 out of 10 breast tumours showed substantial infiltration of vascular smooth
muscle cells based on staining for markers including a-SMA, smooth muscle myosin and
calponin [10]. This finding went without further exploration until this manuscript, where we
validate their existence using state-of-the-art scRNA-Seq and staining of CD146 in matched
patient tissue. From our TF analysis, we predict the MEF2 regulon to be a strong activating
TF of the PVL subclass. MEF2C is a well-defined regulator for establishing vSMCs during
development, highlighting a likely vSMC origin of the described PVL cells [39, 40]. As
observed during wound healing, we hypothesise that vSMCs could be stimulated by
malignant factors or mitogens, allowing them to migrate from the vessel basement
membrane into the stroma [73, 74]. This is further supported by in vitro studies showing that
breast cancer derived PDGFs can induce the recruitment and migration of vSMCs [73]. As
perivascular cells play an important part during angiogenesis and blood vessel stability, it is
also possible that their displacement in tumours is stimulated by, or a driver of, dysregulated
angiogenesis or hypoxia. Although it is yet to be studied in the context of perivascular cells,
studies have reported that the imPVL marker CD36 is enriched in normal tissue regions and
is associated with good survival outcome in breast cancer [75]. However, the origin and
functional role of PVL subpopulations remain to be defined by future studies. The staining
of CD146 exclusively associated with blood vessels of normal breast tissue suggests that

detached PVL cells are a distinct feature of breast cancers.

Importantly, our findings suggest that previous studies characterising CAFs with a small
number of markers have likely also studied PVL cells. For example, subsets discriminated
by CD146 have been characterised in endocrine-resistant breast cancers [2]. Patients with
a CD146+ stroma demonstrated good responses to tamoxifen therapy through the

maintenance of estrogen receptor (ER) dependent proliferation in cancer cells. Our findings
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suggest that PVL cells rather than CAFs are a biomarker for ER-directed therapeutic
response in ER positive breast cancers [2], a prediction that requires more detailed
validation. Another elegant study reported a subset of chemoresistance-promoting CAFs,
marked by a-SMA+, GPR77+ and CD10+ expression [6]. Due to the shared expression of
a-SMA between myCAFs and PVL cells, our findings also raise the question whether PVL
cells could also contribute to chemoresistance in a subset of patients [6]. Although we did
not find an enrichment of GPR77+ CD10+ a-SMA+ cells in any CAF subclasses, this may

be explained by the treatment status of our samples.

Lastly, we found a strong enrichment of immunomodulatory pathways in the predicted
signaling between stromal cells and immune cells. We identified an array of important
candidates in patient tissue for future experimental studies for functional relevance. It is
important to acknowledge, however, that transcript signaling predictions are not always
concordant with protein expression. Although no CAF subsets in previous mouse studies
were distinguishable by immunomodulatory properties [20], there are several reports of
predicted CAF-immune interactions in human tissue. We found that iCAFs expressed an
array of immunomodulatory molecules to cognate receptors on T-cells. In other studies,
CAFs have been implicated in the recruitment and activity of T-Regs through the regulatory
molecules CXCL12, CD40, B7H3, DPP4 and CD73 [4]. In addition, iCAFs also expressed
several molecules known to regulate myeloid cells, including complement C5, IL6 and
TGFB [59, 60]. Myeloid cells, including tumour associated macrophages and myeloid
derived suppressor cells, are well characterised in contributing to an immunosuppressive
TME. Most importantly, gene signatures generated from iCAFs were strongly associated
with CTL dysfunction in TNBC patient cohorts. We also report a novel dPVL stromal subset
strongly associated with CTL exclusion. We identified an enrichment of

dysfunctional/exhausted T-cells which correlated with their respective stromal profiles,
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though we acknowledge that our study consists of small patient numbers. In patients with
the highest dPVL profile, we found consistently low TIL and CD8 counts in matched
pathology. Considering the proposed origin of detached PVL cells from the vascular
structure, we hypothesise that this may be related to reduced lymphocyte extravasation from
dysregulated tumour blood vessels. In support of this, previous studies restoring vascular
integrity in tumours through vessel normalisation and increased perivascular coverage find
an influx of CD8+ T-cells in tumour tissue [25, 76]. In addition, signalling between CD4+ T-
cells and pericytes have also been reported to play a reciprocal role in tumour vessel
normalisation [77]. It is possible that the association between dPVL cells and CTL exclusion
in patient cohorts reflect tumours with low vascular integrity, and may act as a biomarker for

patients suitable for vessel normalisation therapeutic strategies.

Whilst our findings point to the targeting of stromal cells, future work investigating the
transcriptional changes in stromal cells between healthy breast tissue and cancer is required
to understand the stromal states that are cancer-specific versus reactivated resident cell
types. In support of the latter possibility, a recent study showed that there are minimal
proteomic differences between normal fibroblasts and CAFs in prostate cancer models [78].
We find that iCAF- and myCAF-like fibroblasts exist in cancer-free normal breast tissue. It
is important to note that desmoplasia is often observed in cancer-free tissues, particularly in
high risk women with high mammographic density [79]. This can be influenced by several
physiological factors such as weight, pregnancy and menopausal status, highlighting
important factors that need to be considered in future projects examining the normal breast
tissue microenvironment such as the human cell atlas project [79]. These differences may
exist from distinct epigenetic states between CAFs and normal fibroblasts, indicating another
layer of complexity that remains to be explored in the four breast cancer stromal subsets

identified in our study [80]. The integration of future assays combining scRNA-Seq with
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chromatin states will be important in elucidating the epigenetic regulation of cancer-
associated stromal cells. Identifying specific activation markers in comparison to healthy
tissue is also an important prerequisite for the development of precise cancer therapeutic
strategies with low toxicities. Future in vifro and in vivo studies will be important in
understanding how stromal cells are dynamically reprogrammed and how the subclasses

described here restrain or promote tumour growth and invasion.

Clinical trials for mainstream immune checkpoint therapies including anti-PDL1 have shown
limited efficacy in the treatment of advanced TNBC. This hints at alternate mechanisms of
immune evasion and novel therapeutic strategies are desperately needed to improve
immunotherapy for TNBC. Our findings suggest that co-targeting stromal subpopulations
could elicit a more effective immune response in a subset of patients through inhibiting CTL
dysfunction and exclusion. This remains to be experimentally tested. In conclusion, we have
comprehensively profiled four functionally distinct stromal subclasses in human TNBC, not
previously described in breast cancer, mouse models or other cancer types. Importantly, we
described subsets of CAFs and PVL cells with clinical relevance, presenting as candidates
to further investigate. While our dataset captures a majority of the expected cell types from
the TME, certain cell types such as adipocytes are under-represented due to biases from
standard tissue dissociation protocols. Integration of alternative methods such as single-
nuclei sequencing and spatial transcriptomics in future cancer cell atlas studies will be
crucial for a comprehensive understanding of the TME. Our findings in only five patients also
highlight the potential of applying scRNA-Seq methods to larger scale patient cohorts for the

identification of new disease relevant cell states and their gene expression features.

List of abbreviations

TNBC: Triple-negative breast cancer
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CAFs: Cancer associated fibroblasts
PVL: Perivascular-like

scRNA-Seq: Single-cell RNA Sequencing
CTLs: Cytotoxic T-lymphocytes

vSMCs: Vascular Smooth Muscle Cells

Materials and Methods

Ethics approval and consent for publication

Patient tissues used in this work were collected under protocols x13-0133, x16-018 and x17-
155. HREC approval was obtained through the SLHD (Sydney Local Health District) Ethics
Committee; RPAH (Royal Prince Alfred Hospital) zone, and the St Vincent’s hospital Ethics
Committee. Site-specific approvals were obtained for all additional sites. Written consent
was obtained from all patients prior to collection of tissue and clinical data stored in a de-
identified manner, following pre-approved protocols. Consent into the study included the

agreement to the use of all patient tissue and data for publication.

Tissue dissociation

Fresh surgically resected tissue was washed with RPMI 1640 (ThermoFisher Scentific) and
minced with scissors. Samples were enzymatically dissociated using Human Tumor
Dissociation  Kit  (Miltenyi  Biotec) according to  manufacturer's protocol
(https://www.miltenyibiotec.com/AU-en/products/macs-sample-preparation/tissue-
dissociation-kits/tumor-dissociation-kit-hnuman.html#gref). Following incubation, the sample
was then resuspended in RPMI 1640 and filtered through MACS® SmartStrainers (70 pM;
Miltenyi Biotec) and the resulting single cell suspension was centrifuged at 300 x g for 5

min. Red blood cells were lysed with Lysing Buffer (Becton Dickinson) for 5 mins and the
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resulting suspension was centrifuged at 300 x g for 5 min. Viability was assessed to be >
80% using Trypan Blue (ThermoFisher). Viability enrichment was performed using the
EasySep Dead Cell Removal (Annexin V) Kit (StemCell Technologies) as per manufacturers
protocol. Dissociated cells were resuspended in a final solution of PBS with 10% fetal calf

serum solution prior to loading on the 10X Chromium platform.

Single-cell RNA sequencing on the 10X Chromium platform

High throughput droplet based SCRS was performed on the single-cell suspensions using
the Chromium Single Cell 3’ v2 Library, Gel Bead and Multiplex Kit and Chip Kit (10X
Genomics) according the to manufacturer’s instructions, with a target of 5,000 cells per lane.
SCRS libraries were sequenced on the lllumina NextSeq 500 platform with pair-end
sequencing and dual indexing according to the recommended Chromium platform protocol,

26 cycles for Read 1, 8 cycles for i7 index and 98 cycles for Read 2.

Data processing

Sample demultiplexing, reference mapping, barcode processing and gene counting was
performed using the Cell Ranger Single Cell Software v2.0 (10X Genomics). Reads were
aligned to the GRCh38 human reference genome. Raw count matrices were exported and
filtered using the EmptyDrops package in R [81]. EmptyDrops distinguishes ‘real’ barcodes
from ‘noise’ by calculating deviations of each cell against a generated ambient background
RNA profile. Filtered barcodes were then processed using the Seurat v2.0 package in R
[21]. Additional conservative cut offs were further applied based on the number of genes
detected per cell (greater than 200) and the percentage of mitochondrial unique molecular
identifier (UMI) counts (less than 10%). Individual Seurat objects were then integrated using
the canonical correlation analysis (CCA) function RunMultiCCA according the developer

guidelines [82]. The top 2000 most variable genes from each sample were combined for
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CCA vector identification. The first 20 CC dimensions were used for the alignment of

subspaces and UMAP projection.

Cluster annotation

Cell clusters were annotated using canonical cell type markers for epithelial (EPCAM),
myoepithelial (EPCAM-°, ACTA2, KRT5 and KRT14), basal (KRT5 and KRT14), mature
luminal (ESR1), endothelial (PECAMT), immune (CD45), T-cells (CD3D, CD8A and CD4),
T-regulatory cells (FOXP3), B-cells (MS4A1), plasmablasts (JCHAIN), myeloid cells (CD68)
and stromal cells (PDGFRB and COL1A1). Malignant epithelial cells were distinguished from
entrapped normal epithelial cells by inferring copy number variations using the inferCNV
package as previously described [22]. In addition, an area under the curve (AUC) approach
using published cell type signatures from the XCELL database was performed using AUCell
[23, 24]. AUCell scores single cells with input gene signatures and analyses its activity and
distribution across the entire dataset to explore the relative expression of the gene set of
interest. AUCell utilises raw gene counts and thus, is independent of normalisation bias.
CAFs, PVL cells and T-cells were independently re-clustered using the Seurat v3 method.
Re-clustering was performed across resolutions 0.2, 0.3, 0.4 and 0.5 to identify stable

clusters.

Differential gene expression and pathway enrichment

The MAST method was used to perform differential gene expression through the
FindAlIMarkers function in Seurat (log fold change threshold of 0.1, p-value threshold of
1x10-° and FDR threshold of 0.05). The top 250 DEGs from each cluster were then passed
on to the ClusterProfiler package for functional enrichment [32]. The compareCluster
function was used with the enrichGO databases CC, MF and BP sub-ontologies using the

human org.Hs.eg.db database.
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Pseudotime cell trajectory analysis

The Monocle 2 method was applied to infer cell trajectories for CAFs and PVL cells using
default parameters, as recommended by developers’ [33]. CAFs from Patient-2 and PVL
cells from Patient-1 were extracted for Monocle analysis due to adequate cell numbers and
representations of each respective subset. Gene expression matrices from each cell type
were first exported from Seurat into Monocle 2 to construct a CellDataSet. Variable genes
defined by the differentialGeneTest function (g-val cutoff < 0.001) were used for cell ordering
and dimensionality reduction with the setOrderingFilter and reduceDimension functions,

respectively.

Gene-regulatory analysis using SCENIC

Investigation of gene-regulatory networks using SCENIC was performed using a faster
python implementation of the tool (pySCENIC) as described by the developers on the 1,729
stromal cells [23, 34]. SCENIC explores gene-regulatory networks by identifying TF co-
expression modules and binding motif enrichment. The normalised expression matrix
generated from Seurat was first filtered for genes as previously described (sum of gene
expression > 3 x 0.005 x 1,729) [18]. Genes detected in at least 0.5% of cells were kept.
This resulted in 12,100 genes for pySCENIC input [18]. Analysis was performed using the
hg38 mcO9nr motif collection with a TSS +/- 10kB (hg38__ refseq-
r80__10kb_up_and_down_tss.mc9nr) for the arboreto and RcisTarget steps. Gene regulons

were clustered and plotted using the pheatmap function in R.

Flow cytometry and FACS isolation of stromal cells
Cell sorting and flow cytometry experiments were performed at the Garvan-Weizmann

Centre for Cellular Genomics, Garvan Institute of Medical Research. Flow cytometry was
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performed on a Becton Dickinson Cantoll or LSRII SORP flow cytometer using BD
FACSDIVA software, and the results were analyzed using FlowJo software (Tree Star Inc.).
FACS experiments were performed on a FACS Arialll sorter using the BD FACSorter
software. All antibody details used in this study can be found in Supplementary Table S4.
Cryopreserved single-cell suspensions from Patient-4 were thawed, washed with RPMI and
incubated with an anti-CD16/CD32 antibody (1:200, BD Biosciences #564220) in FACS
buffer (PBS containing salts, 2% FBS) for 10 mins to block nonspecific antibody binding. For
the isolation of the different stromal subpopulations for subsequent experiments, cells were
pelleted and resuspended in FACS buffer containing the following antibodies: anti-EPCAM
(1:100; BioLegend #324203), anti-CD31 (1:100; BioLegend #303103), anti-CD45 (1:100;
BioLegend #304005), anti-PDGFRp (1:100; BioLegend #323605), anti-PDGFRa (1:100;
BioLegend #323507) and anti-CD146 (1:100; BioLegend #342011) for 20 min on ice. All
epithelial, immune and endothelial cells were excluded together on the FITC channel
marking EPCAM, CD45 and CD31. In addition, we performed positive selection using
PDGFRp. CAFs and PVL cells were discriminated using PDGFRa and CD146, respectively.
CAFs and PVL cells were isolated and cultured into dishes (Corning® LifeSciences) coated
with collagen (0.15 mg/ml) in RPMI 1640 supplemented with 20% (v/v) FBS, 50 pg/mL
gentamycin and 1x antibiotic/antimycotic (15-240-096, Gibco®) in a 5% Oz, 5% CO:
incubator at 37°C. Cell sorting was repeated on cultured CAFs and PVL cells using the
previously described experimental conditions with anti-PDGFRa (1:100; BioLegend
#323507), anti-CD146 (1:100; BioLegend #342011), anti-FAP (1:100; R&D Systems
#FAB3715P-025) and anti-CD36 (1:100; BioLegend #336221). FAPHICH expression was
used to discriminate myCAFs from FAP-OW iCAFs, whilst CD36 expression was used to

identify imPVL cells from dPVL cells.

Immunofluorescence
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Primary cells were grown on glass coverslips coated with collagen in the same manner as
the CDMs as previously below. Media was removed and cells were rinsed with PBS for 5
min. Cells were fixed in 4% paraformaldehyde (ProSciTech) diluted in PBS for 15 min at
room temperature then washed three times with PBS for 5 min. Cells were permeabilised
with ice cold methanol for 10 minutes at -20°C followed by three 5 min PBS washes. Cells
were blocked in blocking buffer (3% BSA + 0.1% Tween-20 in PBS) for 1 hr at room
temperature. Primary antibody was diluted in blocking buffer at the following dilutions: anti-
CD34 (1:100; Abcam #MA1-10202), anti-FAPa (1:200; Abcam #ab53066), anti-aSMA
(1:500; Abcam #ab21027), anti-CD36 (1:100; Biolegend #336203), anti-CD146 (1:200;
Abcam #ab75769), anti-PDGFRp (1:250; Abcam #ab32570). Coverslips were inverted and
incubated on droplets of diluted primary antibody on parafilm in a humidified chamber
overnight at 4°C. The following day cells were washed 3 times for 5 min in PBS. Cells were
incubated with fluorescent secondary antibody (Jackson ImmunoResearch) diluted 1:500 in
blocking buffer for 1 hr at room temperature in a light proof container then washed 2 times
with PBS for 5 min. Nuclei were stained with 1 pg/mL Hoechst 33342 (Sigma) in PBS for 5
min at room temperature followed by two 2 min PBS rinses. Coverslips were mounted with
Prolong Diamond antifade mountant (Thermo Fisher Scientific) and allowed to dry overnight
at room temperature. Fluorescent images were captured using a Leica DMI Sp8 confocal
microscope.

Immunofluorescence was performed on 4 um FFPE tissue sections prepared as described
below for IHC. Antigen retrieval was performed for 20 min in a 100°C water bath in target
retrieval buffer, pH9 (Agilent Technologies). Slides were blocked for 1 hr at room
temperature in PBS containing 3% BSA and 5% goat serum. Slides were incubated with
primary antibodies diluted in blocking buffer: anti-CD31 (1:50; Agilent Technologies
#M0823) and anti-CD146 (1:600; Abcam #ab75769). Secondary antibody staining, nuclear

counterstaining and microscopy were performed as described above.

32


https://doi.org/10.1101/2020.06.04.135327
http://creativecommons.org/licenses/by-nc-nd/4.0/

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.04.135327; this version posted June 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Quantitative real time PCR analysis

RNA was extracted from bulk and sorted CAF cells using the Qiagen miRNeasy mini kit
(Qiagen) and was reverse transcribed using the Transcriptor First Strand cDNA synthesis
kit (Roche). TagMan assays (Thermo Fisher Scientific) were used to analyse mRNA
expression levels using a QuantStudio 7 Flex RT PCR machine (Thermo Fisher Scientific).
TagMan probes used were FAP (Hs00990791_m1), ACTA2 (Hs00426835_g1), CXCL12
(Hs00171022_m1), EGFR (Hs01076078_M1), PDGFRA (Hs00998018_m1), PDGFRB
(Hs01019589_m1) and ACTB (Hs99999903 M1). Relative gene expression was calculated

using the AACt method.

Cell Derived Matrices (CDMs)

CDMs were established as previously described [45]. A total of 1.5x10° cells/well were
allowed to expand until confluent and ascorbic acid (50mg/ml) added to culture medium on
days one, three and five. To maintain the structure interact of the matrix architecture CDMs,
were imaged using Second Harmonic Generation (SHG) at Day seven with cells still present

in the matrix.

Second Harmonic Generation (SHG) imaging

Second Harmonic Generation (SHG) Imaging was achieved using an inverted Leica DMS
6000 SP8 confocal microscope with a Ti-Sapphire femtosecond laser cavity (Coherent
Chameleon Ultra Il) excitation source, operating at 80 MHz and tuned to a wavelength of
880 nm, as previously described [83-85]. SHG intensity was detected using a 440/20 nm
RLD HyD detectors. For CDMs 3 representative fields of view (512 pm x 512 ym) were

imaged over a 3D z-stack (80 ym with a 2.52 ym step size, and 30 yum with a 1.51 ym step
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size, respectively), with a line average of 4 at 25x magnification. Rotation images were

acquired on the z-level of maximum intensity with a line average of 64 at 63x magnification.

Collagen fibre orientation analysis

Collagen fibre orientation analysis in SHG images from plugs was carried out as previously
described [3, 86]. Briefly the distribution of orientation of collagen within images was
assessed based on methodology published by Rezakhaniha et al [87]. The local orientation
and isotropic properties of individual pixels making up collagen fibres were derived from
structure tensors evaluated by computing the continuous spatial derivatives in the x and y
directions using a cubic B-spline interpolation to obtain the local predominant orientation.
Graphical outputs show a hue-saturation-brightness (HSB) color-coded map indicating the
angles of the oriented structures within the image. Orientation distribution peaks were then
aligned. The shape of the distribution indicates the degree of alignment within the image,
where wide and broad shapes suggested little coherency in alignment, and tight peaks with

small standard deviations implied aligned structures.

Immunohistochemistry and image alignment

In house FFPE blocks were made of patient tissues by fixing in 10% neutral buffered formalin
for 24hrs and processing for paraffin embedding. Where tissue was limited, diagnostic
tumour FFPE blocks were accessed for analysis. FFPE blocks were sectioned at 4 pm.
These were used for histological analysis, using a standard Haematoxylin and Eosin stain,
and for immunohistochemical analysis on the Leica BOND RX Autostainer. Details of
antibodies and staining conditions are described in Supplementary Table 4. H&E and IHC
slides were imaged using the Aperio CS2 Digital Pathology Slide Scanner. IHC images were

imported into FIJI as a virtual stack. Each layer was then aligned using least squared mode
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(linear feature correspondences), propagating to the first and last layers for rigid

transformation. All other parameters were set to default in FIJI.

Cell-signalling predictions using ligand receptor annotation

Genes from the scRNA-Seq data were annotated based on a published set of human ligand-
receptor pairs derived from supporting literature [51]. We used this knowledge to construct
a cell-to-cell communication network between the four stromal clusters and other epithelial,
immune and endothelial clusters. To investigate conserved signalling modules in TNBCs,
we applied this to the cluster averaged expression levels of all ligands and receptors in the
integrated dataset of five patients. The ‘interaction strength’, or the weight of edges between
two clusters, was defined as the product of expression values from the ligand and its cognate
receptor. All ‘interaction strengths’ greater than an arbitrary cut-off of 0.1 were considered
as cell signalling candidates and kept for subsequent analyses (Table S3). The total number
of interaction pairs identified per cluster were used to generate summaries of this data (Fig.
5A-B). The top 100 candidates between the four stromal subsets and each target population
were clustered using hierarchical clustering (complete and Euclidean distance) and rescaled
for visualisation in ggplot2. For the visualisation purposes only, the ligand and receptor
expression values in Figure 5C-E were imputed using the MAGIC method to better represent
the structure of genes with low expression and dropout [88]. Raw count matrices and cluster
IDs identified by Seurat (as previously described) were used as input to MAGIC and run with

default parameters as recommended by the developers.

T-cell dysfunction and exclusion analysis
To investigate the immunomodulatory roles of different stromal subsets, we performed T-
cell dysfunction and exclusion analysis using similar strategy from TIDE [67]. We first used

the average expression level of CD8A, CD8B, GZMA, GZMB and PRF1 to estimate the
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cytotoxic T lymphocyte (CTL) level in each sample from the bulk sequencing cohort. Patients
with a higher and lower CTL level compared to the mean CTL level within the cohort were
stratified into high and low CTL groups, respectively. For CTL dysfunction analysis, TIDE
evaluates whether gene signatures from each of the stromal subsets influences the
beneficial effect of CTL levels on patient prognosis. This is performed using the interaction
coefficient d from Cox proportional hazard (Cox-PH) model to evaluate how the interaction
between a candidate gene and the CTL affects the death hazard. Genes with a higher TIDE
dysfunction score suggests antagonistic interactions with regards to CTL levels, where the
survival benefit of patients with high CTL is lost and thus, suggesting an association with
CTL dysfunction. This method was used to calculate the TIDE T-cell dysfunction score from
the differentially expressed genes across the four stromal subsets in TNBC patients from
the METARBRIC cohort [64] and two independent TBNC cohorts [65, 66]. A total of 233, 84
and 107 patients were evaluated for the METABRIC, GSE21653 and GSE58812 cohorts,

respectively.

For T-cell exclusion analysis, we examined Pearson correlations between all CTL levels
(indicated on the y axis in Fig. 6E) and the respective correlation score between the bulk
tumour sample and single-cell cluster of interest (indicated on the x axis in Fig. 6E). Here,
gene signatures for the single-cell cluster of interest were defined by the averaged gene
expression of all single cells in the cluster, divided over the averaged gene expression of all
cells detected in the dataset. This method was used to define signatures in this section, as
opposed to a DEG list in the previous CTL dysfunction analysis. This was first performed for
all stromal cells, CD4+ and CD8+ T-cell clusters divided over all detected cells
independently, as shown in Figure 6D. We next repeated this for the myCAF, iCAF, dPVL
and imPVL clusters divided over all stromal cells independently, as shown in Fig. 6E. In

each of the breast cancer cohorts, a higher correlation suggests a positive association
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between the single cell cluster of interest and CTL levels (as observed in CD4+ and CD8+
T-cells shown in Fig. 6D), while a negative correlation suggest a negative association (as
observed in dPVL cells shown in Fig. 6E). This correlation indicates a potential affluence of
each stromal subset on T-cell infiltration in tumours. For T-cell exclusion analysis, we
examined the three aforementioned TNBC cohorts, as well as the TNBC cohort from The

Cancer Genome Atlas (https://www.cancer.gov/tcga) [89].

Data availability

The scRNA-Seq data from this study has been deposited in the European Nucleotide
Archive (ENA) under the accession code PRJEB35405. This depository includes the
demultiplexed paired ended reads (R1 and R2), lllumina indices and bam files processed
using the Cellranger software. The scRNA-Seq analysis scripts can be found on the website:
https://github.com/sunnyzwu/stromal_subclasses. All relevant data are available from the

authors upon request.
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Figure Legends

Figure 1. Cellular composition of five triple-negative breast carcinomas. a, Schematic
highlighting the application of our single-cell RNA sequencing experimental and analytical
workflow for primary patient tissue. b, UMAP visualisation of 4,986 epithelial cells aligned
using canonical correlation analysis in Seurat. Cells are coloured by their cell type
annotation (left) and patient of origin (right). ¢, Log normalised expression of markers for
epithelial (EPCAM), mature luminal epithelial (ESR1), myoepithelial (KRT5, KRT14 and
ACTAZ2) and proliferating cancer cells (MKI67). d, UMAP visualisation of 19,285 stromal and
immune cells aligned and visualised as represented in b. e, Log normalised expression of
markers for fibroblasts (PDGFRB, THY1, COL1A1, ITGB1 and S100A4), endothelial cells
(PECAM1), T-cells (CD3D), CD8 T cells (CD8A), T-regulatory cells (FOXP3), B-cells
(MS4A7), myeloid cells (CD68) and plasma cells (JCHAIN). f, Proportion of cell types across

each patient.

Figure 2. Stromal landscape of TNBCs reveals four subpopulations of cancer-
associated fibroblasts and perivascular-like cells. a, {-SNE representation of the four
subclasses of cancer-associated fibroblasts (CAFs) and perivascular-like cells (PVL),
named myofibroblast-like CAFs (myCAFs; 280 cells), inflammatory-like CAFs (iCAFs; 1,129
cells), differentiated-PVL cells (dPVL cells; 122 cells) and immature-PVL cells (imPVL cells;
198 cells). b, Plot showing the composition of the four stromal subsets across all five
patients. ¢, Expression of parenchymal markers commonly associated with CAFs and
perivascular cells. d, Cluster averaged log normalised expression of the top 300 differentially
expressed genes between the four stromal subsets with stromal-related genes of interest
annotated. Expression values are scaled per cluster. e, Circle histogram plot of the top gene-
ontologies enriched in each of the four stromal subsets, with pathways broadly grouped for

ECM, development and signalling, muscle contractile-features and angiogenesis and
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adhesion. Scale bar represents the —log10 g-value for the enrichment of individual GO

terms, as determined using ClusterProfiler.

Figure 3. Polarised gene regulatory states between cancer-associated fibroblasts and
perivascular-like subclasses. a, Polarised gene regulatory states underlying stromal
subclasses. Heatmap shows the averaged regulon activity (area under the curve; AUC) for
the top 50 highest TFs regulons as estimated using SCENIC. All regulons are statistically
enriched across the four subsets (p < 1x10° One-way ANOVA). Heatmap is clustered using
Euclidean distance and complete linkage. b, Candidate transcriptional drivers of each CAF
and PVL subset. Violin plots showing the log normalised gene expression (left) of the TF
and its respective AUC regulon activity (right). TFs ZEB1 and FOXP1 enriched in
myofibroblast-like CAFs, EGR2 and TCF7L2 enriched in inflammatory-like CAFs, MEF2C

enriched in PVL cells and NR2F2 enriched in immature-PVL cells.

Figure 4. Morphological, phenotypic and spatial differences underlying stromal
heterogeneity. a, Summary of the markers distinguishing each of the four stromal
subpopulations identified in this study. b, FACS validation in matched patient tissue. Stromal
cells are negatively gated for EPCAM (epithelial), CD45 (immune) and CD31 (endothelium)
and positively selected for PDGFRp. Subsequent markers PDGFRo and CD146 (MCAM)
are used to distinguish CAFs and PVL cells, respectively. Expression of FAPHICH FAPLOW,
CD36* and CD36" are further used to define myofibroblast-like CAFs, inflammatory-like
CAFs, immature-PVL cells and differentiated-PVL cells, respectively. c-d,
Immunofluorescence of cultured human CAFs (c) and PVL cells (d), staining for CD34
(CAFs), a-SMA (myCAFs and PVL cells), CD146 (PVL cells) and CD36 (imPVL cells). e-f,
Quantitative analysis of collagen abundance (e) and orientation (f) using second harmonic

generation (SHG) from cellular derived matrices from stromal subsets and representative
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images multiphoton SHG images (n = 3 biological replicates). Statistical significance for
collagen abundance (e) was determined using unpaired two-tailed Student’s t test with equal
standard deviation. After normalization of the orientation peak distributions (f), statistical
significant was determined using a Kruskal-Wallis test with Dunn's post-hoc multiple
comparisons test (p value <0.05). g-h, Immunohistochemical staining of PDGFRp, a-SMA,
CD34 and CD146 in serial sections cut 4 ym apart from matched cases; Patient-2 (g) and
Patient-4 (h). Images were aligned using FIJI. Co-localisation of CD34 and CD146 was used
to distinguish blood vessels, where their differential staining was used to identify CAFs and
PVL cells. g, MyCAFs were found to be localised at the invasive stromal interface, whilst
iCAFs were located at distal regions. h, Case with a high abundance of PVL cells in regions
surrounded by blood vessels. i, Validation of detached PVL cells from blood vessels using
co-immunofluorescence of CD31 (red), CD146 (green) and DAPI (blue). Representative

images from Patient-4 is shown.

Figure 5. Predicted stromal crosstalk to cancer and immune cells. Overview of the
predicted stromal paracrine signalling conserved across the five TNBC patients. The
scRNA-Seq dataset were annotated by ligand-receptor pairs as curated in Ramilowski et al.
(2015). a, Circos plot summary of the stromal ligand-receptor interactions. Outer sectors are
weighted according to the number of annotated ligand receptor interactions per cell type.
Links between sectors are weighted according to the ‘Interaction Strength’, calculated as a
product of ligand and receptor expression. Links are coloured by the respective stromal
subsets; myCAFs (red), iCAFs (orange), dPVL cells (blue) and imPVL cells (light blue) b,
Summary of the total ligands and receptors annotated per cell type. c-e, Imputed gene
expression of selected candidate signalling molecules identified between the four stromal

subsets and malignant (c) epithelial, (d) myeloid and (e) T-cells.
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Figure 6. Inflammatory-CAFs and differentiated-PVL cells associated with immune
evasion in TNBC patient cohorts. Significant associations between iCAF and dPVL gene
signatures with cytotoxic T-lymphocyte (CTL) dysfunction and exclusion in multiple TNBC
patient cohorts, respectively, as determined using the tumour immune dysfunction and
evasion (TIDE) method. a, iCAF T-cell dysfunction gene signature highlighting genes
significantly associated with CTL dysfunction in two out of three independent patient cohorts
(METABRIC, GSE21653 and GSE58812). b, Representative cohort (METABRIC) showing
the prognostic value of iCAF T-cell dysfunction signature in the context of CTLs for a total
of 233 patients. Kaplan-Meier’'s present two groups of patients, ‘low CTL’ (blue line) and
‘high CTL’ (red line), as estimated according to the average expression of CTL-specific
genes and stratified as compared to the mean. Tumours with low iCAF T-cell dysfunction
signatures (top) show patients with high CTL levels have a better survival outcome. In
contrast, this survival benefit is lost in tumours with a high iCAF T-cell dysfunction signature
(bottom) ¢, Dysfunctional CTLs detected in all five TNBC patients determined through
scoring a T-cell exhaustion signature. UMAP featureplot of the exhaustion signature across
all stromal and immune cells as in Fig. 1D. d, Bulk stromal signature associates with CTL
exclusion. Pearson correlation was computed between all inferred CTL levels (y axis) and
the respective correlation between the bulk sample and the single-cell cluster (x axis).
Signature of all stromal cells divided over all cells correlated negatively with CTL levels,
while control CD4+ and CD8+ gene signatures show a positive correlation. Benjamini-
Hochberg procedure was used for adjusting p-values. e, dPVL cells associated with CTL
exclusion. Repeated analysis in the same manner as in (d), instead with myCAF, iCAF,
dPVL and imPVL clusters divided over all stromal cells independently, highlighting that CTL
exclusion is mainly driven by dPVL cells. Representative cohort GSE58812 is shown. f-h,
dPVL profiles and CTL exclusion consistent in our study. f, Patients with the highest dPVL

profiles by scRNA-Seq (P4 and P5) show the lowest Tumour infiltrating lymphocyte (TIL)
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pathology counts. g-h, Accurate quantification of CTLs and representative
immunohistochemistry staining for CD8 on matched patient tumour sections. P3 is shown
as an example of a low dPVL profile with high CTLs. In contrast, P4 has a high dPVL profile
with low CTLs. n = 5 stromal 1 mm? regions were counted per tumour. Statistical significance

was determined using pairwise comparison with Student'’s t test.

Appendix Table Legends

Appendix Table S1. Differentially expressed genes across the four stromal subsets.
Performed using the MAST method through the FindAlIMarkers function in Seurat. A log fold
change threshold of 0.1 and a p-value threshold of 1x10° and FDR threshold of 0.05 was

used.

Appendix Table S2. Gene ontology pathways enriched across the four stromal
subsets. Functional enrichement was performed using the ClusterProfiler package with the
top 250 differentially expressed genes from each stromal cluster. The compareCluster
function was used with the enrichGO databases CC, MF and BP sub-ontologies using the

human org.Hs.eg.db database.

Appendix Table S3. Predicted stromal paracrine signalling. Ligands and receptors as
annotated from Ramilowski et al. (2015). The interaction strength was defined as the product
of the average log normalised gene expression values ligand and receptor values from each

cluster. Interactions were rescaled by the interaction pair.

Appendix Table S4. Antibodies details. Details of the commercial antibodies used for

FACS, immunofluorescence and immunohistochemistry.
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Expanded View Figure Legends

Figure Expanded View 1. Clinical pathological features and overview of single cell
RNA sequencing metrics. a, Clinical and pathological features of patient age, breast
cancer subtype, tumour grade, Ki67 status, treatment history and TIL count of the 5 primary
breast carcinoma samples analysed in the study. b, Representative hematoxylin-eosin
(H&E) stained sections for each patient analysed by single-cell RNA sequencing in this
study. ¢, Quality control metrics as generated by the Cellranger software (10X Genomics).
d, Number of cells that passed quality control and filtering using EmptyDroplets per patient.
e, Number of cells that passed quality control and filtering using EmptyDroplets per cell type
and patient. f-h, Number of detected genes (f), UMIs (g) and proportion of mitochondrial

counts (h) per cell type across all samples, respectively.

Figure Expanded View 2. Scoring of cell type signatures for cluster annotation and
re-clustering of T-cells. a, Featureplots highlighting the area under the curve (AUC) value
for selected cell type signatures derived from various studies collated in the XCELL study.
AUC values are calculated on a per cell basis using the AUCell package with default
parameters. Selected signatures for fibroblasts (Fantom_1), endothelial cells (Fantom_2),
B-cells (Fantom_1), Plasma cells (IRIS_2), CD4+ T cells (Fantom_3), CD8+ T cells
(HPCA_3), T-regulatory cells (Fantom_3) and monocytes (Fantom_3). b-d, Reclustering of
7,990 T-cells identifies 175 T-follicular helper cells (2.2%; CXCL13 and CD200), 994 T-
Regulatory cells (12.4%; FOXP3 and BATF), 2,003 other CD4+ T-cells (25.1% of all T-cells;
CD4, IL7R and CD40LG), 3,691 CD8+ T-cells (46.2%; CD8A and GZMH), 605 proliferating
T-cells (7.6%; MKI67), 358 NK Cells (4.5%; GNLY, KLRD1, NCR1, XCL1 and NCAM1) and
164 NKT cells (2.1%; GNLY, KLRD1, NCR1 and CD3D"). Shown are t-SNE representations
of reclustered T-cells coloured by the annotated subsets (b) and patient ID (c). d, Heatmap

of the top 10 DEGs per T-cell subset. e, AUC values for all stromal cells scored against
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published human and mouse pancreatic CAF signatures for the myofibroblast-like CAF,
inflammatory-like CAF and antigen-presenting CAF subsets [12-14]. f, Heatmap of the

stromal cluster averaged expression of genes from human pancreatic CAF signatures, as in

(e).

Figure Expanded View 3. TNBC stromal subsets per patient, pseudotime trajectory
and validation of stromal cultures. a, {-SNE representation of the four subclasses of
cancer-associated fibroblasts (CAFs) and perivascular-like (PVL) cells by patient ID. b,
Differential gene expression heatmaps showing the composition of the four stromal subsets
in Patient-1 to Patient-5. c-d, Pseudotime trajectory of CAFs from Patient-2 (¢) and PVL
cells from Patient-1 (d) using the Monocle method annotated by the subsets derived from
Seurat based re-clustering. ¢, Increased expression of marker genes such as ACTA2,
COL1A1, FAP, TAGLN and THY1 as cells move throughout pseudotime indicate that iCAFs
transition towards myCAFs. In contrast, iCAF marker CXCL12 decreases as cells move
throughout pseudotime. d, Increased expression of marker genes such as ACTAZ2 and
MYH11 as cells move throughout pseudotime indicate that imPVL cells transition towards
dPVL cells. In contrast, imPVL cell markers CD36 and RGS5 decreases as cells move
throughout pseudotime. e, Four technical replicates of CAF sorting of myCAF and iCAF
fractions using FAPHICH and FAPnegatvellOW " regpectively. f, FACS analysis showing the co-
expression of CD90 (THY1) with FAPHICH CAFs. This is represented through overlaying
CD90 signal over a replicate sample used for FACS as in (e) (top) and through a contour
plot of FAP vs CD90 signal (bottom). g, Quantitative-PCR validation of FAP, ACTAZ2,
CXCL12, EGFR, PDGFRA and PDGFRB in bulk, FAPHICH and FAPnesativelOW CAF sorted
fractions. Consistent with scRNA-Seq findings, FAP and ACTA2 are enriched in FAPHICH
sorted myCAF-like fractions, while CXCL12 and EGFR are enriched in FAP-°% sorted iCAF-

like fractions.
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Figure Expanded View 4. Immunohistochemistry and immunofluorescence of human
breast cancers and normal breast tissue. a-b, Additional immunofluorescence images of
cultured human CAFs (a) and PVL cells (b), staining for CD34 (CAFs), a-SMA (myCAFs
and PVL cells), CD146 (PVL cells) and CD36 (imPVL cells). ¢, Validation of PVL cells
detached from blood vessels using co-immunofluorescence of CD31 (red), CD146 (green)
and DAPI (blue) for sections from all five patients analysed in this study. d,
Immunohistochemical staining of PDGFRp, a-SMA, CD34 and CD146 in serial sections cut
4 ym apart from normal breast tissues collected from four women. Images were aligned
using FIJI. e, Co-immunofluorescence of CD31 (red), CD146 (green) and DAPI (blue) from
normal breast tissue samples. CD146 is completely colocalised with CD31, suggestion no

detached PVL cells are present in normal breast tissues.

Figure Expanded View 5. Influence of inflammatory-CAF and differentiated-PVL
subclasses on T-cell dysfunction in TNBC patient cohorts. The association between
stromal gene signatures, cytotoxic T-cell levels, and overall patient survival in all three TNBC
patient cohorts examined in this study (METABRIC — 233 patients, GSE21653 — 84 patients
and GSES58812 — 107 patients). Using the TIDE method, we show significant associations
between iCAF and dPVL gene signatures with cytotoxic T-lymphocyte (CTL) dysfunction
and exclusion. a, Prognostic value of iCAF T-cell dysfunction signature in three independent
cohorts. Kaplan-Meier’'s present two groups of patients, ‘low CTL and ‘high CTL’, as
estimated according to the average expression of CD8A, CD8B, GZMA, GZMB and PRF1,
and stratified as compared to the mean. The top and bottom panels show tumours with low
and high iCAF T-cell dysfunction signature, respectively. Sample divided according to iCAF
T-cell dysfunction signature show significant association with CTL levels and survival

outcome. b, Bulk stromal signature associates with CTL exclusion. Pearson correlation was
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computed between all inferred CTL levels (y axis) and the respective correlation between
the bulk sample and the single-cell cluster of interest (x axis). Signature of all stromal cells
divided over all cells correlated negatively with CTL levels, while control CD4+ and CD8+
gene signatures show a positive correlation. Benjamini-Hochberg procedure was used for
adjusting p-values. ¢, dPVL cells associated with CTL exclusion. Repeated analysis in the
same manner as in (b), instead with the averaged expression signature of each stromal
subset over all stromal cells, highlighting that CTL exclusion is mainly driven by dPVL cells
in three out of four cohorts. TNBC data cohort from The Cancer Genome Atlas (TCGA) was

also examined for CTL exclusion analysis.

Appendix Figure Legends

Appendix Figure S1. Identification of malignant cancer cells using inferCNV. a-d,
Inferred copy number variation profiles as estimated using the inferCNV method. Epithelial
cells in each dataset with distinct copy number profiles were classified as cancer for
downstream cell-signalling analysis with each stromal subset. Only epithelial cells are

highlighted in P1 due to low gene coverage for inferCNV analysis.

Appendix Figure S2. Top transcriptional activators distinguishing the four stromal
subpopulations. a, The log normalised gene expression (left) and respective AUC regulon
activity (right) for the top 50 highest TFs regulons as estimated using SCENIC. Regulons
are all filtered for TFs that were statistically enriched between the four subsets (p < 1x10-°
One-way ANOVA). b, Correlation strengths between the log normalised gene expression
and regulon activity (AUC) for the top 50 highest TFs regulons as estimated using SCENIC.
Regulons are all filtered for TFs that were statistically enriched between the four subsets (p

1x10-° One-way ANOVA). R-squared values were computed using linear regression in R.
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Appendix Figure S3. Signalling between stromal subsets and cancer epithelial,
endothelial, myeloid and T-cell subpopulations. Hierarchical clustering (Euclidean and
complete distance) of the top 100 candidate signalling molecules between the four stromal
populations and (a) cancer cells and proliferating cancer cells, (b) endothelial, (¢) myeloid
cells and (d) T-cell subsets including CD8+ T-lymphocytes, cycling T-lymphocytes, CD4+ T-
lymphocytes and T-regulatory cells. Ligand and receptor pairs were ranked according to the
‘interaction strength’, defined as the product of ligand and receptor expression. All

interaction strength values were rescaled per interaction.

Appendix Figure S4. Mouse models of breast cancer do not completely recapitulate
human stromal subsets. a, Violin plot highlighting the negative expression of the
proliferation markers MKI67 and AURKA in the four CAF and PVL subsets, highlighting that
cycling-CAFs may be unique to aggressive mouse models. b-c, Log normalised expression
of the previously reported mouse developmental CAF markers SOX9, SCRG1 and SOX10,
and epithelial markers EPCAM, myoepithelial markers KRT5, KRT14 and ACTAZ2, showing

exclusive expression in epithelial clusters rather than in stromal populations.
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