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Abstract 44 

The tumour stroma regulates nearly all stages of carcinogenesis. Stromal heterogeneity in 45 

human triple-negative breast cancers (TNBCs) remains poorly understood, limiting the 46 

development of stromal-targeted therapies. Single cell RNA-sequencing of five TNBCs 47 

revealed two cancer-associated fibroblast (CAF) and two perivascular-like (PVL) 48 

subpopulations. CAFs clustered into two states, the first with features of myofibroblasts and 49 

the second characterised by high expression of growth factors and immunomodulatory 50 

molecules. PVL cells clustered into two states consistent with a differentiated and immature 51 

phenotype. We showed that these stromal states have distinct morphologies, spatial 52 

relationships and functional properties in regulating the extracellular matrix. Using cell-53 

signalling predictions, we provide evidence that stromal-immune crosstalk acts via a diverse 54 

array of immunoregulatory molecules. Importantly, the investigation of gene signatures from 55 

inflammatory-CAFs and differentiated-PVL cells in independent TNBC patient cohorts 56 

revealed strong associations with cytotoxic T-cell dysfunction and exclusion, respectively. 57 

Such insights present promising candidates to further investigate for new therapeutic 58 

strategies in the treatment of TNBCs.  59 

  60 
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Introduction 61 

Heterotypic interactions between stromal, immune and malignant epithelial cells play 62 

important roles in solid tumour progression and therapeutic response. Cancer-associated 63 

fibroblasts (CAFs) play an integral part in the tumour microenvironment (TME), and can 64 

influence many aspects of carcinogenesis including extracellular matrix (ECM) remodelling, 65 

angiogenesis, cancer cell proliferation, invasion, inflammation, metabolic reprogramming 66 

and metastasis [1]. Recent studies have described roles for CAFs in mediating immune 67 

suppression and chemo-resistance, establishing CAFs as novel and attractive targets for 68 

anti-cancer therapies in advanced breast cancer [2-6]. Despite their well-described roles in 69 

cancer biology, CAFs remain enigmatic: limited studies suggest phenotypic heterogeneity, 70 

plasticity and functional diversity, with both tumour-promoting and tumour-suppressive 71 

properties [1]. The multi-faceted nature of CAFs suggests that they are comprised of diverse 72 

subpopulations, and an improved understanding of stromal heterogeneity may explain how 73 

CAFs contribute to the dynamic complexity and functional malleability of the tumour 74 

ecosystem.  75 

 76 

CAFs of the tumour parenchyma are routinely studied using a handful of markers including 77 

a-smooth muscle actin (a-SMA), fibroblast activation protein (FAP), CD90 (THY-1), platelet 78 

derived growth factor receptor a and b (PDGFRa and PDGFRb), podoplanin (PDPN) and 79 

fibroblast specific protein 1 (FSP-1, also named S100A4) [1, 7-9]. However, these markers 80 

are not necessarily co-expressed, nor specific to the fibroblast lineage [4]. For instance, α-81 

SMA not only identifies CAFs with a myofibroblast morphology but also serves as a general 82 

marker for myoepithelial cells and perivascular cells. a-SMA+ cells in the breast tumour 83 

stroma can also arise from different mesenchymal lineages including resident fibroblasts, 84 

smooth muscle cells and pericytes [10]. In addition, FSP1 is also expressed in 85 

macrophages, other immune cells and even cancer cells [11]. Thus, a categorical definition 86 
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of cancer associated stromal cells and specific cell surface markers remains challenging 87 

and is urgently needed [1].  88 

 89 

Three broad CAF subtypes have been recently profiled in mouse models of pancreatic 90 

ductal adenocarcinoma (PDAC) [12-14]. These are characterised by a myofibroblast-like 91 

(myCAFs) phenotype, inflammatory properties (iCAFs) and antigen presenting capabilities 92 

(apCAFs) [12-14]. Although little is known about the mechanistic role and clinical relevance 93 

of iCAFs and apCAFs, an accumulation of the myCAF marker a-SMA has been shown to 94 

correlate with poor outcome in breast and pancreatic cancer [15, 16]. We have shown that 95 

targeting Hedgehog-activated CAFs, which have a myofibroblast-like phenotype in ECM 96 

regulation, results in markedly improved survival, chemosensitivity and reduced metastatic 97 

burden in pre-clinical models of TNBC [3]. In addition, myofibroblast-like CAFs have been 98 

shown to contribute to an immunosuppressive microenvironment by attracting T-regulatory 99 

cells in breast and ovarian cancer [4, 5]. While these studies point towards the therapeutic 100 

targeting of myofibroblast-like CAFs, genetic ablation of a-SMA+ cells in a mouse model of 101 

PDAC resulted in more aggressive tumours and reduced mouse overall survival, indicating 102 

complex stromal functionalities across distinct tissue sites [17].  103 

 104 

Recent advances in single-cell RNA sequencing (scRNA-Seq) have overcome some of the 105 

technical hurdles in the investigation of cellular heterogeneity amongst complex tissues such 106 

as carcinomas. Recent patient studies have dissected the TME in head and neck squamous 107 

cell carcinomas and lung tumours, revealing new insights into stromal and immune subsets 108 

associated with disease progression [18, 19]. Single-cell studies of human breast cancers 109 

have been limited to immune cells, while studies in mouse models have revealed four 110 

subclasses of CAFs [20]. Although CAFs from human breast carcinomas have been profiled 111 
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by flow cytometry and bulk sequencing, comprehensive single-cell profiling has yet to be 112 

performed in TNBC patients [4].  113 

 114 

TNBC is an aggressive breast cancer subtype, which is lacking in effective targeted 115 

therapeutic options. It is clinically defined by negative status for targetable hormone 116 

receptors (estrogen receptor and progesterone receptor) or HER2 amplification. Studies in 117 

mice and humans have demonstrated that TNBC progression can be influenced by stromal 118 

cells however, a comprehensive understanding of the stromal hierarchy is yet to be 119 

established [2-6]. To investigate this in more detail, we performed unbiased high-throughput 120 

scRNA-Seq to profile the TME directly in patient tumour tissues. In addition to CAFs, we 121 

identified stromal cells with a perivascular-like (PVL) profile, which were not necessarily 122 

associated with blood vessels. Our study focuses exclusively on CAFs and PVL cells, which 123 

we collectively refer to as ‘stroma’. Using orthogonal methods, we found that functions 124 

previously ascribed to CAFs as unitary cell types are actually performed by specialised 125 

subsets of stromal cells with distinct morphological, spatial and functional properties [20]. In 126 

addition, by sampling cells from the entire TME, we were able to predict paracrine signalling 127 

between stromal and immune cell subsets. From this, we analysed large patient gene 128 

expression datasets to show significant association between inflammatory-like CAFs and 129 

differentiated-PVL cells with immune evasion. Our human TNBC single-cell datasets provide 130 

a new taxonomy of human cancer-associated stromal cells, which we envisage can be used 131 

to further develop TME-directed therapies.   132 

 133 

Results 134 

Composition of triple-negative breast cancers at cellular resolution 135 

We performed scRNA-Seq on primary breast tumours collected from five patients (Fig. 136 

EV1A-B) using a marker free approach. Fresh tissues were dissociated into single cell 137 
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suspensions prior to single-cell capture on the Chromium controller (10X Genomics) and 138 

sequencing on the NextSeq 500 (Illumina) (Fig. 1A; Fig. EV1C). In total, we sequenced 139 

24,271 cells, with an average of 4,854 cells per patient (Fig. EV1D). A total of 28,118 genes 140 

were detected with an average of 1,658 genes expressed, and 6,215 unique molecular 141 

identifiers (UMIs) detected per cell (Fig. EV1E-H). Data from individual tumours were 142 

integrated and clustered using canonical correlation analysis (CCA) in Seurat [21].  143 

 144 

Epithelial cells (Fig. 1B-C) and stromal-immune cells (Fig 1D-E) were first annotated through 145 

the expression of canonical cell type gene markers. This revealed four major cell states 146 

within the epithelial compartment (Fig. 1B-C), including a major cluster of 4,095 cancer cells 147 

(16.9% of all cells; EPCAM+, ESR1-) and a second cluster of 614 cancer cells with high 148 

proliferation (2.5%; MKI67+). The remaining two smaller epithelial clusters had gene 149 

expression features consistent with normal luminal (277 cells, 0.9%; EPCAM+, ESR1+) and 150 

myoepithelial cells (212 cells, 0.9%; EPCAMlo, KRT5+, KRT14+ and ACTA2+). Neoplastic or 151 

normal status of these cell clusters was confirmed by inferring genome copy number 152 

alterations over large genomic regions using InferCNV (Appendix Fig. S1) [22]. In addition 153 

to marker genes, stromal and immune clusters were further classified through scoring 154 

against published cell type signatures from the XCell database with an area under the curve 155 

approach (AUCell) (Fig. EV2A) [23, 24]. In the immune compartment (Fig 1D-E), we 156 

identified 7,990 T-lymphocytes (32.9%; CD3D), 1,245 B-cells (5.1%; MS4A1), 1,955 plasma 157 

cells (8.1%; JCHAIN) and 4,606 myeloid cells (19.0%; CD68). Through re-clustering of the 158 

T- lymphocytes (Fig. EV2B-D), we identified 175 T-follicular helper cells (2.2%; CXCL13 and 159 

CD200), 994 T-Regulatory cells (12.4%; FOXP3 and BATF), 2,003 other CD4+ T-cells 160 

(25.1% of all T-cells; CD4, IL7R and CD40LG), 3,691 CD8+ T-cells (46.2%; CD8A and 161 

GZMH), 605 proliferating T-cells (7.6%; MKI67), 358 NK Cells (4.5%; GNLY, KLRD1, NCR1, 162 

XCL1 and NCAM1) and 164 NKT cells (2.1%; GNLY, KLRD1, NCR1 and CD3D-). The 163 
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remaining cells consisted of 610 endothelial cells (2.5%; PECAM1) and two distinct clusters 164 

(with 1,409 and 320 cells, 5.8% and 1.3%, respectively) sharing the expression of common 165 

stromal markers including PDGFRB, S100A4 (FSP-1), ITGB1 (CD29) and THY1 (CD90). 166 

These non-endothelial nor immune cells (collectively referred to as stromal in this study) 167 

were enriched for a fibroblast cell type signature from XCell (Fibroblasts_FANTOM_1; Fig. 168 

EV2A). All annotated cell types were detected in each patient, with varying proportions of 169 

cell types between cases, indicating no patient specific sub-populations in our integrated 170 

dataset (Fig. 1F). 171 

 172 

Reclustering stromal cells revealed four distinct sub-clusters in human TNBCs  173 

Although the stromal clusters shared many common markers used to study CAFs, we further 174 

inspected their heterogeneity through reclustering each population (Fig. 2A). Sub-clusters 175 

were detected across multiple clustering resolutions in the FindClusters function in Seurat 176 

(resolutions 0.2, 0.3 and 0.4), with varying proportions from each patient (Fig. 2B). The first 177 

cluster, which was classified as CAFs through the expression of fibroblast-specific markers 178 

(PDGFRA, COL1A1, FAP and PDPN), formed two sub-clusters (Fig. 2A-C). The first CAF 179 

sub-cluster was comprised of 280 cells (16.2% of all stromal; red cluster) and was classified 180 

as myofibroblast-like CAFs (myCAFs) through the elevated expression of activated 181 

fibroblast markers (ACTA2, FAP and PDPN) and collagen-related genes (COL1A1 and 182 

COL1A2) (Fig. 2C-D) [12-14]. The second CAF sub-cluster comprised of 1,129 cells (65.3%; 183 

orange cluster; Fig. 2A-C) and resembled inflammatory-CAFs (iCAFs) through the 184 

enrichment of the CAF chemokine marker CXCL12 (also known as SDF-1) (Fig. 2C-D) [12-185 

14]. We next compared our CAF clusters to the subsets previously reported in pancreatic 186 

cancer [12-14]. This was performed by scoring published CAF gene signatures across our 187 

stromal clusters using the AUCell method (Fig. EV2E) [23]. This revealed the enrichment of 188 

pancreatic myCAF and iCAF signatures in our breast myCAF and iCAF clusters, 189 
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 9 

respectively, suggesting similar phenotypes likely exist across both tissue sites (Fig. EV2E). 190 

While the signatures were largely conserved, a number of human PDAC CAF markers were 191 

detected in opposing cell types, for example IL6 was expressed by PVL cells rather than 192 

iCAFs (Fig. EV2F). No clusters showed any particular enrichment for signatures of antigen-193 

presenting CAFs, potentially because they are a rare cell type that was not sampled, or are 194 

unique to pancreas tumours (Fig. EV2E).  195 

 196 

In contrast, the second stromal cluster was enriched for perivascular markers, including 197 

genes associated with pericytes and smooth muscle cells (ACTA2, MCAM, CAV1, TAGLN, 198 

MYH11, MYLK and RGS5; Fig. 2C-D) [25]. MCAM (also known as CD146) has shown to be 199 

a robust marker to differentiate perivascular cells from fibroblasts in human tissues [26-29]. 200 

PVL cells were further classified as either differentiated-PVL (dPVL; 122 cells in light blue, 201 

7.1%), characterised through the enrichment of myogenic differentiation genes (TAGLN, 202 

MYH11 and MYLK), or immature-PVL (imPVL; 198 cells in dark blue; 11.5%), characterised 203 

by the elevated expression of genes associated with an immature phenotype (PDGFRB, 204 

CD36 and RGS5) (Fig. 2C-D) [30]. To our surprise, both PVL subsets were also enriched 205 

for the human PDAC myCAF signature, suggesting PVL cells share some similarities in 206 

gene expression profile with myCAFs (Fig. EV2E-F). All four stromal subsets were detected 207 

in all five patients, however there were differences in the proportions between the patients 208 

(Fig. 2B; Fig. EV3A-B). The stromal profiles of Patient-1 (P1) and P2 were predominantly 209 

comprised of iCAFs, myCAFs were highest in P3, whilst PVL cells were highly abundant in 210 

P4 and P5 (Fig. 2B; Fig. EV3A-B).  211 

 212 

Next, we identified differentially expressed genes (DEGs) between the four subsets using 213 

the MAST method, which compares each subset against all other subsets [31]. This 214 

identified a total of 894, 610, 258 and 289 DEGs (log fold change threshold of 0.1, p-value 215 
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threshold of 1x10-5 and FDR threshold of 0.05) by myCAFs, iCAFs, dPVL and imPVL cells, 216 

respectively (Fig. 2D; Appendix Table S1). We performed gene ontology (GO) analysis using 217 

the top 250 DEGs from each subset using the clusterProfiler tool (Fig. 2E; Appendix Table 218 

S2) to determine the pathway level differences driving stromal heterogeneity [32]. This 219 

revealed an enrichment of collagen biosynthesis and ECM-regulatory pathways in myCAFs, 220 

which included fibrillar collagen genes COL1A1 and COL1A2 and ECM remodelling 221 

metalloproteinases MMP1 and MMP11 (Fig. 2D-E). We identified the enrichment of 222 

developmental signalling pathways and chemotactic regulation in iCAFs, including soluble 223 

factors such as IGF1, FIGF and PDGFD, and the chemokines CXCL12 and CXCL13 (Fig. 224 

2D-E). Stem cell markers including ALDH1A1 and ID2, and the growth factor receptor EGFR 225 

were also upregulated in iCAFs (Fig. 2D). Within the PVL cells, the dPVL cluster was 226 

enriched for pathways related to the muscle system and contractility, while the imPVL cluster 227 

was enriched for pathways related to focal and substrate adhesion, including the integrin 228 

molecule ITGA1 (Fig. 2D-E). No stromal clusters expressed canonical markers for 229 

proliferation, including MKI67 and AURKA.  As many of the genes and pathways identified 230 

were related to cell activation and contractility, we hypothesised that the stromal sub-clusters 231 

resembled cell differentiation stages rather than distinct subpopulations. Cell trajectories 232 

were examined using the Monocle method, which revealed subsets of CAFs and PVL cells 233 

distributed across pseudotemporal space (Fig. EV3C-D) [33]. For example, COL1A1, 234 

ACTA2 and CXCL12 expression transitioned throughout CAF differentiation (Fig. EV3C), 235 

while CD36, RGS5 and MYH11 transitioned throughout PVL differentiation (Fig. EV3D). Our 236 

findings indicate that the stroma in TNBC is comprised of four major transcriptional states 237 

related to cell differentiation, which branch from the two major fibroblast and perivascular-238 

like lineages.  239 

 240 

Transcription factor pathways enriched across stromal subclasses 241 
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We next sought to investigate if gene regulatory networks could further explain the 242 

underlying heterogeneity in stromal subpopulations. To examine the activity of CAF and PVL 243 

transcription factors (TFs), we applied the SCENIC method to build gene regulatory 244 

networks from scRNA-Seq data and identify activating cis-regulatory elements [23, 34]. 245 

Through applying this to the normalised stromal gene expression matrix, SCENIC identified 246 

a total of 190 activated TFs, of which 166 were identified to be significantly different across 247 

the four stromal subsets (one-way ANOVA; p-value threshold of 1x10-5). We focused on the 248 

top 50 strongest candidates based on their average AUC values (Fig. 3; Appendix Fig. S2).  249 

 250 

In examining the top candidate TFs (Fig. 3; Appendix Fig. S2), ZEB1 and FOXP1 were 251 

enriched in myCAFs. A recent study inhibiting stromal ZEB1 in the PyMT mouse model of 252 

breast cancer reduced tumour growth, invasion and impaired ECM deposition [35]. In other 253 

tissue contexts, FOXP1 was reported to regulate the fibrotic potential of stromal cells via the 254 

Wnt/beta-catenin pathway, including myCAF marker genes such as ACTA2 and COL1A1 255 

[36]. Known roles of such TFs are consistent with the predicted ECM-regulating phenotype 256 

of myCAFs. The EGR2 and TCF7L2 regulons were enriched in iCAFs (Fig. 3). EGR2 is 257 

known to regulate the expression of immunomodulatory molecules in mesenchymal stem 258 

cells [37]. The TCF family including TCF7L2 (also known as TCF4) are Wnt-regulated TFs 259 

that are highly expressed during early development [38]. As iCAFs also expressed the stem 260 

cell markers ALDH1A1 and ID2, we hypothesised that they resemble a stem or progenitor-261 

like state.  262 

 263 

For PVL cells, MEF2C was a highly enriched driver in both subsets (Fig. 3). Myocyte 264 

enhancer factor 2 (MEF2) is a well-defined regulator for the development of vascular smooth 265 

muscle cells [39, 40]. We identified KLF2 enriched in dPVL cells, and NR2F2 enriched in 266 

imPVL cells (Fig. 3). KLF2 is required for smooth muscle cell migration and maturation in 267 
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blood vessel formation, consistent with the predicted differentiation state of dPVL cells [41]. 268 

Furthermore, NR2F2, also known as COUP-TFII, is highly expressed by myogenic 269 

precursors and is known to inhibit muscle development, which is consistent with the 270 

predicted immature state of imPVL cells [42]. In summary, we identified unique and novel 271 

TF drivers in each of the four stromal subclasses, providing further insights into the 272 

transcriptional drivers underlying stromal heterogeneity.  273 

 274 

Validation of stromal subsets in primary breast cancer tissue 275 

To validate the existence of the four stromal subclasses described above in TNBC patient 276 

tissue (Fig. 4A), we first performed fluorescence-activated cell sorting (FACS) isolation on 277 

scRNA-Seq matched human tissue sections (Fig. 4B). Our gating strategy used EPCAM, 278 

CD45 and CD31 as negative markers to exclude epithelial, immune and endothelial cells, 279 

respectively (Fig. 4B). We additionally used PDGFRb to positively select all stromal 280 

populations and avoid contaminations from cancer stem cells and breast myoepithelial cells 281 

which have low EPCAM expression [43, 44]. Based on our initial scRNA-Seq findings, we 282 

determined PDGFRa and CD146 (MCAM) as good markers to discriminate CAFs and PVL 283 

cells, respectively. Following the initial isolation and culturing of CAFs 284 

(PDGFRb+/PDGFRa+/CD146-) and PVL cells (PDGFRb+/PDGFRa-/CD146+), we next 285 

performed simultaneous FACS analysis of additional stromal markers to validate the 286 

presence of the four stromal subsets in culture. We show that myCAFs and iCAFs could be 287 

distinguished by FAPHIGH/CD90HIGH and FAPLOW/CD90LOW expression, respectively (Fig. 4B, 288 

Fig. EV3E-F), whilst imPVL cells could be discriminated from dPVL cells by CD36+ 289 

expression (Fig. 4B, Fig. 4B). We validated the gene expression of cultured bulk and sorted 290 

CAF fractions using quantitative real time PCR (qPCR) (Fig. EV3G). As controls, PDGFRA 291 

and PDGFRB were expressed in both the FAP-high and FAP-low populations. Consistent 292 

with the FACS sorting strategy and scRNA-Seq findings, FAP and ACTA2 were enriched in 293 
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FAPHIGH(myCAF) sorted cells, while CXCL12 and EGFR were enriched in FAPLOW (iCAF) 294 

sorted cells (Fig. EV3G). We next performed immunofluorescence (IF) to further validate 295 

additional markers and explore potential morphological differences. Here, ⍺-SMA 296 

expression was used to identify myCAFs from iCAFs (Fig. 4C; Fig. EV4A), and CD36 to 297 

distinguish imPVL from dPVL cells (Fig. 4D; Fig. EV4B). From our observations, myCAFs 298 

and dPVL cells had a more elongated morphology in comparison to iCAFs and imPVL cells 299 

(Fig. 4C; Fig. EV4A), which is consistent with the predicted differentiation state of each 300 

subset. Importantly, we defined a novel gating strategy that allowed us to purify the four 301 

stromal subsets for subsequent in vitro functional characterisation. 302 

 303 

Myofibroblast-like CAFs have elevated capabilities for collagen secretion and 304 

alignment  305 

From the above results, we predicted myCAFs to be the predominant subset synthesising 306 

ECM components. To investigate this, we generated cell-derived matrices (CDMs) to 307 

compare the ability of each human stromal subset to lay down collagen, as previously 308 

described [45]. Purified stromal subsets were seeded and cultured onto glass for 7 days. To 309 

assess Collagen I deposition, we used Second Harmonic Generation (SHG) microscopy, 310 

which is a sensitive method for quantifying fibrillar collagen density and orientation in an 311 

unlabelled manner. This revealed FAPHIGH myCAFs had a significant increase in SHG signal 312 

intensity compared to FAPLOW iCAFs, while PVL cells had a significantly lower SHG signal 313 

compared to both CAF subsets (Fig. 4E). Higher densities of stromal collagen is a hallmark 314 

of breast tumour growth, invasiveness, and risk of disease development [46-48]. Our 315 

findings also indicate that PVL cells do not adopt fibroblast-like traits in contributing to the 316 

collagenous TME. Further analyses of collagen fibre orientation also revealed that in 317 

addition to increased amounts, the orientation of the collagen fibres deposited by myCAFs 318 

was more uniformly aligned compared to iCAFs and PVL cells (indicated by the higher, 319 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 6, 2020. ; https://doi.org/10.1101/2020.06.04.135327doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.135327
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

narrow peak in Fig. 4F). It has been previously shown that tumour associated collagen 320 

signatures (TACs), characterised by the alignment of collagen fibres, is a good factor for 321 

predicting breast cancer survival [49]. In further parallels to pancreatic cancers, FAP-322 

overexpressing fibroblasts have been shown to produce more parallel aligned fibres, 323 

enhancing the directionality and velocity of cancer cell invasion [50]. Importantly, these data 324 

highlights that the regulation of the ECM, namely in collagen density and orientation, is 325 

mainly regulated by the specialised myCAF subsets. In summary, our findings demonstrate 326 

that the stromal subclasses described here are functionally distinct, and provide a novel 327 

strategy for their purification from breast cancers.  328 

 329 

Stromal subclasses are spatially distinct 330 

To investigate the spatial localisation of CAFs and PVL cells, we performed 331 

immunohistochemistry (IHC) with markers identified by scRNA-Seq on data matched patient 332 

tissues. We also wanted to validate that CAFs and PVL cells localise to the intratumoural 333 

regions of tumour specimens and are not from adjacent normal tissue or blood vessels. We 334 

stained serial 4 μm sections and identified stromal cell types using a combination of markers 335 

identified previously by scRNA-Seq and DGE (Fig. 2C): pan-stromal (PDGFRb+), myCAFs 336 

(PDGFRb+, ⍺-SMAHIGH and CD146-), iCAFs (PDGFRb+, ⍺-SMA-, CD34HIGH and CD146-) and 337 

PVL cells (PDGFRb+, ⍺-SMAHIGH, CD34- and CD146+). As CD34 and CD146 are commonly 338 

used markers of the endothelium but are mutually exclusive in CAFs and PVL cells, we used 339 

their co-localisation in combination with PDGFRb staining and morphology (rings 340 

surrounding lumen) to identify endothelial cells [26]. This IHC strategy revealed regions 341 

where myCAFs (⍺-SMAHIGH) were located in close proximity to the invasive tumour interface, 342 

while iCAFs (CD34HIGH) were relatively distal to this interface (Fig. 4G). In these particular 343 

cases, no PVL cells were present in these regions and CD146 was completely restricted to 344 

blood vessels (Fig. 4G). In distal regions which were enriched for iCAFs, we also identified 345 
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a high co-localisation of tumour-infiltrating lymphocytes as identified by morphology (Fig. 346 

4G).  347 

 348 

By definition vascular smooth muscle cells (vSMCs) and pericytes should be localised 349 

around arteries and veins to facilitate vascular development and stability. To examine 350 

whether PVL cells are vessel-associated, we used co-IF staining for CD31 and CD146 to 351 

mark endothelial cells and PVL cells, respectively. We readily detected PVL cells at non-352 

blood vessel regions in the stroma of 4 out of 5 matched patient tissue sections (all cases 353 

except P3), including P4 where it was highly abundant (Fig. 4H-I; Fig. EV4C). Consistent 354 

with the cell proportions identified by scRNA-Seq, PVL cells were highly abundant in P4, 355 

and lowly detected in P3 (Fig. 2B). PVL cells were highly dispersed throughout the tumour 356 

stroma with no obvious co-localisation to the invasive malignant borders. Importantly, our 357 

findings suggest that these smooth muscle-like cells, like CAFs, can be readily identified 358 

disseminated throughout the stroma, independent of blood vessels.  359 

  360 

To understand how the four stromal subpopulations correspond to their normal tissue 361 

counterparts, we repeated the staining of PDGFRb, CD34, ⍺-SMA and CD146 on healthy 362 

breast tissue collected from four women. This revealed a high abundance of iCAF-like 363 

fibroblasts (PDGFRb+, ⍺-SMA-, CD34HIGH and CD146-) surrounding ductal regions, while 364 

myCAF-like fibroblasts (PDGFRb+, ⍺-SMAHIGH and CD146-) were sparsely detected across 365 

all four cases (Fig. EV4D). While this small panel of markers do not highlight the large 366 

transcriptional changes that may occur upon CAF activation, it does suggest that the broad 367 

iCAF-like and myCAF-like fibroblast subsets are resident cell types which are reactivated 368 

during carcinogenesis. For PVL cells, IHC staining of CD146 was completely restricted to 369 

blood vessels (Fig. EV4D). This further confirmed using co-IF staining for CD31 and CD146 370 

on the normal tissue cases, where CD146 was completely restricted to CD31-positive blood 371 
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vessels (Fig. EV4E). Our findings suggest that disseminated PVL cells are a distinct feature 372 

in a subset of TNBCs.  373 

 374 

Distinct ligand receptor expression predicts diverse stromal crosstalk to the tumour 375 

microenvironment  376 

We next sought to investigate how spatially distinct stromal subclasses may interact with 377 

other cells within the TME. Here, we annotated our scRNA-Seq dataset using a published 378 

set of curated human ligand-receptor pairs [51]. We used these annotations to construct a 379 

cell-to-cell communication network and predict intratumoral signalling between the four 380 

stromal clusters, and the surrounding neoplastic, immune and endothelial 381 

microenvironment. This revealed diverse stromal signalling profiles (Fig. 5A), with myCAFs 382 

and iCAFs having the highest overall predicted ligand activity out of all the cell types (Fig. 383 

5B). The ‘interaction strength’, or the weight of each edge, was defined as the product of 384 

expression levels of the corresponding ligand and receptor. All ligand-receptor pairs with an 385 

arbitrary ‘interaction strength’ cut-off of 0.1 were classified as candidate signalling 386 

molecules, which revealed a total of 570, 482, 437 and 357 unique predicted interactions 387 

between stromal clusters with cancer epithelial cells, endothelial cells, myeloid cells 388 

(Appendix Fig. S3A-C) and T-cell subpopulations, respectively (Appendix Fig. S3D; 389 

Appendix Table S3).  390 

 391 

Consistent with the enrichment of growth factor signalling gene ontologies in iCAFs (Fig. 392 

2E), we identified a strong upregulation of crosstalk via the FGF (FGF7 and FGF10), BMP 393 

(BMP4 and BMP7), HGF and IGF1 pathways to their cognate receptors across cancer cells 394 

and endothelial cells (Fig. 5C; Appendix Fig. S3A-B). These factors are known to be highly 395 

expressed in breast tumours and associated with breast cancer proliferation, invasion and 396 

inducing cancer stem-cell (CSC) phenotypes [52-55]. Different ligands from these pathways 397 
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were also identified from myCAFs and dPVL cells, suggesting that neoplastic phenotypes 398 

could also be influenced by different stromal cells (Appendix Fig. S3A). As we identified 399 

iCAFs to be located more distal to the invasive tumour interface, we hypothesize that these 400 

secreted factors function from a distance. For signalling to the endothelial compartment, 401 

iCAFs and PVL cells were both enriched for well-characterised growth factors involved in 402 

angiogenesis (Appendix Fig. S3B). Classical angiogenic pathways including VEGFs (FIGF, 403 

also known as VEGFD), PDGFs (PDGFC), IGFs (IGF1 and IGF2) and Notch signalling 404 

(DLK1) were enriched in signals emanating from iCAFs (Appendix Fig. S3B). These 405 

pathways suggest that the inflammatory CAF phenotype is also associated with tumour 406 

neovascularisation [56, 57]. In addition, PVL-derived signals were enriched for the canonical 407 

ANGPT1/ ANGPT2-TIE1 pathway, which are known stimuli that can induce the sprouting of 408 

new vessels during the formation of new endothelial tubes [58]. 409 

 410 

Given the reported immunoregulatory properties of mesenchymal cells [4, 5], we next 411 

focused on the signalling of stromal cytokines and checkpoint molecules to immune 412 

populations. Here, we identified an enriched interaction between iCAFs and myeloid cells 413 

via the complement cascade activation interaction C5-C5AR1 (Fig. 5D; Appendix Fig. S3C). 414 

C5 activation in the TME acts as a chemotactic factor for the recruitment of 415 

immunosuppressive myeloid cells to suppress T-cell activities [59]. In addition, myCAFs and 416 

iCAFs were enriched for TGFB1-TGFBR1 and TGFB2-TGFBR1 interactions with myeloid 417 

cells, respectively (Fig. 5D; Appendix Fig. S3C). As TGFb-activated myeloid cells have been 418 

shown to enhance breast cancer progression and metastasis in vivo, it suggests that both 419 

CAF subsets could influence myeloid phenotypes [60]. While the TGFBR1 receptor was 420 

predominantly enriched on myeloid clusters, it is worth noting that its expression was also 421 

detected by cancer and endothelial clusters (Fig. 5D). Although PVL cells had lower ligand 422 

expression profiles compared to CAFs, several immunomodulatory cytokine interactions 423 
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were predicted between PVL cells and myeloid cells, including an enrichment of the CCL8-424 

CCR1, IL6-IL6R and CCL2-CCR1 pathways (Fig. 5D; Appendix Fig. S3C). CCL2 produced 425 

by the microenvironment in other cancers has been shown to be essential for the recruitment 426 

of T-Regs and tumour-associated macrophages, supporting an additional role of PVL cells 427 

in recruiting immunosuppressive cells [61].   428 

 429 

For the signalling to the lymphocyte compartment, iCAFs had a strong upregulation of the 430 

chemo-attractant pathways CXCL12-CXCR4 and CXCL13-CXCR5 with T- and B-cells (Fig. 431 

5E; Appendix Fig. S3D). CAF derived CXCL12 has been shown to recruit and regulate the 432 

activity of CD4+/CD25+ T-Regs in breast cancers, suggesting iCAFs may have a direct role 433 

in recruiting immunosuppressive populations [4, 5]. CXCL12 and CXCL13 signalling axes 434 

have also been shown to mediate lymphocyte recruitment to tertiary lymphoid structures 435 

(TLS) [62]. MyCAFs were also enriched for secreted immunoregulatory molecules and 436 

checkpoints including CXCL9-CXCR3, CXCL11-CXCR3 and CD274-PDCD1 (PDL1-PD1) 437 

with T-cells (Fig. 5E; Appendix Fig. S3D). Lastly, only few candidates were identified 438 

between PVL cells with T-cells, including the enrichment of CCL21-CCR7, which is 439 

associated with immune tolerance in favour of tumour progression (Fig. 5E; Appendix Fig. 440 

S3D) [63]. It is evident from our signalling predictions that diverse immunoregulatory 441 

molecules are expressed in the stroma, highlighting that immune evasion can be regulated 442 

by distinct stromal subpopulations in TNBC.   443 

 444 

Inflammatory-CAFs associated with cytotoxic T-lymphocyte dysfunction 445 

To further investigate the influence of stromal subsets on immune evasion, we explored the 446 

association between distinct stromal gene signatures and immune content in three large 447 

independent TNBC patient cohorts with associated bulk gene expression data (METABRIC, 448 

GSE8812 and GSE21653) [64-66]. Using a computational model called Tumour Immune 449 
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Dysfunction and Exclusion (TIDE), we examined two primary mechanisms of immune 450 

evasion. The first examines factors driving the ‘dysfunction’ of cytotoxic T-lymphocytes 451 

(CTLs), while the second examines factors preventing the infiltration of CTLs to the tumour, 452 

known as ‘exclusion’ (described below) [67]. TIDE first estimates CTL levels in each sample 453 

within a bulk-sequencing cohort using the averaged expression of CTL-specific genes (See 454 

Methods). Patients are then stratified into high and low CTL groups based on comparisons 455 

to the mean CTL level within the cohort. For dysfunction, we then evaluated whether gene 456 

signatures from each of the stromal subsets influences the beneficial effect of CTL levels on 457 

patient prognosis [67]. This analysis revealed a strong enrichment of genes from the iCAF 458 

signature that were significantly associated with CTL dysfunction in all three bulk tumour 459 

cohorts (Fig. 6A). In patients with a low iCAF dysfunction signature level, a significant 460 

survival benefit was associated with high CTL levels (Fig. 6B; Fig. EV5A). This is consistent 461 

with previous clinical observations in TNBCs where lymphocyte infiltration is a robust 462 

prognostic factor for improved disease-free survival and overall survival benefit [68]. 463 

Remarkably, in patients with a high iCAF dysfunction signature level, CTL levels were not 464 

associated with prognosis in any of the three cohorts (Fig. 6B; Fig. EV5A), suggesting a role 465 

for stromal iCAFs in driving dysfunctional CTLs in TNBC. Other stromal subset signatures 466 

did not show a significant enrichment of prognostic genes in the context of CTL dysfunction.  467 

 468 

To investigate whether CTLs in each patient were indeed dysfunctional, we scored a 469 

published T-cell exhaustion gene signature in our CD8+ T-cell populations from each patient 470 

using an AUC approach (Fig. 6C) [69]. This gene set includes canonical markers of 471 

exhausted T-cells including PDCD1 (PD-1), LAG3, TIGIT and CTLA4 [69]. This revealed 472 

heterogeneity for exhausted CD8+ T-cell populations in all 5 patients (Fig. 6C), with P2 and 473 

P4 having the highest average exhausted gene signature score. In contrast, the exhaustion 474 

signature was not enriched in any other cell population with the exception of the myeloid cell 475 
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cluster (Fig. 6C). Myeloid cells, which can include tumour-associated macrophages and 476 

myeloid derived suppressor cells, are known to hold immunosuppressive properties, and 477 

can also express inhibitory molecules associated with T-cell suppression [70].   478 

 479 

Differentiated-PVL cells associated with cytotoxic T- lymphocyte exclusion 480 

We next explored whether particular stromal subsets were associated with CTL exclusion, 481 

a cold ‘immune-desert’ phenotype with ‘low CTL’ activity. This was examined using the 482 

Pearson correlations between all CTL levels and the respective correlation score between 483 

the bulk tumour sample and the single-cell cluster of interest. The averaged expression of 484 

all genes from the single-cell cluster are referred to as a signature in this section. Previous 485 

studies have reported an association between CAFs and CTL exclusion [67]. Consistent 486 

with this, the collective bulk signature from all stromal cells correlated negatively with CTL 487 

levels in four TNBC patient cohorts (Fig. 6D; Fig. EV5B). As a positive control, CD4+ and 488 

CD8+ T-cell signatures from our dataset positively correlated with CTL levels as expected 489 

(Fig. 6D; Fig. EV5B). To investigate if this was predominantly driven by one stromal subset, 490 

we repeated this analysis with the averaged gene expression of myCAFs, iCAFs, dPVL and 491 

imPVL clusters independently (Fig. 6E; Fig. EV5C). This revealed that dPVL cells were the 492 

only subset with a significant negative correlation with CTL level in three of four cohorts, 493 

suggesting they are the primary subset associated with T-cell exclusion (Fig. 6E; Fig. EV5C). 494 

To further explore this correlation in our five patients, tumour infiltrating lymphocytes (TILs) 495 

and CTLs were scored in matched tumour sections by a specialist breast pathologist. Total 496 

TILs were estimated using standard H&E-based assessment (Fig. 6F), whilst stromal CTLs 497 

were accurately quantified by CD8 staining and scored as previously described (Fig. 6G) 498 

[71]. The latter measurements were performed as TILs can also be comprised of non-CTL 499 

populations including CD4+ T-cells, T-Regs and B-cells. TILs and CTL scoring revealed that 500 

2 out of 5 patients (P4 and P5) had very low CTL infiltration (<5% TILs and <50 CD8+ T-501 
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cells per 1 mm2), whereas P3 had a very high infiltration (>70% TILs and >200 CD8+ T-cells 502 

per 1 mm2) (Fig. 6F-H). In support of dPVL cells as drivers of T-cell exclusion, only 4% of 503 

stromal cells from P3 were annotated as dPVL cells, while P4 and P5 had the two largest 504 

proportions of dPVL profiles with 35.5% and 26.8% (Fig. 2B). Furthermore, no disseminated 505 

PVL cells could be readily detected in P3 using co-IF (Fig. EV4C). While small numbers, our 506 

findings are consistent with the proposal that specialised stromal subclasses are associated 507 

with immune evasion. 508 

 509 

Discussion 510 

Our study describes a detailed taxonomy of human stromal subclasses in TNBC at cellular 511 

resolution. The activated tumour stroma is classically described using a broad ‘CAF’ 512 

classification. Here, we provide evidence that it is also comprised of functionally distinct 513 

perivascular-like cells which are not necessarily associated with the endothelium. We show 514 

that stromal heterogeneity diverges to four distinct states: myofibroblast-like, inflammatory-515 

like CAFs and differentiated- and immature-PVL cells. Similar to CAFs described in 516 

pancreatic ductal adenocarcinoma, we find stromal subclasses are spatially distinct, with 517 

myCAFs localised to the invasive tumour front, whilst iCAFs are located distal to this 518 

interface [12]. From our systematic scRNA-Seq of the TME, we used receptor expression 519 

on other cell types to predict diverse stromal-immune crosstalk via an array of 520 

immunoregulatory molecules to immune populations. We go on to show that iCAF and dPVL 521 

subsets are highly associated with immune evasion in multiple independent TNBC cohorts, 522 

suggesting a clinical relevance for unique stromal subsets [64-66].  523 

 524 

Few studies have investigated the functional heterogeneity of the cancer stroma. A recent 525 

scRNA-Seq study profiled CAFs in a mouse model of breast cancer and defined matrix-, 526 

vascular-like-, cycling- and developmental-CAF subsets [20]. We did not find a cycling-CAF 527 
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cluster driven by proliferation markers (Appendix Fig. S4A), likely reflecting unique features 528 

of animal models. In addition, the authors proposed mouse ‘developmental-CAFs’ to be of 529 

epithelial to mesenchymal transition origin [20]. In contrast, we found the expression of 530 

proposed developmental-CAF markers Scrg1, Sox9, and Sox10 exclusively in cancer 531 

epithelial clusters, which are classified based on the expression of epithelial lineage 532 

exclusive keratins (Appendix Fig. S4B-C). Our comparisons suggest that developmental-533 

CAFs are either unique to mouse models or are cancer cells whose expression of EPCAM 534 

is down-regulated, which was a negative marker used for CAF isolation in these studies [43, 535 

44].  536 

 537 

Despite well-characterised roles in cancer progression, the cellular origins of CAFs remain 538 

poorly understood. Our results support the notion that dispersed stromal cells can also arise 539 

from perivascular cells, likely delaminated from vascular structures. Although PVL cells 540 

clustered distinctly from CAFs and express perivascular markers including MCAM (CD146), 541 

CAV1, RGS5, MYH11 and TAGLN (SM-22-Alpha), they also expressed an array of markers 542 

commonly used to classify CAFs, including ACTA2 (⍺-SMA), PDGFRB, THY1 (CD90), 543 

S100A4 (FSP-1) and ITGB1 (CD29) [4, 25]. Similar PVL subsets were identified in a 544 

previous mouse model of breast cancer [20]. The authors defined these cells as ‘vascular-545 

like CAFs’ through the expression of vessel development markers such as CD146 [20]. 546 

Although the authors hypothesised that vascular-like CAFs are derived from perivascular 547 

cells such as pericytes, the concept of pericyte-to-fibroblast transition has been debated 548 

[72]. Our findings from functional assays suggest PVL cells do not possess the defining 549 

fibroblast trait of collagen deposition and remain phenotypically distinct from the fibroblast 550 

lineage (Fig. 4E).  551 

 552 
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The functional role of perivascular cells in breast cancer is poorly understood. A very early 553 

study found that 4 out of 10 breast tumours showed substantial infiltration of vascular smooth 554 

muscle cells based on staining for markers including ⍺-SMA, smooth muscle myosin and 555 

calponin [10]. This finding went without further exploration until this manuscript, where we 556 

validate their existence using state-of-the-art scRNA-Seq and staining of CD146 in matched 557 

patient tissue. From our TF analysis, we predict the MEF2 regulon to be a strong activating 558 

TF of the PVL subclass. MEF2C is a well-defined regulator for establishing vSMCs during 559 

development, highlighting a likely vSMC origin of the described PVL cells [39, 40]. As 560 

observed during wound healing, we hypothesise that vSMCs could be stimulated by 561 

malignant factors or mitogens, allowing them to migrate from the vessel basement 562 

membrane into the stroma [73, 74]. This is further supported by in vitro studies showing that 563 

breast cancer derived PDGFs can induce the recruitment and migration of vSMCs [73]. As 564 

perivascular cells play an important part during angiogenesis and blood vessel stability, it is 565 

also possible that their displacement in tumours is stimulated by, or a driver of, dysregulated 566 

angiogenesis or hypoxia. Although it is yet to be studied in the context of perivascular cells, 567 

studies have reported that the imPVL marker CD36 is enriched in normal tissue regions and 568 

is associated with good survival outcome in breast cancer [75]. However, the origin and 569 

functional role of PVL subpopulations remain to be defined by future studies. The staining 570 

of CD146 exclusively associated with blood vessels of normal breast tissue suggests that 571 

detached PVL cells are a distinct feature of breast cancers.  572 

 573 

Importantly, our findings suggest that previous studies characterising CAFs with a small 574 

number of markers have likely also studied PVL cells. For example, subsets discriminated 575 

by CD146 have been characterised in endocrine-resistant breast cancers [2]. Patients with 576 

a CD146+ stroma demonstrated good responses to tamoxifen therapy through the 577 

maintenance of estrogen receptor (ER) dependent proliferation in cancer cells. Our findings 578 
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suggest that PVL cells rather than CAFs are a biomarker for ER-directed therapeutic 579 

response in ER positive breast cancers [2], a prediction that requires more detailed 580 

validation. Another elegant study reported a subset of chemoresistance-promoting CAFs, 581 

marked by ⍺-SMA+, GPR77+ and CD10+ expression [6]. Due to the shared expression of 582 

⍺-SMA between myCAFs and PVL cells, our findings also raise the question whether PVL 583 

cells could also contribute to chemoresistance in a subset of patients [6]. Although we did 584 

not find an enrichment of GPR77+ CD10+ ⍺-SMA+ cells in any CAF subclasses, this may 585 

be explained by the treatment status of our samples.  586 

 587 

Lastly, we found a strong enrichment of immunomodulatory pathways in the predicted 588 

signaling between stromal cells and immune cells. We identified an array of important 589 

candidates in patient tissue for future experimental studies for functional relevance. It is 590 

important to acknowledge, however, that transcript signaling predictions are not always 591 

concordant with protein expression. Although no CAF subsets in previous mouse studies 592 

were distinguishable by immunomodulatory properties [20], there are several reports of 593 

predicted CAF-immune interactions in human tissue. We found that iCAFs expressed an 594 

array of immunomodulatory molecules to cognate receptors on T-cells. In other studies, 595 

CAFs have been implicated in the recruitment and activity of T-Regs through the regulatory 596 

molecules CXCL12, CD40, B7H3, DPP4 and CD73 [4]. In addition, iCAFs also expressed 597 

several molecules known to regulate myeloid cells, including complement C5, IL6 and 598 

TGFb [59, 60]. Myeloid cells, including tumour associated macrophages and myeloid 599 

derived suppressor cells, are well characterised in contributing to an immunosuppressive 600 

TME. Most importantly, gene signatures generated from iCAFs were strongly associated 601 

with CTL dysfunction in TNBC patient cohorts. We also report a novel dPVL stromal subset 602 

strongly associated with CTL exclusion. We identified an enrichment of 603 

dysfunctional/exhausted T-cells which correlated with their respective stromal profiles, 604 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 6, 2020. ; https://doi.org/10.1101/2020.06.04.135327doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.135327
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

though we acknowledge that our study consists of small patient numbers. In patients with 605 

the highest dPVL profile, we found consistently low TIL and CD8 counts in matched 606 

pathology. Considering the proposed origin of detached PVL cells from the vascular 607 

structure, we hypothesise that this may be related to reduced lymphocyte extravasation from 608 

dysregulated tumour blood vessels. In support of this, previous studies restoring vascular 609 

integrity in tumours through vessel normalisation and increased perivascular coverage find 610 

an influx of CD8+ T-cells in tumour tissue [25, 76]. In addition, signalling between CD4+ T-611 

cells and pericytes have also been reported to play a reciprocal role in tumour vessel 612 

normalisation [77]. It is possible that the association between dPVL cells and CTL exclusion 613 

in patient cohorts reflect tumours with low vascular integrity, and may act as a biomarker for 614 

patients suitable for vessel normalisation therapeutic strategies.  615 

 616 

Whilst our findings point to the targeting of stromal cells, future work investigating the 617 

transcriptional changes in stromal cells between healthy breast tissue and cancer is required 618 

to understand the stromal states that are cancer-specific versus reactivated resident cell 619 

types. In support of the latter possibility, a recent study showed that there are minimal 620 

proteomic differences between normal fibroblasts and CAFs in prostate cancer models [78]. 621 

We find that iCAF- and myCAF-like fibroblasts exist in cancer-free normal breast tissue. It 622 

is important to note that desmoplasia is often observed in cancer-free tissues, particularly in 623 

high risk women with high mammographic density [79]. This can be influenced by several 624 

physiological factors such as weight, pregnancy and menopausal status, highlighting 625 

important factors that need to be considered in future projects examining the normal breast 626 

tissue microenvironment such as the human cell atlas project [79]. These differences may 627 

exist from distinct epigenetic states between CAFs and normal fibroblasts, indicating another 628 

layer of complexity that remains to be explored in the four breast cancer stromal subsets 629 

identified in our study [80]. The integration of future assays combining scRNA-Seq with 630 
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chromatin states will be important in elucidating the epigenetic regulation of cancer-631 

associated stromal cells. Identifying specific activation markers in comparison to healthy 632 

tissue is also an important prerequisite for the development of precise cancer therapeutic 633 

strategies with low toxicities. Future in vitro and in vivo studies will be important in 634 

understanding how stromal cells are dynamically reprogrammed and how the subclasses 635 

described here restrain or promote tumour growth and invasion.  636 

 637 

Clinical trials for mainstream immune checkpoint therapies including anti-PDL1 have shown 638 

limited efficacy in the treatment of advanced TNBC. This hints at alternate mechanisms of 639 

immune evasion and novel therapeutic strategies are desperately needed to improve 640 

immunotherapy for TNBC. Our findings suggest that co-targeting stromal subpopulations 641 

could elicit a more effective immune response in a subset of patients through inhibiting CTL 642 

dysfunction and exclusion. This remains to be experimentally tested. In conclusion, we have 643 

comprehensively profiled four functionally distinct stromal subclasses in human TNBC, not 644 

previously described in breast cancer, mouse models or other cancer types. Importantly, we 645 

described subsets of CAFs and PVL cells with clinical relevance, presenting as candidates 646 

to further investigate. While our dataset captures a majority of the expected cell types from 647 

the TME, certain cell types such as adipocytes are under-represented due to biases from 648 

standard tissue dissociation protocols. Integration of alternative methods such as single-649 

nuclei sequencing and spatial transcriptomics in future cancer cell atlas studies will be 650 

crucial for a comprehensive understanding of the TME. Our findings in only five patients also 651 

highlight the potential of applying scRNA-Seq methods to larger scale patient cohorts for the 652 

identification of new disease relevant cell states and their gene expression features.  653 

 654 

List of abbreviations 655 

TNBC: Triple-negative breast cancer 656 
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CAFs: Cancer associated fibroblasts 657 

PVL: Perivascular-like 658 

scRNA-Seq: Single-cell RNA Sequencing 659 

CTLs: Cytotoxic T-lymphocytes 660 

vSMCs: Vascular Smooth Muscle Cells 661 

 662 

Materials and Methods 663 

 664 

Ethics approval and consent for publication 665 

Patient tissues used in this work were collected under protocols x13-0133, x16-018 and x17-666 

155. HREC approval was obtained through the SLHD (Sydney Local Health District) Ethics 667 

Committee; RPAH (Royal Prince Alfred Hospital) zone, and the St Vincent’s hospital Ethics 668 

Committee. Site-specific approvals were obtained for all additional sites. Written consent 669 

was obtained from all patients prior to collection of tissue and clinical data stored in a de-670 

identified manner, following pre-approved protocols. Consent into the study included the 671 

agreement to the use of all patient tissue and data for publication. 672 

 673 

Tissue dissociation 674 

Fresh surgically resected tissue was washed with RPMI 1640 (ThermoFisher Scentific) and 675 

minced with scissors. Samples were enzymatically dissociated using Human Tumor 676 

Dissociation Kit (Miltenyi Biotec) according to manufacturer’s protocol 677 

(https://www.miltenyibiotec.com/AU-en/products/macs-sample-preparation/tissue-678 

dissociation-kits/tumor-dissociation-kit-human.html#gref). Following incubation, the sample 679 

was then resuspended in RPMI 1640 and filtered through MACS® SmartStrainers (70 µM; 680 

Miltenyi Biotec) and the resulting single cell suspension was centrifuged at 300 × g for 5 681 

min. Red blood cells were lysed with Lysing Buffer (Becton Dickinson) for 5 mins and the 682 
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resulting suspension was centrifuged at 300 × g for 5 min. Viability was assessed to be > 683 

80% using Trypan Blue (ThermoFisher). Viability enrichment was performed using the 684 

EasySep Dead Cell Removal (Annexin V) Kit (StemCell Technologies) as per manufacturers 685 

protocol. Dissociated cells were resuspended in a final solution of PBS with 10% fetal calf 686 

serum solution prior to loading on the 10X Chromium platform.  687 

 688 

Single-cell RNA sequencing on the 10X Chromium platform 689 

High throughput droplet based SCRS was performed on the single-cell suspensions using 690 

the Chromium Single Cell 3’ v2 Library, Gel Bead and Multiplex Kit and Chip Kit (10X 691 

Genomics) according the to manufacturer’s instructions, with a target of 5,000 cells per lane. 692 

SCRS libraries were sequenced on the Illumina NextSeq 500 platform with pair-end 693 

sequencing and dual indexing according to the recommended Chromium platform protocol; 694 

26 cycles for Read 1, 8 cycles for i7 index and 98 cycles for Read 2.     695 

 696 

Data processing 697 

Sample demultiplexing, reference mapping, barcode processing and gene counting was 698 

performed using the Cell Ranger Single Cell Software v2.0 (10X Genomics). Reads were 699 

aligned to the GRCh38 human reference genome. Raw count matrices were exported and 700 

filtered using the EmptyDrops package in R [81]. EmptyDrops distinguishes ‘real’ barcodes 701 

from ‘noise’ by calculating deviations of each cell against a generated ambient background 702 

RNA profile. Filtered barcodes were then processed using the Seurat v2.0 package in R 703 

[21]. Additional conservative cut offs were further applied based on the number of genes 704 

detected per cell (greater than 200) and the percentage of mitochondrial unique molecular 705 

identifier (UMI) counts (less than 10%). Individual Seurat objects were then integrated using 706 

the canonical correlation analysis (CCA) function RunMultiCCA according the developer 707 

guidelines [82]. The top 2000 most variable genes from each sample were combined for 708 
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CCA vector identification. The first 20 CC dimensions were used for the alignment of 709 

subspaces and UMAP projection.  710 

 711 

Cluster annotation 712 

Cell clusters were annotated using canonical cell type markers for epithelial (EPCAM), 713 

myoepithelial (EPCAMLO, ACTA2, KRT5 and KRT14), basal (KRT5 and KRT14), mature 714 

luminal (ESR1), endothelial (PECAM1), immune (CD45), T-cells (CD3D, CD8A and CD4), 715 

T-regulatory cells (FOXP3), B-cells (MS4A1), plasmablasts (JCHAIN), myeloid cells (CD68) 716 

and stromal cells (PDGFRB and COL1A1). Malignant epithelial cells were distinguished from 717 

entrapped normal epithelial cells by inferring copy number variations using the inferCNV 718 

package as previously described [22]. In addition, an area under the curve (AUC) approach 719 

using published cell type signatures from the XCELL database was performed using AUCell 720 

[23, 24]. AUCell scores single cells with input gene signatures and analyses its activity and 721 

distribution across the entire dataset to explore the relative expression of the gene set of 722 

interest. AUCell utilises raw gene counts and thus, is independent of normalisation bias. 723 

CAFs, PVL cells and T-cells were independently re-clustered using the Seurat v3 method. 724 

Re-clustering was performed across resolutions 0.2, 0.3, 0.4 and 0.5 to identify stable 725 

clusters.   726 

 727 

Differential gene expression and pathway enrichment 728 

The MAST method was used to perform differential gene expression through the 729 

FindAllMarkers function in Seurat (log fold change threshold of 0.1, p-value threshold of 730 

1x10-5 and FDR threshold of 0.05). The top 250 DEGs from each cluster were then passed 731 

on to the ClusterProfiler package for functional enrichment [32]. The compareCluster 732 

function was used with the enrichGO databases CC, MF and BP sub-ontologies using the 733 

human org.Hs.eg.db database. 734 
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 735 

Pseudotime cell trajectory analysis  736 

The Monocle 2 method was applied to infer cell trajectories for CAFs and PVL cells using 737 

default parameters, as recommended by developers’ [33]. CAFs from Patient-2 and PVL 738 

cells from Patient-1 were extracted for Monocle analysis due to adequate cell numbers and 739 

representations of each respective subset. Gene expression matrices from each cell type 740 

were first exported from Seurat into Monocle 2 to construct a CellDataSet. Variable genes 741 

defined by the differentialGeneTest function (q-val cutoff < 0.001) were used for cell ordering 742 

and dimensionality reduction with the setOrderingFilter and reduceDimension functions, 743 

respectively.  744 

 745 

Gene-regulatory analysis using SCENIC 746 

Investigation of gene-regulatory networks using SCENIC was performed using a faster 747 

python implementation of the tool (pySCENIC) as described by the developers on the 1,729 748 

stromal cells [23, 34]. SCENIC explores gene-regulatory networks by identifying TF co-749 

expression modules and binding motif enrichment. The normalised expression matrix 750 

generated from Seurat was first filtered for genes as previously described (sum of gene 751 

expression > 3 x 0.005 x 1,729) [18]. Genes detected in at least 0.5% of cells were kept. 752 

This resulted in 12,100 genes for pySCENIC input [18]. Analysis was performed using the 753 

hg38 mc9nr motif collection with a TSS +/- 10kB (hg38__refseq-754 

r80__10kb_up_and_down_tss.mc9nr) for the arboreto and RcisTarget steps. Gene regulons 755 

were clustered and plotted using the pheatmap function in R.   756 

 757 

Flow cytometry and FACS isolation of stromal cells 758 

Cell sorting and flow cytometry experiments were performed at the Garvan-Weizmann 759 

Centre for Cellular Genomics, Garvan Institute of Medical Research. Flow cytometry was 760 
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performed on a Becton Dickinson CantoII or LSRII SORP flow cytometer using BD 761 

FACSDIVA software, and the results were analyzed using FlowJo software (Tree Star Inc.). 762 

FACS experiments were performed on a FACS AriaIII sorter using the BD FACSorter 763 

software. All antibody details used in this study can be found in Supplementary Table S4. 764 

Cryopreserved single-cell suspensions from Patient-4 were thawed, washed with RPMI and 765 

incubated with an anti-CD16/CD32 antibody (1:200, BD Biosciences #564220) in FACS 766 

buffer (PBS containing salts, 2% FBS) for 10 mins to block nonspecific antibody binding. For 767 

the isolation of the different stromal subpopulations for subsequent experiments, cells were 768 

pelleted and resuspended in FACS buffer containing the following antibodies: anti-EPCAM 769 

(1:100; BioLegend #324203), anti-CD31 (1:100; BioLegend #303103), anti-CD45 (1:100; 770 

BioLegend #304005), anti-PDGFRb (1:100; BioLegend #323605), anti-PDGFRa (1:100; 771 

BioLegend #323507) and anti-CD146 (1:100; BioLegend #342011) for 20 min on ice. All 772 

epithelial, immune and endothelial cells were excluded together on the FITC channel 773 

marking EPCAM, CD45 and CD31. In addition, we performed positive selection using 774 

PDGFRb. CAFs and PVL cells were discriminated using PDGFRa and CD146, respectively. 775 

CAFs and PVL cells were isolated and cultured into dishes (Corning® LifeSciences) coated 776 

with collagen (0.15 mg/ml) in RPMI 1640 supplemented with 20% (v/v) FBS, 50 μg/mL 777 

gentamycin and 1x antibiotic/antimycotic (15-240-096, Gibco®) in a 5% O2, 5% CO2 778 

incubator at 37°C. Cell sorting was repeated on cultured CAFs and PVL cells using the 779 

previously described experimental conditions with anti-PDGFRa (1:100; BioLegend 780 

#323507), anti-CD146 (1:100; BioLegend #342011), anti-FAP (1:100; R&D Systems 781 

#FAB3715P-025) and anti-CD36 (1:100; BioLegend #336221). FAPHIGH expression was 782 

used to discriminate myCAFs from FAPLOW iCAFs, whilst CD36 expression was used to 783 

identify imPVL cells from dPVL cells.  784 

 785 

Immunofluorescence 786 
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Primary cells were grown on glass coverslips coated with collagen in the same manner as 787 

the CDMs as previously below. Media was removed and cells were rinsed with PBS for 5 788 

min. Cells were fixed in 4% paraformaldehyde (ProSciTech) diluted in PBS for 15 min at 789 

room temperature then washed three times with PBS for 5 min. Cells were permeabilised 790 

with ice cold methanol for 10 minutes at -20°C followed by three 5 min PBS washes. Cells 791 

were blocked in blocking buffer (3% BSA + 0.1% Tween-20 in PBS) for 1 hr at room 792 

temperature. Primary antibody was diluted in blocking buffer at the following dilutions: anti-793 

CD34 (1:100; Abcam #MA1-10202), anti-FAPα (1:200; Abcam #ab53066), anti-αSMA 794 

(1:500; Abcam #ab21027), anti-CD36 (1:100; Biolegend #336203), anti-CD146 (1:200; 795 

Abcam #ab75769), anti-PDGFRβ (1:250; Abcam #ab32570). Coverslips were inverted and 796 

incubated on droplets of diluted primary antibody on parafilm in a humidified chamber 797 

overnight at 4°C. The following day cells were washed 3 times for 5 min in PBS. Cells were 798 

incubated with fluorescent secondary antibody (Jackson ImmunoResearch) diluted 1:500 in 799 

blocking buffer for 1 hr at room temperature in a light proof container then washed 2 times 800 

with PBS for 5 min. Nuclei were stained with 1 μg/mL Hoechst 33342 (Sigma) in PBS for 5 801 

min at room temperature followed by two 2 min PBS rinses. Coverslips were mounted with 802 

Prolong Diamond antifade mountant (Thermo Fisher Scientific) and allowed to dry overnight 803 

at room temperature. Fluorescent images were captured using a Leica DMI Sp8 confocal 804 

microscope.  805 

Immunofluorescence was performed on 4 μm FFPE tissue sections prepared as described 806 

below for IHC. Antigen retrieval was performed for 20 min in a 100°C water bath in target 807 

retrieval buffer, pH9 (Agilent Technologies). Slides were blocked for 1 hr at room 808 

temperature in PBS containing 3% BSA and 5% goat serum. Slides were incubated with 809 

primary antibodies diluted in blocking buffer: anti-CD31 (1:50; Agilent Technologies 810 

#M0823) and anti-CD146 (1:600; Abcam #ab75769). Secondary antibody staining, nuclear 811 

counterstaining and microscopy were performed as described above.  812 
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 813 

Quantitative real time PCR analysis 814 

RNA was extracted from bulk and sorted CAF cells using the Qiagen miRNeasy mini kit 815 

(Qiagen) and was reverse transcribed using the Transcriptor First Strand cDNA synthesis 816 

kit (Roche). TaqMan assays (Thermo Fisher Scientific) were used to analyse mRNA 817 

expression levels using a QuantStudio 7 Flex RT PCR machine (Thermo Fisher Scientific). 818 

TaqMan probes used were FAP (Hs00990791_m1), ACTA2 (Hs00426835_g1), CXCL12 819 

(Hs00171022_m1), EGFR (Hs01076078_M1), PDGFRA (Hs00998018_m1), PDGFRB 820 

(Hs01019589_m1) and ACTB (Hs99999903_M1). Relative gene expression was calculated 821 

using the ΔΔCt method.  822 

 823 

Cell Derived Matrices (CDMs)  824 

CDMs were established as previously described [45]. A total of 1.5x105 cells/well were 825 

allowed to expand until confluent and ascorbic acid (50mg/ml) added to culture medium on 826 

days one, three and five. To maintain the structure interact of the matrix architecture CDMs, 827 

were imaged using Second Harmonic Generation (SHG) at Day seven with cells still present 828 

in the matrix.  829 

 830 

Second Harmonic Generation (SHG) imaging  831 

Second Harmonic Generation (SHG) Imaging was achieved using an inverted Leica DMS 832 

6000 SP8 confocal microscope with a Ti-Sapphire femtosecond laser cavity (Coherent 833 

Chameleon Ultra II) excitation source, operating at 80 MHz and tuned to a wavelength of 834 

880 nm, as previously described [83-85]. SHG intensity was detected using a 440/20 nm 835 

RLD HyD detectors. For CDMs 3 representative fields of view (512 µm x 512 µm) were 836 

imaged over a 3D z-stack (80 µm with a 2.52 µm step size, and 30 µm with a 1.51 µm step 837 
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size, respectively), with a line average of 4 at 25x magnification. Rotation images were 838 

acquired on the z-level of maximum intensity with a line average of 64 at 63x magnification.  839 

 840 

Collagen fibre orientation analysis 841 

Collagen fibre orientation analysis in SHG images from plugs was carried out as previously 842 

described [3, 86]. Briefly the distribution of orientation of collagen within images was 843 

assessed based on methodology published by Rezakhaniha et al [87]. The local orientation 844 

and isotropic properties of individual pixels making up collagen fibres were derived from 845 

structure tensors evaluated by computing the continuous spatial derivatives in the x and y 846 

directions using a cubic B-spline interpolation to obtain the local predominant orientation. 847 

Graphical outputs show a hue-saturation-brightness (HSB) color-coded map indicating the 848 

angles of the oriented structures within the image. Orientation distribution peaks were then 849 

aligned. The shape of the distribution indicates the degree of alignment within the image, 850 

where wide and broad shapes suggested little coherency in alignment, and tight peaks with 851 

small standard deviations implied aligned structures.  852 

 853 

Immunohistochemistry and image alignment 854 

In house FFPE blocks were made of patient tissues by fixing in 10% neutral buffered formalin 855 

for 24hrs and processing for paraffin embedding. Where tissue was limited, diagnostic 856 

tumour FFPE blocks were accessed for analysis. FFPE blocks were sectioned at 4 μm. 857 

These were used for histological analysis, using a standard Haematoxylin and Eosin stain, 858 

and for immunohistochemical analysis on the Leica BOND RX Autostainer. Details of 859 

antibodies and staining conditions are described in Supplementary Table 4. H&E and IHC 860 

slides were imaged using the Aperio CS2 Digital Pathology Slide Scanner. IHC images were 861 

imported into FIJI as a virtual stack. Each layer was then aligned using least squared mode 862 
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(linear feature correspondences), propagating to the first and last layers for rigid 863 

transformation. All other parameters were set to default in FIJI.  864 

 865 

Cell-signalling predictions using ligand receptor annotation 866 

Genes from the scRNA-Seq data were annotated based on a published set of human ligand-867 

receptor pairs derived from supporting literature [51]. We used this knowledge to construct 868 

a cell-to-cell communication network between the four stromal clusters and other epithelial, 869 

immune and endothelial clusters. To investigate conserved signalling modules in TNBCs, 870 

we applied this to the cluster averaged expression levels of all ligands and receptors in the 871 

integrated dataset of five patients. The ‘interaction strength’, or the weight of edges between 872 

two clusters, was defined as the product of expression values from the ligand and its cognate 873 

receptor. All ‘interaction strengths’ greater than an arbitrary cut-off of 0.1 were considered 874 

as cell signalling candidates and kept for subsequent analyses (Table S3). The total number 875 

of interaction pairs identified per cluster were used to generate summaries of this data (Fig. 876 

5A-B). The top 100 candidates between the four stromal subsets and each target population 877 

were clustered using hierarchical clustering (complete and Euclidean distance) and rescaled 878 

for visualisation in ggplot2. For the visualisation purposes only, the ligand and receptor 879 

expression values in Figure 5C-E were imputed using the MAGIC method to better represent 880 

the structure of genes with low expression and dropout [88]. Raw count matrices and cluster 881 

IDs identified by Seurat (as previously described) were used as input to MAGIC and run with 882 

default parameters as recommended by the developers.        883 

 884 

T-cell dysfunction and exclusion analysis 885 

To investigate the immunomodulatory roles of different stromal subsets, we performed T-886 

cell dysfunction and exclusion analysis using similar strategy from TIDE [67]. We first used 887 

the average expression level of CD8A, CD8B, GZMA, GZMB and PRF1 to estimate the 888 
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cytotoxic T lymphocyte (CTL) level in each sample from the bulk sequencing cohort. Patients 889 

with a higher and lower CTL level compared to the mean CTL level within the cohort were 890 

stratified into high and low CTL groups, respectively. For CTL dysfunction analysis, TIDE 891 

evaluates whether gene signatures from each of the stromal subsets influences the 892 

beneficial effect of CTL levels on patient prognosis. This is performed using the interaction 893 

coefficient d from Cox proportional hazard (Cox-PH) model to evaluate how the interaction 894 

between a candidate gene and the CTL affects the death hazard. Genes with a higher TIDE 895 

dysfunction score suggests antagonistic interactions with regards to CTL levels, where the 896 

survival benefit of patients with high CTL is lost and thus, suggesting an association with 897 

CTL dysfunction. This method was used to calculate the TIDE T-cell dysfunction score from 898 

the differentially expressed genes across the four stromal subsets in TNBC patients from 899 

the METARBRIC cohort [64] and two independent TBNC cohorts [65, 66]. A total of 233, 84 900 

and 107 patients were evaluated for the METABRIC, GSE21653 and GSE58812 cohorts, 901 

respectively.  902 

 903 

For T-cell exclusion analysis, we examined Pearson correlations between all CTL levels 904 

(indicated on the y axis in Fig. 6E) and the respective correlation score between the bulk 905 

tumour sample and single-cell cluster of interest (indicated on the x axis in Fig. 6E). Here, 906 

gene signatures for the single-cell cluster of interest were defined by the averaged gene 907 

expression of all single cells in the cluster, divided over the averaged gene expression of all 908 

cells detected in the dataset. This method was used to define signatures in this section, as 909 

opposed to a DEG list in the previous CTL dysfunction analysis. This was first performed for 910 

all stromal cells, CD4+ and CD8+ T-cell clusters divided over all detected cells 911 

independently, as shown in Figure 6D. We next repeated this for the myCAF, iCAF, dPVL 912 

and imPVL clusters divided over all stromal cells independently, as shown in Fig. 6E. In 913 

each of the breast cancer cohorts, a higher correlation suggests a positive association 914 
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between the single cell cluster of interest and CTL levels (as observed in CD4+ and CD8+ 915 

T-cells shown in Fig. 6D), while a negative correlation suggest a negative association (as 916 

observed in dPVL cells shown in Fig. 6E). This correlation indicates a potential affluence of 917 

each stromal subset on T-cell infiltration in tumours. For T-cell exclusion analysis, we 918 

examined the three aforementioned TNBC cohorts, as well as the TNBC cohort from The 919 

Cancer Genome Atlas (https://www.cancer.gov/tcga) [89].  920 
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Data availability 922 
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Figure Legends 1176 

Figure 1. Cellular composition of five triple-negative breast carcinomas. a, Schematic 1177 

highlighting the application of our single-cell RNA sequencing experimental and analytical 1178 

workflow for primary patient tissue. b, UMAP visualisation of 4,986 epithelial cells aligned 1179 

using canonical correlation analysis in Seurat. Cells are coloured by their cell type 1180 

annotation (left) and patient of origin (right). c, Log normalised expression of markers for 1181 

epithelial (EPCAM), mature luminal epithelial (ESR1), myoepithelial (KRT5, KRT14 and 1182 

ACTA2) and proliferating cancer cells (MKI67). d, UMAP visualisation of 19,285 stromal and 1183 

immune cells aligned and visualised as represented in b. e, Log normalised expression of 1184 

markers for fibroblasts (PDGFRB, THY1, COL1A1, ITGB1 and S100A4), endothelial cells 1185 

(PECAM1), T-cells (CD3D), CD8 T cells (CD8A), T-regulatory cells (FOXP3), B-cells 1186 

(MS4A1), myeloid cells (CD68) and plasma cells (JCHAIN). f, Proportion of cell types across 1187 

each patient.  1188 

 1189 

Figure 2. Stromal landscape of TNBCs reveals four subpopulations of cancer-1190 

associated fibroblasts and perivascular-like cells. a, t-SNE representation of the four 1191 

subclasses of cancer-associated fibroblasts (CAFs) and perivascular-like cells (PVL), 1192 

named myofibroblast-like CAFs (myCAFs; 280 cells), inflammatory-like CAFs (iCAFs; 1,129 1193 

cells), differentiated-PVL cells (dPVL cells; 122 cells) and immature-PVL cells (imPVL cells; 1194 

198 cells). b, Plot showing the composition of the four stromal subsets across all five 1195 

patients. c, Expression of parenchymal markers commonly associated with CAFs and 1196 

perivascular cells. d, Cluster averaged log normalised expression of the top 300 differentially 1197 

expressed genes between the four stromal subsets with stromal-related genes of interest 1198 

annotated. Expression values are scaled per cluster. e, Circle histogram plot of the top gene-1199 

ontologies enriched in each of the four stromal subsets, with pathways broadly grouped for 1200 

ECM, development and signalling, muscle contractile-features and angiogenesis and 1201 
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adhesion. Scale bar represents the –log10 q-value for the enrichment of individual GO 1202 

terms, as determined using ClusterProfiler. 1203 

 1204 

Figure 3. Polarised gene regulatory states between cancer-associated fibroblasts and 1205 

perivascular-like subclasses. a, Polarised gene regulatory states underlying stromal 1206 

subclasses. Heatmap shows the averaged regulon activity (area under the curve; AUC) for 1207 

the top 50 highest TFs regulons as estimated using SCENIC. All regulons are statistically 1208 

enriched across the four subsets (p < 1x10-5 One-way ANOVA). Heatmap is clustered using 1209 

Euclidean distance and complete linkage. b, Candidate transcriptional drivers of each CAF 1210 

and PVL subset. Violin plots showing the log normalised gene expression (left) of the TF 1211 

and its respective AUC regulon activity (right). TFs ZEB1 and FOXP1 enriched in 1212 

myofibroblast-like CAFs, EGR2 and TCF7L2 enriched in inflammatory-like CAFs, MEF2C 1213 

enriched in PVL cells and NR2F2 enriched in immature-PVL cells.  1214 

 1215 

Figure 4. Morphological, phenotypic and spatial differences underlying stromal 1216 

heterogeneity. a, Summary of the markers distinguishing each of the four stromal 1217 

subpopulations identified in this study. b, FACS validation in matched patient tissue. Stromal 1218 

cells are negatively gated for EPCAM (epithelial), CD45 (immune) and CD31 (endothelium) 1219 

and positively selected for PDGFRb. Subsequent markers PDGFRa and CD146 (MCAM) 1220 

are used to distinguish CAFs and PVL cells, respectively. Expression of FAPHIGH, FAPLOW, 1221 

CD36+ and CD36- are further used to define myofibroblast-like CAFs, inflammatory-like 1222 

CAFs, immature-PVL cells and differentiated-PVL cells, respectively. c-d, 1223 

Immunofluorescence of cultured human CAFs (c) and PVL cells (d), staining for CD34 1224 

(CAFs), ⍺-SMA (myCAFs and PVL cells), CD146 (PVL cells) and CD36 (imPVL cells). e-f, 1225 

Quantitative analysis of collagen abundance (e) and orientation (f) using second harmonic 1226 

generation (SHG) from cellular derived matrices from stromal subsets and representative 1227 
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images multiphoton SHG images (n = 3 biological replicates). Statistical significance for 1228 

collagen abundance (e) was determined using unpaired two-tailed Student’s t test with equal 1229 

standard deviation. After normalization of the orientation peak distributions (f), statistical 1230 

significant was determined using a Kruskal-Wallis test with Dunn's post-hoc multiple 1231 

comparisons test (p value <0.05). g-h, Immunohistochemical staining of PDGFRb, ⍺-SMA, 1232 

CD34 and CD146 in serial sections cut 4 μm apart from matched cases; Patient-2 (g) and 1233 

Patient-4 (h). Images were aligned using FIJI. Co-localisation of CD34 and CD146 was used 1234 

to distinguish blood vessels, where their differential staining was used to identify CAFs and 1235 

PVL cells. g, MyCAFs were found to be localised at the invasive stromal interface, whilst 1236 

iCAFs were located at distal regions. h, Case with a high abundance of PVL cells in regions 1237 

surrounded by blood vessels. i, Validation of detached PVL cells from blood vessels using 1238 

co-immunofluorescence of CD31 (red), CD146 (green) and DAPI (blue). Representative 1239 

images from Patient-4 is shown.   1240 

 1241 

Figure 5. Predicted stromal crosstalk to cancer and immune cells. Overview of the 1242 

predicted stromal paracrine signalling conserved across the five TNBC patients. The 1243 

scRNA-Seq dataset were annotated by ligand-receptor pairs as curated in Ramilowski et al. 1244 

(2015). a, Circos plot summary of the stromal ligand-receptor interactions. Outer sectors are 1245 

weighted according to the number of annotated ligand receptor interactions per cell type. 1246 

Links between sectors are weighted according to the ‘Interaction Strength’, calculated as a 1247 

product of ligand and receptor expression. Links are coloured by the respective stromal 1248 

subsets; myCAFs (red), iCAFs (orange), dPVL cells (blue) and imPVL cells (light blue) b, 1249 

Summary of the total ligands and receptors annotated per cell type. c-e, Imputed gene 1250 

expression of selected candidate signalling molecules identified between the four stromal 1251 

subsets and malignant (c) epithelial, (d) myeloid and (e) T-cells.  1252 

 1253 
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Figure 6. Inflammatory-CAFs and differentiated-PVL cells associated with immune 1254 

evasion in TNBC patient cohorts. Significant associations between iCAF and dPVL gene 1255 

signatures with cytotoxic T-lymphocyte (CTL) dysfunction and exclusion in multiple TNBC 1256 

patient cohorts, respectively, as determined using the tumour immune dysfunction and 1257 

evasion (TIDE) method. a, iCAF T-cell dysfunction gene signature highlighting genes 1258 

significantly associated with CTL dysfunction in two out of three independent patient cohorts 1259 

(METABRIC, GSE21653 and GSE58812). b, Representative cohort (METABRIC) showing 1260 

the prognostic value of iCAF T-cell dysfunction signature in the context of CTLs for a total 1261 

of 233 patients. Kaplan-Meier’s present two groups of patients, ‘low CTL’ (blue line) and 1262 

‘high CTL’ (red line), as estimated according to the average expression of CTL-specific 1263 

genes and stratified as compared to the mean. Tumours with low iCAF T-cell dysfunction 1264 

signatures (top) show patients with high CTL levels have a better survival outcome. In 1265 

contrast, this survival benefit is lost in tumours with a high iCAF T-cell dysfunction signature 1266 

(bottom) c, Dysfunctional CTLs detected in all five TNBC patients determined through 1267 

scoring a T-cell exhaustion signature. UMAP featureplot of the exhaustion signature across 1268 

all stromal and immune cells as in Fig. 1D. d, Bulk stromal signature associates with CTL 1269 

exclusion. Pearson correlation was computed between all inferred CTL levels (y axis) and 1270 

the respective correlation between the bulk sample and the single-cell cluster (x axis). 1271 

Signature of all stromal cells divided over all cells correlated negatively with CTL levels, 1272 

while control CD4+ and CD8+ gene signatures show a positive correlation. Benjamini-1273 

Hochberg procedure was used for adjusting p-values. e, dPVL cells associated with CTL 1274 

exclusion. Repeated analysis in the same manner as in (d), instead with myCAF, iCAF, 1275 

dPVL and imPVL clusters divided over all stromal cells independently, highlighting that CTL 1276 

exclusion is mainly driven by dPVL cells. Representative cohort GSE58812 is shown. f-h, 1277 

dPVL profiles and CTL exclusion consistent in our study. f, Patients with the highest dPVL 1278 

profiles by scRNA-Seq (P4 and P5) show the lowest Tumour infiltrating lymphocyte (TIL) 1279 
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pathology counts. g-h, Accurate quantification of CTLs and representative 1280 

immunohistochemistry staining for CD8 on matched patient tumour sections. P3 is shown 1281 

as an example of a low dPVL profile with high CTLs. In contrast, P4 has a high dPVL profile 1282 

with low CTLs. n = 5 stromal 1 mm2 regions were counted per tumour. Statistical significance 1283 

was determined using pairwise comparison with Student’s t test.  1284 

 1285 

Appendix Table Legends 1286 

Appendix Table S1. Differentially expressed genes across the four stromal subsets. 1287 

Performed using the MAST method through the FindAllMarkers function in Seurat. A log fold 1288 

change threshold of 0.1 and a p-value threshold of 1x10-5 and FDR threshold of 0.05 was 1289 

used.  1290 

 1291 

Appendix Table S2. Gene ontology pathways enriched across the four stromal 1292 

subsets. Functional enrichement was performed using the ClusterProfiler package with the 1293 

top 250 differentially expressed genes from each stromal cluster. The compareCluster 1294 

function was used with the enrichGO databases CC, MF and BP sub-ontologies using the 1295 

human org.Hs.eg.db database. 1296 

 1297 

Appendix Table S3. Predicted stromal paracrine signalling. Ligands and receptors as 1298 

annotated from Ramilowski et al. (2015). The interaction strength was defined as the product 1299 

of the average log normalised gene expression values ligand and receptor values from each 1300 

cluster. Interactions were rescaled by the interaction pair.  1301 

 1302 

Appendix Table S4. Antibodies details. Details of the commercial antibodies used for 1303 

FACS, immunofluorescence and immunohistochemistry. 1304 

 1305 
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Expanded View Figure Legends 1306 

Figure Expanded View 1. Clinical pathological features and overview of single cell 1307 

RNA sequencing metrics. a, Clinical and pathological features of patient age, breast 1308 

cancer subtype, tumour grade, Ki67 status, treatment history and TIL count of the 5 primary 1309 

breast carcinoma samples analysed in the study. b, Representative hematoxylin-eosin 1310 

(H&E) stained sections for each patient analysed by single-cell RNA sequencing in this 1311 

study. c, Quality control metrics as generated by the Cellranger software (10X Genomics). 1312 

d, Number of cells that passed quality control and filtering using EmptyDroplets per patient. 1313 

e, Number of cells that passed quality control and filtering using EmptyDroplets per cell type 1314 

and patient. f-h, Number of detected genes (f), UMIs (g) and proportion of mitochondrial 1315 

counts (h) per cell type across all samples, respectively.    1316 

 1317 

Figure Expanded View 2. Scoring of cell type signatures for cluster annotation and 1318 

re-clustering of T-cells. a, Featureplots highlighting the area under the curve (AUC) value 1319 

for selected cell type signatures derived from various studies collated in the XCELL study. 1320 

AUC values are calculated on a per cell basis using the AUCell package with default 1321 

parameters. Selected signatures for fibroblasts (Fantom_1), endothelial cells (Fantom_2), 1322 

B-cells (Fantom_1), Plasma cells (IRIS_2), CD4+ T cells (Fantom_3), CD8+ T cells 1323 

(HPCA_3), T-regulatory cells (Fantom_3) and monocytes (Fantom_3). b-d,  Reclustering of 1324 

7,990 T-cells identifies 175 T-follicular helper cells (2.2%; CXCL13 and CD200), 994 T-1325 

Regulatory cells (12.4%; FOXP3 and BATF), 2,003 other CD4+ T-cells (25.1% of all T-cells; 1326 

CD4, IL7R and CD40LG), 3,691 CD8+ T-cells (46.2%; CD8A and GZMH), 605 proliferating 1327 

T-cells (7.6%; MKI67), 358 NK Cells (4.5%; GNLY, KLRD1, NCR1, XCL1 and NCAM1) and 1328 

164 NKT cells (2.1%; GNLY, KLRD1, NCR1 and CD3D-). Shown are t-SNE representations 1329 

of reclustered T-cells coloured by the annotated subsets (b) and patient ID (c). d, Heatmap 1330 

of the top 10 DEGs per T-cell subset. e, AUC values for all stromal cells scored against 1331 
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published human and mouse pancreatic CAF signatures for the myofibroblast-like CAF, 1332 

inflammatory-like CAF and antigen-presenting CAF subsets [12-14]. f, Heatmap of the 1333 

stromal cluster averaged expression of genes from human pancreatic CAF signatures, as in 1334 

(e).   1335 

 1336 

Figure Expanded View 3. TNBC stromal subsets per patient, pseudotime trajectory 1337 

and validation of stromal cultures. a, t-SNE representation of the four subclasses of 1338 

cancer-associated fibroblasts (CAFs) and perivascular-like (PVL) cells by patient ID. b, 1339 

Differential gene expression heatmaps showing the composition of the four stromal subsets 1340 

in Patient-1 to Patient-5. c-d, Pseudotime trajectory of CAFs from Patient-2 (c) and PVL 1341 

cells from Patient-1 (d) using the Monocle method annotated by the subsets derived from 1342 

Seurat based re-clustering. c, Increased expression of marker genes such as ACTA2, 1343 

COL1A1, FAP, TAGLN and THY1 as cells move throughout pseudotime indicate that iCAFs 1344 

transition towards myCAFs. In contrast, iCAF marker CXCL12 decreases as cells move 1345 

throughout pseudotime. d, Increased expression of marker genes such as ACTA2 and 1346 

MYH11 as cells move throughout pseudotime indicate that imPVL cells transition towards 1347 

dPVL cells. In contrast, imPVL cell markers CD36 and RGS5 decreases as cells move 1348 

throughout pseudotime. e, Four technical replicates of CAF sorting of myCAF and iCAF 1349 

fractions using FAPHIGH and FAPnegative/LOW, respectively. f, FACS analysis showing the co-1350 

expression of CD90 (THY1) with FAPHIGH CAFs. This is represented through overlaying 1351 

CD90 signal over a replicate sample used for FACS as in (e) (top) and through a contour 1352 

plot of FAP vs CD90 signal (bottom). g, Quantitative-PCR validation of FAP, ACTA2, 1353 

CXCL12, EGFR, PDGFRA and PDGFRB in bulk, FAPHIGH and FAPnegative/LOW CAF sorted 1354 

fractions. Consistent with scRNA-Seq findings, FAP and ACTA2 are enriched in FAPHIGH 1355 

sorted myCAF-like fractions, while CXCL12 and EGFR are enriched in FAPLOW sorted iCAF-1356 

like fractions.   1357 
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 1358 

Figure Expanded View 4. Immunohistochemistry and immunofluorescence of human 1359 

breast cancers and normal breast tissue. a-b, Additional immunofluorescence images of 1360 

cultured human CAFs (a) and PVL cells (b), staining for CD34 (CAFs), ⍺-SMA (myCAFs 1361 

and PVL cells), CD146 (PVL cells) and CD36 (imPVL cells). c, Validation of PVL cells 1362 

detached from blood vessels using co-immunofluorescence of CD31 (red), CD146 (green) 1363 

and DAPI (blue) for sections from all five patients analysed in this study. d, 1364 

Immunohistochemical staining of PDGFRb, ⍺-SMA, CD34 and CD146 in serial sections cut 1365 

4 μm apart from normal breast tissues collected from four women. Images were aligned 1366 

using FIJI. e, Co-immunofluorescence of CD31 (red), CD146 (green) and DAPI (blue) from 1367 

normal breast tissue samples. CD146 is completely colocalised with CD31, suggestion no 1368 

detached PVL cells are present in normal breast tissues.  1369 

 1370 

Figure Expanded View 5. Influence of inflammatory-CAF and differentiated-PVL 1371 

subclasses on T-cell dysfunction in TNBC patient cohorts. The association between 1372 

stromal gene signatures, cytotoxic T-cell levels, and overall patient survival in all three TNBC 1373 

patient cohorts examined in this study (METABRIC – 233 patients, GSE21653  – 84 patients 1374 

and GSE58812 – 107 patients). Using the TIDE method, we show significant associations 1375 

between iCAF and dPVL gene signatures with cytotoxic T-lymphocyte (CTL) dysfunction 1376 

and exclusion. a, Prognostic value of iCAF T-cell dysfunction signature in three independent 1377 

cohorts. Kaplan-Meier’s present two groups of patients, ‘low CTL’ and ‘high CTL’, as 1378 

estimated according to the average expression of CD8A, CD8B, GZMA, GZMB and PRF1, 1379 

and stratified as compared to the mean. The top and bottom panels show tumours with low 1380 

and high iCAF T-cell dysfunction signature, respectively. Sample divided according to iCAF 1381 

T-cell dysfunction signature show significant association with CTL levels and survival 1382 

outcome. b, Bulk stromal signature associates with CTL exclusion. Pearson correlation was 1383 
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computed between all inferred CTL levels (y axis) and the respective correlation between 1384 

the bulk sample and the single-cell cluster of interest (x axis). Signature of all stromal cells 1385 

divided over all cells correlated negatively with CTL levels, while control CD4+ and CD8+ 1386 

gene signatures show a positive correlation. Benjamini-Hochberg procedure was used for 1387 

adjusting p-values. c, dPVL cells associated with CTL exclusion. Repeated analysis in the 1388 

same manner as in (b), instead with the averaged expression signature of each stromal 1389 

subset over all stromal cells, highlighting that CTL exclusion is mainly driven by dPVL cells 1390 

in three out of four cohorts. TNBC data cohort from The Cancer Genome Atlas (TCGA) was 1391 

also examined for CTL exclusion analysis.   1392 

 1393 

Appendix Figure Legends 1394 

 1395 

Appendix Figure S1. Identification of malignant cancer cells using inferCNV. a-d, 1396 

Inferred copy number variation profiles as estimated using the inferCNV method. Epithelial 1397 

cells in each dataset with distinct copy number profiles were classified as cancer for 1398 

downstream cell-signalling analysis with each stromal subset. Only epithelial cells are 1399 

highlighted in P1 due to low gene coverage for inferCNV analysis. 1400 

 1401 

Appendix Figure S2. Top transcriptional activators distinguishing the four stromal 1402 

subpopulations. a, The log normalised gene expression (left) and respective AUC regulon 1403 

activity (right) for the top 50 highest TFs regulons as estimated using SCENIC. Regulons 1404 

are all filtered for TFs that were statistically enriched between the four subsets (p < 1x10-5 1405 

One-way ANOVA). b, Correlation strengths between the log normalised gene expression 1406 

and regulon activity (AUC) for the top 50 highest TFs regulons as estimated using SCENIC. 1407 

Regulons are all filtered for TFs that were statistically enriched between the four subsets (p 1408 

1x10-5 One-way ANOVA). R-squared values were computed using linear regression in R.      1409 
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 1410 

Appendix Figure S3. Signalling between stromal subsets and cancer epithelial, 1411 

endothelial, myeloid and T-cell subpopulations. Hierarchical clustering (Euclidean and 1412 

complete distance) of the top 100 candidate signalling molecules between the four stromal 1413 

populations and (a) cancer cells and proliferating cancer cells, (b) endothelial, (c) myeloid 1414 

cells and (d) T-cell subsets including CD8+ T-lymphocytes, cycling T-lymphocytes, CD4+ T-1415 

lymphocytes and T-regulatory cells. Ligand and receptor pairs were ranked according to the 1416 

‘interaction strength’, defined as the product of ligand and receptor expression. All 1417 

interaction strength values were rescaled per interaction.  1418 

 1419 

Appendix Figure S4. Mouse models of breast cancer do not completely recapitulate 1420 

human stromal subsets. a, Violin plot highlighting the negative expression of the 1421 

proliferation markers MKI67 and AURKA in the four CAF and PVL subsets, highlighting that 1422 

cycling-CAFs may be unique to aggressive mouse models. b-c, Log normalised expression 1423 

of the previously reported mouse developmental CAF markers SOX9, SCRG1 and SOX10, 1424 

and epithelial markers EPCAM, myoepithelial markers KRT5, KRT14 and ACTA2, showing 1425 

exclusive expression in epithelial clusters rather than in stromal populations. 1426 

 1427 
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