

1 **Single-cell analysis reveals diverse stromal subsets associated with immune evasion**
2 **in triple-negative breast cancer**

3

4 **Authors**

5 Sunny Z. Wu^{1,2}, Daniel L. Roden^{1,2}, Chenfei Wang³, Holly Holliday^{1,2}, Kate Harvey¹,
6 Aurélie S. Cazet^{1,2}, Kendelle J. Murphy^{1,2}, Brooke Pereira^{1,2}, Ghamdan Al-Eryani^{1,2}, Nenad
7 Bartonicek^{1,2}, Rui Hou⁴, James R. Torpy^{1,2}, Simon Junankar^{1,2}, Chia-Ling Chan¹⁴, Eric
8 Lam¹⁴, Mun N. Hui^{1,5}, Laurence Gluch⁶, Jane Beith⁵, Andrew Parker⁷, Elizabeth Robbins⁸,
9 Davendra Segara⁷, Cindy Mak⁵, Caroline Cooper^{9,10}, Sanjay Warrier^{11,12}, Alistair
10 Forrest^{4,13}, Joseph Powell^{14,15}, Sandra O'Toole^{1,2,16}, Thomas R. Cox^{1,2}, Paul Timpson^{1,2},
11 Elgene Lim^{1,2,7}, X. Shirley Liu³ and Alexander Swarbrick^{1,2*}

12

13 **Affiliations**

14 (1) *The Kinghorn Cancer Centre and Cancer Research Division, Garvan Institute of
15 Medical Research, Darlinghurst, NSW 2010, Australia*

16 (2) *St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia*

17 (3) *Department of Data Sciences, Center for Functional Cancer Epigenetics, Dana-Farber
18 Cancer Institute, Harvard T.H. Chan School of Public Health*

19 (4) *Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for
20 Medical Research, The University of Western Australia, Nedlands, Perth, WA 6009,
21 Australia*

22 (5) *Chris O'Brien Lifehouse, Camperdown, NSW 2050, Australia*

23 (6) *The Strathfield Breast Centre, Strathfield, NSW 2135, Australia*

24 (7) *St Vincent's Hospital, Darlinghurst, NSW 2010, Australia*

25 (8) *Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia*

26 (9) *Pathology Queensland, Princess Alexandra Hospital, Brisbane, Queensland 4102,*
27 *Australia*
28 (10) *Southside Clinical Unit, Faculty of Medicine, University of Queensland, Brisbane,*
29 *Queensland 4102, Australia*
30 (11) *Department of Breast Surgery, Chris O'Brien Lifehouse, NSW 2050, Australia*
31 (12) *Royal Prince Alfred Institute of Academic Surgery, Sydney University*
32 (13) *RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan*
33 (14) *Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical*
34 *Research, Sydney, Australia*
35 (15) *UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney,*
36 *Australia*
37 (16) *Australian Clinical Laboratories, Northern Beaches Hospital, Frenchs Forest, NSW*
38 *2086, Australia*
39 * Corresponding author
40
41 **Key words:** Cancer associated fibroblasts/ single cell RNA sequencing/ stromal
42 heterogeneity/ triple negative breast cancer/ tumour microenvironment
43 **Character Count:** 93,520

44 **Abstract**

45 The tumour stroma regulates nearly all stages of carcinogenesis. Stromal heterogeneity in
46 human triple-negative breast cancers (TNBCs) remains poorly understood, limiting the
47 development of stromal-targeted therapies. Single cell RNA-sequencing of five TNBCs
48 revealed two cancer-associated fibroblast (CAF) and two perivascular-like (PVL)
49 subpopulations. CAFs clustered into two states, the first with features of myofibroblasts and
50 the second characterised by high expression of growth factors and immunomodulatory
51 molecules. PVL cells clustered into two states consistent with a differentiated and immature
52 phenotype. We showed that these stromal states have distinct morphologies, spatial
53 relationships and functional properties in regulating the extracellular matrix. Using cell-
54 signalling predictions, we provide evidence that stromal-immune crosstalk acts *via* a diverse
55 array of immunoregulatory molecules. Importantly, the investigation of gene signatures from
56 inflammatory-CAFs and differentiated-PVL cells in independent TNBC patient cohorts
57 revealed strong associations with cytotoxic T-cell dysfunction and exclusion, respectively.
58 Such insights present promising candidates to further investigate for new therapeutic
59 strategies in the treatment of TNBCs.

60

61 **Introduction**

62 Heterotypic interactions between stromal, immune and malignant epithelial cells play
63 important roles in solid tumour progression and therapeutic response. Cancer-associated
64 fibroblasts (CAFs) play an integral part in the tumour microenvironment (TME), and can
65 influence many aspects of carcinogenesis including extracellular matrix (ECM) remodelling,
66 angiogenesis, cancer cell proliferation, invasion, inflammation, metabolic reprogramming
67 and metastasis [1]. Recent studies have described roles for CAFs in mediating immune
68 suppression and chemo-resistance, establishing CAFs as novel and attractive targets for
69 anti-cancer therapies in advanced breast cancer [2-6]. Despite their well-described roles in
70 cancer biology, CAFs remain enigmatic: limited studies suggest phenotypic heterogeneity,
71 plasticity and functional diversity, with both tumour-promoting and tumour-suppressive
72 properties [1]. The multi-faceted nature of CAFs suggests that they are comprised of diverse
73 subpopulations, and an improved understanding of stromal heterogeneity may explain how
74 CAFs contribute to the dynamic complexity and functional malleability of the tumour
75 ecosystem.

76

77 CAFs of the tumour parenchyma are routinely studied using a handful of markers including
78 α -smooth muscle actin (α -SMA), fibroblast activation protein (FAP), CD90 (THY-1), platelet
79 derived growth factor receptor α and β (PDGFR α and PDGFR β), podoplanin (PDPN) and
80 fibroblast specific protein 1 (FSP-1, also named S100A4) [1, 7-9]. However, these markers
81 are not necessarily co-expressed, nor specific to the fibroblast lineage [4]. For instance, α -
82 SMA not only identifies CAFs with a myofibroblast morphology but also serves as a general
83 marker for myoepithelial cells and perivascular cells. α -SMA+ cells in the breast tumour
84 stroma can also arise from different mesenchymal lineages including resident fibroblasts,
85 smooth muscle cells and pericytes [10]. In addition, FSP1 is also expressed in
86 macrophages, other immune cells and even cancer cells [11]. Thus, a categorical definition

87 of cancer associated stromal cells and specific cell surface markers remains challenging
88 and is urgently needed [1].

89

90 Three broad CAF subtypes have been recently profiled in mouse models of pancreatic
91 ductal adenocarcinoma (PDAC) [12-14]. These are characterised by a myofibroblast-like
92 (myCAF) phenotype, inflammatory properties (iCAF) and antigen presenting capabilities
93 (apCAF) [12-14]. Although little is known about the mechanistic role and clinical relevance
94 of iCAF and apCAF, an accumulation of the myCAF marker α -SMA has been shown to
95 correlate with poor outcome in breast and pancreatic cancer [15, 16]. We have shown that
96 targeting Hedgehog-activated CAFs, which have a myofibroblast-like phenotype in ECM
97 regulation, results in markedly improved survival, chemosensitivity and reduced metastatic
98 burden in pre-clinical models of TNBC [3]. In addition, myofibroblast-like CAFs have been
99 shown to contribute to an immunosuppressive microenvironment by attracting T-regulatory
100 cells in breast and ovarian cancer [4, 5]. While these studies point towards the therapeutic
101 targeting of myofibroblast-like CAFs, genetic ablation of α -SMA+ cells in a mouse model of
102 PDAC resulted in more aggressive tumours and reduced mouse overall survival, indicating
103 complex stromal functionalities across distinct tissue sites [17].

104

105 Recent advances in single-cell RNA sequencing (scRNA-Seq) have overcome some of the
106 technical hurdles in the investigation of cellular heterogeneity amongst complex tissues such
107 as carcinomas. Recent patient studies have dissected the TME in head and neck squamous
108 cell carcinomas and lung tumours, revealing new insights into stromal and immune subsets
109 associated with disease progression [18, 19]. Single-cell studies of human breast cancers
110 have been limited to immune cells, while studies in mouse models have revealed four
111 subclasses of CAFs [20]. Although CAFs from human breast carcinomas have been profiled

112 by flow cytometry and bulk sequencing, comprehensive single-cell profiling has yet to be
113 performed in TNBC patients [4].

114

115 TNBC is an aggressive breast cancer subtype, which is lacking in effective targeted
116 therapeutic options. It is clinically defined by negative status for targetable hormone
117 receptors (estrogen receptor and progesterone receptor) or HER2 amplification. Studies in
118 mice and humans have demonstrated that TNBC progression can be influenced by stromal
119 cells however, a comprehensive understanding of the stromal hierarchy is yet to be
120 established [2-6]. To investigate this in more detail, we performed unbiased high-throughput
121 scRNA-Seq to profile the TME directly in patient tumour tissues. In addition to CAFs, we
122 identified stromal cells with a perivascular-like (PVL) profile, which were not necessarily
123 associated with blood vessels. Our study focuses exclusively on CAFs and PVL cells, which
124 we collectively refer to as 'stroma'. Using orthogonal methods, we found that functions
125 previously ascribed to CAFs as unitary cell types are actually performed by specialised
126 subsets of stromal cells with distinct morphological, spatial and functional properties [20]. In
127 addition, by sampling cells from the entire TME, we were able to predict paracrine signalling
128 between stromal and immune cell subsets. From this, we analysed large patient gene
129 expression datasets to show significant association between inflammatory-like CAFs and
130 differentiated-PVL cells with immune evasion. Our human TNBC single-cell datasets provide
131 a new taxonomy of human cancer-associated stromal cells, which we envisage can be used
132 to further develop TME-directed therapies.

133

134 **Results**

135 ***Composition of triple-negative breast cancers at cellular resolution***

136 We performed scRNA-Seq on primary breast tumours collected from five patients (Fig.
137 EV1A-B) using a marker free approach. Fresh tissues were dissociated into single cell

138 suspensions prior to single-cell capture on the Chromium controller (10X Genomics) and
139 sequencing on the NextSeq 500 (Illumina) (Fig. 1A; Fig. EV1C). In total, we sequenced
140 24,271 cells, with an average of 4,854 cells per patient (Fig. EV1D). A total of 28,118 genes
141 were detected with an average of 1,658 genes expressed, and 6,215 unique molecular
142 identifiers (UMIs) detected per cell (Fig. EV1E-H). Data from individual tumours were
143 integrated and clustered using canonical correlation analysis (CCA) in Seurat [21].

144

145 Epithelial cells (Fig. 1B-C) and stromal-immune cells (Fig 1D-E) were first annotated through
146 the expression of canonical cell type gene markers. This revealed four major cell states
147 within the epithelial compartment (Fig. 1B-C), including a major cluster of 4,095 cancer cells
148 (16.9% of all cells; *EPCAM*⁺, *ESR1*⁻) and a second cluster of 614 cancer cells with high
149 proliferation (2.5%; *MKI67*⁺). The remaining two smaller epithelial clusters had gene
150 expression features consistent with normal luminal (277 cells, 0.9%; *EPCAM*⁺, *ESR1*⁺) and
151 myoepithelial cells (212 cells, 0.9%; *EPCAM*^{lo}, *KRT5*⁺, *KRT14*⁺ and *ACTA2*⁺). Neoplastic or
152 normal status of these cell clusters was confirmed by inferring genome copy number
153 alterations over large genomic regions using InferCNV (Appendix Fig. S1) [22]. In addition
154 to marker genes, stromal and immune clusters were further classified through scoring
155 against published cell type signatures from the XCell database with an area under the curve
156 approach (AUCCell) (Fig. EV2A) [23, 24]. In the immune compartment (Fig 1D-E), we
157 identified 7,990 T-lymphocytes (32.9%; *CD3D*), 1,245 B-cells (5.1%; *MS4A1*), 1,955 plasma
158 cells (8.1%; *JCHAIN*) and 4,606 myeloid cells (19.0%; *CD68*). Through re-clustering of the
159 T- lymphocytes (Fig. EV2B-D), we identified 175 T-follicular helper cells (2.2%; *CXCL13* and
160 *CD200*), 994 T-Regulatory cells (12.4%; *FOXP3* and *BATF*), 2,003 other CD4+ T-cells
161 (25.1% of all T-cells; *CD4*, *IL7R* and *CD40LG*), 3,691 CD8+ T-cells (46.2%; *CD8A* and
162 *GZMH*), 605 proliferating T-cells (7.6%; *MKI67*), 358 NK Cells (4.5%; *GNLY*, *KLRD1*, *NCR1*,
163 *XCL1* and *NCAM1*) and 164 NKT cells (2.1%; *GNLY*, *KLRD1*, *NCR1* and *CD3D*⁻). The

164 remaining cells consisted of 610 endothelial cells (2.5%; *PECAM1*) and two distinct clusters
165 (with 1,409 and 320 cells, 5.8% and 1.3%, respectively) sharing the expression of common
166 stromal markers including *PDGFRB*, *S100A4* (FSP-1), *ITGB1* (CD29) and *THY1* (CD90).
167 These non-endothelial nor immune cells (collectively referred to as stromal in this study)
168 were enriched for a fibroblast cell type signature from XCell (Fibroblasts_FANTOM_1; Fig.
169 EV2A). All annotated cell types were detected in each patient, with varying proportions of
170 cell types between cases, indicating no patient specific sub-populations in our integrated
171 dataset (Fig. 1F).

172

173 ***Reclustering stromal cells revealed four distinct sub-clusters in human TNBCs***

174 Although the stromal clusters shared many common markers used to study CAFs, we further
175 inspected their heterogeneity through reclustering each population (Fig. 2A). Sub-clusters
176 were detected across multiple clustering resolutions in the *FindClusters* function in Seurat
177 (resolutions 0.2, 0.3 and 0.4), with varying proportions from each patient (Fig. 2B). The first
178 cluster, which was classified as CAFs through the expression of fibroblast-specific markers
179 (*PDGFRA*, *COL1A1*, *FAP* and *PDPN*), formed two sub-clusters (Fig. 2A-C). The first CAF
180 sub-cluster was comprised of 280 cells (16.2% of all stromal; red cluster) and was classified
181 as myofibroblast-like CAFs (myCAFs) through the elevated expression of activated
182 fibroblast markers (*ACTA2*, *FAP* and *PDPN*) and collagen-related genes (*COL1A1* and
183 *COL1A2*) (Fig. 2C-D) [12-14]. The second CAF sub-cluster comprised of 1,129 cells (65.3%;
184 orange cluster; Fig. 2A-C) and resembled inflammatory-CAFs (iCAFs) through the
185 enrichment of the CAF chemokine marker *CXCL12* (also known as SDF-1) (Fig. 2C-D) [12-
186 14]. We next compared our CAF clusters to the subsets previously reported in pancreatic
187 cancer [12-14]. This was performed by scoring published CAF gene signatures across our
188 stromal clusters using the AUCell method (Fig. EV2E) [23]. This revealed the enrichment of
189 pancreatic myCAF and iCAF signatures in our breast myCAF and iCAF clusters,

190 respectively, suggesting similar phenotypes likely exist across both tissue sites (Fig. EV2E).
191 While the signatures were largely conserved, a number of human PDAC CAF markers were
192 detected in opposing cell types, for example *IL6* was expressed by PVL cells rather than
193 iCAF_s (Fig. EV2F). No clusters showed any particular enrichment for signatures of antigen-
194 presenting CAF_s, potentially because they are a rare cell type that was not sampled, or are
195 unique to pancreas tumours (Fig. EV2E).

196

197 In contrast, the second stromal cluster was enriched for perivascular markers, including
198 genes associated with pericytes and smooth muscle cells (*ACTA2*, *MCAM*, *CAV1*, *TAGLN*,
199 *MYH11*, *MYLK* and *RGS5*; Fig. 2C-D) [25]. *MCAM* (also known as CD146) has shown to be
200 a robust marker to differentiate perivascular cells from fibroblasts in human tissues [26-29].
201 PVL cells were further classified as either differentiated-PVL (dPVL; 122 cells in light blue,
202 7.1%), characterised through the enrichment of myogenic differentiation genes (*TAGLN*,
203 *MYH11* and *MYLK*), or immature-PVL (imPVL; 198 cells in dark blue; 11.5%), characterised
204 by the elevated expression of genes associated with an immature phenotype (*PDGFRB*,
205 *CD36* and *RGS5*) (Fig. 2C-D) [30]. To our surprise, both PVL subsets were also enriched
206 for the human PDAC myCAF signature, suggesting PVL cells share some similarities in
207 gene expression profile with myCAF_s (Fig. EV2E-F). All four stromal subsets were detected
208 in all five patients, however there were differences in the proportions between the patients
209 (Fig. 2B; Fig. EV3A-B). The stromal profiles of Patient-1 (P1) and P2 were predominantly
210 comprised of iCAF_s, myCAF_s were highest in P3, whilst PVL cells were highly abundant in
211 P4 and P5 (Fig. 2B; Fig. EV3A-B).

212

213 Next, we identified differentially expressed genes (DEGs) between the four subsets using
214 the MAST method, which compares each subset against all other subsets [31]. This
215 identified a total of 894, 610, 258 and 289 DEGs (log fold change threshold of 0.1, *p*-value

216 threshold of 1×10^{-5} and FDR threshold of 0.05) by myCAF_s, iCAF_s, dPVL and imPVL cells,
217 respectively (Fig. 2D; Appendix Table S1). We performed gene ontology (GO) analysis using
218 the top 250 DEGs from each subset using the clusterProfiler tool (Fig. 2E; Appendix Table
219 S2) to determine the pathway level differences driving stromal heterogeneity [32]. This
220 revealed an enrichment of collagen biosynthesis and ECM-regulatory pathways in myCAF_s,
221 which included fibrillar collagen genes *COL1A1* and *COL1A2* and ECM remodelling
222 metalloproteinases *MMP1* and *MMP11* (Fig. 2D-E). We identified the enrichment of
223 developmental signalling pathways and chemotactic regulation in iCAF_s, including soluble
224 factors such as *IGF1*, *FIGF* and *PDGFD*, and the chemokines *CXCL12* and *CXCL13* (Fig.
225 2D-E). Stem cell markers including *ALDH1A1* and *ID2*, and the growth factor receptor *EGFR*
226 were also upregulated in iCAF_s (Fig. 2D). Within the PVL cells, the dPVL cluster was
227 enriched for pathways related to the muscle system and contractility, while the imPVL cluster
228 was enriched for pathways related to focal and substrate adhesion, including the integrin
229 molecule *ITGA1* (Fig. 2D-E). No stromal clusters expressed canonical markers for
230 proliferation, including *MKI67* and *AURKA*. As many of the genes and pathways identified
231 were related to cell activation and contractility, we hypothesised that the stromal sub-clusters
232 resembled cell differentiation stages rather than distinct subpopulations. Cell trajectories
233 were examined using the Monocle method, which revealed subsets of CAF_s and PVL cells
234 distributed across pseudotemporal space (Fig. EV3C-D) [33]. For example, *COL1A1*,
235 *ACTA2* and *CXCL12* expression transitioned throughout CAF differentiation (Fig. EV3C),
236 while *CD36*, *RGS5* and *MYH11* transitioned throughout PVL differentiation (Fig. EV3D). Our
237 findings indicate that the stroma in TNBC is comprised of four major transcriptional states
238 related to cell differentiation, which branch from the two major fibroblast and perivascular-
239 like lineages.

240

241 **Transcription factor pathways enriched across stromal subclasses**

242 We next sought to investigate if gene regulatory networks could further explain the
243 underlying heterogeneity in stromal subpopulations. To examine the activity of CAF and PVL
244 transcription factors (TFs), we applied the SCENIC method to build gene regulatory
245 networks from scRNA-Seq data and identify activating cis-regulatory elements [23, 34].
246 Through applying this to the normalised stromal gene expression matrix, SCENIC identified
247 a total of 190 activated TFs, of which 166 were identified to be significantly different across
248 the four stromal subsets (one-way ANOVA; *p*-value threshold of 1×10^{-5}). We focused on the
249 top 50 strongest candidates based on their average AUC values (Fig. 3; Appendix Fig. S2).

250

251 In examining the top candidate TFs (Fig. 3; Appendix Fig. S2), *ZEB1* and *FOXP1* were
252 enriched in myCAF_s. A recent study inhibiting stromal *ZEB1* in the PyMT mouse model of
253 breast cancer reduced tumour growth, invasion and impaired ECM deposition [35]. In other
254 tissue contexts, *FOXP1* was reported to regulate the fibrotic potential of stromal cells via the
255 Wnt/beta-catenin pathway, including myCAF marker genes such as *ACTA2* and *COL1A1*
256 [36]. Known roles of such TFs are consistent with the predicted ECM-regulating phenotype
257 of myCAF_s. The *EGR2* and *TCF7L2* regulons were enriched in iCAF_s (Fig. 3). *EGR2* is
258 known to regulate the expression of immunomodulatory molecules in mesenchymal stem
259 cells [37]. The TCF family including *TCF7L2* (also known as *TCF4*) are Wnt-regulated TFs
260 that are highly expressed during early development [38]. As iCAF_s also expressed the stem
261 cell markers *ALDH1A1* and *ID2*, we hypothesised that they resemble a stem or progenitor-
262 like state.

263

264 For PVL cells, *MEF2C* was a highly enriched driver in both subsets (Fig. 3). Myocyte
265 enhancer factor 2 (MEF2) is a well-defined regulator for the development of vascular smooth
266 muscle cells [39, 40]. We identified *KLF2* enriched in dPVL cells, and *NR2F2* enriched in
267 imPVL cells (Fig. 3). *KLF2* is required for smooth muscle cell migration and maturation in

268 blood vessel formation, consistent with the predicted differentiation state of dPVL cells [41].
269 Furthermore, NR2F2, also known as COUP-TFII, is highly expressed by myogenic
270 precursors and is known to inhibit muscle development, which is consistent with the
271 predicted immature state of imPVL cells [42]. In summary, we identified unique and novel
272 TF drivers in each of the four stromal subclasses, providing further insights into the
273 transcriptional drivers underlying stromal heterogeneity.

274

275 ***Validation of stromal subsets in primary breast cancer tissue***

276 To validate the existence of the four stromal subclasses described above in TNBC patient
277 tissue (Fig. 4A), we first performed fluorescence-activated cell sorting (FACS) isolation on
278 scRNA-Seq matched human tissue sections (Fig. 4B). Our gating strategy used EPCAM,
279 CD45 and CD31 as negative markers to exclude epithelial, immune and endothelial cells,
280 respectively (Fig. 4B). We additionally used PDGFR β to positively select all stromal
281 populations and avoid contaminations from cancer stem cells and breast myoepithelial cells
282 which have low EPCAM expression [43, 44]. Based on our initial scRNA-Seq findings, we
283 determined PDGFR α and CD146 (*MCAM*) as good markers to discriminate CAFs and PVL
284 cells, respectively. Following the initial isolation and culturing of CAFs
285 (PDGFR β^+ /PDGFR α^+ /CD146 $^-$) and PVL cells (PDGFR β^+ /PDGFR α^- /CD146 $^+$), we next
286 performed simultaneous FACS analysis of additional stromal markers to validate the
287 presence of the four stromal subsets in culture. We show that myCAFs and iCAF s could be
288 distinguished by FAP $^{\text{HIGH}}$ /CD90 $^{\text{HIGH}}$ and FAP $^{\text{LOW}}$ /CD90 $^{\text{LOW}}$ expression, respectively (Fig. 4B,
289 Fig. EV3E-F), whilst imPVL cells could be discriminated from dPVL cells by CD36 $^+$
290 expression (Fig. 4B, Fig. 4B). We validated the gene expression of cultured bulk and sorted
291 CAF fractions using quantitative real time PCR (qPCR) (Fig. EV3G). As controls, *PDGFRA*
292 and *PDGFRB* were expressed in both the FAP-high and FAP-low populations. Consistent
293 with the FACS sorting strategy and scRNA-Seq findings, *FAP* and *ACTA2* were enriched in

294 FAP^{HIGH}(myCAF) sorted cells, while CXCL12 and EGFR were enriched in FAP^{LOW} (iCAF)
295 sorted cells (Fig. EV3G). We next performed immunofluorescence (IF) to further validate
296 additional markers and explore potential morphological differences. Here, α -SMA
297 expression was used to identify myCAFs from iCAFs (Fig. 4C; Fig. EV4A), and CD36 to
298 distinguish imPVL from dPVL cells (Fig. 4D; Fig. EV4B). From our observations, myCAFs
299 and dPVL cells had a more elongated morphology in comparison to iCAFs and imPVL cells
300 (Fig. 4C; Fig. EV4A), which is consistent with the predicted differentiation state of each
301 subset. Importantly, we defined a novel gating strategy that allowed us to purify the four
302 stromal subsets for subsequent *in vitro* functional characterisation.

303

304 ***Myofibroblast-like CAFs have elevated capabilities for collagen secretion and***
305 ***alignment***

306 From the above results, we predicted myCAFs to be the predominant subset synthesising
307 ECM components. To investigate this, we generated cell-derived matrices (CDMs) to
308 compare the ability of each human stromal subset to lay down collagen, as previously
309 described [45]. Purified stromal subsets were seeded and cultured onto glass for 7 days. To
310 assess Collagen I deposition, we used Second Harmonic Generation (SHG) microscopy,
311 which is a sensitive method for quantifying fibrillar collagen density and orientation in an
312 unlabelled manner. This revealed FAP^{HIGH} myCAFs had a significant increase in SHG signal
313 intensity compared to FAP^{LOW} iCAFs, while PVL cells had a significantly lower SHG signal
314 compared to both CAF subsets (Fig. 4E). Higher densities of stromal collagen is a hallmark
315 of breast tumour growth, invasiveness, and risk of disease development [46-48]. Our
316 findings also indicate that PVL cells do not adopt fibroblast-like traits in contributing to the
317 collagenous TME. Further analyses of collagen fibre orientation also revealed that in
318 addition to increased amounts, the orientation of the collagen fibres deposited by myCAFs
319 was more uniformly aligned compared to iCAFs and PVL cells (indicated by the higher,

320 narrow peak in Fig. 4F). It has been previously shown that tumour associated collagen
321 signatures (TACs), characterised by the alignment of collagen fibres, is a good factor for
322 predicting breast cancer survival [49]. In further parallels to pancreatic cancers, FAP-
323 overexpressing fibroblasts have been shown to produce more parallel aligned fibres,
324 enhancing the directionality and velocity of cancer cell invasion [50]. Importantly, these data
325 highlights that the regulation of the ECM, namely in collagen density and orientation, is
326 mainly regulated by the specialised myCAF subsets. In summary, our findings demonstrate
327 that the stromal subclasses described here are functionally distinct, and provide a novel
328 strategy for their purification from breast cancers.

329

330 ***Stromal subclasses are spatially distinct***

331 To investigate the spatial localisation of CAFs and PVL cells, we performed
332 immunohistochemistry (IHC) with markers identified by scRNA-Seq on data matched patient
333 tissues. We also wanted to validate that CAFs and PVL cells localise to the intratumoural
334 regions of tumour specimens and are not from adjacent normal tissue or blood vessels. We
335 stained serial 4 μ m sections and identified stromal cell types using a combination of markers
336 identified previously by scRNA-Seq and DGE (Fig. 2C): pan-stromal (PDGFR β $^+$), myCAFs
337 (PDGFR β $^+$, α -SMA $^{\text{HIGH}}$ and CD146 $^-$), iCAFs (PDGFR β $^+$, α -SMA $^-$, CD34 $^{\text{HIGH}}$ and CD146 $^-$) and
338 PVL cells (PDGFR β $^+$, α -SMA $^{\text{HIGH}}$, CD34 $^-$ and CD146 $^+$). As CD34 and CD146 are commonly
339 used markers of the endothelium but are mutually exclusive in CAFs and PVL cells, we used
340 their co-localisation in combination with PDGFR β staining and morphology (rings
341 surrounding lumen) to identify endothelial cells [26]. This IHC strategy revealed regions
342 where myCAFs (α -SMA $^{\text{HIGH}}$) were located in close proximity to the invasive tumour interface,
343 while iCAFs (CD34 $^{\text{HIGH}}$) were relatively distal to this interface (Fig. 4G). In these particular
344 cases, no PVL cells were present in these regions and CD146 was completely restricted to
345 blood vessels (Fig. 4G). In distal regions which were enriched for iCAFs, we also identified

346 a high co-localisation of tumour-infiltrating lymphocytes as identified by morphology (Fig.
347 4G).

348

349 By definition vascular smooth muscle cells (vSMCs) and pericytes should be localised
350 around arteries and veins to facilitate vascular development and stability. To examine
351 whether PVL cells are vessel-associated, we used co-IF staining for CD31 and CD146 to
352 mark endothelial cells and PVL cells, respectively. We readily detected PVL cells at non-
353 blood vessel regions in the stroma of 4 out of 5 matched patient tissue sections (all cases
354 except P3), including P4 where it was highly abundant (Fig. 4H-I; Fig. EV4C). Consistent
355 with the cell proportions identified by scRNA-Seq, PVL cells were highly abundant in P4,
356 and lowly detected in P3 (Fig. 2B). PVL cells were highly dispersed throughout the tumour
357 stroma with no obvious co-localisation to the invasive malignant borders. Importantly, our
358 findings suggest that these smooth muscle-like cells, like CAFs, can be readily identified
359 disseminated throughout the stroma, independent of blood vessels.

360

361 To understand how the four stromal subpopulations correspond to their normal tissue
362 counterparts, we repeated the staining of PDGFR β , CD34, α -SMA and CD146 on healthy
363 breast tissue collected from four women. This revealed a high abundance of iCAF-like
364 fibroblasts (PDGFR β $^+$, α -SMA $^-$, CD34 HIGH and CD146 $^-$) surrounding ductal regions, while
365 myCAF-like fibroblasts (PDGFR β $^+$, α -SMA HIGH and CD146 $^-$) were sparsely detected across
366 all four cases (Fig. EV4D). While this small panel of markers do not highlight the large
367 transcriptional changes that may occur upon CAF activation, it does suggest that the broad
368 iCAF-like and myCAF-like fibroblast subsets are resident cell types which are reactivated
369 during carcinogenesis. For PVL cells, IHC staining of CD146 was completely restricted to
370 blood vessels (Fig. EV4D). This further confirmed using co-IF staining for CD31 and CD146
371 on the normal tissue cases, where CD146 was completely restricted to CD31-positive blood

372 vessels (Fig. EV4E). Our findings suggest that disseminated PVL cells are a distinct feature
373 in a subset of TNBCs.

374

375 ***Distinct ligand receptor expression predicts diverse stromal crosstalk to the tumour***
376 ***microenvironment***

377 We next sought to investigate how spatially distinct stromal subclasses may interact with
378 other cells within the TME. Here, we annotated our scRNA-Seq dataset using a published
379 set of curated human ligand-receptor pairs [51]. We used these annotations to construct a
380 cell-to-cell communication network and predict intratumoral signalling between the four
381 stromal clusters, and the surrounding neoplastic, immune and endothelial
382 microenvironment. This revealed diverse stromal signalling profiles (Fig. 5A), with myCAFs
383 and iCAFs having the highest overall predicted ligand activity out of all the cell types (Fig.
384 5B). The ‘interaction strength’, or the weight of each edge, was defined as the product of
385 expression levels of the corresponding ligand and receptor. All ligand-receptor pairs with an
386 arbitrary ‘interaction strength’ cut-off of 0.1 were classified as candidate signalling
387 molecules, which revealed a total of 570, 482, 437 and 357 unique predicted interactions
388 between stromal clusters with cancer epithelial cells, endothelial cells, myeloid cells
389 (Appendix Fig. S3A-C) and T-cell subpopulations, respectively (Appendix Fig. S3D;
390 Appendix Table S3).

391

392 Consistent with the enrichment of growth factor signalling gene ontologies in iCAFs (Fig.
393 2E), we identified a strong upregulation of crosstalk *via* the FGF (*FGF7* and *FGF10*), BMP
394 (*BMP4* and *BMP7*), HGF and IGF1 pathways to their cognate receptors across cancer cells
395 and endothelial cells (Fig. 5C; Appendix Fig. S3A-B). These factors are known to be highly
396 expressed in breast tumours and associated with breast cancer proliferation, invasion and
397 inducing cancer stem-cell (CSC) phenotypes [52-55]. Different ligands from these pathways

398 were also identified from myCAF_s and dPVL cells, suggesting that neoplastic phenotypes
399 could also be influenced by different stromal cells (Appendix Fig. S3A). As we identified
400 iCAF_s to be located more distal to the invasive tumour interface, we hypothesize that these
401 secreted factors function from a distance. For signalling to the endothelial compartment,
402 iCAF_s and PVL cells were both enriched for well-characterised growth factors involved in
403 angiogenesis (Appendix Fig. S3B). Classical angiogenic pathways including VEGFs (*FIGF*,
404 also known as VEGFD), PDGFs (*PDGFC*), IGFs (*IGF1* and *IGF2*) and Notch signalling
405 (*DLK1*) were enriched in signals emanating from iCAF_s (Appendix Fig. S3B). These
406 pathways suggest that the inflammatory CAF phenotype is also associated with tumour
407 neovascularisation [56, 57]. In addition, PVL-derived signals were enriched for the canonical
408 *ANGPT1/ANGPT2-TIE1* pathway, which are known stimuli that can induce the sprouting of
409 new vessels during the formation of new endothelial tubes [58].

410

411 Given the reported immunoregulatory properties of mesenchymal cells [4, 5], we next
412 focused on the signalling of stromal cytokines and checkpoint molecules to immune
413 populations. Here, we identified an enriched interaction between iCAF_s and myeloid cells
414 *via* the complement cascade activation interaction C5-C5AR1 (Fig. 5D; Appendix Fig. S3C).
415 C5 activation in the TME acts as a chemotactic factor for the recruitment of
416 immunosuppressive myeloid cells to suppress T-cell activities [59]. In addition, myCAF_s and
417 iCAF_s were enriched for *TGFB1-TGFB1R1* and *TGFB2-TGFB1R1* interactions with myeloid
418 cells, respectively (Fig. 5D; Appendix Fig. S3C). As TGF β -activated myeloid cells have been
419 shown to enhance breast cancer progression and metastasis *in vivo*, it suggests that both
420 CAF subsets could influence myeloid phenotypes [60]. While the *TGFB1R1* receptor was
421 predominantly enriched on myeloid clusters, it is worth noting that its expression was also
422 detected by cancer and endothelial clusters (Fig. 5D). Although PVL cells had lower ligand
423 expression profiles compared to CAF_s, several immunomodulatory cytokine interactions

424 were predicted between PVL cells and myeloid cells, including an enrichment of the *CCL8*-
425 *CCR1*, *IL6-IL6R* and *CCL2-CCR1* pathways (Fig. 5D; Appendix Fig. S3C). *CCL2* produced
426 by the microenvironment in other cancers has been shown to be essential for the recruitment
427 of T-Regs and tumour-associated macrophages, supporting an additional role of PVL cells
428 in recruiting immunosuppressive cells [61].

429

430 For the signalling to the lymphocyte compartment, iCAF_s had a strong upregulation of the
431 chemo-attractant pathways *CXCL12-CXCR4* and *CXCL13-CXCR5* with T- and B-cells (Fig.
432 5E; Appendix Fig. S3D). CAF derived *CXCL12* has been shown to recruit and regulate the
433 activity of CD4+/CD25+ T-Regs in breast cancers, suggesting iCAF_s may have a direct role
434 in recruiting immunosuppressive populations [4, 5]. *CXCL12* and *CXCL13* signalling axes
435 have also been shown to mediate lymphocyte recruitment to tertiary lymphoid structures
436 (TLS) [62]. MyCAF_s were also enriched for secreted immunoregulatory molecules and
437 checkpoints including *CXCL9-CXCR3*, *CXCL11-CXCR3* and *CD274-PDCD1* (PDL1-PD1)
438 with T-cells (Fig. 5E; Appendix Fig. S3D). Lastly, only few candidates were identified
439 between PVL cells with T-cells, including the enrichment of *CCL21-CCR7*, which is
440 associated with immune tolerance in favour of tumour progression (Fig. 5E; Appendix Fig.
441 S3D) [63]. It is evident from our signalling predictions that diverse immunoregulatory
442 molecules are expressed in the stroma, highlighting that immune evasion can be regulated
443 by distinct stromal subpopulations in TNBC.

444

445 ***Inflammatory-CAF_s associated with cytotoxic T-lymphocyte dysfunction***

446 To further investigate the influence of stromal subsets on immune evasion, we explored the
447 association between distinct stromal gene signatures and immune content in three large
448 independent TNBC patient cohorts with associated bulk gene expression data (METABRIC,
449 GSE8812 and GSE21653) [64-66]. Using a computational model called Tumour Immune

450 Dysfunction and Exclusion (TIDE), we examined two primary mechanisms of immune
451 evasion. The first examines factors driving the ‘dysfunction’ of cytotoxic T-lymphocytes
452 (CTLs), while the second examines factors preventing the infiltration of CTLs to the tumour,
453 known as ‘exclusion’ (described below) [67]. TIDE first estimates CTL levels in each sample
454 within a bulk-sequencing cohort using the averaged expression of CTL-specific genes (See
455 Methods). Patients are then stratified into high and low CTL groups based on comparisons
456 to the mean CTL level within the cohort. For dysfunction, we then evaluated whether gene
457 signatures from each of the stromal subsets influences the beneficial effect of CTL levels on
458 patient prognosis [67]. This analysis revealed a strong enrichment of genes from the iCAF
459 signature that were significantly associated with CTL dysfunction in all three bulk tumour
460 cohorts (Fig. 6A). In patients with a low iCAF dysfunction signature level, a significant
461 survival benefit was associated with high CTL levels (Fig. 6B; Fig. EV5A). This is consistent
462 with previous clinical observations in TNBCs where lymphocyte infiltration is a robust
463 prognostic factor for improved disease-free survival and overall survival benefit [68].
464 Remarkably, in patients with a high iCAF dysfunction signature level, CTL levels were not
465 associated with prognosis in any of the three cohorts (Fig. 6B; Fig. EV5A), suggesting a role
466 for stromal iCAFs in driving dysfunctional CTLs in TNBC. Other stromal subset signatures
467 did not show a significant enrichment of prognostic genes in the context of CTL dysfunction.
468
469 To investigate whether CTLs in each patient were indeed dysfunctional, we scored a
470 published T-cell exhaustion gene signature in our CD8+ T-cell populations from each patient
471 using an AUC approach (Fig. 6C) [69]. This gene set includes canonical markers of
472 exhausted T-cells including *PDCD1* (PD-1), *LAG3*, *TIGIT* and *CTLA4* [69]. This revealed
473 heterogeneity for exhausted CD8+ T-cell populations in all 5 patients (Fig. 6C), with P2 and
474 P4 having the highest average exhausted gene signature score. In contrast, the exhaustion
475 signature was not enriched in any other cell population with the exception of the myeloid cell

476 cluster (Fig. 6C). Myeloid cells, which can include tumour-associated macrophages and
477 myeloid derived suppressor cells, are known to hold immunosuppressive properties, and
478 can also express inhibitory molecules associated with T-cell suppression [70].

479

480 ***Differentiated-PVL cells associated with cytotoxic T- lymphocyte exclusion***

481 We next explored whether particular stromal subsets were associated with CTL exclusion,
482 a cold ‘immune-desert’ phenotype with ‘low CTL’ activity. This was examined using the
483 Pearson correlations between all CTL levels and the respective correlation score between
484 the bulk tumour sample and the single-cell cluster of interest. The averaged expression of
485 all genes from the single-cell cluster are referred to as a signature in this section. Previous
486 studies have reported an association between CAFs and CTL exclusion [67]. Consistent
487 with this, the collective bulk signature from all stromal cells correlated negatively with CTL
488 levels in four TNBC patient cohorts (Fig. 6D; Fig. EV5B). As a positive control, CD4+ and
489 CD8+ T-cell signatures from our dataset positively correlated with CTL levels as expected
490 (Fig. 6D; Fig. EV5B). To investigate if this was predominantly driven by one stromal subset,
491 we repeated this analysis with the averaged gene expression of myCAF_s, iCAF_s, dPVL and
492 imPVL clusters independently (Fig. 6E; Fig. EV5C). This revealed that dPVL cells were the
493 only subset with a significant negative correlation with CTL level in three of four cohorts,
494 suggesting they are the primary subset associated with T-cell exclusion (Fig. 6E; Fig. EV5C).
495 To further explore this correlation in our five patients, tumour infiltrating lymphocytes (TILs)
496 and CTLs were scored in matched tumour sections by a specialist breast pathologist. Total
497 TILs were estimated using standard H&E-based assessment (Fig. 6F), whilst stromal CTLs
498 were accurately quantified by CD8 staining and scored as previously described (Fig. 6G)
499 [71]. The latter measurements were performed as TILs can also be comprised of non-CTL
500 populations including CD4+ T-cells, T-Regs and B-cells. TILs and CTL scoring revealed that
501 2 out of 5 patients (P4 and P5) had very low CTL infiltration (<5% TILs and <50 CD8+ T-

502 cells per 1 mm²), whereas P3 had a very high infiltration (>70% TILs and >200 CD8+ T-cells
503 per 1 mm²) (Fig. 6F-H). In support of dPVL cells as drivers of T-cell exclusion, only 4% of
504 stromal cells from P3 were annotated as dPVL cells, while P4 and P5 had the two largest
505 proportions of dPVL profiles with 35.5% and 26.8% (Fig. 2B). Furthermore, no disseminated
506 PVL cells could be readily detected in P3 using co-IF (Fig. EV4C). While small numbers, our
507 findings are consistent with the proposal that specialised stromal subclasses are associated
508 with immune evasion.

509

510 **Discussion**

511 Our study describes a detailed taxonomy of human stromal subclasses in TNBC at cellular
512 resolution. The activated tumour stroma is classically described using a broad 'CAF'
513 classification. Here, we provide evidence that it is also comprised of functionally distinct
514 perivascular-like cells which are not necessarily associated with the endothelium. We show
515 that stromal heterogeneity diverges to four distinct states: myofibroblast-like, inflammatory-
516 like CAFs and differentiated- and immature-PVL cells. Similar to CAFs described in
517 pancreatic ductal adenocarcinoma, we find stromal subclasses are spatially distinct, with
518 myCAFs localised to the invasive tumour front, whilst iCAF are located distal to this
519 interface [12]. From our systematic scRNA-Seq of the TME, we used receptor expression
520 on other cell types to predict diverse stromal-immune crosstalk *via* an array of
521 immunoregulatory molecules to immune populations. We go on to show that iCAF and dPVL
522 subsets are highly associated with immune evasion in multiple independent TNBC cohorts,
523 suggesting a clinical relevance for unique stromal subsets [64-66].

524

525 Few studies have investigated the functional heterogeneity of the cancer stroma. A recent
526 scRNA-Seq study profiled CAFs in a mouse model of breast cancer and defined matrix-,
527 vascular-like-, cycling- and developmental-CAF subsets [20]. We did not find a cycling-CAF

528 cluster driven by proliferation markers (Appendix Fig. S4A), likely reflecting unique features
529 of animal models. In addition, the authors proposed mouse ‘developmental-CAFs’ to be of
530 epithelial to mesenchymal transition origin [20]. In contrast, we found the expression of
531 proposed developmental-CAF markers *Scrg1*, *Sox9*, and *Sox10* exclusively in cancer
532 epithelial clusters, which are classified based on the expression of epithelial lineage
533 exclusive keratins (Appendix Fig. S4B-C). Our comparisons suggest that developmental-
534 CAFs are either unique to mouse models or are cancer cells whose expression of *EPCAM*
535 is down-regulated, which was a negative marker used for CAF isolation in these studies [43,
536 44].

537

538 Despite well-characterised roles in cancer progression, the cellular origins of CAFs remain
539 poorly understood. Our results support the notion that dispersed stromal cells can also arise
540 from perivascular cells, likely delaminated from vascular structures. Although PVL cells
541 clustered distinctly from CAFs and express perivascular markers including *MCAM* (CD146),
542 *CAV1*, *RGS5*, *MYH11* and *TAGLN* (SM-22-Alpha), they also expressed an array of markers
543 commonly used to classify CAFs, including *ACTA2* (α -SMA), *PDGFRB*, *THY1* (CD90),
544 *S100A4* (FSP-1) and *ITGB1* (CD29) [4, 25]. Similar PVL subsets were identified in a
545 previous mouse model of breast cancer [20]. The authors defined these cells as ‘vascular-
546 like CAFs’ through the expression of vessel development markers such as CD146 [20].
547 Although the authors hypothesised that vascular-like CAFs are derived from perivascular
548 cells such as pericytes, the concept of pericyte-to-fibroblast transition has been debated
549 [72]. Our findings from functional assays suggest PVL cells do not possess the defining
550 fibroblast trait of collagen deposition and remain phenotypically distinct from the fibroblast
551 lineage (Fig. 4E).

552

553 The functional role of perivascular cells in breast cancer is poorly understood. A very early
554 study found that 4 out of 10 breast tumours showed substantial infiltration of vascular smooth
555 muscle cells based on staining for markers including α -SMA, smooth muscle myosin and
556 calponin [10]. This finding went without further exploration until this manuscript, where we
557 validate their existence using state-of-the-art scRNA-Seq and staining of CD146 in matched
558 patient tissue. From our TF analysis, we predict the MEF2 regulon to be a strong activating
559 TF of the PVL subclass. MEF2C is a well-defined regulator for establishing vSMCs during
560 development, highlighting a likely vSMC origin of the described PVL cells [39, 40]. As
561 observed during wound healing, we hypothesise that vSMCs could be stimulated by
562 malignant factors or mitogens, allowing them to migrate from the vessel basement
563 membrane into the stroma [73, 74]. This is further supported by *in vitro* studies showing that
564 breast cancer derived PDGFs can induce the recruitment and migration of vSMCs [73]. As
565 perivascular cells play an important part during angiogenesis and blood vessel stability, it is
566 also possible that their displacement in tumours is stimulated by, or a driver of, dysregulated
567 angiogenesis or hypoxia. Although it is yet to be studied in the context of perivascular cells,
568 studies have reported that the imPVL marker CD36 is enriched in normal tissue regions and
569 is associated with good survival outcome in breast cancer [75]. However, the origin and
570 functional role of PVL subpopulations remain to be defined by future studies. The staining
571 of CD146 exclusively associated with blood vessels of normal breast tissue suggests that
572 detached PVL cells are a distinct feature of breast cancers.

573

574 Importantly, our findings suggest that previous studies characterising CAFs with a small
575 number of markers have likely also studied PVL cells. For example, subsets discriminated
576 by CD146 have been characterised in endocrine-resistant breast cancers [2]. Patients with
577 a CD146+ stroma demonstrated good responses to tamoxifen therapy through the
578 maintenance of estrogen receptor (ER) dependent proliferation in cancer cells. Our findings

579 suggest that PVL cells rather than CAFs are a biomarker for ER-directed therapeutic
580 response in ER positive breast cancers [2], a prediction that requires more detailed
581 validation. Another elegant study reported a subset of chemoresistance-promoting CAFs,
582 marked by α -SMA+, GPR77+ and CD10+ expression [6]. Due to the shared expression of
583 α -SMA between myCAF_s and PVL cells, our findings also raise the question whether PVL
584 cells could also contribute to chemoresistance in a subset of patients [6]. Although we did
585 not find an enrichment of GPR77+ CD10+ α -SMA+ cells in any CAF subclasses, this may
586 be explained by the treatment status of our samples.

587

588 Lastly, we found a strong enrichment of immunomodulatory pathways in the predicted
589 signaling between stromal cells and immune cells. We identified an array of important
590 candidates in patient tissue for future experimental studies for functional relevance. It is
591 important to acknowledge, however, that transcript signaling predictions are not always
592 concordant with protein expression. Although no CAF subsets in previous mouse studies
593 were distinguishable by immunomodulatory properties [20], there are several reports of
594 predicted CAF-immune interactions in human tissue. We found that iCAF_s expressed an
595 array of immunomodulatory molecules to cognate receptors on T-cells. In other studies,
596 CAF_s have been implicated in the recruitment and activity of T-Regs through the regulatory
597 molecules CXCL12, CD40, B7H3, DPP4 and CD73 [4]. In addition, iCAF_s also expressed
598 several molecules known to regulate myeloid cells, including complement C5, IL6 and
599 TGF β [59, 60]. Myeloid cells, including tumour associated macrophages and myeloid
600 derived suppressor cells, are well characterised in contributing to an immunosuppressive
601 TME. Most importantly, gene signatures generated from iCAF_s were strongly associated
602 with CTL dysfunction in TNBC patient cohorts. We also report a novel dPVL stromal subset
603 strongly associated with CTL exclusion. We identified an enrichment of
604 dysfunctional/exhausted T-cells which correlated with their respective stromal profiles,

605 though we acknowledge that our study consists of small patient numbers. In patients with
606 the highest dPVL profile, we found consistently low TIL and CD8 counts in matched
607 pathology. Considering the proposed origin of detached PVL cells from the vascular
608 structure, we hypothesise that this may be related to reduced lymphocyte extravasation from
609 dysregulated tumour blood vessels. In support of this, previous studies restoring vascular
610 integrity in tumours through vessel normalisation and increased perivascular coverage find
611 an influx of CD8+ T-cells in tumour tissue [25, 76]. In addition, signalling between CD4+ T-
612 cells and pericytes have also been reported to play a reciprocal role in tumour vessel
613 normalisation [77]. It is possible that the association between dPVL cells and CTL exclusion
614 in patient cohorts reflect tumours with low vascular integrity, and may act as a biomarker for
615 patients suitable for vessel normalisation therapeutic strategies.

616

617 Whilst our findings point to the targeting of stromal cells, future work investigating the
618 transcriptional changes in stromal cells between healthy breast tissue and cancer is required
619 to understand the stromal states that are cancer-specific versus reactivated resident cell
620 types. In support of the latter possibility, a recent study showed that there are minimal
621 proteomic differences between normal fibroblasts and CAFs in prostate cancer models [78].
622 We find that iCAF- and myCAF-like fibroblasts exist in cancer-free normal breast tissue. It
623 is important to note that desmoplasia is often observed in cancer-free tissues, particularly in
624 high risk women with high mammographic density [79]. This can be influenced by several
625 physiological factors such as weight, pregnancy and menopausal status, highlighting
626 important factors that need to be considered in future projects examining the normal breast
627 tissue microenvironment such as the human cell atlas project [79]. These differences may
628 exist from distinct epigenetic states between CAFs and normal fibroblasts, indicating another
629 layer of complexity that remains to be explored in the four breast cancer stromal subsets
630 identified in our study [80]. The integration of future assays combining scRNA-Seq with

631 chromatin states will be important in elucidating the epigenetic regulation of cancer-
632 associated stromal cells. Identifying specific activation markers in comparison to healthy
633 tissue is also an important prerequisite for the development of precise cancer therapeutic
634 strategies with low toxicities. Future *in vitro* and *in vivo* studies will be important in
635 understanding how stromal cells are dynamically reprogrammed and how the subclasses
636 described here restrain or promote tumour growth and invasion.

637

638 Clinical trials for mainstream immune checkpoint therapies including anti-PDL1 have shown
639 limited efficacy in the treatment of advanced TNBC. This hints at alternate mechanisms of
640 immune evasion and novel therapeutic strategies are desperately needed to improve
641 immunotherapy for TNBC. Our findings suggest that co-targeting stromal subpopulations
642 could elicit a more effective immune response in a subset of patients through inhibiting CTL
643 dysfunction and exclusion. This remains to be experimentally tested. In conclusion, we have
644 comprehensively profiled four functionally distinct stromal subclasses in human TNBC, not
645 previously described in breast cancer, mouse models or other cancer types. Importantly, we
646 described subsets of CAFs and PVL cells with clinical relevance, presenting as candidates
647 to further investigate. While our dataset captures a majority of the expected cell types from
648 the TME, certain cell types such as adipocytes are under-represented due to biases from
649 standard tissue dissociation protocols. Integration of alternative methods such as single-
650 nuclei sequencing and spatial transcriptomics in future cancer cell atlas studies will be
651 crucial for a comprehensive understanding of the TME. Our findings in only five patients also
652 highlight the potential of applying scRNA-Seq methods to larger scale patient cohorts for the
653 identification of new disease relevant cell states and their gene expression features.

654

655 **List of abbreviations**

656 TNBC: Triple-negative breast cancer

657 CAFs: Cancer associated fibroblasts

658 PVL: Perivascular-like

659 scRNA-Seq: Single-cell RNA Sequencing

660 CTLs: Cytotoxic T-lymphocytes

661 vSMCs: Vascular Smooth Muscle Cells

662

663 **Materials and Methods**

664

665 ***Ethics approval and consent for publication***

666 Patient tissues used in this work were collected under protocols x13-0133, x16-018 and x17-
667 155. HREC approval was obtained through the SLHD (Sydney Local Health District) Ethics
668 Committee; RPAH (Royal Prince Alfred Hospital) zone, and the St Vincent's hospital Ethics
669 Committee. Site-specific approvals were obtained for all additional sites. Written consent
670 was obtained from all patients prior to collection of tissue and clinical data stored in a de-
671 identified manner, following pre-approved protocols. Consent into the study included the
672 agreement to the use of all patient tissue and data for publication.

673

674 ***Tissue dissociation***

675 Fresh surgically resected tissue was washed with RPMI 1640 (ThermoFisher Scentific) and
676 minced with scissors. Samples were enzymatically dissociated using Human Tumor
677 Dissociation Kit (Miltenyi Biotec) according to manufacturer's protocol
678 (<https://www.miltenyibiotec.com/AU-en/products/macss-sample-preparation/tissue-dissociation-kits/tumor-dissociation-kit-human.html#gref>). Following incubation, the sample
679 was then resuspended in RPMI 1640 and filtered through MACS® SmartStrainers (70 μ M;
680 Miltenyi Biotec) and the resulting single cell suspension was centrifuged at 300 \times g for 5
681 min. Red blood cells were lysed with Lysing Buffer (Becton Dickinson) for 5 mins and the

683 resulting suspension was centrifuged at 300 × g for 5 min. Viability was assessed to be >
684 80% using Trypan Blue (ThermoFisher). Viability enrichment was performed using the
685 EasySep Dead Cell Removal (Annexin V) Kit (StemCell Technologies) as per manufacturers
686 protocol. Dissociated cells were resuspended in a final solution of PBS with 10% fetal calf
687 serum solution prior to loading on the 10X Chromium platform.

688

689 ***Single-cell RNA sequencing on the 10X Chromium platform***

690 High throughput droplet based SCRS was performed on the single-cell suspensions using
691 the Chromium Single Cell 3' v2 Library, Gel Bead and Multiplex Kit and Chip Kit (10X
692 Genomics) according to manufacturer's instructions, with a target of 5,000 cells per lane.
693 SCRS libraries were sequenced on the Illumina NextSeq 500 platform with pair-end
694 sequencing and dual indexing according to the recommended Chromium platform protocol;
695 26 cycles for Read 1, 8 cycles for i7 index and 98 cycles for Read 2.

696

697 ***Data processing***

698 Sample demultiplexing, reference mapping, barcode processing and gene counting was
699 performed using the Cell Ranger Single Cell Software v2.0 (10X Genomics). Reads were
700 aligned to the GRCh38 human reference genome. Raw count matrices were exported and
701 filtered using the EmptyDrops package in R [81]. EmptyDrops distinguishes 'real' barcodes
702 from 'noise' by calculating deviations of each cell against a generated ambient background
703 RNA profile. Filtered barcodes were then processed using the Seurat v2.0 package in R
704 [21]. Additional conservative cut offs were further applied based on the number of genes
705 detected per cell (greater than 200) and the percentage of mitochondrial unique molecular
706 identifier (UMI) counts (less than 10%). Individual Seurat objects were then integrated using
707 the canonical correlation analysis (CCA) function *RunMultiCCA* according the developer
708 guidelines [82]. The top 2000 most variable genes from each sample were combined for

709 CCA vector identification. The first 20 CC dimensions were used for the alignment of
710 subspaces and UMAP projection.

711

712 ***Cluster annotation***

713 Cell clusters were annotated using canonical cell type markers for epithelial (*EPCAM*),
714 myoepithelial (*EPCAM*^{LO}, *ACTA2*, *KRT5* and *KRT14*), basal (*KRT5* and *KRT14*), mature
715 luminal (*ESR1*), endothelial (*PECAM1*), immune (*CD45*), T-cells (*CD3D*, *CD8A* and *CD4*),
716 T-regulatory cells (*FOXP3*), B-cells (*MS4A1*), plasmablasts (*JCHAIN*), myeloid cells (*CD68*)
717 and stromal cells (*PDGFRB* and *COL1A1*). Malignant epithelial cells were distinguished from
718 entrapped normal epithelial cells by inferring copy number variations using the inferCNV
719 package as previously described [22]. In addition, an area under the curve (AUC) approach
720 using published cell type signatures from the XCELL database was performed using AUCell
721 [23, 24]. AUCell scores single cells with input gene signatures and analyses its activity and
722 distribution across the entire dataset to explore the relative expression of the gene set of
723 interest. AUCell utilises raw gene counts and thus, is independent of normalisation bias.
724 CAFs, PVL cells and T-cells were independently re-clustered using the Seurat v3 method.
725 Re-clustering was performed across resolutions 0.2, 0.3, 0.4 and 0.5 to identify stable
726 clusters.

727

728 ***Differential gene expression and pathway enrichment***

729 The MAST method was used to perform differential gene expression through the
730 *FindAllMarkers* function in Seurat (log fold change threshold of 0.1, *p*-value threshold of
731 1×10^{-5} and FDR threshold of 0.05). The top 250 DEGs from each cluster were then passed
732 on to the ClusterProfiler package for functional enrichment [32]. The *compareCluster*
733 function was used with the enrichGO databases CC, MF and BP sub-ontologies using the
734 human org.Hs.eg.db database.

735

736 ***Pseudotime cell trajectory analysis***

737 The Monocle 2 method was applied to infer cell trajectories for CAFs and PVL cells using
738 default parameters, as recommended by developers' [33]. CAFs from Patient-2 and PVL
739 cells from Patient-1 were extracted for Monocle analysis due to adequate cell numbers and
740 representations of each respective subset. Gene expression matrices from each cell type
741 were first exported from Seurat into Monocle 2 to construct a CellDataSet. Variable genes
742 defined by the differentialGeneTest function (q-val cutoff < 0.001) were used for cell ordering
743 and dimensionality reduction with the setOrderingFilter and reduceDimension functions,
744 respectively.

745

746 ***Gene-regulatory analysis using SCENIC***

747 Investigation of gene-regulatory networks using SCENIC was performed using a faster
748 python implementation of the tool (pySCENIC) as described by the developers on the 1,729
749 stromal cells [23, 34]. SCENIC explores gene-regulatory networks by identifying TF co-
750 expression modules and binding motif enrichment. The normalised expression matrix
751 generated from Seurat was first filtered for genes as previously described (sum of gene
752 expression > 3 x 0.005 x 1,729) [18]. Genes detected in at least 0.5% of cells were kept.
753 This resulted in 12,100 genes for pySCENIC input [18]. Analysis was performed using the
754 hg38 mc9nr motif collection with a TSS +/- 10kB (hg38_refseq-
755 r80_10kb_up_and_down_tss.mc9nr) for the arboreto and RcisTarget steps. Gene regulons
756 were clustered and plotted using the pheatmap function in R.

757

758 ***Flow cytometry and FACS isolation of stromal cells***

759 Cell sorting and flow cytometry experiments were performed at the Garvan-Weizmann
760 Centre for Cellular Genomics, Garvan Institute of Medical Research. Flow cytometry was

761 performed on a Becton Dickinson Cantoll or LSRII SORP flow cytometer using BD
762 FACSDIVA software, and the results were analyzed using FlowJo software (Tree Star Inc.).
763 FACS experiments were performed on a FACS ArialII sorter using the BD FACSsorter
764 software. All antibody details used in this study can be found in Supplementary Table S4.
765 Cryopreserved single-cell suspensions from Patient-4 were thawed, washed with RPMI and
766 incubated with an anti-CD16/CD32 antibody (1:200, BD Biosciences #564220) in FACS
767 buffer (PBS containing salts, 2% FBS) for 10 mins to block nonspecific antibody binding. For
768 the isolation of the different stromal subpopulations for subsequent experiments, cells were
769 pelleted and resuspended in FACS buffer containing the following antibodies: anti-EPCAM
770 (1:100; BioLegend #324203), anti-CD31 (1:100; BioLegend #303103), anti-CD45 (1:100;
771 BioLegend #304005), anti-PDGFR β (1:100; BioLegend #323605), anti-PDGFR α (1:100;
772 BioLegend #323507) and anti-CD146 (1:100; BioLegend #342011) for 20 min on ice. All
773 epithelial, immune and endothelial cells were excluded together on the FITC channel
774 marking EPCAM, CD45 and CD31. In addition, we performed positive selection using
775 PDGFR β . CAFs and PVL cells were discriminated using PDGFR α and CD146, respectively.
776 CAFs and PVL cells were isolated and cultured into dishes (Corning® LifeSciences) coated
777 with collagen (0.15 mg/ml) in RPMI 1640 supplemented with 20% (v/v) FBS, 50 μ g/mL
778 gentamycin and 1x antibiotic/antimycotic (15-240-096, Gibco®) in a 5% O₂, 5% CO₂
779 incubator at 37°C. Cell sorting was repeated on cultured CAFs and PVL cells using the
780 previously described experimental conditions with anti-PDGFR α (1:100; BioLegend
781 #323507), anti-CD146 (1:100; BioLegend #342011), anti-FAP (1:100; R&D Systems
782 #FAB3715P-025) and anti-CD36 (1:100; BioLegend #336221). FAP^{HIGH} expression was
783 used to discriminate myCAFs from FAP^{LOW} iCAFs, whilst CD36 expression was used to
784 identify imPVL cells from dPVL cells.

785

786 **Immunofluorescence**

787 Primary cells were grown on glass coverslips coated with collagen in the same manner as
788 the CDMs as previously below. Media was removed and cells were rinsed with PBS for 5
789 min. Cells were fixed in 4% paraformaldehyde (ProSciTech) diluted in PBS for 15 min at
790 room temperature then washed three times with PBS for 5 min. Cells were permeabilised
791 with ice cold methanol for 10 minutes at -20°C followed by three 5 min PBS washes. Cells
792 were blocked in blocking buffer (3% BSA + 0.1% Tween-20 in PBS) for 1 hr at room
793 temperature. Primary antibody was diluted in blocking buffer at the following dilutions: anti-
794 CD34 (1:100; Abcam #MA1-10202), anti-FAP α (1:200; Abcam #ab53066), anti- α SMA
795 (1:500; Abcam #ab21027), anti-CD36 (1:100; Biolegend #336203), anti-CD146 (1:200;
796 Abcam #ab75769), anti-PDGFR β (1:250; Abcam #ab32570). Coverslips were inverted and
797 incubated on droplets of diluted primary antibody on parafilm in a humidified chamber
798 overnight at 4°C. The following day cells were washed 3 times for 5 min in PBS. Cells were
799 incubated with fluorescent secondary antibody (Jackson ImmunoResearch) diluted 1:500 in
800 blocking buffer for 1 hr at room temperature in a light proof container then washed 2 times
801 with PBS for 5 min. Nuclei were stained with 1 μ g/mL Hoechst 33342 (Sigma) in PBS for 5
802 min at room temperature followed by two 2 min PBS rinses. Coverslips were mounted with
803 Prolong Diamond antifade mountant (Thermo Fisher Scientific) and allowed to dry overnight
804 at room temperature. Fluorescent images were captured using a Leica DMI Sp8 confocal
805 microscope.

806 Immunofluorescence was performed on 4 μ m FFPE tissue sections prepared as described
807 below for IHC. Antigen retrieval was performed for 20 min in a 100°C water bath in target
808 retrieval buffer, pH9 (Agilent Technologies). Slides were blocked for 1 hr at room
809 temperature in PBS containing 3% BSA and 5% goat serum. Slides were incubated with
810 primary antibodies diluted in blocking buffer: anti-CD31 (1:50; Agilent Technologies
811 #M0823) and anti-CD146 (1:600; Abcam #ab75769). Secondary antibody staining, nuclear
812 counterstaining and microscopy were performed as described above.

813

814 **Quantitative real time PCR analysis**

815 RNA was extracted from bulk and sorted CAF cells using the Qiagen miRNeasy mini kit
816 (Qiagen) and was reverse transcribed using the Transcriptor First Strand cDNA synthesis
817 kit (Roche). TaqMan assays (Thermo Fisher Scientific) were used to analyse mRNA
818 expression levels using a QuantStudio 7 Flex RT PCR machine (Thermo Fisher Scientific).
819 TaqMan probes used were *FAP* (Hs00990791_m1), *ACTA2* (Hs00426835_g1), *CXCL12*
820 (Hs00171022_m1), *EGFR* (Hs01076078_M1), *PDGFRA* (Hs00998018_m1), *PDGFRB*
821 (Hs01019589_m1) and *ACTB* (Hs99999903_M1). Relative gene expression was calculated
822 using the $\Delta\Delta Ct$ method.

823

824 **Cell Derived Matrices (CDMs)**

825 CDMs were established as previously described [45]. A total of 1.5×10^5 cells/well were
826 allowed to expand until confluent and ascorbic acid (50mg/ml) added to culture medium on
827 days one, three and five. To maintain the structure interact of the matrix architecture CDMs,
828 were imaged using Second Harmonic Generation (SHG) at Day seven with cells still present
829 in the matrix.

830

831 **Second Harmonic Generation (SHG) imaging**

832 Second Harmonic Generation (SHG) Imaging was achieved using an inverted Leica DMS
833 6000 SP8 confocal microscope with a Ti-Sapphire femtosecond laser cavity (Coherent
834 Chameleon Ultra II) excitation source, operating at 80 MHz and tuned to a wavelength of
835 880 nm, as previously described [83-85]. SHG intensity was detected using a 440/20 nm
836 RLD HyD detectors. For CDMs 3 representative fields of view (512 μm x 512 μm) were
837 imaged over a 3D z-stack (80 μm with a 2.52 μm step size, and 30 μm with a 1.51 μm step

838 size, respectively), with a line average of 4 at 25x magnification. Rotation images were
839 acquired on the z-level of maximum intensity with a line average of 64 at 63x magnification.
840

841 ***Collagen fibre orientation analysis***

842 Collagen fibre orientation analysis in SHG images from plugs was carried out as previously
843 described [3, 86]. Briefly the distribution of orientation of collagen within images was
844 assessed based on methodology published by Rezakhaniha et al [87]. The local orientation
845 and isotropic properties of individual pixels making up collagen fibres were derived from
846 structure tensors evaluated by computing the continuous spatial derivatives in the x and y
847 directions using a cubic B-spline interpolation to obtain the local predominant orientation.
848 Graphical outputs show a hue-saturation-brightness (HSB) color-coded map indicating the
849 angles of the oriented structures within the image. Orientation distribution peaks were then
850 aligned. The shape of the distribution indicates the degree of alignment within the image,
851 where wide and broad shapes suggested little coherency in alignment, and tight peaks with
852 small standard deviations implied aligned structures.

853

854 ***Immunohistochemistry and image alignment***

855 In house FFPE blocks were made of patient tissues by fixing in 10% neutral buffered formalin
856 for 24hrs and processing for paraffin embedding. Where tissue was limited, diagnostic
857 tumour FFPE blocks were accessed for analysis. FFPE blocks were sectioned at 4 μ m.
858 These were used for histological analysis, using a standard Haematoxylin and Eosin stain,
859 and for immunohistochemical analysis on the Leica BOND RX Autostainer. Details of
860 antibodies and staining conditions are described in Supplementary Table 4. H&E and IHC
861 slides were imaged using the Aperio CS2 Digital Pathology Slide Scanner. IHC images were
862 imported into FIJI as a virtual stack. Each layer was then aligned using least squared mode

863 (linear feature correspondences), propagating to the first and last layers for rigid
864 transformation. All other parameters were set to default in FIJI.

865

866 ***Cell-signalling predictions using ligand receptor annotation***

867 Genes from the scRNA-Seq data were annotated based on a published set of human ligand-
868 receptor pairs derived from supporting literature [51]. We used this knowledge to construct
869 a cell-to-cell communication network between the four stromal clusters and other epithelial,
870 immune and endothelial clusters. To investigate conserved signalling modules in TNBCs,
871 we applied this to the cluster averaged expression levels of all ligands and receptors in the
872 integrated dataset of five patients. The ‘interaction strength’, or the weight of edges between
873 two clusters, was defined as the product of expression values from the ligand and its cognate
874 receptor. All ‘interaction strengths’ greater than an arbitrary cut-off of 0.1 were considered
875 as cell signalling candidates and kept for subsequent analyses (Table S3). The total number
876 of interaction pairs identified per cluster were used to generate summaries of this data (Fig.
877 5A-B). The top 100 candidates between the four stromal subsets and each target population
878 were clustered using hierarchical clustering (complete and Euclidean distance) and rescaled
879 for visualisation in ggplot2. For the visualisation purposes only, the ligand and receptor
880 expression values in Figure 5C-E were imputed using the MAGIC method to better represent
881 the structure of genes with low expression and dropout [88]. Raw count matrices and cluster
882 IDs identified by Seurat (as previously described) were used as input to MAGIC and run with
883 default parameters as recommended by the developers.

884

885 ***T-cell dysfunction and exclusion analysis***

886 To investigate the immunomodulatory roles of different stromal subsets, we performed T-
887 cell dysfunction and exclusion analysis using similar strategy from TIDE [67]. We first used
888 the average expression level of *CD8A*, *CD8B*, *GZMA*, *GZMB* and *PRF1* to estimate the

889 cytotoxic T lymphocyte (CTL) level in each sample from the bulk sequencing cohort. Patients
890 with a higher and lower CTL level compared to the mean CTL level within the cohort were
891 stratified into high and low CTL groups, respectively. For CTL dysfunction analysis, TIDE
892 evaluates whether gene signatures from each of the stromal subsets influences the
893 beneficial effect of CTL levels on patient prognosis. This is performed using the interaction
894 coefficient d from Cox proportional hazard (Cox-PH) model to evaluate how the interaction
895 between a candidate gene and the CTL affects the death hazard. Genes with a higher TIDE
896 dysfunction score suggests antagonistic interactions with regards to CTL levels, where the
897 survival benefit of patients with high CTL is lost and thus, suggesting an association with
898 CTL dysfunction. This method was used to calculate the TIDE T-cell dysfunction score from
899 the differentially expressed genes across the four stromal subsets in TNBC patients from
900 the METABRIC cohort [64] and two independent TBNC cohorts [65, 66]. A total of 233, 84
901 and 107 patients were evaluated for the METABRIC, GSE21653 and GSE58812 cohorts,
902 respectively.

903

904 For T-cell exclusion analysis, we examined Pearson correlations between all CTL levels
905 (indicated on the y axis in Fig. 6E) and the respective correlation score between the bulk
906 tumour sample and single-cell cluster of interest (indicated on the x axis in Fig. 6E). Here,
907 gene signatures for the single-cell cluster of interest were defined by the averaged gene
908 expression of all single cells in the cluster, divided over the averaged gene expression of all
909 cells detected in the dataset. This method was used to define signatures in this section, as
910 opposed to a DEG list in the previous CTL dysfunction analysis. This was first performed for
911 all stromal cells, CD4+ and CD8+ T-cell clusters divided over all detected cells
912 independently, as shown in Figure 6D. We next repeated this for the myCAF, iCAF, dPVL
913 and imPVL clusters divided over all stromal cells independently, as shown in Fig. 6E. In
914 each of the breast cancer cohorts, a higher correlation suggests a positive association

915 between the single cell cluster of interest and CTL levels (as observed in CD4+ and CD8+
916 T-cells shown in Fig. 6D), while a negative correlation suggest a negative association (as
917 observed in dPVL cells shown in Fig. 6E). This correlation indicates a potential affluence of
918 each stromal subset on T-cell infiltration in tumours. For T-cell exclusion analysis, we
919 examined the three aforementioned TNBC cohorts, as well as the TNBC cohort from The
920 Cancer Genome Atlas (<https://www.cancer.gov/tcga>) [89].

921

922 **Data availability**

923 The scRNA-Seq data from this study has been deposited in the European Nucleotide
924 Archive (ENA) under the accession code PRJEB35405. This depository includes the
925 demultiplexed paired ended reads (R1 and R2), Illumina indices and bam files processed
926 using the Cellranger software. The scRNA-Seq analysis scripts can be found on the website:
927 https://github.com/sunnyzwu/stromal_subclasses. All relevant data are available from the
928 authors upon request.

929

930 **Acknowledgements**

931 This work was supported by funding from John and Deborah McMurtrie, the National Breast
932 Cancer Foundation (NBCF) of Australia; and The Sydney Breast Cancer Foundation. A.S.
933 is the recipient of a Senior Research Fellowship from the National Health and Medical
934 Research Council of Australia. S.Z.W. is supported by the Australian Government Research
935 Training Program Scholarship. S.O.T. is supported by the NBCF (PRAC 16-006), the IIRS
936 19 084 and the Sydney Breast Cancer Foundation and the Family and Friends of Michael
937 O'Sullivan. T.R.C. is supported by an NHMRC RD Wright Biomedical Career Development
938 Fellowship, a Susan G Komen Career Catalyst Award and a Cancer Institute NSW (CINSW)
939 fellowship. S.J. is supported by a research fellowship from the NBCF. X.S.L. is a supported
940 by the Breast Cancer Research Foundation (BCRF-19-100) and the National Institute of
941 Health of the United States (R01CA234018). We would like to thanks the following people
942 for their assistance in the experimental part of this manuscript; Ms. Gillian Lehrbach from
943 the Garvan Tissue Culture Facility; Ms. Anaiis Zaratzian from the Garvan Histopathology
944 Facility for tissue processing and IHC staining; The Garvan-Weizmann Centre for Cellular
945 Genomics, including Mr. Eric Lam, Ms. Hira Saeed and Ms. Melissa Armstrong for the
946 expertise in flow sorting, and Mr. Dominik Kaczorowski for his help in next-generation
947 sequencing.

948

949 **Author Contributions**

950 A.S. conceived the project and directed the study with input from all authors. S.Z.W. and
951 A.S. wrote the manuscript with input from all authors. Clinical collaborators E.L., S.W.,
952 M.N.H., C.C., C.M., D.S., E.R., A.P., J.B. and L.G organised the access to patient tissue.
953 S.Z.W., G.A. and K.H. optimized the tumour dissociation for scRNA-Seq. C.C. helped
954 perform the next-generation sequencing of the scRNA-Seq libraries. S.Z.W. interpreted and
955 performed the pre-processing and downstream analysis of the scRNA-Seq data. D.R.

956 supervised the scRNA-Seq analysis. J.T. helped with the inferCNV analysis. N.B. helped
957 with the IHC image analysis and alignment. K.H. helped performed the IHC staining
958 experiments. S.Z.W., A.C., K.H. and G.A. helped perform flow sorting experiments. K.J.M.
959 and B.P. performed the collagen assays and imaging. T.R.C helped analyse the collagen
960 fibre orientation data. H.H. performed the IF experiments. C.W. and X.S.L. performed and
961 helped interpret the T-cell dysfunction and exclusion and patient survival analysis. S.O.T.
962 independently scored the H&E and IHC stains. A.F. and R.H. assisted in the analysis of the
963 cell signalling data. T.R.C and P.T. provided intellectual input and helped with the
964 interpretation of the ECM assay data. E.L., S.J. and J.P. provided intellectual input.

965

966 **Conflicts of interests**

967 No competing interests.

968

969 References

- 970 1. Kalluri, R., *The biology and function of fibroblasts in cancer*. Nat Rev Cancer, 2016. **16**(9): p. 971 582-98.
- 972 2. Brechbuhl, H.M., et al., *Fibroblast Subtypes Regulate Responsiveness of Luminal Breast* 973 *Cancer to Estrogen*. Clin Cancer Res, 2017. **23**(7): p. 1710-1721.
- 974 3. Cazet, A.S., et al., *Targeting stromal remodeling and cancer stem cell plasticity overcomes* 975 *chemoresistance in triple negative breast cancer*. Nat Commun, 2018. **9**(1): p. 2897.
- 976 4. Costa, A., et al., *Fibroblast Heterogeneity and Immunosuppressive Environment in Human* 977 *Breast Cancer*. Cancer Cell, 2018. **33**(3): p. 463-479 e10.
- 978 5. Givel, A.M., et al., *miR200-regulated CXCL12beta promotes fibroblast heterogeneity and* 979 *immunosuppression in ovarian cancers*. Nat Commun, 2018. **9**(1): p. 1056.
- 980 6. Su, S., et al., *CD10(+)GPR77(+) Cancer-Associated Fibroblasts Promote Cancer Formation* 981 *and Chemoresistance by Sustaining Cancer Stemness*. Cell, 2018. **172**(4): p. 841-856 e16.
- 982 7. Kawase, A., et al., *Podoplanin expression by cancer associated fibroblasts predicts poor* 983 *prognosis of lung adenocarcinoma*. Int J Cancer, 2008. **123**(5): p. 1053-9.
- 984 8. Kisselbach, L., et al., *CD90 Expression on human primary cells and elimination of* 985 *contaminating fibroblasts from cell cultures*. Cytotechnology, 2009. **59**(1): p. 31-44.
- 986 9. Neri, S., et al., *Podoplanin-expressing cancer-associated fibroblasts lead and enhance the* 987 *local invasion of cancer cells in lung adenocarcinoma*. Int J Cancer, 2015. **137**(4): p. 784-96.
- 988 10. Ronnov-Jessen, L., et al., *The origin of the myofibroblasts in breast cancer. Recapitulation of* 989 *tumor environment in culture unravels diversity and implicates converted fibroblasts and* 990 *recruited smooth muscle cells*. J Clin Invest, 1995. **95**(2): p. 859-73.
- 991 11. Osterreicher, C.H., et al., *Fibroblast-specific protein 1 identifies an inflammatory* 992 *subpopulation of macrophages in the liver*. Proc Natl Acad Sci U S A, 2011. **108**(1): p. 308-93.
- 994 12. Ohlund, D., et al., *Distinct populations of inflammatory fibroblasts and myofibroblasts in* 995 *pancreatic cancer*. J Exp Med, 2017. **214**(3): p. 579-596.
- 996 13. Biffi, G., et al., *IL1-Induced JAK/STAT Signaling Is Antagonized by TGFbeta to Shape CAF* 997 *Heterogeneity in Pancreatic Ductal Adenocarcinoma*. Cancer Discov, 2018.
- 998 14. Elyada, E., et al., *Cross-Species Single-Cell Analysis of Pancreatic Ductal Adenocarcinoma* 999 *Reveals Antigen-Presenting Cancer-Associated Fibroblasts*. Cancer Discov, 2019. **9**(8): p. 1000 1102-1123.
- 1001 15. Sinn, M., et al., *alpha-Smooth muscle actin expression and desmoplastic stromal reaction in* 1002 *pancreatic cancer: results from the CONKO-001 study*. Br J Cancer, 2014. **111**(10): p. 1003 1917-23.
- 1004 16. Yamashita, M., et al., *Role of stromal myofibroblasts in invasive breast cancer: stromal* 1005 *expression of alpha-smooth muscle actin correlates with worse clinical outcome*. Breast
- 1006 *Cancer*, 2012. **19**(2): p. 170-6.
- 1007 17. Ozdemir, B.C., et al., *Depletion of Carcinoma-Associated Fibroblasts and Fibrosis Induces* 1008 *Immunosuppression and Accelerates Pancreas Cancer with Reduced Survival*. Cancer Cell, 1009 2015. **28**(6): p. 831-833.
- 1010 18. Lambrechts, D., et al., *Phenotype molding of stromal cells in the lung tumor* 1011 *microenvironment*. Nat Med, 2018. **24**(8): p. 1277-1289.
- 1012 19. Puram, S.V., et al., *Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor* 1013 *Ecosystems in Head and Neck Cancer*. Cell, 2017. **171**(7): p. 1611-1624 e24.
- 1014 20. Bartoschek, M., et al., *Spatially and functionally distinct subclasses of breast cancer-* 1015 *associated fibroblasts revealed by single cell RNA sequencing*. Nat Commun, 2018. **9**(1): p. 1016 5150.

1017 21. Satija, R., et al., *Spatial reconstruction of single-cell gene expression data*. Nat Biotechnol, 1018 2015. **33**(5): p. 495-502.

1019 22. Patel, A.P., et al., *Single-cell RNA-seq highlights intratumoral heterogeneity in primary 1020 glioblastoma*. Science, 2014. **344**(6190): p. 1396-401.

1021 23. Aibar, S., et al., *SCENIC: single-cell regulatory network inference and clustering*. Nat 1022 Methods, 2017. **14**(11): p. 1083-1086.

1023 24. Aran, D., Z. Hu, and A.J. Butte, *xCell: digitally portraying the tissue cellular heterogeneity 1024 landscape*. Genome Biol, 2017. **18**(1): p. 220.

1025 25. Hamzah, J., et al., *Vascular normalization in Rgs5-deficient tumours promotes immune 1026 destruction*. Nature, 2008. **453**(7193): p. 410-4.

1027 26. Middleton, J., et al., *A comparative study of endothelial cell markers expressed in 1028 chronically inflamed human tissues: MECA-79, Duffy antigen receptor for chemokines, von 1029 Willebrand factor, CD31, CD34, CD105 and CD146*. J Pathol, 2005. **206**(3): p. 260-8.

1030 27. Covas, D.T., et al., *Multipotent mesenchymal stromal cells obtained from diverse human 1031 tissues share functional properties and gene-expression profile with CD146+ perivascular 1032 cells and fibroblasts*. Exp Hematol, 2008. **36**(5): p. 642-54.

1033 28. Li, Q., et al., *Differential expression of CD146 in tissues and endothelial cells derived from 1034 infantile haemangioma and normal human skin*. J Pathol, 2003. **201**(2): p. 296-302.

1035 29. Crisan, M., et al., *A perivascular origin for mesenchymal stem cells in multiple human 1036 organs*. Cell Stem Cell, 2008. **3**(3): p. 301-13.

1037 30. Song, S., et al., *PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte 1038 differentiation and vascular survival*. Nat Cell Biol, 2005. **7**(9): p. 870-9.

1039 31. Finak, G., et al., *MAST: a flexible statistical framework for assessing transcriptional 1040 changes and characterizing heterogeneity in single-cell RNA sequencing data*. Genome Biol, 2015. 1041 **16**: p. 278.

1042 32. Yu, G., et al., *clusterProfiler: an R package for comparing biological themes among gene 1043 clusters*. OMICS, 2012. **16**(5): p. 284-7.

1044 33. Qiu, X., et al., *Single-cell mRNA quantification and differential analysis with Census*. Nat 1045 Methods, 2017. **14**(3): p. 309-315.

1046 34. Moerman, T., et al., *GRNBoost2 and Arboreto: efficient and scalable inference of gene 1047 regulatory networks*. Bioinformatics, 2018.

1048 35. Fu, R., et al., *A ZEB1/p53 signaling axis in stromal fibroblasts promotes mammary epithelial 1049 tumours*. Nat Commun, 2019. **10**(1): p. 3210.

1050 36. Shao, X. and X. Wei, *FOXP1 enhances fibrosis via activating Wnt/beta-catenin signaling 1051 pathway in endometriosis*. Am J Transl Res, 2018. **10**(11): p. 3610-3618.

1052 37. Tamama, K. and D.J. Barbeau, *Early growth response genes signaling supports strong 1053 paracrine capability of mesenchymal stem cells*. Stem Cells Int, 2012. **2012**: p. 428403.

1054 38. Hrkulak, D., et al., *TCF/LEF Transcription Factors: An Update from the Internet Resources*. 1055 Cancers (Basel), 2016. **8**(7).

1056 39. Creemers, E.E., et al., *Myocardin is a direct transcriptional target of Mef2, Tead and Foxo 1057 proteins during cardiovascular development*. Development, 2006. **133**(21): p. 4245-56.

1058 40. Gordon, J.W., et al., *Protein kinase A-regulated assembly of a MEF2{middle dot}HDAC4 1059 repressor complex controls c-Jun expression in vascular smooth muscle cells*. J Biol Chem, 1060 2009. **284**(28): p. 19027-42.

1061 41. Wu, J., et al., *KLF2 transcription factor modulates blood vessel maturation through smooth 1062 muscle cell migration*. J Biol Chem, 2008. **283**(7): p. 3942-50.

1063 42. Lee, H.J., et al., *Dysregulation of nuclear receptor COUP-TFII impairs skeletal muscle 1064 development*. Sci Rep, 2017. **7**(1): p. 3136.

1065 43. Hyun, K.A., et al., *Epithelial-to-mesenchymal transition leads to loss of EpCAM and different*
1066 *physical properties in circulating tumor cells from metastatic breast cancer*. Oncotarget,
1067 2016. **7**(17): p. 24677-87.

1068 44. Prater, M.D., et al., *Mammary stem cells have myoepithelial cell properties*. Nat Cell Biol,
1069 2014. **16**(10): p. 942-50, 1-7.

1070 45. Cukierman, E., et al., *Taking cell-matrix adhesions to the third dimension*. Science, 2001.
1071 **294**(5547): p. 1708-12.

1072 46. McCormack, V.A. and I. dos Santos Silva, *Breast density and parenchymal patterns as*
1073 *markers of breast cancer risk: a meta-analysis*. Cancer Epidemiol Biomarkers Prev, 2006.
1074 **15**(6): p. 1159-69.

1075 47. Levental, K.R., et al., *Matrix crosslinking forces tumor progression by enhancing integrin*
1076 *signaling*. Cell, 2009. **139**(5): p. 891-906.

1077 48. Huo, C.W., et al., *High mammographic density is associated with an increase in stromal*
1078 *collagen and immune cells within the mammary epithelium*. Breast Cancer Res, 2015. **17**: p.
1079 79.

1080 49. Conklin, M.W., et al., *Aligned collagen is a prognostic signature for survival in human breast*
1081 *carcinoma*. Am J Pathol, 2011. **178**(3): p. 1221-32.

1082 50. Lee, H.O., et al., *FAP-overexpressing fibroblasts produce an extracellular matrix that*
1083 *enhances invasive velocity and directionality of pancreatic cancer cells*. BMC Cancer, 2011.
1084 **11**: p. 245.

1085 51. Ramilowski, J.A., et al., *A draft network of ligand-receptor-mediated multicellular signalling*
1086 *in human*. Nat Commun, 2015. **6**: p. 7866.

1087 52. Alarmino, E.L., et al., *A comprehensive expression survey of bone morphogenetic proteins in*
1088 *breast cancer highlights the importance of BMP4 and BMP7*. Breast Cancer Res Treat, 2007.
1089 **103**(2): p. 239-46.

1090 53. de Ostrovich, K.K., et al., *Paracrine overexpression of insulin-like growth factor-1 enhances*
1091 *mammary tumorigenesis in vivo*. Am J Pathol, 2008. **173**(3): p. 824-34.

1092 54. Kuang, W., et al., *Hepatocyte growth factor induces breast cancer cell invasion via the*
1093 *PI3K/Akt and p38 MAPK signaling pathways to up-regulate the expression of COX2*. Am J
1094 *Transl Res*, 2017. **9**(8): p. 3816-3826.

1095 55. Palmieri, C., et al., *Fibroblast growth factor 7, secreted by breast fibroblasts, is an*
1096 *interleukin-1beta-induced paracrine growth factor for human breast cells*. J Endocrinol,
1097 2003. **177**(1): p. 65-81.

1098 56. Samani, A.A., et al., *The role of the IGF system in cancer growth and metastasis: overview*
1099 *and recent insights*. Endocr Rev, 2007. **28**(1): p. 20-47.

1100 57. Wang, F.T., et al., *Cancer-associated fibroblast regulation of tumor neo-angiogenesis as a*
1101 *therapeutic target in cancer*. Oncol Lett, 2019. **17**(3): p. 3055-3065.

1102 58. Fagiani, E. and G. Christofori, *Angiopoietins in angiogenesis*. Cancer Lett, 2013. **328**(1): p.
1103 18-26.

1104 59. Markiewski, M.M., et al., *Modulation of the antitumor immune response by complement*.
1105 Nat Immunol, 2008. **9**(11): p. 1225-35.

1106 60. Li, Z., et al., *Gr-1+CD11b+ cells are responsible for tumor promoting effect of TGF-beta in*
1107 *breast cancer progression*. Int J Cancer, 2012. **131**(11): p. 2584-95.

1108 61. Chang, A.L., et al., *CCL2 Produced by the Glioma Microenvironment Is Essential for the*
1109 *Recruitment of Regulatory T Cells and Myeloid-Derived Suppressor Cells*. Cancer Res, 2016.
1110 **76**(19): p. 5671-5682.

1111 62. Sautes-Fridman, C., et al., *Tertiary Lymphoid Structures in Cancers: Prognostic Value,*
1112 *Regulation, and Manipulation for Therapeutic Intervention*. Front Immunol, 2016. **7**: p. 407.

1113 63. Shields, J.D., et al., *Induction of lymphoidlike stroma and immune escape by tumors that*
1114 *express the chemokine CCL21*. *Science*, 2010. **328**(5979): p. 749-52.

1115 64. Curtis, C., et al., *The genomic and transcriptomic architecture of 2,000 breast tumours*
1116 *reveals novel subgroups*. *Nature*, 2012. **486**(7403): p. 346-52.

1117 65. Jezequel, P., et al., *Gene-expression molecular subtyping of triple-negative breast cancer*
1118 *tumours: importance of immune response*. *Breast Cancer Res*, 2015. **17**: p. 43.

1119 66. Sabatier, R., et al., *A gene expression signature identifies two prognostic subgroups of basal*
1120 *breast cancer*. *Breast Cancer Res Treat*, 2011. **126**(2): p. 407-20.

1121 67. Jiang, P., et al., *Signatures of T cell dysfunction and exclusion predict cancer*
1122 *immunotherapy response*. *Nat Med*, 2018. **24**(10): p. 1550-1558.

1123 68. Loi, S., et al., *Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III*
1124 *randomized adjuvant breast cancer trial in node-positive breast cancer comparing the*
1125 *addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98*. *J*
1126 *Clin Oncol*, 2013. **31**(7): p. 860-7.

1127 69. Blackburn, S.D., et al., *Coregulation of CD8+ T cell exhaustion by multiple inhibitory*
1128 *receptors during chronic viral infection*. *Nat Immunol*, 2009. **10**(1): p. 29-37.

1129 70. Jiang, Y., Y. Li, and B. Zhu, *T-cell exhaustion in the tumor microenvironment*. *Cell Death Dis*,
1130 2015. **6**: p. e1792.

1131 71. Salgado, R., et al., *The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer:*
1132 *recommendations by an International TILs Working Group 2014*. *Ann Oncol*, 2015. **26**(2): p.
1133 259-71.

1134 72. Hosaka, K., et al., *Pericyte-fibroblast transition promotes tumor growth and metastasis*.
1135 *Proc Natl Acad Sci U S A*, 2016. **113**(38): p. E5618-27.

1136 73. Banerjee, S., et al., *Breast cancer cells secreted platelet-derived growth factor-induced*
1137 *motility of vascular smooth muscle cells is mediated through neuropilin-1*. *Mol Carcinog*,
1138 2006. **45**(11): p. 871-80.

1139 74. Louis, S.F. and P. Zahradka, *Vascular smooth muscle cell motility: From migration to*
1140 *invasion*. *Exp Clin Cardiol*, 2010. **15**(4): p. e75-85.

1141 75. DeFilippis, R.A., et al., *CD36 repression activates a multicellular stromal program shared by*
1142 *high mammographic density and tumor tissues*. *Cancer Discov*, 2012. **2**(9): p. 826-39.

1143 76. Johansson-Percival, A., et al., *Intratumoral LIGHT Restores Pericyte Contractile Properties*
1144 *and Vessel Integrity*. *Cell Rep*, 2015. **13**(12): p. 2687-98.

1145 77. Tian, L., et al., *Mutual regulation of tumour vessel normalization and immunostimulatory*
1146 *reprogramming*. *Nature*, 2017. **544**(7649): p. 250-254.

1147 78. Nguyen, E.V., et al., *Proteomic Profiling of Human Prostate Cancer-associated Fibroblasts*
1148 *(CAF) Reveals LOXL2-dependent Regulation of the Tumor Microenvironment*. *Mol Cell*
1149 *Proteomics*, 2019. **18**(7): p. 1410-1427.

1150 79. Li, T., et al., *The association of measured breast tissue characteristics with mammographic*
1151 *density and other risk factors for breast cancer*. *Cancer Epidemiol Biomarkers Prev*, 2005.
1152 **14**(2): p. 343-9.

1153 80. Pidsley, R., et al., *Enduring epigenetic landmarks define the cancer microenvironment*.
1154 *Genome Res*, 2018. **28**(5): p. 625-638.

1155 81. Lun, A., et al., *Distinguishing cells from empty droplets in droplet-based single-cell RNA*
1156 *sequencing data*. 2018: p. 234872.

1157 82. Butler, A., et al., *Integrating single-cell transcriptomic data across different conditions,*
1158 *technologies, and species*. *Nat Biotechnol*, 2018. **36**(5): p. 411-420.

1159 83. Vennin, C., et al., *Transient tissue priming via ROCK inhibition uncouples pancreatic cancer*
1160 *progression, sensitivity to chemotherapy, and metastasis*. *Sci Transl Med*, 2017. **9**(384).

1161 84. Timpson, P., et al., *Organotypic collagen I assay: a malleable platform to assess cell*
1162 *behaviour in a 3-dimensional context.* J Vis Exp, 2011(56): p. e3089.

1163 85. Conway, J.R.W., et al., *Three-dimensional organotypic matrices from alternative collagen*
1164 *sources as pre-clinical models for cell biology.* Sci Rep, 2017. **7**(1): p. 16887.

1165 86. Mayorca-Guiliani, A.E., et al., *ISDoT: in situ decellularization of tissues for high-resolution*
1166 *imaging and proteomic analysis of native extracellular matrix.* Nat Med, 2017. **23**(7): p.

1167 890-898.

1168 87. Rezakhanlha, R., et al., *Experimental investigation of collagen waviness and orientation in*
1169 *the arterial adventitia using confocal laser scanning microscopy.* Biomech Model
1170 Mechanobiol, 2012. **11**(3-4): p. 461-73.

1171 88. van Dijk, D., et al., *Recovering Gene Interactions from Single-Cell Data Using Data Diffusion.*
1172 Cell, 2018. **174**(3): p. 716-729 e27.

1173 89. Cancer Genome Atlas, N., *Comprehensive molecular portraits of human breast tumours.*
1174 Nature, 2012. **490**(7418): p. 61-70.

1175

1176 **Figure Legends**

1177 **Figure 1. Cellular composition of five triple-negative breast carcinomas. a,** Schematic
1178 highlighting the application of our single-cell RNA sequencing experimental and analytical
1179 workflow for primary patient tissue. **b,** UMAP visualisation of 4,986 epithelial cells aligned
1180 using canonical correlation analysis in Seurat. Cells are coloured by their cell type
1181 annotation (left) and patient of origin (right). **c,** Log normalised expression of markers for
1182 epithelial (*EPCAM*), mature luminal epithelial (*ESR1*), myoepithelial (*KRT5*, *KRT14* and
1183 *ACTA2*) and proliferating cancer cells (*MKI67*). **d,** UMAP visualisation of 19,285 stromal and
1184 immune cells aligned and visualised as represented in **b**. **e,** Log normalised expression of
1185 markers for fibroblasts (*PDGFRB*, *THY1*, *COL1A1*, *ITGB1* and *S100A4*), endothelial cells
1186 (*PECAM1*), T-cells (*CD3D*), CD8 T cells (*CD8A*), T-regulatory cells (*FOXP3*), B-cells
1187 (*MS4A1*), myeloid cells (*CD68*) and plasma cells (*JCHAIN*). **f,** Proportion of cell types across
1188 each patient.

1189

1190 **Figure 2. Stromal landscape of TNBCs reveals four subpopulations of cancer-**
1191 **associated fibroblasts and perivascular-like cells. a,** *t*-SNE representation of the four
1192 subclasses of cancer-associated fibroblasts (CAFs) and perivascular-like cells (PVL),
1193 named myofibroblast-like CAFs (myCAFs; 280 cells), inflammatory-like CAFs (iCAFs; 1,129
1194 cells), differentiated-PVL cells (dPVL cells; 122 cells) and immature-PVL cells (imPVL cells;
1195 198 cells). **b,** Plot showing the composition of the four stromal subsets across all five
1196 patients. **c,** Expression of parenchymal markers commonly associated with CAFs and
1197 perivascular cells. **d,** Cluster averaged log normalised expression of the top 300 differentially
1198 expressed genes between the four stromal subsets with stromal-related genes of interest
1199 annotated. Expression values are scaled per cluster. **e,** Circle histogram plot of the top gene-
1200 ontologies enriched in each of the four stromal subsets, with pathways broadly grouped for
1201 ECM, development and signalling, muscle contractile-features and angiogenesis and

1202 adhesion. Scale bar represents the $-\log_{10}$ q-value for the enrichment of individual GO
1203 terms, as determined using ClusterProfiler.

1204

1205 **Figure 3. Polarised gene regulatory states between cancer-associated fibroblasts and**
1206 **perivascular-like subclasses. a,** Polarised gene regulatory states underlying stromal
1207 subclasses. Heatmap shows the averaged regulon activity (area under the curve; AUC) for
1208 the top 50 highest TFs regulons as estimated using SCENIC. All regulons are statistically
1209 enriched across the four subsets ($p < 1 \times 10^{-5}$ One-way ANOVA). Heatmap is clustered using
1210 Euclidean distance and complete linkage. **b,** Candidate transcriptional drivers of each CAF
1211 and PVL subset. Violin plots showing the log normalised gene expression (left) of the TF
1212 and its respective AUC regulon activity (right). TFs ZEB1 and FOXP1 enriched in
1213 myofibroblast-like CAFs, EGR2 and TCF7L2 enriched in inflammatory-like CAFs, MEF2C
1214 enriched in PVL cells and NR2F2 enriched in immature-PVL cells.

1215

1216 **Figure 4. Morphological, phenotypic and spatial differences underlying stromal**
1217 **heterogeneity. a,** Summary of the markers distinguishing each of the four stromal
1218 subpopulations identified in this study. **b,** FACS validation in matched patient tissue. Stromal
1219 cells are negatively gated for EPCAM (epithelial), CD45 (immune) and CD31 (endothelium)
1220 and positively selected for PDGFR β . Subsequent markers PDGFR α and CD146 (MCAM)
1221 are used to distinguish CAFs and PVL cells, respectively. Expression of FAP^{HIGH}, FAP^{LOW},
1222 CD36 $^+$ and CD36 $^-$ are further used to define myofibroblast-like CAFs, inflammatory-like
1223 CAFs, immature-PVL cells and differentiated-PVL cells, respectively. **c-d,**
1224 Immunofluorescence of cultured human CAFs (**c**) and PVL cells (**d**), staining for CD34
1225 (CAFs), α -SMA (myCAF s and PVL cells), CD146 (PVL cells) and CD36 (imPVL cells). **e-f,**
1226 Quantitative analysis of collagen abundance (**e**) and orientation (**f**) using second harmonic
1227 generation (SHG) from cellular derived matrices from stromal subsets and representative

1228 images multiphoton SHG images (n = 3 biological replicates). Statistical significance for
1229 collagen abundance (**e**) was determined using unpaired two-tailed Student's t test with equal
1230 standard deviation. After normalization of the orientation peak distributions (**f**), statistical
1231 significant was determined using a Kruskal-Wallis test with Dunn's post-hoc multiple
1232 comparisons test (p value <0.05). **g-h**, Immunohistochemical staining of PDGFR β , α -SMA,
1233 CD34 and CD146 in serial sections cut 4 μ m apart from matched cases; Patient-2 (**g**) and
1234 Patient-4 (**h**). Images were aligned using FIJI. Co-localisation of CD34 and CD146 was used
1235 to distinguish blood vessels, where their differential staining was used to identify CAFs and
1236 PVL cells. **g**, MyCAFs were found to be localised at the invasive stromal interface, whilst
1237 iCAFs were located at distal regions. **h**, Case with a high abundance of PVL cells in regions
1238 surrounded by blood vessels. **i**, Validation of detached PVL cells from blood vessels using
1239 co-immunofluorescence of CD31 (red), CD146 (green) and DAPI (blue). Representative
1240 images from Patient-4 is shown.

1241

1242 **Figure 5. Predicted stromal crosstalk to cancer and immune cells.** Overview of the
1243 predicted stromal paracrine signalling conserved across the five TNBC patients. The
1244 scRNA-Seq dataset were annotated by ligand-receptor pairs as curated in Ramiłowski et al.
1245 (2015). **a**, Circos plot summary of the stromal ligand-receptor interactions. Outer sectors are
1246 weighted according to the number of annotated ligand receptor interactions per cell type.
1247 Links between sectors are weighted according to the 'Interaction Strength', calculated as a
1248 product of ligand and receptor expression. Links are coloured by the respective stromal
1249 subsets; myCAFs (red), iCAFs (orange), dPVL cells (blue) and imPVL cells (light blue) **b**,
1250 Summary of the total ligands and receptors annotated per cell type. **c-e**, Imputed gene
1251 expression of selected candidate signalling molecules identified between the four stromal
1252 subsets and malignant (**c**) epithelial, (**d**) myeloid and (**e**) T-cells.

1253

1254 **Figure 6. Inflammatory-CAFs and differentiated-PVL cells associated with immune**
1255 **evasion in TNBC patient cohorts.** Significant associations between iCAF and dPVL gene
1256 signatures with cytotoxic T-lymphocyte (CTL) dysfunction and exclusion in multiple TNBC
1257 patient cohorts, respectively, as determined using the tumour immune dysfunction and
1258 evasion (TIDE) method. **a**, iCAF T-cell dysfunction gene signature highlighting genes
1259 significantly associated with CTL dysfunction in two out of three independent patient cohorts
1260 (METABRIC, GSE21653 and GSE58812). **b**, Representative cohort (METABRIC) showing
1261 the prognostic value of iCAF T-cell dysfunction signature in the context of CTLs for a total
1262 of 233 patients. Kaplan-Meier's present two groups of patients, 'low CTL' (blue line) and
1263 'high CTL' (red line), as estimated according to the average expression of CTL-specific
1264 genes and stratified as compared to the mean. Tumours with low iCAF T-cell dysfunction
1265 signatures (top) show patients with high CTL levels have a better survival outcome. In
1266 contrast, this survival benefit is lost in tumours with a high iCAF T-cell dysfunction signature
1267 (bottom) **c**, Dysfunctional CTLs detected in all five TNBC patients determined through
1268 scoring a T-cell exhaustion signature. UMAP featureplot of the exhaustion signature across
1269 all stromal and immune cells as in Fig. 1D. **d**, Bulk stromal signature associates with CTL
1270 exclusion. Pearson correlation was computed between all inferred CTL levels (y axis) and
1271 the respective correlation between the bulk sample and the single-cell cluster (x axis).
1272 Signature of all stromal cells divided over all cells correlated negatively with CTL levels,
1273 while control CD4+ and CD8+ gene signatures show a positive correlation. Benjamini-
1274 Hochberg procedure was used for adjusting p-values. **e**, dPVL cells associated with CTL
1275 exclusion. Repeated analysis in the same manner as in **(d)**, instead with myCAF, iCAF,
1276 dPVL and imPVL clusters divided over all stromal cells independently, highlighting that CTL
1277 exclusion is mainly driven by dPVL cells. Representative cohort GSE58812 is shown. **f-h**,
1278 dPVL profiles and CTL exclusion consistent in our study. **f**, Patients with the highest dPVL
1279 profiles by scRNA-Seq (P4 and P5) show the lowest Tumour infiltrating lymphocyte (TIL)

1280 pathology counts. **g-h**, Accurate quantification of CTLs and representative
1281 immunohistochemistry staining for CD8 on matched patient tumour sections. P3 is shown
1282 as an example of a low dPVL profile with high CTLs. In contrast, P4 has a high dPVL profile
1283 with low CTLs. $n = 5$ stromal 1 mm^2 regions were counted per tumour. Statistical significance
1284 was determined using pairwise comparison with Student's *t* test.

1285

1286 **Appendix Table Legends**

1287 **Appendix Table S1. Differentially expressed genes across the four stromal subsets.**
1288 Performed using the MAST method through the *FindAllMarkers* function in Seurat. A log fold
1289 change threshold of 0.1 and a *p-value* threshold of 1×10^{-5} and FDR threshold of 0.05 was
1290 used.

1291

1292 **Appendix Table S2. Gene ontology pathways enriched across the four stromal**
1293 **subsets.** Functional enrichment was performed using the ClusterProfiler package with the
1294 top 250 differentially expressed genes from each stromal cluster. The *compareCluster*
1295 function was used with the enrichGO databases CC, MF and BP sub-ontologies using the
1296 human org.Hs.eg.db database.

1297

1298 **Appendix Table S3. Predicted stromal paracrine signalling.** Ligands and receptors as
1299 annotated from Ramilowski et al. (2015). The interaction strength was defined as the product
1300 of the average log normalised gene expression values ligand and receptor values from each
1301 cluster. Interactions were rescaled by the interaction pair.

1302

1303 **Appendix Table S4. Antibodies details.** Details of the commercial antibodies used for
1304 FACS, immunofluorescence and immunohistochemistry.

1305

1306 **Expanded View Figure Legends**

1307 **Figure Expanded View 1. Clinical pathological features and overview of single cell**
1308 **RNA sequencing metrics.** **a**, Clinical and pathological features of patient age, breast
1309 cancer subtype, tumour grade, Ki67 status, treatment history and TIL count of the 5 primary
1310 breast carcinoma samples analysed in the study. **b**, Representative hematoxylin-eosin
1311 (H&E) stained sections for each patient analysed by single-cell RNA sequencing in this
1312 study. **c**, Quality control metrics as generated by the Cellranger software (10X Genomics).
1313 **d**, Number of cells that passed quality control and filtering using EmptyDroplets per patient.
1314 **e**, Number of cells that passed quality control and filtering using EmptyDroplets per cell type
1315 and patient. **f-h**, Number of detected genes (**f**), UMIs (**g**) and proportion of mitochondrial
1316 counts (**h**) per cell type across all samples, respectively.

1317

1318 **Figure Expanded View 2. Scoring of cell type signatures for cluster annotation and**
1319 **re-clustering of T-cells.** **a**, Featureplots highlighting the area under the curve (AUC) value
1320 for selected cell type signatures derived from various studies collated in the XCELL study.
1321 AUC values are calculated on a per cell basis using the AUCell package with default
1322 parameters. Selected signatures for fibroblasts (Fantom_1), endothelial cells (Fantom_2),
1323 B-cells (Fantom_1), Plasma cells (IRIS_2), CD4+ T cells (Fantom_3), CD8+ T cells
1324 (HPCA_3), T-regulatory cells (Fantom_3) and monocytes (Fantom_3). **b-d**, Reclustering of
1325 7,990 T-cells identifies 175 T-follicular helper cells (2.2%; CXCL13 and CD200), 994 T-
1326 Regulatory cells (12.4%; FOXP3 and BATF), 2,003 other CD4+ T-cells (25.1% of all T-cells;
1327 CD4, IL7R and CD40LG), 3,691 CD8+ T-cells (46.2%; CD8A and GZMH), 605 proliferating
1328 T-cells (7.6%; MKI67), 358 NK Cells (4.5%; GNLY, KLRD1, NCR1, XCL1 and NCAM1) and
1329 164 NKT cells (2.1%; GNLY, KLRD1, NCR1 and CD3D⁻). Shown are t-SNE representations
1330 of reclustered T-cells coloured by the annotated subsets (**b**) and patient ID (**c**). **d**, Heatmap
1331 of the top 10 DEGs per T-cell subset. **e**, AUC values for all stromal cells scored against

1332 published human and mouse pancreatic CAF signatures for the myofibroblast-like CAF,
1333 inflammatory-like CAF and antigen-presenting CAF subsets [12-14]. **f**, Heatmap of the
1334 stromal cluster averaged expression of genes from human pancreatic CAF signatures, as in
1335 **(e)**.

1336

1337 **Figure Expanded View 3. TNBC stromal subsets per patient, pseudotime trajectory**
1338 **and validation of stromal cultures.** **a**, t-SNE representation of the four subclasses of
1339 cancer-associated fibroblasts (CAFs) and perivascular-like (PVL) cells by patient ID. **b**,
1340 Differential gene expression heatmaps showing the composition of the four stromal subsets
1341 in Patient-1 to Patient-5. **c-d**, Pseudotime trajectory of CAFs from Patient-2 (**c**) and PVL
1342 cells from Patient-1 (**d**) using the Monocle method annotated by the subsets derived from
1343 Seurat based re-clustering. **c**, Increased expression of marker genes such as *ACTA2*,
1344 *COL1A1*, *FAP*, *TAGLN* and *THY1* as cells move throughout pseudotime indicate that iCAFs
1345 transition towards myCAFs. In contrast, iCAF marker *CXCL12* decreases as cells move
1346 throughout pseudotime. **d**, Increased expression of marker genes such as *ACTA2* and
1347 *MYH11* as cells move throughout pseudotime indicate that imPVL cells transition towards
1348 dPVL cells. In contrast, imPVL cell markers *CD36* and *RGS5* decreases as cells move
1349 throughout pseudotime. **e**, Four technical replicates of CAF sorting of myCAF and iCAF
1350 fractions using *FAP*^{HIGH} and *FAP*^{negative/LOW}, respectively. **f**, FACS analysis showing the co-
1351 expression of *CD90* (*THY1*) with *FAP*^{HIGH} CAFs. This is represented through overlaying
1352 *CD90* signal over a replicate sample used for FACS as in **(e)** (top) and through a contour
1353 plot of *FAP* vs *CD90* signal (bottom). **g**, Quantitative-PCR validation of *FAP*, *ACTA2*,
1354 *CXCL12*, *EGFR*, *PDGFRA* and *PDGFRB* in bulk, *FAP*^{HIGH} and *FAP*^{negative/LOW} CAF sorted
1355 fractions. Consistent with scRNA-Seq findings, *FAP* and *ACTA2* are enriched in *FAP*^{HIGH}
1356 sorted myCAF-like fractions, while *CXCL12* and *EGFR* are enriched in *FAP*^{LOW} sorted iCAF-
1357 like fractions.

1358

1359 **Figure Expanded View 4. Immunohistochemistry and immunofluorescence of human**
1360 **breast cancers and normal breast tissue. a-b,** Additional immunofluorescence images of
1361 cultured human CAFs (**a**) and PVL cells (**b**), staining for CD34 (CAFs), α -SMA (myCAFs
1362 and PVL cells), CD146 (PVL cells) and CD36 (imPVL cells). **c,** Validation of PVL cells
1363 detached from blood vessels using co-immunofluorescence of CD31 (red), CD146 (green)
1364 and DAPI (blue) for sections from all five patients analysed in this study. **d,**
1365 Immunohistochemical staining of PDGFR β , α -SMA, CD34 and CD146 in serial sections cut
1366 4 μ m apart from normal breast tissues collected from four women. Images were aligned
1367 using FIJI. **e,** Co-immunofluorescence of CD31 (red), CD146 (green) and DAPI (blue) from
1368 normal breast tissue samples. CD146 is completely colocalised with CD31, suggestion no
1369 detached PVL cells are present in normal breast tissues.

1370

1371 **Figure Expanded View 5. Influence of inflammatory-CAF and differentiated-PVL**
1372 **subclasses on T-cell dysfunction in TNBC patient cohorts.** The association between
1373 stromal gene signatures, cytotoxic T-cell levels, and overall patient survival in all three TNBC
1374 patient cohorts examined in this study (METABRIC – 233 patients, GSE21653 – 84 patients
1375 and GSE58812 – 107 patients). Using the TIDE method, we show significant associations
1376 between iCAF and dPVL gene signatures with cytotoxic T-lymphocyte (CTL) dysfunction
1377 and exclusion. **a,** Prognostic value of iCAF T-cell dysfunction signature in three independent
1378 cohorts. Kaplan-Meier's present two groups of patients, 'low CTL' and 'high CTL', as
1379 estimated according to the average expression of *CD8A*, *CD8B*, *GZMA*, *GZMB* and *PRF1*,
1380 and stratified as compared to the mean. The top and bottom panels show tumours with low
1381 and high iCAF T-cell dysfunction signature, respectively. Sample divided according to iCAF
1382 T-cell dysfunction signature show significant association with CTL levels and survival
1383 outcome. **b,** Bulk stromal signature associates with CTL exclusion. Pearson correlation was

1384 computed between all inferred CTL levels (y axis) and the respective correlation between
1385 the bulk sample and the single-cell cluster of interest (x axis). Signature of all stromal cells
1386 divided over all cells correlated negatively with CTL levels, while control CD4+ and CD8+
1387 gene signatures show a positive correlation. Benjamini-Hochberg procedure was used for
1388 adjusting p-values. **c**, dPVL cells associated with CTL exclusion. Repeated analysis in the
1389 same manner as in **(b)**, instead with the averaged expression signature of each stromal
1390 subset over all stromal cells, highlighting that CTL exclusion is mainly driven by dPVL cells
1391 in three out of four cohorts. TNBC data cohort from The Cancer Genome Atlas (TCGA) was
1392 also examined for CTL exclusion analysis.

1393

1394 **Appendix Figure Legends**

1395

1396 **Appendix Figure S1. Identification of malignant cancer cells using inferCNV. a-d,**
1397 Inferred copy number variation profiles as estimated using the inferCNV method. Epithelial
1398 cells in each dataset with distinct copy number profiles were classified as cancer for
1399 downstream cell-signalling analysis with each stromal subset. Only epithelial cells are
1400 highlighted in P1 due to low gene coverage for inferCNV analysis.

1401

1402 **Appendix Figure S2. Top transcriptional activators distinguishing the four stromal**
1403 **subpopulations. a**, The log normalised gene expression (left) and respective AUC regulon
1404 activity (right) for the top 50 highest TFs regulons as estimated using SCENIC. Regulons
1405 are all filtered for TFs that were statistically enriched between the four subsets ($p < 1 \times 10^{-5}$
1406 One-way ANOVA). **b**, Correlation strengths between the log normalised gene expression
1407 and regulon activity (AUC) for the top 50 highest TFs regulons as estimated using SCENIC.
1408 Regulons are all filtered for TFs that were statistically enriched between the four subsets (p
1409 1×10^{-5} One-way ANOVA). R-squared values were computed using linear regression in R.

1410

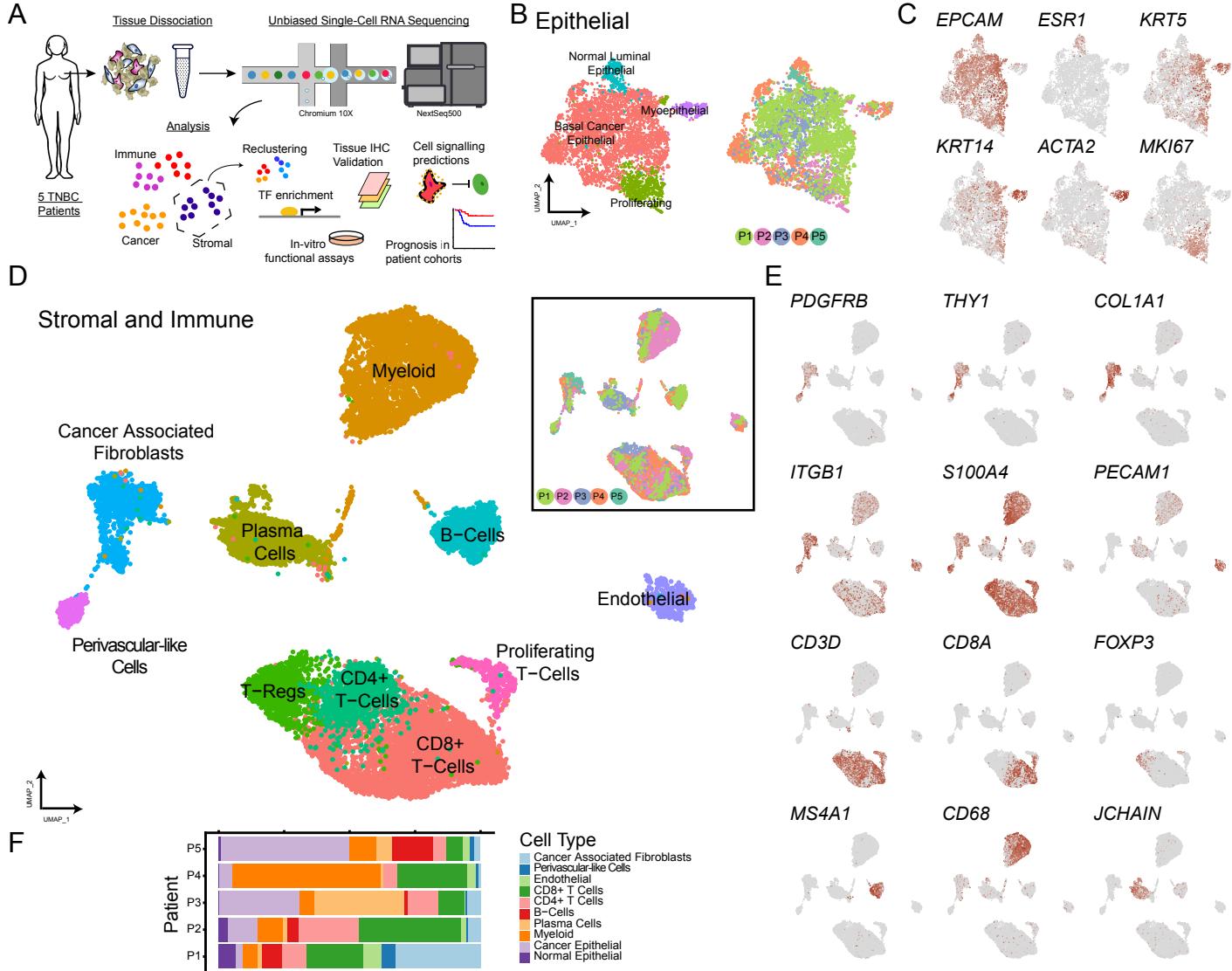
1411 **Appendix Figure S3. Signalling between stromal subsets and cancer epithelial,**
1412 **endothelial, myeloid and T-cell subpopulations.** Hierarchical clustering (Euclidean and
1413 complete distance) of the top 100 candidate signalling molecules between the four stromal
1414 populations and **(a)** cancer cells and proliferating cancer cells, **(b)** endothelial, **(c)** myeloid
1415 cells and **(d)** T-cell subsets including CD8+ T-lymphocytes, cycling T-lymphocytes, CD4+ T-
1416 lymphocytes and T-regulatory cells. Ligand and receptor pairs were ranked according to the
1417 'interaction strength', defined as the product of ligand and receptor expression. All
1418 interaction strength values were rescaled per interaction.

1419

1420 **Appendix Figure S4. Mouse models of breast cancer do not completely recapitulate**
1421 **human stromal subsets.** **a**, Violin plot highlighting the negative expression of the
1422 proliferation markers *MKI67* and *AURKA* in the four CAF and PVL subsets, highlighting that
1423 cycling-CAFs may be unique to aggressive mouse models. **b-c**, Log normalised expression
1424 of the previously reported mouse developmental CAF markers *SOX9*, *SCRG1* and *SOX10*,
1425 and epithelial markers *EPCAM*, myoepithelial markers *KRT5*, *KRT14* and *ACTA2*, showing
1426 exclusive expression in epithelial clusters rather than in stromal populations.

1427

Figure 1



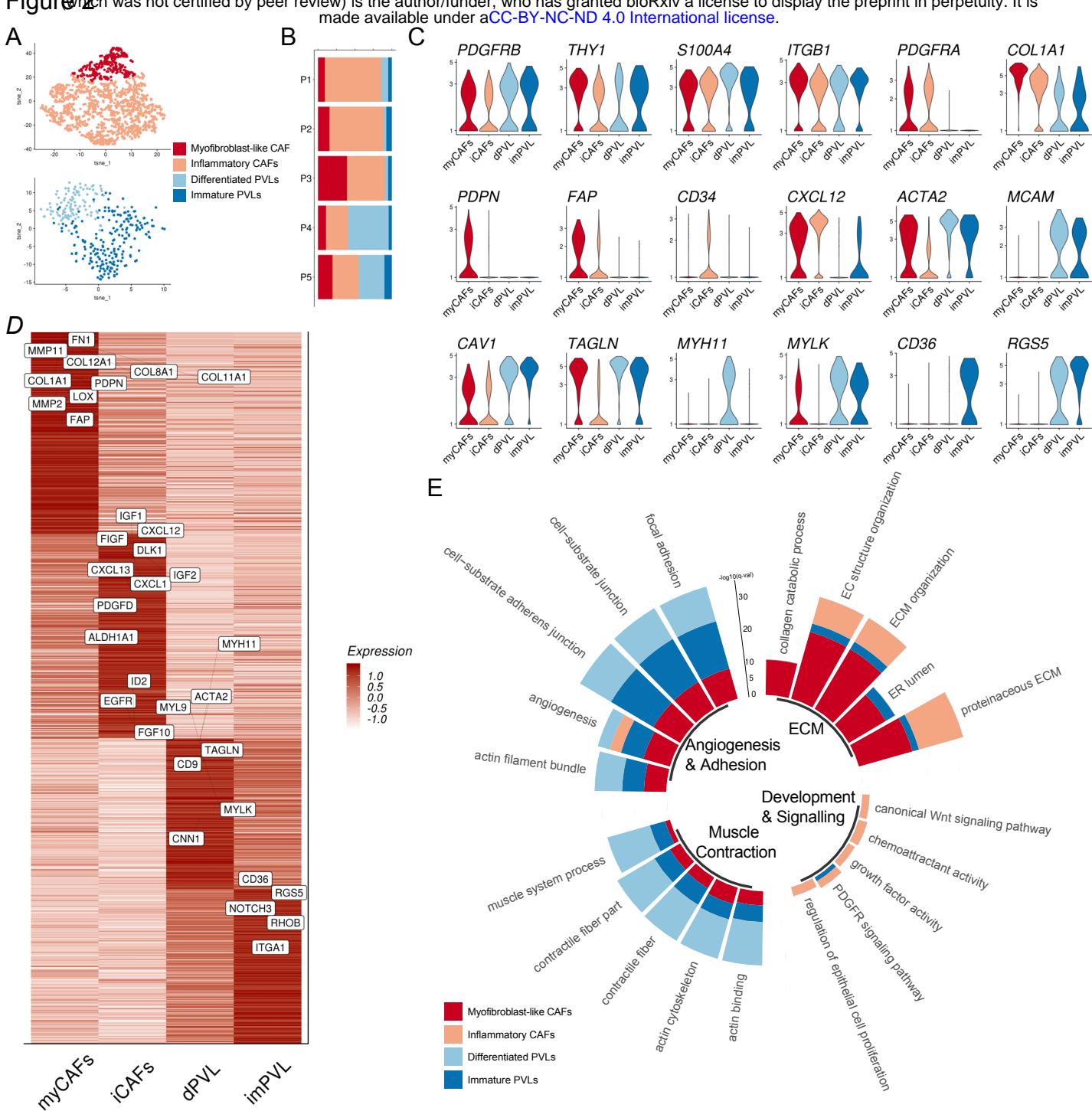
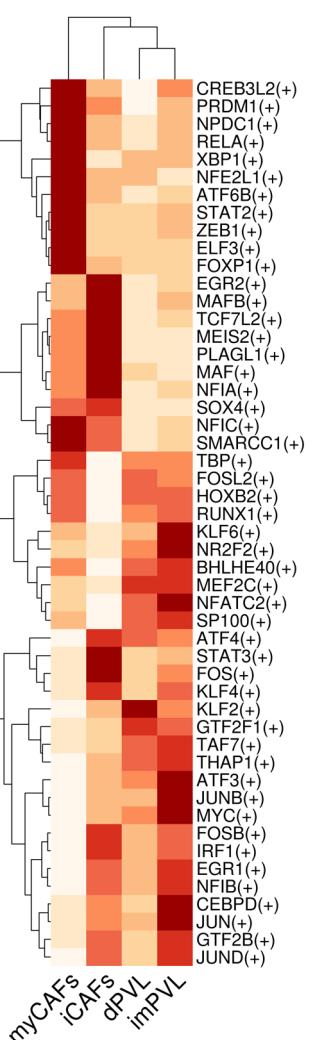


Figure 3

A



B

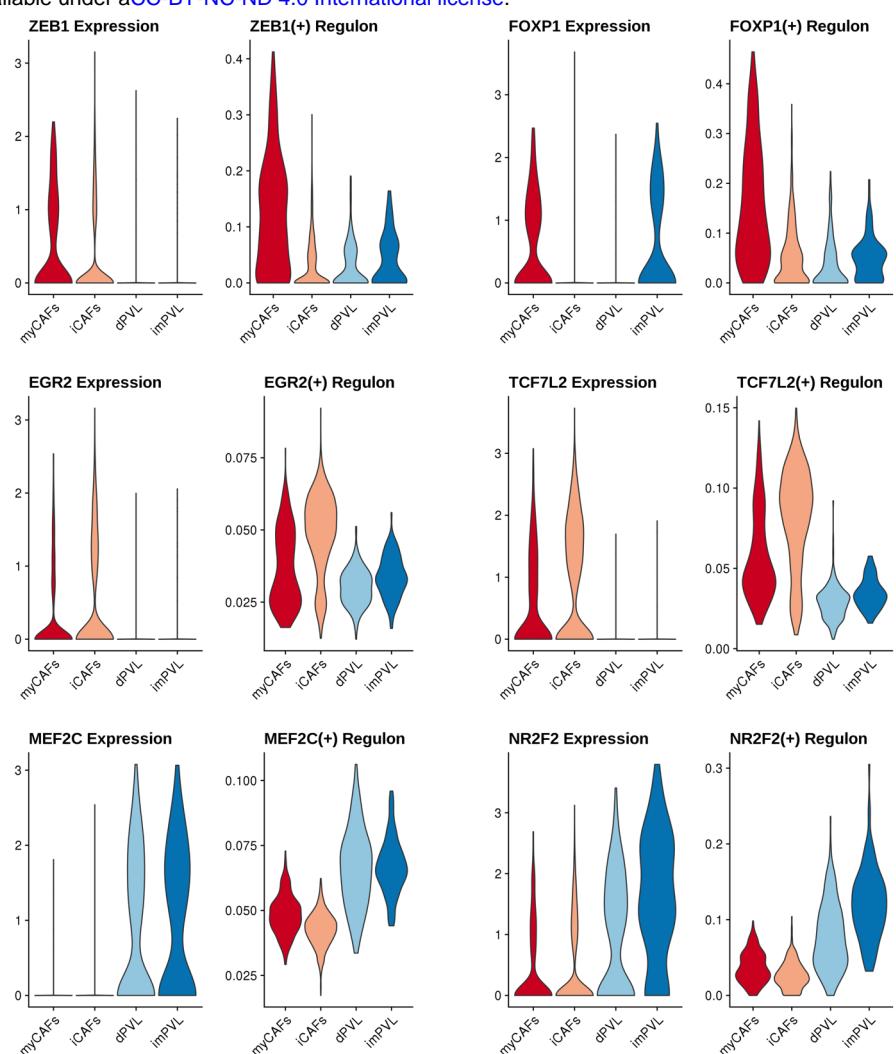


Figure 4

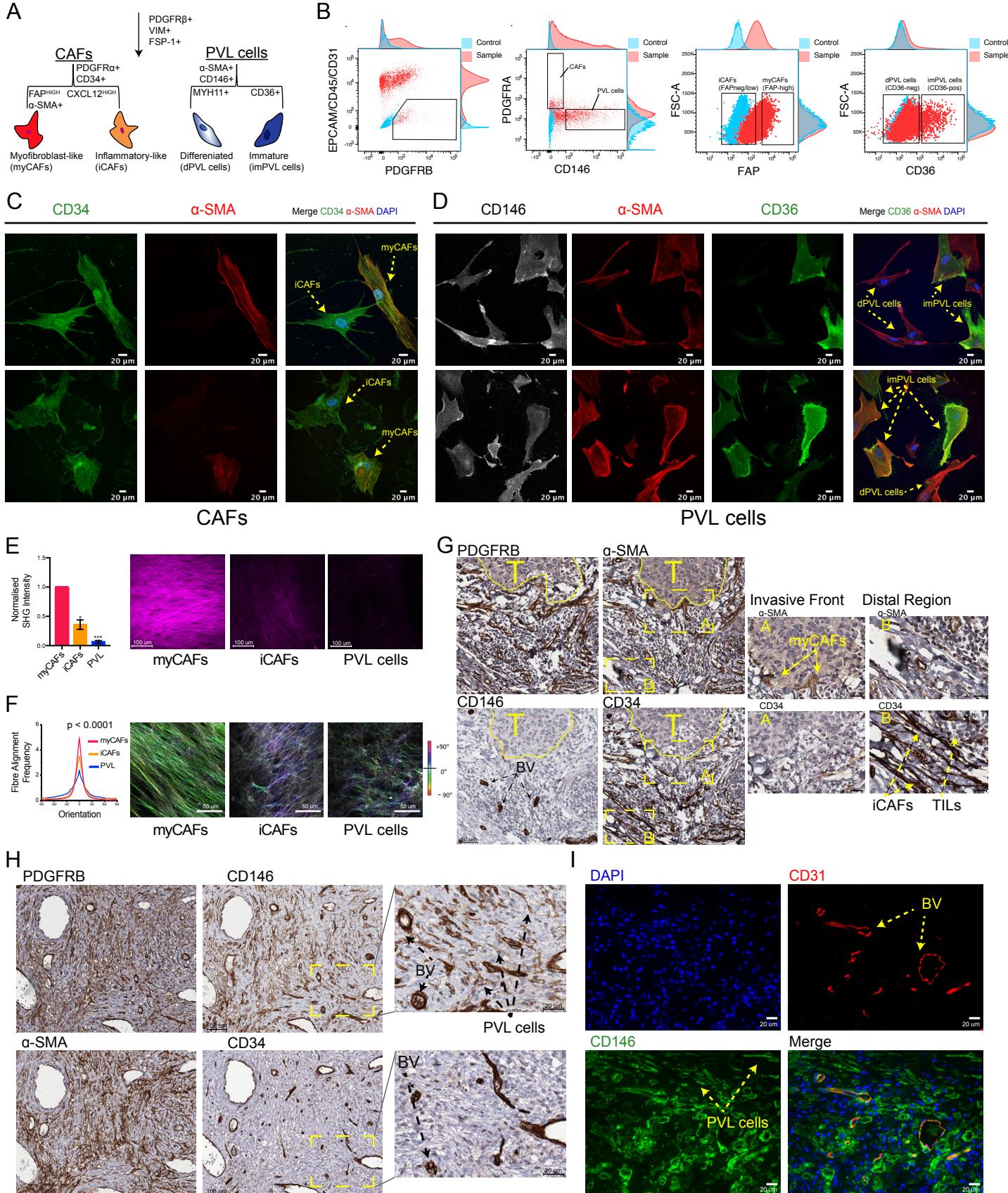
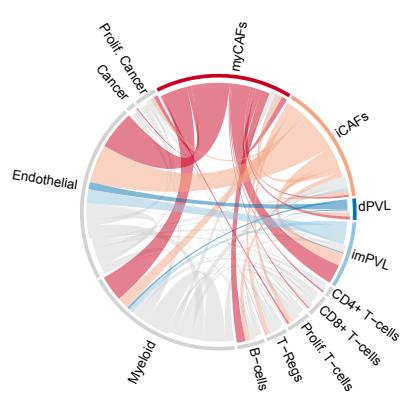
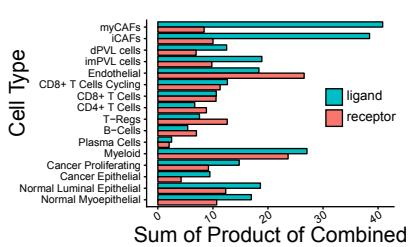


Figure 5

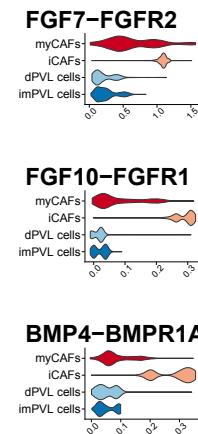
A



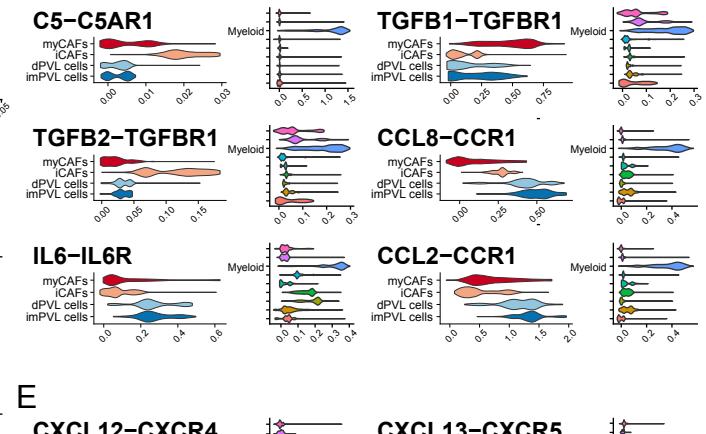
B



C



D



E

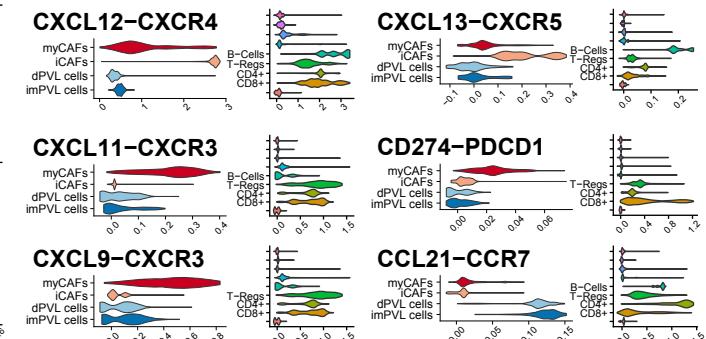


Figure 6

