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Abstract

Background: High throughput single-cell RNA sequencing (scCRNA-Seq) has emerged as a
powerful tool for exploring cellular heterogeneity amongst complex human cancers. scCRNA-
Seq studies using fresh human surgical tissue is logistically difficult, precludes
histopathological triage of samples and limits the ability to perform batch processing. This
hinderance can often introduce technical biases when integrating patient datasets and
increase experimental costs. Although tissue preservation methods have been previously
explored to address such issues, it is yet to be examined on complex human tissues, such
as solid cancers, and on high throughput scRNA-Seq platforms.

Results: We show that the viable cryopreservation of human cancers provides high quality
single-cell transcriptomes using the Chromium 10X platform. We sequenced a total of
~120,000 cells from fresh and cryopreserved replicates across three breast cancers, two
prostate cancers and a cutaneous melanoma. Importantly, tumour heterogeneity identified
from fresh tissues was largely conserved in cryopreserved replicates. We show that
sequencing of single cells prepared from cryopreserved tissue fragments or from
cryopreserved cell suspensions is comparable to sequenced cells prepared from fresh
tissue, with cryopreserved cell suspensions displaying higher correlations with fresh tissue
in gene expression. We then show that cryopreservation had minimal impacts on results of
downstream analyses such as biological pathway enrichment. Further, we demonstrate the
advantage of cryopreserving whole-cells for immunophenotyping methods such as CITE-
Seq, which is impossible using other preservation methods such as single nuclei-
sequencing.

Conclusions: Our study guides new experimental designs for tissue biobanking for future

clinical single-cell RNA sequencing studies.
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Background

The tumour microenvironment (TME) is composed of neoplastic cells, parenchymal and
immune cells that interact to shape cancer progression and therapeutic response [1].
Advances in high-throughput single-cell RNA sequencing (scRNA-seq) technologies have
rapidly developed in recent years, providing a powerful platform to resolve the aetiology of
the TME in solid cancers. Performing scRNA-seq on clinical samples remains logistically
and technically challenging mainly due to transport of patient tissue from operation rooms to
laboratories for processing, which are often complicated by short notices and core-facility
access hours. The need to process fresh tissue specimens at the time of tissue availability,
often as a single specimen, often introduces large experimental costs and confounding
batch effects upon studies with large numbers of patients and prevents the selection and

triage of cases for analysis based on histopathological analysis.

Several approaches have been developed to address such issues. Madissoon et al.
benchmarked short-term cold preservation of tissue prior to sScCRNA-Seq, which showed little
impact on transcriptome integrity within the first 24 hours [2]. Despite this, such short-term
storage periods still limit the ability to perform simultaneous sample processing. Cell type
specific transcriptional changes have been shown to emerge after longer cold preservation
periods (>24 hours), particularly affecting immune subpopulations in normal tissues [2].
Cold preservation is yet to be evaluated for complex tissues such as solid tumours, which
possess distinct features in tissue viability. Factors including tissue necrosis, hypoxia and
therapeutic treatments often result in poor viability of cells in solid tumour tissues. Cell
fixation methods using agents such as methanol can be applied to overcome barriers of
cold preservation. However, these methods are not always practical with solid cancers

which require lengthy dissociation protocols, and also preclude certain downstream
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procedures such as antibody staining or cell culture [3, 4]. Although sequencing of nuclei
from snap frozen tissue can be applied to avoid dissociation methods, this approach is not
compatible with powerful cell surface immunophenotyping methods with DNA-barcoded
antibodies such as CITE-Seq [5]. It also does not permit the selection of cell subsets of
interest or the removal of low-quality cells prior to capture. Guillaumet-Adkins et al. showed
that the cryopreservation of whole-cells and tissues can be used to conserve transcriptional
profiles from experimental systems such as human cell lines and mouse tissues [6]. These
models represent fairly homogeneous systems and it is unclear whether the highly
heterogeneous nature of the TME is also conserved following cryopreservation. In addition,
this study benchmarked tissue cryopreservation using low-throughput plate-based scRNA-
seq technology [6], where highly viable cells are selected by FACS for immediate lysis and
mMRNA hybridisation [7]. It is yet to be determined if cryopreservation can be applied to
more recent high throughput scRNA-Seq platforms such as the Chromium 10X platform.
These platforms are fundamentally different to FACS-based scRNA-Seq methods, as
single-cells are captured through droplet-based microfluidics, where viability selection is not

simultaneously performed.

In this study, we aimed to examine the effect of cryopreserving dissociated cells and solid
tissues prior to scRNA-Seq on the 10X Chromium platform. We tested this across three
common cancer types: breast, prostate and melanoma. Following cryopreservation, we
demonstrated a strong conservation of the heterogeneous neoplastic, parenchymal and
immune subpopulations. We show that scRNA-Seq results of cells from cryopreserved solid
tissue and from cryopreserved dissociated cell suspensions are comparable to those from
cells prepared from fresh tissue, with minimal impact on downstream analysis methods.

Lastly, we show that cryopreserving whole-cells allows for powerful immunophenotyping


https://doi.org/10.1101/2020.06.04.135277
http://creativecommons.org/licenses/by-nc-nd/4.0/

118

119

120

121

122

123

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.04.135277; this version posted June 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

methods such as CITE-Seq, which is not possible using nuclei-based sequencing methods.
Our findings allow a simple biobanking protocol to process patient samples, significantly

decreasing technical variation among larger patient cohorts and serial time-points analyses.
Our biobanking protocol unlocks patient cohorts previously collected in such a manner, and

serves as a guide for the sample collection in future clinical sScRNA-Seq studies.


https://doi.org/10.1101/2020.06.04.135277
http://creativecommons.org/licenses/by-nc-nd/4.0/

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.04.135277; this version posted June 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Results and Discussion

Cryopreservation allows for robust conservation of cellular heterogeneity in human
breast cancers

The preservation of cellular heterogeneity is an important factor for analysing solid cancers.
We first investigated this in primary human breast cancers collected from three patients
(Supplementary Table 1). To minimise spatial biases from regional sampling, fresh surgical
specimens were initially cut in to 1-2 mm? pieces and thoroughly mixed. One third of the
mix was immediately cryopreserved at -80°C (designated as the cryopreserved tissue - CT)
and the remaining mix was dissociated into a single-cell suspension using a commercial kit-
based method (See Methods). A fraction of this cell suspension was immediately
cryopreserved at -80°C (designated as the cryopreserved cell suspension - CCS) and the
remaining of this cell suspension was processed immediately for scRNA-Seq using the
Chromium 10X platform (designated as fresh tissue - FT). After storage of the
cryopreserved samples, both CT and CCS, at -80°C for about one week, they were stored
in liquid nitrogen at -196°C for up to five weeks to mimic standard tissue biobanking
procedures. Following cryopreservation, CT and CCS samples were thawed and processed
for scRNA-Seq in the same manner as the FT sample. For cryopreserved replicates, we
spiked in the mouse NIH3T3 fibroblast cell line as a positive control (~2%) for the scRNA-
Seq experimental workflow. In total, we sequenced 23,805, 29,865 and 24,250 cells from

breast cancer patients 1-3, (assigned as BC-P1, BC-P2 and BC-P3), respectively.

A detailed comparison was performed between samples processed as FT, CCS or CT (Fig.
1a). We performed batch correction and integration of all matched fresh and cryopreserved
replicates using the anchoring based method in Seurat v3 (Fig. 1b) [8]. This revealed

consistent ‘mixability’ across the three conditions, where a strong overlap was also
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observed in Uniform Manifold Approximation and Projection (UMAP) space. This was also
observed in the non-batch corrected data (Fig. S1a), reflecting good technical replicates on
the 10X Chromium platform. To account for variation in cell-type proportions, all matched
conditions were down sampled to the lowest replicate cell number to examine the
composition of cells in each cluster (Fig. 1c). Only three clusters across all three datasets
were not comprised of cells from all three conditions (Fig. 1c). These differential clusters
were all detected in the BC-P2 dataset, including clusters c11 (737 cells), c18 (191 cells)
and c23 (27 cells). Clusters c11 and ¢18 were only detected in the FT sample and
resembled cell doublets captured from a varying number of cells sequenced per replicate,
which ultimately contributes to a differences in the expected doublet rate. These clusters
showed characteristics of cell doublets, including the expression of markers from multiple
cell lineages such as EPCAM, PTPRC, PECAM1 and PDGFRB (Fig. S1b). Cluster c23 was
comprised of smaller cell numbers, and may be a result of sampling rarer cell types, rather
than from the cryopreservation process. To our surprise, the mouse NIH3T3 fibroblast
spike-ins could also be detected in all cryopreserved replicates following the mapping of
reads to the human GRCh38 reference genome alone (c19 in BC-P1, ¢c17 in BC-P2 and
c14 in BC-P3). These were confirmed as mouse cells by re-mapping reads to both human
and mouse reference genomes, suggesting that mouse reads were assigned to their
human orthologs when mapping to a single reference genome using CellRanger. NIH3T3
fibroblast spike-ins captured from different cryopreserved replicates and independent
experiments mixed well (Fig. S1c), indicating high reproducibility on the 10X Genomics
platform. As expected, NIH3T3 fibroblasts highly expressed markers DIk1, Acta2, Vim,

Actg1, Col1a1 and Col1aZ2 (Fig. S1d).
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From investigating the expression of canonical cell type markers, we identified a strong
preservation of major cell lineages in cryopreserved replicates (Fig. 1d). As observed in the
representative case BC-P1 (Fig. 1d), we identified a strong conservation of the
housekeeping gene ACTB, cancer/epithelial cells (EPCAM; clusters c1, c5, ¢13, c20 and
c14), myoepithelial cells (KRT14; c6), T-cells (CD3D; c3, c7 and c17), B-cells (MS4A1;
c16), plasmablasts (JCHAIN; c18), myeloid cells (CD68; c12 and c21), endothelial
(PECAM1; c0, c8, c9, c11, c¢15 and c22), perivascular cells (PDGFRB; c2) and cancer-
associated fibroblasts (CAFs; PDGFRA; c4 and c10) (Fig. 1d; Fig. S2a; Supplementary
Table 2). Similar trends in the preservation of the TME was observed in all three breast
cancer cases (Fig. S1b; Fig. S2b-c; Supplementary Table 2). In summary, cryopreservation
of human breast cancers as either solid tissue or single cell suspension maintains the

heterogeneity of major cell lineages detected from processing fresh tissue.

Cryopreserved replicates resemble good technical replicates with the fresh tissue
data

Although visual inspection of the dimensional reduction UMAP plots indicated good
mixability and minimal technical variation emerging from cryopreservation, we applied
several metrics adopted from Stuart et al. to quantitatively measure the impact on
downstream clustering [8]. We examined silhouette coefficient scores, mixing metric and
local structure metric to measure the robustness of cryopreservation to reflect good
technical replicates with the FT. As described in the previous section, we performed
stratified down sampling of cells to account for differences emerging from total number of
cells sequenced. We compared cells from FT against cells from matched cryopreserved

replicates independently in the following comparison conditions: FT vs CCS and FT vs CT.
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As a positive control, we compared two sets of FT cells down sampled from the same

dataset to reflect perfect technical replicates (FT-1 vs FT-2).

Silhouette coefficient scores, which range from -1 to +1, measure how similar a cell is to
cells from its own cluster in dimensional reduction space. We applied this to measure the
mixability of the cryopreserved replicates, where scores closer to 0 indicate a higher
mixability between replicates irrespective of cryopreservation condition. As expected from
our positive control comparisons (FT-1 vs FT-2), this yielded average silhouette scores
close to O for all three breast cancer cases (Fig. 1e). In general, we observed values close
to O for all cryopreserved replicate comparisons, with no silhouette scores outside of the -
0.25 to 0.25 range (Fig. 1e). Minor variations, as indicated through increased standard
deviations, were observed in the CCS replicates of two cases: BC-P1 and BC-P3
(Supplementary Table 3; Fig. 1e). Similarly, increased standard deviations were observed
when comparing CT replicates in two cases: BC-P1 and BC-P2 (Supplementary Table 3;

Fig. 1e).

We next applied the mixing metric to assess how well cryopreserved replicates ‘mixed’ with
the FT data after integration (Fig. 1f). The mixing metric examines the distribution of
replicates in a cell’s neighbourhood (k = 5 and k.max = 300), where values closer to 300
resemble a high ‘mixability’ (Fig. 1f) [8]. Overall, very high mixing metric scores were
observed across the comparison conditions from all three breast cancer cases; however,
slightly lower values and higher standard deviations were consistently detected in cells
cryopreserved as CT compared to CCS (Supplementary Table 3; Fig. 1f). Finally, we
assessed how local cell clusters (k = 100) detected in individual replicates were preserved

upon data integration using the local structure metric [8]. In all three cases, this revealed no
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major differences in the standard deviations from our positive FT control comparisons and
the cryopreserved replicates (Supplementary Table 3; Fig. 1g), indicating that the clusters
identified in individual replicates were largely consistent upon integration with the FT data.
Overall, we conclude that cryopreservation can yield good quality technical replicates. Only
minor variation in clustering, as determined by Silhouette coefficients and mixing metrics,
arise from processing as dissociated CCS and solid CT, with the latter resulting in slightly

more variable data.

Cryopreservation yields high quality data in prostate cancers and a metastatic
melanoma

Tissue architectures differ across cancer sites and metastatic lesions. To assess the impact
of cryopreservation across different tissue sites, we repeated our benchmarking on primary
prostate cancer tissue collected from two patients (PC-P1 and PC-P2), and metastatic
melanoma tissue collected from one patient (M-P1). For the metastatic melanoma sample,
we benchmarked cell suspensions cryopreserved immediately (CCS sample) as well as
after overnight storage of the tissue at 4°C in media (designated as cryopreserved
overnight - CO). The CO replicate mimics conventional biobanking procedures where tissue
is collected from late patient procedures, stored at 4°C and processed the following day. In
total, we sequenced 18,333, 18,327 and 21,363 cells from PC-P1, PC-P2 and M-P1,
respectively (Fig. 2a). Here, we identified that the CCS replicate from PC-P2 resulted in low
cell number (less than 400) and was excluded from subsequent comparisons. Similar to the
breast cancer data, comparisons of the non-batch corrected data revealed a good mixture
of cells from all conditions, reflecting that of good technical replicates (Fig. S1a). Batch
correction and data integration revealed consistent mixability across the three conditions in

UMAP space (Fig. 2a-b; Fig. S1e). Only one very small cluster in PC-P1 (c20 — 64 cells)
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was not comprised of cells from all three conditions (Fig. 2c), and is, again, likely a result of
cell sampling rather than cryopreservation. All clusters detected in M-P1 were comprised of
cells from all conditions (Fig. 2c). Similar to our benchmarking in breast cancers, we
observed a strong conservation of the housekeeping gene ACTB and markers for cancer
clusters (EPCAM in prostate and MITF and melanoma), immune subsets (PTPRC),
endothelial cells (PECAM1/CD31) and fibroblast/perivascular (PDGFRB) cells in prostate
cancers and the metastatic melanoma (Fig. 2d-e; Fig. S2d-e). Upon examining clustering
metrics, we found similar trends with slightly higher variation in silhouette scores and mixing
metrics emerging from cells cryopreserved as CT compared to CCS (Fig. 2f-g;
Supplementary Table 3). For the melanoma comparisons, the CO replicate exhibited a
higher variation in silhouette scores and mixing metric compared to CCS, indicating
potential transcriptional artefacts arising from overnight cold preservation prior to
cryopreservation (Fig. 2f-g; Supplementary Table 3). No major differences were observed in
the local structure metric of both prostate and melanoma cases (Fig. 2h), indicating that
clustering neighbourhoods in individual replicates were consistently detected upon
integration with the FT data. Taken together, our benchmarking across multiple tissue sites
indicates that cryopreservation preserves the cellular heterogeneity of the TME and acts as

good quality technical replicates.

Tumour cryopreservation maintains the integrity and complexity of single-cell
transcriptomes

We next investigated whether gene expression and transcriptome integrity were affected
through the cryopreservation process. We first examined the number of genes and unique
molecular identifiers (UMIs) detected per cell across cryopreserved replicates. For this

comparison, libraries were first down sampled by the number of mapped sequencing reads
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to account for differences emerging from varying sequencing depths. This revealed that an
average of 1,809, 1,842 and 1,694 genes and 6,149, 6,525 and 5,851 UMIs per cells were
detected across all FT, CCS and CT replicates, respectively (Fig. 3a-b). Within matched
cases, only cryopreserved cell suspension replicates from M-P1 (from both CCS and CO)
yielded a lower average number of genes and UMIs per cell compared to the FT (Fig. 3a-b).
Similarly, only one CT replicate (BC-P1) had a significantly lower number of genes and
UMIs detected per cell compared to the FT (Fig. 3a-b). Although this was not observed
across multiple cases, a lower detection rate from CT may reflect a minor impact on
transcript abundance and quality from the cryopreservation process. In addition, cell type
and cell size can be an important factor determining transcript abundance. To determine
that these subtle changes were not due to differences in cell abundance across
cryopreserved replicates, we confirmed that these changes were also present at the cluster
level (Fig. S3). For example, although cancer cells (clusters c1, ¢c5 and c14 in BC-P1)
generally hold more transcripts compared to T-cells (clusters ¢3, c7 and c17 in BC-P1), less
genes and UMIs were also found in these respective cell types captured in CT replicate, as

per the bulk comparisons (Fig. S3a).

We next investigated the gene correlation between FT samples and their respective
cryopreserved replicates. Bulk gene correlations revealed high R? values between FT and
all cryopreserved replicates (R?> 0.90; Fig. 3c) where on average, CCS replicates had
higher R? values with the FT sample (mean R? = 0.98, min = 0.95 and max = 0.99)
compared to the CT replicates (mean R?=0.96, min = 0.93 and max = 0.99) (Fig. 3c).
Similarly, we examined if this trend was unique to particular cell types on the clusters level
(Fig. 3d). Only clusters containing cells from all three replicates with a minimum cluster size

100 and at least 20 cells per replicate were examined for representative gene correlations,
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297 in order to not be skewed by low cell numbers. Cluster correlations revealed consistent
298 trends with the bulk comparisons, where CCS replicates consistently showed slightly higher
299  R?correlation than with FT replicates (Fig. 3d). Although a maijority of clusters displayed
300 high correlations (R? > 0.90; indicated by the red line in Fig. 3d), several smaller clusters
301 showed significantly lower correlations than the bulk (R? < 0.90; Fig. 3d) including five

302 clusters in BC-P1 (c13 - cancer/epithelial, c20 - cancer/epithelial, c17 - T-cells, c11 —

303 endothelial and c¢18 — plasmablasts), four clusters in BC-P2 (c19 — perivascular, c21 —
304 pDCs, c20 — T-cells and c22 — plasmablasts), two clusters in BC-P3 (¢c7 —

305 monocyte/macrophage and c17 — unassigned cluster), six clusters in PC-P1 (c17 — NK
306 cells, c5 — cancer/epithelial, c15 — endothelial, c9 perivascular, c19 — mast cells and c14 —
307 cancer/epithelial) and one cluster in M-P1 (c17 — CAFs). The majority of these poorly

308 correlated clusters were comprised of small cell numbers. The only cell type consistently
309 found to have very poor correlation values across multiple cases (R? < 0.80) was

310 plasmablasts (c18 in BC-P1 and c22 in BC-P2), suggesting that cell type is more prone to
311 transcriptional changes due to cryopreservation (Fig. 3d). Taken together, we find that
312  cryopreservation can conserve high quality transcriptomes for scRNA-Seq. These data
313  suggest that processing scRNA-Seq from CCS yields slightly higher quality data than from
314  CT. Although the sample number was small, we found that cryopreservation induced

315 changes in transcriptome integrity of plasmablasts identified in breast tumours, warranting
316  some caution for studying this cell type using this method.

317

318 Tumour cryopreservation maintains biological pathways

319 Biological and functional findings from scRNA-Seq experiments are often interpreted

320 through the gene ontology (GO) analysis for pathway enrichments across unique cell

321 clusters. To assess if such downstream analyses are impacted by cryopreservation, we first
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separated our integrated clusters by their cryopreservation conditions. We then performed
differential gene expression and GO pathway enrichment to assess how pathways detected
across FT clusters were detected in their respective cryopreserved replicates. This analysis
revealed a good overlap of total detected pathways in all cancer cases, with over 64% of all
FT pathways consistently detected in both cryopreserved replicates in all cases (min = 64%
and max = 77%; Fig. 4a). For pathways that were unique to FT replicates and not detected
in the matching cryopreserved replicates, no common pathways were shared across the FT
replicates from all six cases, however, a total of seven pathways were shared across three
cases. Though this may reflect gene expression programs that might be affected by the
cryopreservation process, these pathways were mostly detected across different cell types,
with the exception of the gene sets GO:0016628 (‘oxidoreductase activity’) and
G0:0016791 (‘phosphatase activity’), which were unique to cancer/epithelial cells and T-
cells from three FT replicates, respectively (Supplementary Table 3). From the high
concordance of GO pathways detected in cryopreserved replicates, we concluded that
these minor differences were likely due to the variations in the scCRNA-Seq platform or false

discovery rather than the cryopreservation process.

We next assessed the variability of pathway enrichment scores for cryopreserved cells from
each cluster (Fig. 4b-d). This analysis revealed minimal variability across clusters from all
six cases of breast cancers, prostate cancers and melanoma, represented by the small
range of -log10 g-value enrichment scores for cells across FT and cryopreserved replicates
(Fig. 4b-d; Fig. S4). Taken together, these data indicate that the minor variations emerging
from cryopreservation, as shown previously through clustering metrics (Fig. 1e-g; Fig. 2f-h),
transcript detection (Fig. 3a) and gene correlations (Fig. 3b-c), only have minor impacts on

downstream analyses such as the detection of key biological pathways.
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Whole cell cryopreservation allows for highly robust immunophenotyping using
CITE-Seq

Immunophenotyping with barcoded-antibody methods such as CITE-Seq can be powerfully
applied to simultaneously integrate protein and gene expression in single cells. Although
previous studies have applied CITE-Seq to cryopreserved peripheral blood mononuclear
cells, it has yet to be established whether CITE-Seq can be applied to cells cryopreserved
as solid tissues [5]. As cell surface markers have been extensively used to characterise
immune subpopulations, such additional layers of phenotypic information can be used to
profile the tumour immune response in cryopreserved patient samples. Here, we performed
CITE-Seq of an independent breast cancer case cryopreserved as CT (Fig. 5a) using a
panel of 15 canonical cell type markers. We first used a combination of canonical markers
from RNA expression to broadly annotated clusters (Fig. 5a; Fig. S5a). From CITE-Seq, we
were able to validate our cell type annotations by showing the highly specific antibody-
derived tag (ADT) expression levels of canonical markers on corresponding cell types. For
example, ADT levels of EPCAM on cancer/epithelial cells (c0, c4, c8, c14 and ¢15), CD31
(PECAM1) and CD34 on endothelial cells (c7 and c9), CD146 (MCAM) on perivascular
cells (c11), CD90 (THY1) and CD34 on CAFs (c713) and CD45 (PTPRC) on immune cells
(c3, ¢5 and c12) (Fig. 5b-c; Fig. S5a). Within the immune compartments, CD3 specifically
marked T-cells, while CD4 and CD8 were more specifically expressed on the respective T-
cell subpopulations (Fig. 5b; Fig. S5a). ADT levels of the activation marker CD69 and tissue
resident marker CD103 were heterogeneously expressed on T-cell subpopulations (Fig.
5b). CD11c and CD11d were highly specific to monocyte/macrophage cell clusters (Fig.

5b). Major histocompatibility complexes, MHC-1l and MHC-I, were highly expressed by
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endothelial cells, whereas MHC-II was also detected on monocyte/macrophage clusters

(Fig. 5b).

ADT levels, which overcomes several technical limitations from gene drop-out, have a
greater sensitivity than UMI counts by scRNA-Seq. The average correlation between ADT
levels and the corresponding gene expression for this panel of 15 markers was 0.214 (min
R? =0.003 and max R? = 0.639; Fig. S5b). This ranged significantly for different markers,
particularly for lowly expressed immunoregulatory molecules such as CD4 (CD4), CD103
(ITGAE), CD11b (ITGAD) and CD11c (ITGAX), where expression levels of their
corresponding genes were lowly detected in comparison to the ADT, with R?values of
0.016, 0.005, 0.003 and 0.004, respectively (Fig. S5b). In contrast, highly expressed genes
such as the endothelial cell marker CD31 (PECAM?1) showed much higher correlations (R?
= 0.639; Fig. S5b). In summary, we show that good quality CITE-Seq data can be
generated from cells cryopreserved as solid CT. Such methods can be used to powerfully
extract additional phenotypic information from low amounts of cryopreserved clinical tissue,
aiding the annotation of single-cell clusters and the detection of clinically relevant molecules

such as immune-checkpoints.

Conclusions

We show that high quality scRNA-Seq data can be generated from human cancer samples
cryopreserved as dissociated single-cell suspensions (CCS) and solid tissues (CT). For the
latter, minimal processing is required following sample collection and can be conducted
routinely in hospital pathology laboratories that have access to -80°C freezers for short-term
storage. These samples can later be transported to a research laboratories for long-term

storage or further processing. We found that CCS samples yielded slightly higher quality
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data, however CCS requires more specialised tissue processing following sample collection
before cryopreservation (~1-2 hours using commercial dissociation kits). While we used
tissues that had been cryopreserved for up to 6 weeks in this study, we have routinely
processed samples stored at liquid nitrogen for more than 3 years for sScRNA-Seq. Most
importantly, we show that the complexity of the TME is conserved following
cryopreservation as both CCS and CT. This is an important consideration because an
integrated understanding of the neoplastic, stromal and immune states define tumours and
their response to treatment. Further, we show that multi-omics methods, such as
immunophenotyping using CITE-Seq, can be performed using cells cryopreserved as solid
tissue pieces, which is impossible when using other preservation methods such as single
nuclei sequencing from snap frozen tissues. Our findings have allowed sample multiplexing
methods to be applied to clinical samples to reduce cost and logistics for project scaling,
such as barcode hashing or genotype based demultiplexing (unpublished data) [9, 10]. Due
to the easily adoptable nature of cryopreserving solid tissues in tissue biobanking
processes, we envisage our findings to positively impact the sample collection opportunities
for future clinical studies, particularly for multi-site collaborative studies, to allow for the

centralisation of sample processing and batched analysis.
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Methods

Ethics approval and consent for publication

Patient tissues used in this work were collected under protocols x12-0231, x13-0133, x16-
018, x17-0312 and x17-155. Human Research Ethics Committee approval was obtained
through the Sydney Local Health District Ethics Committee, Royal Prince Alfred Hospital
zone, and the St Vincent’s Hospital Ethics Committee. Written consent was obtained from
all patients prior to collection of tissue and clinical data stored in a de-identified manner,
following pre-approved protocols. Consent into the study included the agreement to the use

of all patient tissue and data for publication.

Primary tissue dissociation and sample preparation

Fresh surgically resected tissues were washed with RPMI 1640 (ThermoFisher Scientific)
and diced into 1-2 mm? pieces. Tissue pieces were mixed and approximately one third were
viably frozen in cryogenic vials in 5% Dimethyl sulfoxide (DMSO) and 95% Fetal Bovine
Serum (FBS) at 1°C/minute in -80°C using Mr. Frosty™ Freezing Containers
(ThermoFisher). This was classified as the solid cryopreserved tissue (CT) sample. The
remaining tissue was further minced with scissors and enzymatically dissociated using the
Human Tumour Dissociation Kit (Miltenyi Biotec) following the manufacturer’s protocol.
Following incubation with the enzymes, the sample was resuspended in media (80% RPMI
1640, 20% FBS) and filtered through MACS® SmartStrainers (70 uM; Miltenyi Biotec). The
resulting single cell suspension was centrifuged at 300 x g for 5 min. At this stage, a
proportion of the dissociated cell suspension was frozen in cryogenic vials in 10% DMSO,
50% FBS and 40% RPMI 1640 at 1°C/minute in -80°C using Mr. Frosty™ Freezing
Containers (ThermoFisher). This was classified as the dissociated cryopreserved cell

suspension (CCS) sample. For the dissociated fresh tissue (FT) sample, red blood cells
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were lysed with Lysing Buffer (Becton Dickinson) for 5 min and neutralised with media (80%
RPMI 1640, 20% FBS). Cells were further filtered through a 40 ym filter and centrifuged at
300 x g for 5 min. Viability was assessed using Trypan Blue (ThermoFisher). For samples
with a viability score of < 80%, enrichment was performed using the EasySep Dead Cell
Removal (Annexin V) Kit (StemCell Technologies) following the manufacturer’s protocol.
Enriched cell suspensions were resuspended in a final solution of PBS with 10% FBS
solution prior to loading on the 10X Chromium platform. For the processing of
cryopreserved replicates, samples were frozen at -80°C for ~1 week followed by ~5 weeks
at -196°C for prior to scRNA-Seq. For obvious logistical reasons (freezing storage time), FT
samples were run on the 10X Chromium platform immediately whilst CT and CSS samples
were processed simultaneously at a later date. Following cryopreservation, samples were
thawed in a 37°C water bath and washed multiple times with RPMI 1640. CT samples were
dissociated in the same manner as the FT samples, as previously described. CCS samples
were enriched for live cells if viability was assessed to be < 80%, as described above. For
both cryopreserved replicates from breast tumours, the mouse cell line NIH3T3 was thawed

and spiked in at 2% of the total cell number prior to cell loading on the 10X Chromium.

Single-cell RNA sequencing on the 10X Chromium platform

High throughput scRNA-Seq was performed using the Chromium Single Cell 3’ v2 and 5’
chemistry (10X Genomics) according the to the manufacturer’s instructions. All replicates
within a case were captured using the same chemistry. A total of 6,000 cells were targeted
per lane. SCRS libraries were sequenced on the lllumina NextSeq 500 platform with pair-end
sequencing and dual indexing according to the recommended Chromium platform protocol;

26 cycles for Read 1, 8 cycles for i7 index and 98 cycles for Read 2.
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Data processing

Read demultiplexing and alignment to the GRCh38 human reference genome was performed
using the Cell Ranger Single Cell Software v2.0 (10X Genomics) with the cellranger mkfastq
and count functions, respectively. For cryopreserved replicates from breast tumours with
mouse cell line spike in (NIH3T3), the above steps were performed using the GRCh38 human
and mm10 mouse reference genomes. Raw count matrices were filtered for ‘real’ barcodes
using the EmptyDrops package in R which calculates deviations against a generated ambient
background RNA profile [11]. Additional conservative cut offs were further applied based on
the number of genes detected per cell (greater than 200) and the percentage of mitochondrial
unique molecular identifier (UMI) counts (less than 20%). Filtered barcodes from matched
replicates were then processed and integrated using the Seurat v3 package in R as per the
developers’ vignettes [8]. For the comparison of transcript metrics across cryopreserved
replicates, including the number of genes, UMIs and gene correlations, we performed
downsampling of sequencing libraries by the total number of mapped reads using the
cellranger aggr function. For comparison of clusters across cryopreservation conditions, cells

were randomly down sampled to the lowest replicate size using the data.table package in R.

Silhouette scores, mixing metric and local structure metric

We applied clustering and mixability metrics from Stuart et al. to quantitative measure the
robustness of the cryopreserved replicates to reflect good technical replicates with the FT [8].
Stratified random down sampling was first applied to each case to generate clusters with
equal sizes across all three conditions. This was performed using data.table package in R.
As a positive control, FT datasets were randomly down sampled to generate two pseudo-
replicates. Three comparisons were computed per case: FT-1vs FT-2, FT-1 vs CCS and FT-

1 vs CT. For the melanoma case, the comparisons were FT-1 vs FT-2, FT-1 vs CCS and FT-
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1 vs CO. Silhouette scores, mixing metrics and local structure metrics were all computed

using code adopted from the Seurat v3 package [8].

Bulk and cluster level gene correlations

Adjusted R? correlation values were calculated using linear regression, implemented in R.
Sequencing libraries normalised by the number of mapped reads using CellRanger were
used. Pseudo-replicate bulks and cluster-level bulks were generated from log-normalised
gene expression values. FT bulk and cluster level replicates were compared to cryopreserved

replicates (CCS/CT/CO).

Differential gene expression and pathway enrichment

Integrated cases were split by replicate. Differential gene expression was then performed
between integrated cluster IDs across each of the replicates using the MAST method through
the FindAlIMarkers function in Seurat (log fold change threshold of 0.25, p-value threshold of
1x10-° and FDR threshold of 0.05) [12]. All DEGs from each cluster were then passed on to
the ClusterProfiler package for functional enrichment [13]. The compareCluster function was
used with the enrichGO default CC sub-ontology under the human org.Hs.eg.db database.
The overlaps of detected GO pathways across each replicate were computed and visualised

using the euler and ggplot2 packages in R.

CITE-Seq staining and data processing

Samples were stained with 10X Chromium 3° mRNA capture compatible TotalSeg-A
antibodies (Biolegend, USA). Staining was performed as previously described by Stoeckius
et. al (2017) with a few modifications [5]. Briefly, a maximum of 2 million cells per sample was

resuspended in 100 yl of cell staining buffer (Biolegend, USA) with 5 ul of Fc receptor Block
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(TrueStain FcX, Bioelegend, USA) for 15 minutes followed by a 30min staining of the
antibodies at 4°C. A concentration of 1 ug/ 100 ul was used for all antibody markers used in
this study. The cells were then washed 3x with PBS containing 10% FBS media followed by
centrifugation (300 x g for 5 min at 4°C) and expungement of supernatant. The sample was
then resuspended in PBS with 10% FBS for 10X Chromium capture. Indexed CITESeq
libraries were spiked in to 10X scRNA-Seq libraries for sequencing on the NextSeq500
platform (lllumina). Reads were demultiplexed using CellRanger v2.0. Cell counts of CITE
antibodies were calculated from sequenced CITE libraries with CITE-seg-Count v.1.4.3 using
default parameters recommended by developers. Counts were integrated with scRNA-seq

data using Seurat (v.3.1.4), scaled and normalised.

Data availability

The scRNA-Seq data from this study has been deposited in the European Nucleotide Archive
(ENA) under the accession code PRJEB38487. This depository demultiplexed paired ended
reads (R1 and R2), lllumina indices and bam files processed using the Cellranger software.
Code related to the scRNA-Seq analysis can be found on the website:
https://github.com/sunnyzwu/cryopreservation_scRNAseq. All other relevant data are

available from the authors upon request.
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Figure Legends

Figure 1. Cryopreservation allows for robust cell-type detection in clinical breast
cancer samples. a, Experimental workflow. b, UMAP visualisation of 23,803, 29,828 and
24,250 cells sequenced across dissociated fresh tissue (FT; green), dissociated
cryopreserved cell suspensions (CCS; orange) and solid cryopreserved tissue (CT; purple)
replicates from three primary breast cancer cases (BC-P1, BC-P2 and BC-P3). UMAPSs are
coloured by cryopreserved replicate (top) and by cluster ID (bottom) with cell types
annotations overlayed. Matched replicates were integrated using the Seurat v3 method. c,
Number of cells detected per cluster. Cells were down sampled to the lowest replicate size.
d, Featureplot visualisations of gene expression from BC-P1 fresh and cryopreserved
replicates, showing the conservation of the housekeeping gene ACTB and heterogeneous
cancer/epithelial (EPCAM), immune (PTPRC/CDA45), endothelial (PECAM1/CD31) and
fibroblast/perivascular (PDGFRB) clusters. e-g, Distribution of silhouette scores (range -1 to
+1) (e), mixing metric (f), and local structure metrics (g) of clustering following
cryopreservation. Samples were down sampled by replicate and cluster sizes and
compared to the respective FT samples. Cell comparisons were performed across down
sampled FT-1 vs FT-2 cells (positive control), FT vs CCS cells and FT vs CT cells. Stars
represent standard deviations; (e) silhouette scores s.d. 0.02 - 0.05* and s.d. > 0.05**; (f)

mixing metrics s.d. 2 - 10* and s.d. > 10**; (g) local structure metrics s.d. > 0.05*.

Figure 2. Cryopreservation allows for robust cell-type detection in clinical prostate
cancer and melanoma samples. a, UMAP visualisation of 18,331 cells sequenced across
FT (green), CCS (orange), and CT (purple) from primary prostate cancer case PC-P1.
UMAPSs are coloured by cryopreserved replicate (top) and by cluster ID (bottom) with cell

types annotations overlayed. Matched replicates were integrated using the Seurat v3
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method. b, UMAP visualisation as in (a) of 21,361 cells sequenced across FT (green), CCS
(orange), and cryopreserved overnight (CO; purple) replicates from metastatic melanoma
case M-P1. ¢, Number of cells detected per cluster from PC-P1 and M-P1, highlighting the
conservation of clusters detected in the FT samples following cryopreservation. Cells were
down sampled to the lowest replicate size. d-e, Featureplot visualisations of gene
expression in prostate cancer (d) and melanoma (e) showing the conservation of the
housekeeping gene ACTB and heterogeneous cancer/epithelial (EPCAM in d or MITF in e),
immune (PTPRC/CD45), endothelial (PECAM1/CD31) and fibroblast/perivascular
(PDGFRB) clusters following cryopreservation as FT, CCS and CT or CO. f-h, Distribution
of silhouette scores (f), mixing metric (g), and local structure metrics (h) of clustering
following cryopreservation as analysed in Fig. 1e-g. Stars represent standard deviations; (f)
silhouette scores s.d. 0.02 - 0.05* and s.d. > 0.05*%; (g) mixing metrics s.d. 2 - 10* and s.d.

> 10**; (h) local structure metrics s.d. > 0.05*.

Figure 3. Cryopreservation maintains the integrity and complexity of single-cell
transcriptomes in clinical human cancers. a-b, Number of genes (a) and UMls (b)
detected per cell across all FT, CCS, CT, and CO replicates from breast (BC-P1, BC-P2
and BC-P3), prostate (PC-P1 and PC-P2) and melanoma samples (M-P1). Sequencing
libraries were down sampled to equal number of mapped reads per cell using cellranger
aggregate function to account for differences from sequencing depth. Note that only one
CCS replicate in M-P1 (orange) and one CT replicate in BC-P1 (purple) had significantly
lower number of genes and UMIs per cell compared to their matching FT replicate.
Statistical significance was determined using an unpaired Student’s t-test. ¢, Pseudobulk
gene correlations between FT cells with CCS (red line) and CT or CO (blue line) replicates.

Correlation values (adjusted-R?) were computed using linear regression in R to model the
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log-normalised gene expression values between two replicates. In all cases, CCS replicates
had higher R? values compared to CT and CO comparisons. d, Cluster-level gene
correlations between FT cells with CCS (circle), CT (triangle) and CO (square) replicates
show similar trends with pseudobulk gene correlations. Dotted lines join corresponding
clusters between different comparison methods. Note that plasmablasts (c18 in BC-P1 and
c22 in BC-P2) was the only cell type identified in multiple cases to have significantly lower

correlations.

Figure 4. Methods of human tumour cryopreservation maintains biological pathways.
a, Euler diagrams highlighting the overlaps between gene ontology (GO) pathways
detected in FT clusters and cryopreserved replicates from CCS, CT, and CO. A total of 315,
347, 368, 262, 230 and 311 pathways were assessed from the FT replicates across the BC-
P1, BC-P2, BC-P3, PC-P1, PC-P2 and M-P1 cases, respectively. b-d, Sensitivity of
pathway enrichment scores detected in clusters across cryopreserved replicates of BC-P1
(b), PC-P1 (c) and M-P1 (d). The minimum, mean and maximum -log10 g-value are plotted
in the error bars of each GO pathway. All DEGs from each cluster were passed on to the
ClusterProfiler package for functional enrichment with the CC sub-ontology under the
human org.Hs.eg.db database. GO pathway descriptions can be found in Supplementary

Table 3.

Figure 5. Cryopreservation provides high quality immunophenotyping using CITE-
Seq. a, UMAP visualisation of 2,621 cells sequenced from an independent breast cancer
case cryopreserved as CT. Clusters were annotated based on canonical cell type markers

by RNA expression. CITE-Seq was performed on this case using a panel of 15 canonical
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cell type markers. b, Heatmap of rescaled antibody-derived tag (ADT) values for relevant
markers for cancer/epithelial cells (EPCAM), endothelial cells (CD31/PECAM1 and CD34),
perivascular cells (MCAM/CD146 and THY-1/CD90), cancer-associated fibroblasts (THY-
1/CD90 and CD34), immune cells (CD45/PTPRC), T-cells (CD3, CD4, CD8, CD69 and
CD103), monocytes/macrophages (CD11c and CD11d) and MHC molecules (MHC-Il and
MHC-I). ¢, Featureplot representation of ADT protein expression values for selected
markers from (b) highlighting the specificity major lineage markers on RNA based clustering

in (a).

Supplementary Figure Legends

Supplementary Figure 1. Cryopreservation allows for robust cell-type detection in
clinical cancer samples. a, UMAP visualisations for the non-batch corrected data for each
of the three breast cancer (BC-P1, BC-P2 and BC-P3), two prostate cancer (PC-P1 and
PC-P2) and metastatic melanoma case (M-P1). b, Featureplot visualisations for additional
breast cancer cases BC-P2 and BC-P3. Gene expression shows the conservation of the
housekeeping gene ACTB, and markers for cancer/epithelial (EPCAM), immune
(PTPRC/CDA45), endothelial (PECAM1/CD31) and fibroblast/perivascular (PDGFRB)
clusters following cryopreservation as CCS and CT. ¢, tSNE visualisation showing the high
mixability of mouse NIH3T3 fibroblast cell line spike ins (~2%) from the cryopreserved
replicates from all three breast cancer cases. Embeddings are split by cells captured from
CCS and CT, respectively. Original cluster IDs from Figure 1b are c19 from BC-P1, c17
from BC-P2 and c14 from BC-P3. d, Featureplot visualisations of the NIH3T3 cell line
fibroblast markers DIk1, Acta2, Vim, Actg1, Col1a1 and Col1aZ2. e, UMAP visualisations for
the batch corrected data for PC-P2, which only contains comparisons between FT and CT

replicates due to low cell numbers in the CCS replicate. UMAPs are coloured by
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703  cryopreserved conditions and cluster IDs. f, Featureplot visualisations of gene expression
704  highlighting the conservation of the major cell lineages, as represented in (b).

705

706 Supplementary Figure 2. Heatmaps of integrated clusters for breast, prostate and

707 melanoma cancer case. a-f, Heatmap visualisation of the top 5 differentially expressed
708 genes per cluster for three breast cancer cases BC-P1 (a), BC-P2 (b) and BC-P3 (c), two
709 prostate cancer cases PC-P1 (d) and PC-P2 (e) and a metastatic melanoma M-P1 (f). All
710 cases represent the integrated clustering of all cryopreserved conditions. Differentially gene
711  expression was performed using the MAST method within Seurat v3 with the RNA assay
712 and default parameters. Heatmaps were generated using the DoHeatMap function using
713  Seurat v3. Complete gene lists used are detailed in Supplementary Table 2.

714

715  Supplementary Figure 3. Number of genes and UMIs per cluster. a-f, Number of genes
716  (left) and UMIs (right) detected per cell per cluster across FT (green), CCS (orange), CT
717  (purple) and CO (purple; melanoma case only) replicates of breast cancer cases BC-P1 (a),
718 BC-P2 (b) and BC-P3 (c), prostate cancer cases PC-P1 (d) and PC-P2 (e) and a metastatic
719 melanoma M-P1 (f). Sequencing libraries were down sampled to equal number of mapped
720 reads per cell using cellranger aggregate function to account for differences from

721 sequencing depth. Statistical significance was determined using an unpaired Student’s ¢-
722 test.

723

724  Supplementary Figure 4. Cryopreservation maintains the detection of biological

725 pathways in additional cases. a-c, Sensitivity of pathway enrichment scores detected in
726  clusters across cryopreserved replicates. Additional representative cases of breast cancer

727 BC-P2 (a) and BC-P3 (b) and prostate cancer PC-P2 (¢) are shown. The minimum, mean
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and maximum -log10 g-value are plotted in the error bars of each GO pathway. All DEGs
from each cluster were passed on to the ClusterProfiler package for functional enrichment
with the CC sub-ontology under the human org.Hs.eg.db database. GO pathway

descriptions can be found in Supplementary Table 3.

Supplementary Figure 5. Cryopreservation provides high quality
immunophenotyping using CITE-Seq.

a, Heatmap visualisation of the top 5 differentially expressed genes of indicated canonical
cell type markers for an independent breast cancer case for the CITE-Seq experiment.
Differentially gene expression was performed using the MAST method within Seurat v3 with
the RNA assay and default parameters. Heatmaps were generated using the DoHeatMap
function using Seurat v3. b, Correlation plots between protein and genes for the panel of 15
markers used for CITE-Seq. Correlation values (adjusted-R?) were computed using linear
regression in R to model the log-normalised gene expression value and corresponding ADT

levels.

Supplementary Table Legends
Supplementary Table 1. Clinical information for breast cancer, prostate cancer and

metastatic melanoma cases used in this study.

Supplementary Table 2. Differentially expressed genes for integrated clusters.
Differentially gene expression was performed using the MAST method within Seurat v3 with

the RNA assay and default parameters.
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Supplementary Table 3. Cluster metric standard deviations, cluster level gene
correlations and gene pathways unique to cryopreserved conditions. a, Standard
deviations for silhouette scores, mixing metrics and local structure metrics, computed for
the comparisons between the down sampled FT cells with FT cells (positive control), CCS,
CT and CO. b, Cluster level correlation values. Adjusted-R? values computed using linear
regression in R to model log-normalised gene expression values between integrated
clustered cells from different cryopreserved replicates. ¢, Functional enrichment between
cryopreservation conditions. All DEGs from each cluster were passed on to the
ClusterProfiler package for functional enrichment with the CC sub-ontology under the

human org.Hs.eg.db database.
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