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Abstract  
There  is  an  urgent  need  for  a  vaccine  with  efficacy  against  SARS-CoV-2.  We  hypothesize  that  peptide                 

vaccines  containing  epitope  regions  optimized  for  concurrent  B  cell,  CD4 +  T  cell,  and  CD8 +  T  cell  stimulation                  
would  drive  both  humoral  and  cellular  immunity  with  high  specificity,  potentially  avoiding  undesired  effects  such                
as  antibody-dependent  enhancement  (ADE).  Additionally,  such  vaccines  can  be  rapidly  manufactured  in  a              
distributed  manner.  In  this  study,  we  combine  computational  prediction  of  T  cell  epitopes,  recently  published  B                 
cell  epitope  mapping  studies,  and  epitope  accessibility  to  select  candidate  peptide  vaccines  for  SARS-CoV-2.               
We  begin  with  an  exploration  of  the  space  of  possible  T  cell  epitopes  in  SARS-CoV-2  with  interrogation  of                   
predicted  HLA-I  and  HLA-II  ligands,  overlap  between  predicted  ligands,  protein  source,  as  well  as  concurrent                
human/murine  coverage.  Beyond  MHC  affinity,  T  cell  vaccine  candidates  were  further  refined  by  predicted               
immunogenicity,  viral  source  protein  abundance,  sequence  conservation,  coverage  of  high  frequency  HLA             
alleles  and  co-localization  of  CD4 +  and  CD8 +  T  cell  epitopes.  B  cell  epitope  regions  were  chosen  from  linear                   
epitope  mapping  studies  of  convalescent  patient  serum,  followed  by  filtering  to  select  regions  with  surface                
accessibility,  high  sequence  conservation,  spatial  localization  near  functional  domains  of  the  spike             
glycoprotein,  and  avoidance  of  glycosylation  sites.  From  58  initial  candidates,  three  B  cell  epitope  regions                
were  identified.  By  combining  these  B  cell  and  T  cell  analyses,  as  well  as  a  manufacturability  heuristic,  we                   
propose   a   set   of   SARS-CoV-2   vaccine   peptides   for   use   in   subsequent   murine   studies   and   clinical   trials.   
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Introduction  
COVID-19,  the  infectious  disease  caused  by  the  SARS-CoV-2  virus,  is  a  global  pandemic  which  has                

infected  millions  of  individuals  and  caused  hundreds  of  thousands  of  deaths.  Management  and  treatment               
options   are   limited,   and   development   of   a   vaccine   is   critical   to   mitigate   public   health   impact.  

 
SARS-CoV-2  vaccines  have  largely  focused  on  generation  of  B  cell  responses  to  trigger  production  of                

neutralizing  antibodies 1–3 .  Similar  to  SARS-CoV-1,  SARS-CoV-2  enters  cells  through  interaction  of  the  viral              
receptor  binding  domain  (RBD)  with  angiotensin  converting  enzyme  2  (ACE2)  receptors,  found  on  the  surface                
of  human  nasopharyngeal,  lung,  and  gut  mucosa 4 .  Production  of  neutralizing  antibodies  targeting  the  RBD  or                
other  functional  domains  is  thought  to  be  critical  for  vaccine  efficacy.  Generation  of  non-neutralizing  antibody                
responses  may  be  associated  with  vaccine  failure,  and  in  the  worst  case  scenario  enhanced  disease  upon  viral                  
exposure,  either  through  the  induction  of  enhanced  pulmonary  inflammation 5 ,  or  Fc  receptor-mediated             
antibody-dependent  enhancement  (ADE) 6 .  While  anti-SARS-CoV-2  antibodies  have  been  identified  in           
COVID-19  patients,  it  is  unknown  which  of  these  antibodies  drive  viral  neutralization,  ADE,  or  both.  Thus,                  
vaccine  efficacy  and  safety  will  be  optimized  by  approaches  that  maximize  generation  of  neutralizing               
antibodies   while   minimizing   ADE   or   pulmonary   immune   pathology.  

 
In  addition  to  targeting  a  B  cell  response,  a  SARS-CoV-2  vaccine  should  also  drive  T-cell  activity,                 

because  1)  CD4 +  and  CD8 +  T  cells  have  well-defined  roles  in  the  antiviral  immune  response,  including  against                  
SARS-CoV-1 7–9 ,  and  2)  CD8 +  T  cells  may  be  able  to  clear  infected  antigen  presenting  cells  to  mitigate  clinical                   
sequelae  of  ADE  or  Th2  T  cell  driven  pulmonary  immune  pathology 5 .  Prior  studies  in  SARS-CoV-1  have                 
demonstrated  T  cell  responses  against  viral  epitopes,  with  strong  T  cell  responses  correlated  with  generation                
of  higher  neutralizing  antibody  titers 9 .  Unlike  antibody  epitopes,  T  cell  epitopes  need  not  be  limited  to                 
accessible  regions  of  surface  proteins.  In  SARS-CoV-1,  concurrent  CD4 +  and  CD8 +  activation  and  central               
memory  T  cell  generation  were  induced  in  exposed  patients;  however,  increased  Th2  cytokine  polarization  was                
observed  in  patients  with  fatal  disease 9 .  Thus,  vaccines  targeting  humoral  (B  cells)  and  cytotoxic  arms  (CD8 +                 
T  cells)  with  concurrent  helper  signalling  (CD4 +  T  cells),  delivered  with  adjuvants  promoting  Th1  polarization,                
may   provide   optimal   immunity   against   SARS-CoV-2.  

 
Current  vaccine  strategies  in  SARS-CoV-2  include  recombinant  spike  (S)  glycoprotein,  recombinant            

receptor  binding  domain  (RBD),  nucleic  acid  (DNA  and  RNA)  encodings  of  the  S  glycoprotein,  adenovirus                
vector  expressing  the  surface  glycoprotein,  live  recombinant  measles  vaccine  altered  to  express  the  surface               
glycoprotein,  as  well  as  delivery  of  whole  inactivated  virus 2,3,10–13 .  Many  of  these  strategies  are  attractive  for                 
eliciting  antibody  responses  against  conformational  epitopes.  Multi-epitope  peptide  vaccines  are  an  alternative             
approach  which  has  a  history  of  safe  administration,  may  be  developed  and  updated  rapidly,  and  may  be  less                   
likely   to   elicit   non-neutralizing   antibodies   that   contribute   to   antibody-dependent   enhancement   (ADE) 14–16 .   

 
We  report  here  a  comprehensive  survey  of  the  T  and  B  cell  epitope  space  of  SARS-CoV-2  ( Figure  1 ).                   

Predicted  T  cell  epitopes  were  derived  from in  silico predictions  filtered  on  binding  affinity  and  immunogenicity                 
models  generated  from  epitopes  deposited  in  the  Immune  Epitope  Database  (IEDB) 17 ,  population  diversity,  and               
source  protein  abundance.  B  cell  epitope  candidates  were  curated  from  linear  epitope  mapping  studies  and                
further  filtered  by  accessibility,  glycosylation,  polymorphism,  and  adjacency  to  functional  domains.  Given  the              
rapid  development  of  murine-adapted  SARS-CoV-2  models,  we  also  report  T  cell  epitopes  predicted  to  bind                
murine  MHC  coded  for  by  H2-D/K b/d  and  H2-IA b/d  haplotypes.  We  have  integrated  these  data  and  present  a                  
strategy   for   epitope   prioritization   for   vaccine   development.  
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Results  

 
Figure  1:  Summary  of  B  cell  and  CD4 + /CD8 +  epitope  prediction  workflows.  Pathways  are  colored  by  B  cell                  
(blue),  human  T  cell  (black),  and  murine  T  cell  (red)  epitope  prediction  workflows.  Color  bars  represent                 
proportions  of  epitopes  derived  from  internal  proteins  (ORF),  nucleocapsid  phosphoprotein,  and  surface-exposed             
proteins   (spike,   membrane,   envelope).  

 

Landscape   of   MHC   ligands   in   SARS-CoV-2  
To  determine  the  landscape  of  potential  HLA  ligands  in  SARS-CoV-2  ( Figure  1,  black),  we  first                

identified  candidate  MHC  ligands  by  performing  HLA-I  binding  prediction  using  NetMHCpan  4.0  (both  EL  and                
BA  mode) 18  and  MHCflurry 19  (8-11mers),  and  HLA-II  binding  prediction  using  NetMHCIIpan  3.2 20  and  4.0 21               
(15mers),  using  alleles  with  >5%  genetic  frequency  in  the  United  States 22,23  (full  predicted  sets: Table  S1,  S2 ).                  
To  assess  the  accuracy  of  these  peptide/MHC  binding  prediction  tools  on  viral  peptides,  we  tested  their                 
performance  on  IEDB  MHC  affinity  assay  data  values  for  viral  peptides.  Of  the  predictive  models  evaluated,                 
NetMHCpan  4.0  (BA)  and  NetMHCIIpan  3.2  demonstrated  the  highest  correlation  of  binding  affinity  predictions               
for  Class  I  and  Class  II  MHC,  respectively  ( Figure  S1A-B ).  Therefore,  these  two  predictors  were  for                 
predicting  MHC  ligands.  A  measured  peptide/MHC  binding  affinity  of  500  nM  or  less  is  commonly  used  to                  
identify  MHC-binding  peptides  which  are  more  likely  to  be  T  cell  epitopes 24 .  To  account  for  the  inaccuracy                  
inherent  to  prediction  (as  opposed  to  measurement)  of  peptide-MHC  affinity,  we  derived  slightly  stricter  cutoffs.                
In  order  to  achieve  90%  specificity  in  IEDB  binding  affinity  data,  we  use  predicted  binding  affinity  thresholds  of                   
393.4  nM  and  220.0  nM  for  Class  I  and  Class  II  MHC,  respectively,  ( Supplementary  Figure  1C-D ).  This  filter                   
was  applied  to  NetMHCpan  4.0  and  NetMHCIIpan  3.2  SARS-CoV-2  MHC  binding  predictions,  which  removed               
the   majority   of   viral   protein   sub-sequences   ( Figure   2A-B ).   
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Figure  2:  Landscape  of  SARS-CoV-2  MHC  ligands.  (A&B) Selection  criteria  for (A)  HLA-I  and (B)  HLA-II                 
SARS-CoV-2  HLA  ligand  candidates.  Scatterplot  (bottom)  shows  predicted  (x-axis)  versus  IEDB  (y-axis)  binding              
affinity,  with  horizontal  line  representing  500nM  IEDB  binding  affinity  and  vertical  line  representing  corresponding               
predicted  binding  affinity  for  90%  specificity  in  binding  prediction.  Histogram  (top)  shows  all  predicted               
SARS-CoV-2  HLA  ligand  candidates. (C) Landscape  of  predicted  HLA  ligands,  showing  nested  HLA  ligands               
comprising  HLA-I  and  -II  ligands  with  complete  overlap  (top),  and  LOESS  fitted  curve  (span  =  0.1)  for  HLA-I/II                   
ligands  by  location  along  the  SARS-CoV2  proteome  (bottom).  Red  track  represents  SARS  epitopes  identified  in                
literature  review  with  sequence  identity  in  SARS-CoV-2.  Predicted  HLA  ligands  with  conserved  sequences  to  this                
literature  set  are  represented  in  the  lollipop  plot  with  a  red  stick. (D) Summary  of  total  number  of  predicted                    
HLA-I/II  ligands  and  nested  HLA  ligands.  (E) Summary  of  nested  HLA  ligand  coverage  by  protein,  with  raw                   
counts  (left)  or  counts  normalized  by  protein  length  (right). (F) Summary  of  murine/human  MHC  ligand  overlap.                 
(G)    Distribution   of   population   frequencies   among   predicted   HLA-I,   -II,   and   nested   HLA   ligands.  

 
 With  the  goal  of  finding  epitope  regions  capable  of  inducing  both  CD4 +  and  CD8 +  T  cell  responses,  we                    

analyzed  our  MHC  ligand  predictions  for  the  set  of  overlapping  HLA-I  and  HLA-II  ligand  combinations,  referred                 
to  here  as  nested  HLA  ligands.  To  generate  these  nested  HLA  ligands,  each  predicted  HLA-I  ligand  was                  
paired  with  an  HLA-II  ligand  with  full  sequence  overlap,  selecting  for  the  HLA-II  ligand(s)  with  highest                 
population  coverage  ( Figure  2C,D ,  n  =  7344  pairs  consisting  of  2486  unique  HLA-I  ligand  and  3138  unique                  
HLA-II  ligands).  Predicted  MHC  ligands  were  not  evenly  distributed  across  the  proteome,  with  local  peaks  and                 
troughs  observed  that  correlated  between  HLA-I  and  -II  ligands  ( Figure  2C ,  bottom;  Pearson  correlation  of                
HLA-I/II  LOESS  (span  =  0.1):  r  =  0.703,  p  <  0.001).  Notably,  while  SARS-CoV-1  T  cell  epitopes  previously                   
described  in  the  literature  were  primarily  located  in  the  surface  glycoprotein  (S)  and  nucleocapsid  protein  (N)                 
( Table  S3 ) 9,25–50 ,  we  observed  a  paucity  of  predicted  MHC  ligands  in  the  nucleocapsid  protein  (N).  Of  113                  
unique  T  cell  epitopes  described  in  the  literature  that  were  also  found  in  the  SARS-CoV-2  proteome,  we                  
observed  only  two  HLA-I  peptide  sequences  in  our  predicted  nested  HLA  ligand  set.  Numbers  of  predicted                 
nested  MHC  ligands  were  associated  with  protein  length  ( Figure  2E ,  left),  with  orf1ab  having  the  greatest                 
count;  however,  normalizing  by  protein  length  demonstrated  greater  equality  of  distribution,  with  the  three               
largest   viral   proteins   (orf1ab,   S,   and   N)   being   among   the   lowest   ranked   ( Figure   2E ,   right).  

 
As  murine  models  for  SARS-CoV-2  would  be  a  powerful  tool  in  understanding  viral  immunobiology,  we                

determined  which  predicted  HLA  ligands  were  also  predicted  to  bind  murine  H2-b/d  MHC.  NetMHCpan  and                
NetMHCIIpan  were  run  using  the  SARS-CoV-2  proteome  against  the  H2-b  and  H2-d  haplotypes,  filtering  by                
MHC-I  ligands  top  2nd  percentile  (n  =  3053)  and  MHC-II  ligands  in  the  top  10th  percentile  (n  =  1648).  From                     
this  set,  we  observed  an  overlap  of  887  peptides  in  MHC-I  and  1571  peptides  in  MHC-II  between  murine  and                    
human  sets  ( Figure  2F ).  For  the  nested  HLA  ligand  set,  we  observed  825  and  848  overlapping  murine  MHC-I                   
and   -II   ligands,   respectively,   with   846   HLA   ligands   containing   both   murine   MHC-I   and   -II   coverage.  
 

The  majority  of  HLA  ligand  sequences  were  predicted  to  bind  to  fewer  than  50%  of  the  U.S.  population,                   
particularly  for  HLA-I  and  nested  ligands  ( Figure  2G ).  In  accordance  with  higher  population  coverage               
distribution  in  HLA-II,  predicted  HLA-II  ligands  also  demonstrated  more  binding  alleles  on  average  (mean               
alleles  per  peptide:  HLA-I  =  1.35,  HLA-II  =  2.80).  Among  the  most  common  alleles  were  HLA-A*02:01  (n  =                   
784),  HLA-A*11:01  (n  =  643),  and  HLA-A*03:01  (n  =  383)  for  predicted  HLA-I  binding  peptides  and                 
HLA-DRB1*01:01  (n  =  5401),  HLA-DRB1*07:01  (n  =  3225),  and  HLA-DRB1*13:01  (n  =  3022)  for  predicted                
HLA-II   binding   peptides.   

 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 4, 2020. ; https://doi.org/10.1101/2020.06.04.135004doi: bioRxiv preprint 

https://paperpile.com/c/5FoWuY/45yNL+UcesE+ih5am+2dsLe+6ZCpC+Aeb5J+MxTjT+EIsTq+9vKiE+sNKeG+4sUbj+0IiE9+nYKDx+theSn+4fmhV+vOu5x+lpjyg+nYmQz+Koowh+M0upY+wa1RE+M1TNm+cQjHq+TZ1vL+qk2Oi+hTYBi+og2i1
https://doi.org/10.1101/2020.06.04.135004
http://creativecommons.org/licenses/by-nc-nd/4.0/


CD8 +    and   CD4 +    T   cell   epitope   prediction  
Peptide/MHC  binding  is  necessary  but  not  sufficient  for  peptide  epitopes  to  elicit  T  cell  responses.  We                 

sought  to  identify  a  set  of  epitopes  that  would  serve  as  good  targets  for  a  SARS-CoV-2  T  cell  vaccine.  From                     
the  total  pool  of  HLA-I,  HLA-II,  and  nested  MHC  ligands,  we  sought  to  prioritize  sequences  which  are  predicted                   
to   be   immunogenic   from   highly   conserved   regions   of   abundant   viral   proteins   ( Figure   3   middle ).  

 
To  predict  the  immunogenicity  of  MHC  ligands,  we  fit  a  forward  stepwise  multivariable  logistic               

regression  model  using  peptide/HLA  tetramer  flow  cytometry  data  curated  from  viral  entries  of  the  Immune                
Epitope  Database  (IEDB) 17 .  Tetramer  data  was  selected  for  the  response  variable  because  it  provides               
unambiguous  association  between  a  peptide  and  its  bound  MHC,  and  additionally  tests  which  specific               
peptide/MHC  is  capable  of  eliciting  a  T  cell  response . Each  unique  peptide-MHC  was  encoded  with  features                 
derived  from  epitope  prediction  tools  as  well  as  features  relating  to  amino  acid  content  (See Methods:                 
Immunogenicity  modeling ). Model  performance  in  5-fold  cross  validation  demonstrated  AUC  values  of              
approximately  0.7  and  0.9  for  HLA-I  and  -II,  respectively,  in  both  training  and  test  sets  ( Figure  S2A-B ).  Models                   
demonstrated  cleaner  separation  of  tetramer  positive  and  negative  groups  for  CD4 +  epitopes  compared  to               
HLA-I  ( Figure  S2C-D ).  To  determine  a  cause  for  this  difference  in  model  performance,  we  examined  predicted                 
binding  affinity  scores  between  tetramer  positive  and  negative  epitopes,  which  demonstrated  significantly             
better  separation  for  CD4 +  epitopes  than  CD8 +  epitopes  ( Figure  S2E-F ).  In  accordance  with  this  difference  in                 
binding  affinity  distribution,  the  HLA-II  model  showed  strong  association  between  lower  binding  affinity  and               
lower  predicted  tetramer  positivity,  while  the  HLA-I  model  showed  a  weaker  inverse  association  ( Figure  S3 ).                
Due  to  these  binding  affinity  distribution  differences  between  IEDB  HLA-I  and  HLA-II  tetramer  sets,  a                
performance-based  cutoff  did  not  allow  for  equal  filtering  of  CD4 + and  CD8 +  epitopes.  Therefore,  we  filtered  by                  
GLM  scores  above  the  median  in  each  HLA-I/II  SARS-CoV-2  epitope  group,  which  provided  balanced  selection                
while   removing   predicted   low-immunogenicity   epitopes   ( Figure   S4 ).  

 
 Next,  we  sought  to  prioritize  epitopes  derived  from  regions  of  low  sequence  variation  across  viral                 

strains.  A  position-based  entropy  filter  was  applied  to  all  epitopes  ( Figure  S5 ),  keeping  those  with  an  entropy                  
score  ≤  0.1  (approximately  98%  sequence  identity)  in  all  amino  acid  positions  across  MSA-aligned               
SARS-CoV-2  genomes  within  the  Nextstrain  database 51,52 .  High  entropy  was  observed  in  the  well-described              
spike  protein  D614G  polymorphic  site  ( Figure  S5A ,  red  dot).  Other  areas  of  high  entropy  included  positions                 
3606,  4715,  5828,  and  5865  of  orf1ab,  and  position  84  of  ORF8  (all  with  entropy  >  0.4).  The  majority  of                     
positions  demonstrated  >95%  sequence  identity,  suggesting  high  homology  between  different  SARS-CoV-2            
viral  genomes  ( Figure  S4B ).  Lastly,  as  the  likelihood  of  MHC  presentation  is  correlated  with  protein                
expression 53 ,  we  filtered  epitopes  to  those  derived  from  the  three  highest  expressed  SARS-CoV-2  proteins               
normalized  by  protein  length  ( Figure  S6 ) 54 .  Protein  abundance  was  determined  from  both  semi-quantitative              
mass  spectrometry  and  RNA-seq  data 54,55 .  After  all  these  filtering  steps,  292  CD8 + ,  616  CD4 +  and  423  nested  T                   
cell  epitopes  were  predicted.  Relative  proportions  of  HLA  alleles  were  conserved  throughout  filtering  ( Figure  3,                
middle ).    Full   peptide   sets   with   all   filtering   criteria   are   listed   in    Tables   S1    (HLA-I)   and    S2    (HLA-II).  
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Figure  3: Prediction  of  SARS-CoV-2  T  cell  epitopes.  (Top)  Summary  of  predicted  (left)  and  IEDB-defined  (right)                 
SARS-CoV-2  HLA  ligands,  showing  proportions  of  each  derivative  protein. (Middle)  Funnel  plot  representing  counts               
of  HLA-I  (red  text),  HLA-II  (blue  text),  and  nested  HLA  (violet  text)  ligands  along  with  proportions  of  HLA-I  (top  bar)                     
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and  HLA-II  (bottom  bar)  alleles  at  each  filtering  step. (Bottom) Summary  of  CD8 +  (red,  top),  CD4 +  (blue,  bottom),  and                    
nested  T  cell  epitopes  (middle)  after  filtering  criteria  in  S,  M,  and  N  proteins.  Y-axis  and  size  represent  the  population                     
frequency  of  each  CD8 + and  CD4 + epitopes  by  circles.  Middle  track  of  diamonds  represents  overlaps  between  CD8 +                  
and  CD4 + epitopes,  showing  the  overlap  with  greatest  population  frequency  (size)  for  each  region  of  overlap.  Color  of                   
diamonds   represents   the   proportion   of   overlap   between   CD4 +    and   CD8 +    epitope   sequences.  

 

B   cell   epitope   prediction  
In  addition  to  identifying  SARS-CoV-2  T  cell  epitopes,  we  sought  to  identify  a  set  of  linear  B  cell                   

epitopes  on  the  Spike  protein  which  would  serve  as  good  targets  for  stimulating  neutralizing  antibody                
responses  ( Figure  1 ).  Epitope  candidates  were  derived  from  four  published  preprint  mapping/array  studies 56–59              
and  one  as-of-yet  unpublished  PEPperCHIP ®  peptide  array  study  (for  study  details  see Methods:  Antibody               
epitope  curation ).  Starting  with  an  initial  candidate  pool  of  58  linear  epitopes  with  data  to  support in  vivo                   
generation  in  humans  ( Figure  4A,  Table  S4 ),  we  applied  a  set  of  filtering  criteria  to  narrow  our  target  space                    
( Figure   4B ):  
 

1. Contiguous   subsequences   of   the   spike   protein   with   high   accessibility   
2. Exclude   glycosylation   sites  
3. Exclude   regions   with   significant   polymorphism   between   SARS-CoV-2   strains  
4. Keep  candidate  epitopes  within  or  adjacent  to  functional  domains  with  evidence  of  antibody-mediated              

viral   neutralization   (RBD,   FP,   HR1,   and   HR2)  
5. Exclude   any   candidates   shorter   than   four   amino   acids  

 
We  used  SARS-CoV-2  S  protein  accessibility  data  from  Grant et.  al 60 ,  which  resulted  in  19  remaining                 

regions  after  filtering  for contiguous  stretches  with  mean  accessibility  of  35%,  minimum  accessibility  of  15%,                
requiring  at  least  one  residue  to  have  accessibility  greater  than  50%,  and  the  ends  of  a  region  to  have  at  least                      
25%  accessibility.  Since  many  epitopes  occur  in  multiple  sources,  we  combined  overlapping  epitope              
candidates  into  14  unique  sequences.  After  filtering  out  epitopes  containing  glycosites,  which  may  alter               
antibody  binding  characteristics 61,62 ,  11  non-glycosylated  regions  remained.  Two  additional  regions  were            
removed  because  they  contained  polymorphic  sites,  defined  by  mutation  frequency  >  0.1% from  Nextstain               
SARS-CoV-2  viral  sequences.  Of  the  remaining  9  regions,  only  4  were  close  to  functional  domains  which  in                  
the  closely  related  virus  SARS  have  evidence  of  antibody-mediated  viral  neutralization:  the  receptor  binding               
domain  (RBD),  fusion  protein  (FP),  and  heptad  repeat  1  and  2  (HR1/HR2) 63–68 .  Adjacency  to  a  functional                 
region  was  defined  as  within  15  aa  of  either  side  of  FP,  HR1,  and  HR2,  and  within  50  aa  of  the  RBD.  A                        
broader  window  was  used  for  the  receptor  binding  domain  due  to  the  known  presence  of  neutralizing  antibody                  
epitopes  in  S1  of  SARS  outside  of  the  RBD 69 .  This  filtering  resulted  in  four  remaining  regions,  of  which  our                     
final  criteria  removed  one  which  had  length  less  than  four  residues  ( Figure  4B ).  This  filtering  criteria  precluded                  
the  vast  majority  of  total  spike  protein  regions  ( Figure  4C ),  with  three  predicted  antibody  binding  regions                 
(residue  lengths  18,  4,  and  4)  remaining  ( Figure  4D ).  All  three epitope  candidate  regions  were  present  on                  
solvent-exposed  surfaces  of  the  S  protein  trimer  3D  structure  ( Figure  4E ).  It  is  worth  noting  that  the  largest                   
region,  residues  456-473  within  the  receptor  binding  motif  (RBM)  loop  is  only  accessible  when  the  RBD  is  in                   
the   “open”   conformation.   
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Figure  4:  Selection  of  SARS-CoV-2  B  cell  epitope  regions.  (A)  SARS-CoV-2  linear  B  cell  epitopes  curated                 
from  epitope  mapping  studies.  X-axis  represents  amino  acid  position  along  the  SARS-CoV-2  spike  protein,  with                
labeled  start  sites. (B) Schematic  for  filtering  criteria  of  B  cell  epitope  candidates.  (C) Spike  protein  amino  acid                    
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sequence,  with  overlay  of  selection  features  prior  to  filtering.  Polymorphic  residues  are  red,  glycosites  are  blue,                 
accessible  regions  highlighted  in  yellow.  The  receptor  binding  domain  (RBD),  fusion  peptide  (FP),  and  HR1/HR2                
regions  are  outlined. (D) Spike  protein  functional  regions  (RBD,  FP,  HR1/2)  amino  acid  sequences,  with  residues                 
colored  by  how  many  times  they  occur  in  identified  epitopes.  Selected  accessible  sub-sequences  of  known                
antibody  epitopes  highlighted  in  purple  outline. (E)  S  protein  trimer  crystal  structure  with  glycosylation,  with  final                 
linear   epitope   regions   highlighted   by   color.  

Selection   of   human   and   murine   SARS-CoV-2   vaccine   peptides  
With  the  above  filters  applied  to  predicted  T  and  B  cell  epitope  candidates,  we  sought  to  derive  a                   

collection  of  minimal  recommended  peptide  sets  for  all  combinations  of  the  following  vaccine  criteria:               
optimization  for  CD4 +  responses,  CD8 +  responses,  and  coverage  of  predicted  B  cell  epitopes.  We  derived                
27mer  sequences  for  these  vaccine  peptide  sets,  determining  peptide  combinations  which  maximized             
population  coverage  of  T  cell  epitopes,  with  or  without  additional  coverage  for  murine  H2-b,  H2-d,  or  both                  
haplotypes  ( Figure  5A-B ).  If  population  coverage  was  identical  for  multiple  candidates,  peptides  were  also               
optimized  based  on  a  manufacturability  difficulty  scoring  system ( Figure  S7 ).  Optimizing  for  CD4 +  epitope               
population  coverage  demonstrated  88.5%  population  frequency  encompassed  by  three  27mer  peptides            
( Figure  5B: 1,  9,  and  15),  while  CD8 +  epitope  optimization  provided  95.8%  population  frequency  coverage  by                 
three  27mer  peptides  ( Figure  5B:  1,  4,  and  14).  CD4 + /CD8 +  co-optimization  provided  the  best  overall                
population  coverage  at  81.6%  population  frequency  with  four  27mer  peptides  ( Figure  5B: 1,  6,  9,  13).  While  B                   
cell  epitope  optimization  provided  CD8 +  coverage  above  85%,  CD4 +  coverage  was  only  52.8%,  suggesting  the                
design  of  a  combination  B  cell/CD4 +  T  cell  vaccine  requires  use  of  non-spatially  overlapping  sequences.                
Overall,  selection  of  peptides  which  also  provided  both  H2-b  and  H2-d  epitope  coverage  did  not  greatly  impact                  
population  coverage,  suggesting  these  murine-encompassing  sets  may  allow  for  vaccine  studies  in  animal              
models  whilst  preserving  human  relevance.  Across  the  different  selection  criteria  for  minimal  vaccine  peptide               
sets  there  was  significant  redundancy.  Collapsing  the  set  of  vaccine  peptides  by  unique  sequences  results  in  a                  
final  set  of  22  27mer  vaccine  peptides  ( Figure  5B ).  In  addition  to  27mer  peptides,  all  individual  T/B  cell                   
epitopes  (S,  M,  and  N: Table  S5 ;  all  proteins: Table  S6 )  as  well  as  15mer  ( Figure  S8 )  and  21mer  ( Figure  S9 )                      
optimized   peptide   sets   are   also   available.  
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Figure  5:  T  cell  and  B  cell  vaccine  candidates. (A) 27mer  vaccine  peptide  sets selecting  for  best  CD4 + ,  CD8 + ,                    
CD4 + /CD8 + ,  and  B  cell  epitopes  with  HLA-I,  HLA-II,  and  total  population  coverage. (B) Unified  list  of  all  selected                   
27mer  vaccine  peptides.  Vaccine  peptides  containing  predicted  ligands  for  murine  MHC  alleles  (H2-b  and  H2-d                
haplotypes)   are   indicated   in   their   respective   columns.   

 

Discussion  
We  report  here  a  survey  of  the  SARS-CoV-2  epitope  landscape  along  with  a  strategy  for  prioritizing                 

both  T  cell  and  B  cell  epitopes  for  vaccine  development.  Major  vaccine  efforts  targeting  coronaviruses  have                 
focused  on  generation  of  neutralizing  antibody  responses 70–78 .  This  is  likely  critical  for  vaccine  efficacy;               
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however,  vaccines  against  SARS-CoV-2  may  also  generate  non-neutralizing  antibodies  that  facilitate  viral  entry              
into  cells  that  express  Fc  receptor,  a  phenomenon  known  as  antibody-dependent  enhancement  (ADE).  It  is                
possible  that  vaccines  that  elicit  a  vigorous  cytotoxic  T  cell  response  will  drive  early  killing  of  infected  cells  and                    
mitigate  the  toxicity  associated  with  ADE.  In  addition,  CD4 + T  cells  provide  help  to  B  cells  to  support  class                    
switching,  maturation,  and  antibody  production,  as  well  as  promoting  CD8 +  T  cell  activation,  maturation,  and                
effector  function.  In  light  of  this,  we  searched  for  vaccine  peptide  sequences  which  include  both  B  cell                  
epitopes  as  well  MHC  ligands  predicted  to  drive  CD4 +  and  CD8 +  T  cell  responses  at  high  population                  
frequencies.  Our  current  efforts  are  focused  on  testing  the  immunogenicity  of  these  peptides  in  murine                
models,  comparing  those  which  contain  overlapping  and  non-overlapping  T  and  B  cell  epitopes.  Results  from                
such  preclinical  testing  will  inform  an  envisioned  phase  I  clinical  trial  using  a  condensed  peptide  set  targeting  B                   
cell   epitopes   with   known   viral   neutralization   plus   optimal   T   cell   epitopes.  

 
Prior  work  has  surveyed  the  epitope  space  of  SARS-CoV-2  using  analysis  of  sequence  homology  with                

SARS-CoV-1  epitopes,  prediction  of  linear  B  cell  epitopes,  and  prediction  of  T  cell  epitopes  using  IEDB  tools.                  
Grifoni et  al.  reported  predicted  T  and  B  cell  epitopes  based  on  cross-referencing  of  known  SARS  epitopes                  
with  sequence  homology  to  SARS-CoV-2  against  SARS-CoV-2-specific  parallel  computational  prediction 79 .           
However,  this  study  did  not  consider  epitope  mapping  of  SARS-CoV-2  convalescent  antibody  repertoires,              
which  may  be  important  to  achieve  high  specificity  of  B  cell  epitope  predictions.  Ahmed  et  al.  reported  a  set  of                     
predicted  T  and  B  cell  SARS-CoV-2  epitopes  with  associated  assay  confirmation  within  the  NIAID  ViPR                
database.  However,  these  predicted  epitopes  were  largely  limited  to  those  with  sequence  homology  between               
SARS-CoV-1  and  SARS-CoV-2,  given  the  paucity  of  available  SARS-CoV-2  assay  data.  Several  studies  have               
identified  linear  B  cell  epitopes  on  the  SARS-CoV-2  surface  glycoprotein  from  sera  of  viral  exposed  patients                 
using  peptide  arrays 56–58  as  well  as  phage  immunoprecipitation  sequencing  (PhIP-Seq) 59 .  These  studies  are  an               
important  source  of  information  but  their  results  may  include  many  epitopes  from  degraded  proteins  and  thus                 
would  not  be  able  to  promote  viral  neutralization in  vivo due  to  a  lack  of  surface  exposure .  Our  work  adds  to                      
this  important  emerging  field  by  analyzing  the  SARS-CoV-2  HLA  ligand  landscape  through  binding  affinity               
filters  derived  from  validated  IEDB  HLA  ligands,  as  well  as  deriving  T  and  B  cell  vaccine  candidates  through                   
rational  filtering  criteria  grounded  in  SARS-CoV-2  biology,  including  predicted  immunogenicity,  epitope  location,             
glycosylation  sites,  and  polymorphic  sites.  No  other  study  to  date  has  considered  all  such  features  in  their                  
epitope  selection  process.  Additionally,  inclusion  of  corresponding  murine  epitopes  allows  for  future  studies  to               
be  performed  in  animal  models  of  SARS-CoV-2.  We  expect  the  application  of  these  filters  will  improve                 
specificity  of  antiviral  response.  As  such,  future  studies  testing  the  immunogenicity  and  efficacy  of  these                
filtered  vaccine  candidates  in  murine  models  will  provide  information  critical  in  the  design  of  a  rationally                 
optimized   human   SARS-CoV-2   vaccine.  

 
Another  unique  aspect  of  our  epitope  selection  process  is  the  prioritization  of  overlapping  CD4 + ,  CD8 + ,                

and  B  cell  epitopes.  As  the  role  of  T  cell  epitope  vaccines  has  not  yet  been  clearly  studied  in  SARS-CoV-2,  we                      
furthermore  cross-referenced  human  and  murine  T  cell  epitopes  to  allow  for  murine  vaccine  studies  using                
human-relevant  peptides  in  H2-b  and  H2-d  haplotypes.  We  hypothesize  that  inclusion  of  CD8 +  epitopes  may                
allow  for  clearance  of  SARS-CoV-2  from  infected  cells,  and  the  inclusion  of  CD4 +  epitopes  may  allow  for                  
greater  activation  of  both  cytotoxic  and  humoral  antiviral  responses.  While  overlapping  CD4 + and  CD8 +               
epitopes  allowed  for  selection  of  peptide  candidates  covering  a  large  proportion  of  the  population,  B/T  cell                 
overlapping  epitope  regions  were  more  sparse  due  to  the  paucity  of  predicted  B  cell  candidates.  Thus,  we                  
expect  the  inclusion  of  overlapping  CD4 + /CD8 +  optimized  peptides  alongside  B  cell  optimized  peptides  to               
provide   the   most   robust   and   broad   antiviral   adaptive   immune   coverage.  
 

In  addition  to  epitope  selection,  optional  adjuvant  choice  for  a  SARS-CoV-2  vaccine  is  currently  unclear.                
Current  evidence  suggests  a  Th2  dominant  response  to  be  associated  with  worse  outcomes 9  —  thus,  adjuvant                 
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selection  may  play  an  important  role  in  skewing  the  helper  arm  toward  a  Th1  phenotype.  Studies  testing  these                   
questions  are  currently  underway  in  murine  models.  Additionally,  preliminary  analysis  of  scRNA-seq  dataset  in               
ACE2  expressing  cells  of  the  respiratory 80–84  and  gastrointestinal 82,85,86  tracts  demonstrated  increased            
expression  of  non-traditional  checkpoint  inhibitors  (VISTA,  Galectin  9,  VTCN1),  suggesting  these  as  potential              
pathways  to  target  for  vaccine  co-therapy  ( Figure  S10 ).  It  remains  unclear  at  this  time  if  any  of  these  above                    
pathways   are   exploited   by   SARS-CoV-2   for   innate   or   adaptive   immune   evasion.  
 

One  limitation  of  our  study  is  that,  while  we  use  epitope  mapping  data  with  direct  biological  evidence  for                   
B  cell  epitopes  in  SARS-CoV-2,  the  T  cell  epitopes  we  report  were  all  derived  from  computational  prediction.                  
In  an  effort  to  partially  overcome  this  weakness,  we  applied  binding  affinity  and  immunogenicity  prediction                
filters  grounded  in  validated  IEDB  binding  and  tetramer  studies.  Reassuringly,  the  two  extant  studies               
examining  T  cell  responses  in  COVID-19  patients  have  identified  recurrent  T  cell  epitopes  which  overlap  with                 
the  vaccine  peptides  presented  here.  Le  Bert et  al. looked  for  T  cell  epitopes  within  the  nucleocapsid  (N),                   
NSP-7  and  NSP-13  proteins  in  PBMCs  of  recovered  COVID-19  patients  using  an  IFN-γ  ELISpot  assay 87 .  They                 
identified  two  recurrent  epitope  regions  (N101-120,  N321-340)  which  overlap  with  multiple  27mer  vaccine              
peptides  in  this  paper  ( Figure  5B ,  peptides  4-8).  Shomuradova et  al. also  identified  COVID-19  patient  T  cell                  
epitopes,  but  using  A*02:01  tetramers  loaded  with  13  distinct  peptides  from  the  surface  glycoprotein  (S) 88 .  Two                 
of  these  13  peptides  showed  recurrent  reactivity  across  14  A*02:01  positive  patients  (S269-277  and               
S1000-1008).  Both  of  these  epitopes  are  also  included  in  multiple  27mer  vaccine  peptides  (Figure  5B,                
peptides   11   and   15).   

 
 Another  potential  limitation  of  this  study  is  the  insensitivity  of  our  experiments  to  the  total  potential                  

space  of  SARS-CoV-2  antibody  epitopes.  Our  B  cell  epitope  analyses  start  with  only  58  identified  linear                 
antibody  epitopes  on  the  surface  glycoprotein  of  SARS-CoV-2,  while  it  is  likely  that  many  other  epitopes  are                  
possible.  Second,  these  linear  epitope  mappings  do  not  allow  for  identification  of  antibodies  which  bind                
tertiary/quaternary  protein  structures.  Lastly,  identification  of  epitopes  via  array  studies  depended  on             
differences  in  antibody  binding  to  potential  linear  epitopes  between  uninfected  and  infected  persons.  There               
may  be  some  cross-reactivity  between  antibodies  generated  against  other  coronaviruses  and  SARS-CoV-2,             
which  if  present  might  show  reactivity  in  our  screening  assay.  If  true,  our  strategy  would  not  identify  these                   
epitopes  as  specific  for  SARS-CoV-2.  Similarly,  we  excluded  viral  regions  with  significant  polymorphism              
across  the  viral  population.  As  polymorphic  regions  may  be  under  selection  pressure,  at  least  some  of  which                  
may  be  due  to  antiviral  immunity,  these  regions  may  prove  to  be  better  epitope  targets  in  patients  infected  by                    
the  relevant  viral  strains.  We  have  avoided  these  in  the  current  study,  however,  as  we  have  focused  here  on                    
conserved  regions  of  SARS-CoV-2  to  identify  epitopes  that  would  be  most  broadly  targetable  in  the  human                 
population.  For  these  reasons,  we  do  not  present  our  antibody  data  as  describing  the  complete  set  of                  
SARS-CoV-2   epitopes.   
 

A  peptide  vaccine  targeting  B  cells,  CD4 +  T  cells,  and  CD8 +  T  cells  in  parallel  may  prove  an  important                    
part  of  a  multifaceted  response  to  the  COVID-19  pandemic,  as  such  an  approach  has  a  potentially  favorable                  
development  timeline  and  the  potential  to  avoid  ADE  by  precisely  directing  the  antibody  response  toward                
functional  (neutralizing)  regions.  However,  we  emphasize  that  epitope  selection  is  only  one  aspect  of  the                
problem,  and  a  key  question  is  whether  a  peptide  vaccine  can  be  sufficiently  immunogenic.  Adjuvant                
selection,  conjugation  to  carriers  such  as  KLH 89  or  rTTHC 90 ,  and  prime/boost  approaches  using  orthogonal               
platforms  are  all  potential  avenues  to  explore.  We  anticipate  that  the  sets  of  vaccine  peptides  reported  here                  
may   be   valuable   in   the   preclinical   development   of   these   approaches.   
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Methods  

Antibody   epitope   curation  
Linear  B  cell  epitopes  on  the  SARS-CoV-2  surface  glycoprotein  were  curated  from  four  published               

studies 56–59 .  Three  of  these  studies  screened  polyclonal  sera  of  convalescent  COVID-19  patients  using  either               
peptide  arrays 56,58  or  phage  immuno-precipation  sequencing  (PhIP-Seq) 59 .  One  study  characterized  the            
epitopes  of  monoclonal  neutralizing  antibodies 57 .  Additionally,  we  were  provided  as-of-yet  unpublished  results             
from  a  study  of  sera  from  six  SARS-CoV-2-naive  patient  sera  and  nine  SARS-CoV-2-infected  patient  sera                
using  PEPperCHIP®  SARS-CoV-2  Proteome  Microarrays.  The  peptides  included  in  these  proteome-wide            
epitope  mapping  analyses  were  limited  to  those  which  demonstrated  either  IgG  or  IgA  fluorescence  intensity  >                 
1000U  in  at  least  two  infected  patient  samples  and  in  none  of  the  naive  patient  samples.  In  addition,  two                    
peptides  were  also  included  (QGQTVTKKSAAEASK,  QTVTKKSAAEASKKP)  which  demonstrated  IgG          
fluorescence  intensity  >  1000U  in  only  one  naive  patient  sample  each,  but  in  four  and  five  infected  patient                   
samples,   respectively.  

HLA   ligand   prediction  
The  SARS-CoV-2  protein  sequence  FASTA  was  retrieved  from  the  NCBI  reference  database             

(https://www.ncbi.nlm.nih.gov/nuccore/MT072688).  Haplotypes  included  in  this  analysis  were  derived  from          
those  with  >  5%  expression  within  the  United  States  populations  based  on  the  National  Marrow  Donor                 
Program's   HaploStats   tool 22 :  
 

● HLA-A :   A*11:01,   A*02:01,   A*01:01,   A*03:01,   A*24:02  
● HLA-B :   B*44:03,   B*07:02,   B*08:01,   B*44:02,   B*44:03,   B*35:01  
● HLA-C :   C*03:04,   C*04:01,   C*05:01,   C*06:02,C*07:01,   C*07:02  
● HLA-DR :   DRB1*01:01,   DRB1*03:01,   DRB1*04:01,   DRB1*07:01,   DRB1*11:01,  

DRB1*13:01,   DRB1*15:01  
 

Additionally,   HLA-DQ   alpha/beta   pairs   were   chosen   based   on   prevalence   in   previous   studies 23 :  
  

● HLA-DQ :   DQA1*01:02/DQB1*06:02,   DQA1*05:01/DQB1*02:01,  
DQA1*02:01/DQB1*02:02,   DQA1*05:05/DQB1*03:01,   DQA1*01:01/DQB1*05:01,  
DQA1*03:01/DQB1*03:02,   DQA1*03:03/DQB1*03:01,   DQA1*01:03/DQB1*06:03  

 
For  HLA-I,  8-11mer  epitopes  were  predicted  using  netMHCpan  4.0 18  and  MHCflurry  1.6.0 19 .  For  HLA-II               

caling,  15mers  were  predicted  using  NetMHCIIpan  3.2 20  and  NetMHCIIpan  4.0 21 .  For  optimization  of  epitope               
predictions,  individual  features  from  each  HLA-I  and  HLA-II  prediction  tool  was  compared  against  IEDB  binding                
affinities  using  Spearman  correlation  ( Figure  S1) .  Cutpoints  for  the  best  performing  HLA-I  and  HLA-II  feature                
were  set  using  90%  specificity  of  predicting  for  peptides  with  <  500nM  binding  affinity  in  the  IEDB  set.  The                    
proportion  of  the  total  U.S.  population  containing  at  least  one  haplotype  capable  of  binding  each  peptide  was                  
calculated   assuming   no   genetic   linkage:  
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Immunogenicity   modeling  
IEDB HLA-I  and  HLA-II  viral  tetramer  data  were  used  to  generate  a  generalized  linear  model  (GLM,                 

family  =  binary)  with  tetramer-positivity  as  a  binary  outcome.  Independent  variables  for  HLA-I  included               
NetMHCpan  4.0  binding  affinity  and  elution  score,  MHCflurry  binding  affinity,  presentation  score,  processing              
score,  and  percentage  of  aromatic  (F,  Y,  W),  acidic  (D,  E),  basic  (K,  R  H),  small  (A,  G,  S,  T,  P),  cyclic  (P),  and                         
thiol  (C,  M)  amino  acid  residues.  Independent  variables  for  HLA-II  included  NetMHCIIpan  4.0  binding  affinity                
and  elution  scores,  and  percentage  of  aromatic,  acidic,  basic,  small,  cyclic,  and  thiol  amino  acid  residues.  All                  
independent  variables  were  normalized  to  0-1  to  keep  coefficients  comparable  (binding  affinities  divided  by               
50,000).  GLM  model  performance  was  derived  using  5-fold  cross  validation,  balancing  for  HLA  alleles.  The                
final  HLA-I  and  HLA-II  models  were  generated  using  each  full  IEDB  set,  then  applied  to  SARS-CoV-2  predicted                  
HLA  ligands  to  derive  a  GLM  score.  For  immunogenicity  filtering,  predicted  epitopes  above  the  median  GLM                 
score   were   kept.  

SARS-CoV-2   entropy   calculations  
8,008  SARS-CoV-2  genome  sequences  were  downloaded  from  GISAID  ( https://www.gisaid.org/ ) 51 .  A           

preprocessing  step  removed  127  sequences  that  were  shorter  than  25,000  bases.  The  sequences  were  split                
into  79  smaller  files  and  aligned  using  augur 52  with  MT072688.1 91  as  the  reference  genome.  The  reference                 
genome  was  downloaded  from  NCBI  GenBank 92 .  The  79  resulting  alignment  files  were  concatenated  into  a                
single  alignment  file  with  the  duplicate  reference  genome  alignments  removed.  The  multiple  sequence              
alignment  was  translated  to  protein  space  using  the  R  packages  seqinr 93  and  msa 94 .  Entropy  for  each  position                  
was  calculated  using  the  following  formula,  where n is  the  number  of  possible  outcomes  (i.e.  total  unique                  
identifiable  amino  acid  residues  at  each  location)  and p i  is  the  probability  of  each  outcome  (i.e.  probability  of                   
each   possible   amino   acid   residues   at   each   location):  

  

Immunomodulatory   molecule   co-expression   analysis  
Single  cell  RNA  sequencing  data  was  collected  from  six  respiratory  datasets 80–84  and  three              

gastrointestinal  datasets 82 , 85,86 .  ACE2 +  cells  were  subsetted  as  cells  with  an  expression  of  ACE2  greater  than                
zero.  The  proportion  of  ACE2 +  cells  expressing  the  immunomodulatory  genes  were  plotted  with  the  circlize                
package 95 .  Coexpression  of  the  immunomodulatory  genes  that  were  expressed  in  greater  than  five  percent  of                
the   ACE2 +    cells   were   plotted   as   links.  

Graphical   and   statistical   analysis  
Plots  and  analyses  were  generated  using  the  following  R  packages:  scales 96 ,  data.table 97 ,  ggrepel 98 ,              

ggplot2 99 ,  viridis 100 ,  ggnewscale 101 ,  seqinr 93 ,  DESeq2 102 ,  GenomicRanges 103 ,  gplots 104 ,  ggbeeswarm 105 ,  ggallin 106 ,          
stringr 107 ,  gridExtra 108 ,  pROC 109 ,  caret 110 ,  RColorBrewer 111 ,  dplyr 112 ,  cowplot 113 ,  ggpubr 114 ,  doMC 115 ,  venneuler 116 ,           
ComplexHeatmap 117 ,  and  circlize 95  packages.  Figures  4C,  4D,  and  5  were  generated  using  the  following  Python                
packages:   NumPy 118 ,   pandas 119 ,   Matplotlib 120 ,    and   Jupyter 121 .   
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Code   and   Data   availability  
Data   and   analyses   presented   in   this   manuscript   are   available   at:  

https://github.com/Benjamin-Vincent-Lab/Landscape-and-Selection-of-Vaccine-Epitopes-in-SARS-CoV-2  
 

Several   data   files   larger   than   100Mb   and   supplemental   tables   are   available   at:  
https://data.mendeley.com/datasets/c6pdfrwxgj/2  
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