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Abstract 
Multi-modal single-cell technologies capable of simultaneously assaying gene expression and 

surface phenotype across large numbers of immune cells have described extensive heterogeneity 

within these complex populations, in healthy and diseased states. In the case of T cells, these 

technologies have made it possible to profile clonotype, defined by T cell receptor (TCR) 

sequence, and phenotype, as reflected in gene expression (GEX) profile, surface protein 

expression, and peptide:MHC (pMHC) binding, across large and diverse cell populations. These 

rich, high-dimensional datasets have the potential to reveal new relationships between TCR 

sequence and T cell phenotype that go beyond identification of features shared by clonally related 

cells. In order to uncover these connections in an unbiased way, we developed a graph-theoretic 

approach---clonotype neighbor-graph analysis or "CoNGA"---that identifies correlations between 

GEX profile and TCR sequence through statistical analysis of a pair of T cell similarity graphs, 

one in which cells are linked based on gene expression similarity and another in which cells are 

linked by similarity of TCR sequence. Applying CoNGA across diverse human and mouse T cell 

datasets uncovered known and novel associations between TCR sequence features and cellular 

phenotype including the classical invariant T cell subsets; a novel defined population of human 

blood CD8+ T cells expressing the transcription factors HOBIT and HELIOS, NK-associated 

receptors, and a biased TCR repertoire, representing a potential previously undescribed lineage 

of “natural lymphocytes”; a striking association between usage of a specific V-beta gene segment 

and expression of the EPHB6 gene that is conserved between mouse and human; and TCR 

sequence determinants of differentiation in developing thymocytes. As the size and scale of 

single-cell datasets continue to grow, we expect that CoNGA will prove to be a useful tool for 

deconvolving complex relationships between TCR sequence and cellular state in single-cell 

applications. 
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Introduction 
 
Previous work pairing gene expression and TCR sequence has largely focused on the TCR 

sequence as a unique 'barcode' by which to identify clonally related cells. Indeed, this approach 

has revealed important insights into the development and interrelatedness of different T cell 

subsets within the context of cancer 1–6, infectious disease 7, and homeostasis 8. From these 

works we see that T cell clones derived from a common clonal ancestor tend to display a similar 

transcriptional profile.  However, the relationship between TCR sequence similarity and cellular 

phenotype has not, to our knowledge, been systematically explored using the large single-cell 

datasets now available. Researchers have mapped the TCR sequence properties of previously 

identified T cell subsets 9–11, but approaches that can identify completely new populations or 

subpopulations by correlating GEX and TCR sequence have not been reported. Also lacking are 

methods for identifying correlations between TCR sequence and GEX that do not extend to global 

similarity or associate with a defined cell population, for example, correlations between specific 

TCR sequence properties and expressed genes that might span multiple cell subsets.  

 

In parallel to the developments in single-cell profiling, methods for quantifying TCR repertoire 

features and identifying patterns within them have matured, helping extend our understanding of 

T cell biology. Previously, we introduced TCRdist, a measure for assessing inter-TCR similarity 

capable of identifying closely-related clonotypes based on shared sequence features 12. Based 

on this work and others 13,14, it is clear that T cells targeting the same pathogen-derived epitope 

utilize T cell receptors that share consistent, definable amino acid motifs. In addition to these 

conventional T cell responses, it is well known that certain unconventional T cell populations, such 

as mucosal-associated invariant T (MAIT) cells and invariant natural killer T (iNKT) cells, are 

characterized by conserved TCR sequence features and GEX profiles 9,10. The repertoires for a 

number of distinct T cell subsets with suitable markers for their enrichment have been described, 

however, it is likely other subsets linked by TCR and GEX remain undiscovered. We hypothesized 

that by identifying correlations between “TCR neighborhoods”, defined by shared sequence 

features, and gene expression, we could overcome the strict limitation of examining these 

correlations within individual clonal families and potentially identify novel associations between T 

cell antigen-specificities and phenotypes.  
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To this end, we developed a graph theoretic approach for clonotype neighbor-graph analysis, 

CoNGA, that identifies correlations between GEX profile and TCR sequence features through 

analysis of similarity graphs defined on the set of T cell clonotypes and applied it to a collection 

of publicly-available T cell datasets in an unbiased search for T cell populations linked by 

covariation in their repertoire features and GEX profiles.  In addition to capturing the MAIT 

and iNKT populations as expected, CoNGA also identified T cell populations for which the 

linkage was more subtle. These included a ZNF683+/IKZF2+ (aka HOBIT+/HELIOS+) 

population with long and biased CDR3 regions that we hypothesize may represent an 

unconventional T cell population; CD4 and CD8-positive T cell clusters in mixed PBMC 

datasets with TCR sequence features that bias CD4 vs CD8 compartment choice; epitope-

specific T cell populations; and multiple correlations between gene expression and TCR 

sequence in a recently published dataset of thymic T cells. Additionally, CoNGA uncovered 

a striking correlation between expression of the gene EPHB6, which flanks the TCR beta 

locus, and usage of a specific TCR V gene segment, TRBV30 (Ephb6 and TRBV31 in mice). 

Applying CoNGA to four datasets that included pMHC binding profiles derived from 

sequencing of cell-surface bound, DNA-barcoded pMHC multimers revealed strong 

correlations between pMHC binding and both TCR sequence and gene expression. T cell 

populations specific for individual pMHC epitopes showed distinct gene expression profiles, 

with EBV epitope-specific T cell populations appearing to cluster according to the stage (latent 

vs early) of the antigen from which the peptide epitope was derived. 
 

We are not the first to analyze single-cell datasets with parallel TCR and GEX information, 

however, much of this prior work has used the TCR sequence primarily as a unique tag to identify 

and track clones. The main contribution of this study is in laying out a systematic approach for 

discovering relationships between TCR sequence and T cell phenotype in large and 

heterogeneous single-cell datasets. CoNGA does not require prior identification or isolation of 

specific subsets in order to identify defining sequence features. CoNGA can also identify 

GEX/TCR correlations that span multiple T cell clusters rather than simply focusing on one cluster 

at a time. Thus we are optimistic that as the throughput of single-cell experiments continues to 

increase, and the dimensionality and multi-modal nature of these experiments continues to grow, 

graph-based approaches like the one introduced here will play an important role as we leverage 

these technologies to better understand the adaptive immune system. 
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Results 

CoNGA algorithm 

CoNGA was developed to identify correlations between gene expression profile and TCR 

sequence in diverse T cell populations without prior knowledge of the precise nature of these 

correlations. We envisioned two broad categories of correlation: one based on similarity, in which 

cells similar with respect to GEX are also similar with respect to TCR sequence, and one based 

on features, in which specific aspects of GEX and of TCR sequence are correlated, without global 

similarity of both properties. CoNGA graph-vs-graph correlation (details below) was developed to 

detect the first category of correlation, using the mathematical concept of graph neighborhoods 

to formalize our intuitive notion of global similarity. De novo discovery of feature-based 

correlations, without prior knowledge of the correlated features, is more challenging, as it requires 

enumeration and testing of all possible feature pairs. CoNGA graph-vs-feature analysis 

represents a compromise approach in which we assume that, at least on one side of the 

correlation, some degree of global similarity is present (this is the "graph-" side); we then 

enumerate possible features defined by the other property, and test for graph neighborhoods with 

biased feature distributions. In practice, we find substantial overlap between the results of these 

two approaches, as, for example, when the identified features in graph-vs-feature correlations are 

marker genes for a subpopulation of cells that also share detectable global similarity of gene 

expression. However, we also see cases in which graph-vs-feature analysis reveals a correlation, 

for example between expression of a specific gene and usage of a particular V gene segment, 

that is not characterized by global similarity with respect to both gene expression and TCR 

sequence. These two approaches are also quite complementary: retrospective analysis of graph-

vs-graph correlations can, as in the case of the putative MHC-independent population described 

below, suggest specific gene expression or TCR sequence features that can then be input to 

graph-vs-feature analysis for sensitive detection of specific correlations.  

 

CoNGA similarity graphs are defined at the level of clonotypes rather than individual cells. We 

and others have observed that T cells of the same clonotype, which by definition have the same 

TCR sequence, tend to have similar GEX profiles (Fig. S1). Thus, similarity graphs based on 

gene expression drawn at the level of individual cells will contain many edges connecting cells 

within the same clonal family. To identify correlations between TCR sequence and gene 

expression profile beyond the level of individual clonal families, we chose to define similarity 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.134536doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.134536
http://creativecommons.org/licenses/by-nd/4.0/


 

 

graphs at the level of clonotypes rather than individual cells. Henceforth, for brevity, the term 

"clonotype" refers to a group of individual cells inferred to be descended from a common clonal 

ancestor due to their shared expression of a unique, rearranged TCR sequence. In the TCR 

similarity graph, each node (clonotype) is connected by edges to its K nearest-neighbor (KNN) 

nodes based on TCR similarity as assessed by the TCRdist measure 12, which scores sequence 

similarity in the pMHC-contacting CDR loops of the TCR alpha and beta chains (here K is an 

adjustable parameter specified as a fraction of the total number of clonotypes). In the gene 

expression (GEX) similarity graph, each clonotype is connected by edges to its KNN clonotypes 

based on similarity in GEX profile (see Methods). Expanded clones are represented by the GEX 

profile of a single representative cell, the one with the smallest average distance to the rest of the 

clonal family. 

 

In graph-vs-graph correlation analysis (Fig. 1a,b), CoNGA identifies statistically significant 

overlap between the GEX similarity graph and the TCR similarity graph. We consider each node 

(clonotype) in turn, count the overlap between its neighbors in the two graphs (i.e., we count how 

many other nodes are connected to it by both a TCR-similarity edge and a GEX-similarity edge), 

and assign a significance score that contrasts this observed overlap to that expected under a 

simple null model: the CoNGA score for this clonotype, equal to the hypergeometric probability of 

seeing the observed overlap by chance, multiplied by the total number of clonotypes, to adjust for 

multiple testing. CoNGA scores range from 0 to the number of clonotypes; scores close to 0 are 

significant, scores around 1 are borderline, and scores above 1 are expected to occur by chance 

(see Methods).This mode of analysis identifies T cell clonotypes whose neighbors in gene 

expression space overlap significantly with their neighbors in TCR sequence space. Here, we 

model the concept of a clonotype's neighbors in GEX or TCR space using the mathematical 

concept of a graph neighborhood, defined as all the vertices directly connected to one central 

vertex (the colored points in Fig. 1b, for example, or the circled points in Fig. 1d). CoNGA's 

second mode of analysis, graph-vs-feature analysis, was developed to detect GEX/TCR 

correlation that involves specific gene expression or TCR features rather than overall similarity. 

This mode of analysis can identify TCR sequence neighborhoods with differentially expressed 

genes (DEGs), for example, or gene expression neighborhoods with distinctive CDR3 sequence 

features (length, hydrophobicity, charge, etc). In graph-vs-feature correlation analysis (Fig. 1c,d), 
CoNGA maps numerical features derived from one property (gene expression or TCR sequence) 

onto the similarity graph defined by the other property and looks for neighborhoods in the graph 

with unexpectedly high or low feature distributions. The results of CoNGA analyses are 
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summarized in informative visualizations that condense the high-dimensional complexity of these 

datasets into interpretable plots and graphs. 

CoNGA graph-vs-graph analysis identifies correlation between 

gene expression and TCR sequence  

We applied CoNGA to a collection of publicly-available T cell datasets that featured, at a minimum, 

single-cell GEX and paired TCRαβ sequencing, in an unbiased search for known and novel T cell 

populations defined by covariation between TCR sequence and GEX profile (see Table 1 for a 

list of the datasets analyzed in this work). Figure 2 illustrates the CoNGA graph-vs-graph analysis 

workflow for two datasets of human peripheral blood T cells, one a mix of CD4+ and CD8+ cells 

(vdj_v1_hs_pbmc, Fig. 2a-c) and one containing flow-sorted CD8+ T cells (10x_200k_donor2a, 

Fig. 2d-f; Table 1). First, the UMAP algorithm 15 is applied to the gene expression and TCRdist 

matrices of each dataset to generate two dimensional projections of the GEX (Fig. 2a/d, left three 

panels) and TCR landscapes (Fig. 2a/d, right three panels). Next, a graph-based clustering 

algorithm 16,17 is applied to the GEX matrix to partition the dataset into clusters of clonotypes with 

similar transcriptional profiles (Fig. 2a/d, panel 1) and to the TCR distance matrix to produce 

clusters of clonotypes with similar TCR sequences (Fig. 2a/d, panel 4). The GEX and TCR 

landscape projections are colored by CoNGA score to visualize the relative location of the top-

scoring CoNGA hits in these landscapes (Fig. 2a/d, panels 2 and 5). Finally, the GEX and TCR 

cluster assignments of CoNGA hits with scores below a threshold (here 1.0) are shown in the 2D 

projections using bicolored disks whose left (right) half corresponds to the GEX (TCR) cluster 

assignment (Fig. 2a/d, panels 3 and 6 for the GEX and TCR landscapes, respectively).    

 

These plots reveal that both datasets contain a substantial number of clonotypes with significant 

CoNGA scores, and that these CoNGA hits are located in specific regions of the GEX and TCR 

landscapes. To gain insight into these groups of related clonotypes, we leverage the fact that 

each dataset has been clustered for both GEX and TCR sequence similarity, independently, and 

thus each clonotype maps to a pair of clusters (a GEX cluster and a TCR sequence cluster). 

These cluster pairs provide useful handles by which to identify CoNGA hits because they contain 

information on GEX and TCR, allowing us to map between the two landscapes (which would 

require a four-dimensional plot for direct visual correspondence). For example, in Figure 2a at 

the top of the GEX landscape we can see a cluster of CoNGA hits which all belong to GEX cluster 

2 (light green on the left half of the disk) and TCR cluster 3 (red on the right half of the disk), or 
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equivalently, cluster pair (2,3); we can infer that these correspond to the group of clonotypes in 

the TCR landscape also located near the top of the plot, that they are likely CD8+ (from the 

thumbnail in Fig. 2b), and largely TRAV14 (from the TCR cluster identifier in Fig. 2a). Each cluster 

pair containing an arbitrary minimum number of CoNGA hits (here 5) is characterized by a row of 

sequence-logo 18 style visualizations (Fig. 2c/f) that identify the distinguishing features of those 

CoNGA hits, including the most significant DEGs, TCR gene segment usage, CDR3 motifs, and 

a GEX logo highlighting several hallmark genes defining canonical T cell subsets (CD4, CD8, 

etc.). These are arranged in a consistent format that can be scanned for rapid assessment of a 

cluster’s position within major cell subsets.  

 

Five CoNGA cluster pairs of size 5 or greater were identified in the dataset of mixed CD4 and 

CD8 human T cells (Fig. 2c). The two largest clusters---(5,8) and (5,4), where the first number in 

each pair indicates the GEX cluster and the second the TCR cluster and we shorten 'cluster pair' 

to 'cluster' where context allows---represent MAIT cells: they show high expression of the gene 

KLRB1 (CD161) and an invariant TRAV1-2/TRAJ33 alpha chain and restricted Vβ usage. Cluster 

(2,3) contains naive phenotype CD8+ cells that score highly on a sequence-based CD8 

compartment preference score (red 'cd8' in the 'TCRseq features' column; see Methods). Their 

significant CoNGA scores may reflect the presence of shared sequence features that bias toward 

the CD8 phenotype and hence correlate with greater similarity of gene expression. Similarly, 

clusters (0,2) and (4,2) contain CD4+ cells and score low on the CD8 sequence score (blue 'cd8' 

in the TCRseq features column) and hence may reflect shared TCR sequence features and gene 

expression consistent with CD4+ fate choice. Application of CoNGA to a second human PBMC 

dataset and to a mouse PBMC dataset yielded similar results (Fig. S2), with iNKT cells replacing 

MAIT cells as the dominant invariant subset in the mouse. Turning to the dataset of human CD8+ 

T cells (Fig. 2f), we again see two MAIT clusters, (4,11) and (4,5), differentiated by their TCR 

beta chain V gene usage (TRBV20 versus TRBV6). Cluster (2,12) is characterized by a strong 

TCR beta chain sequence motif and high expression of cytotoxicity/activation markers including 

GNLY and CCL5. The TCR sequence motif matches the consensus for the response to the 

immunodominant A*02:01-restricted Influenza M158 epitope 12. The assignment of this specificity 

to these cells is supported by the fact that the top DEG for this cluster ('A02_GILG9') is actually 

the read count for a DNA-barcoded A*02:01-M158 multimer that was included in the experiment 

(note that these pMHC read counts were used for cluster annotation by differential expression 

analysis but were excluded from the CoNGA neighbor graph construction, 2D projection, and 

clustering steps so as not to bias the results).  
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CoNGA defines a HOBIT+/HELIOS+ T cell population shared 

across multiple donors 

We next applied CoNGA to four large datasets of peripheral blood CD8+ T cells that were 

enriched for binding to a panel of 50 DNA-barcoded pMHC multimers (10x_200k_donor1-4 19). 

The majority of these cells were sorted for positive binding to at least one of the pMHC multimers, 

and indeed our analysis of TCR:pMHC binding described below finds a number of strong epitope-

specific responses. For a few of the pMHC multimers, however, we observed significant levels of 

non-specific binding (Fig. S3), for example to MAIT cells, or to cells that were very likely part of 

epitope-specific responses to other epitopes. For this reason, these datasets also include diverse 

T cells whose binding specificity extends beyond the pMHC multimer panel. CoNGA detected a 

large number of significant GEX/TCR correlations across these datasets, identifying 62 cluster 

pairs of size at least 5 (Figs. S4-7) and 42 using the more stringent size threshold of .1% of the 

dataset. Figure 3 provides an overview of all cluster pairs with at least 21 CoNGA-identified 

clonotypes (.1% threshold) in the 10x_200k_donor1 dataset. Further examination allowed 

categorization of the CoNGA cluster pairs depicted in Figure 3 into three groups: (1) Flu M158-

responding clones; (2) MAIT cells; (3) a population of clonotypes with a shared expression profile 

(high expression of genes including the transcription factors ZNF683 (aka HOBIT) and IKZF2 (aka 

HELIOS), along with DUSP1/2, CD7, CD99, and KLRD1), diverse TCR gene usage, and rather 

long CDR3 regions. 

 

To gain further insight into the large population of HOBIT-expressing clonotypes identified by 

CoNGA, we compared their TCR sequences to a background set formed by pooling all the 

remaining TCR sequences in the dataset (Table 2; see Table S1 and Fig. S8 for details on the 

amino acid property scores). As expected from examination of the TCR sequence logos in Figure 
3, the CDR3α and CDR3β loops are significantly longer in the HOBIT+ CoNGA population than 

in background (P<10-300). The CDR3s are also (1) more positively charged (P<10-40); (2) higher 

in aromatic residues, particularly tryptophan (P<10-60), and hydrophobic and bulky amino acids in 

general (low 'surface' and high 'volume' scores in Table 2); and (3) higher in cysteine (>100-fold 

enriched in the CDR3β, P<10-50). These sequence characteristics are strikingly similar to features 

identified in a comparison of MHC-independent versus MHC-restricted TCR sequences from an 

experimental study of TCR repertoires in MHC-knockout mice 20. Similar trends were also seen 

in comparisons of simulated and measured TCR sequences from pre- versus post-selection 

repertoires 21–23, and in CD8aa intraepithelial lymphocytes and their thymic precursors 24,25. 
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Depletion of cysteine from the CDR3 loops of MHC-restricted TCRs has been hypothesized to 

reflect a penalty for disulfide bond formation with cysteines in MHC-presented peptides imposed 

by negative selection in the thymus; hydrophobic residues positioned within the apex of the CDR3 

region are important for mediating interactions with self-peptide MHC in the thymus 23. Based on 

these trends, we hypothesize that this CoNGA-identified population represents a noncanonical, 

self-specific or MHC-independent, T cell population. To facilitate analysis, we developed a 

numerical score, the iMHC score (for 'independent of pMHC'), that captures their defining CDR3 

sequence features (see Methods and Table S2). 

 

We next sought to determine the frequency of the HOBIT+ population in peripheral blood T cells 

based on putative cell surface markers identified from their DEGs. Analysis of the features 

distinguishing the HOBIT+ population in 10x_200k_donor1 suggested that they were likely 

CD45RA+ CD45ROdim based on TotalSeq labeling, negative for CCR7 expression, and positive 

for KLRC2, KLRC3, and a number of KIR genes (Fig. 4a). Therefore, we predicted the HOBIT+ 

cells would be CD45RA+ CD45ROdim/- CCR7- KLRC2+ KLRC3+ KIR+/- in their surface marker 

phenotype (see Fig. S9 for gating strategy). We were unable to examine the protein levels of 

either HOBIT or KLRC3 directly due to the lack of commercially available antibodies. Notably, in 

the report describing the generation of a HOBIT monoclonal antibody its expression was found to 

be highest in CD45RA+ CCR7- CD8 T cells 26. Labeling of PBMC samples from healthy blood 

donors with these cell surface markers for flow cytometric analysis confirmed the presence of 

CD45RA+ CD45ROdim/- CCR7- CD8 T cells expressing all combinations of KLRC2 and KIR2D (i.e. 

KLRC2+KIR2D-, KLRC2+KIR2D+, and KLRC2-KIR2D+) (Fig. 4b). The presence of both KLRC2+ 

KIR2D- and KLRC2+KIR2D+ populations is consistent with the ubiquitous KLRC2 expression and 

stochastic KIR2D expression within the HOBIT+ population of 10x_200k_donor1. However, the 

KLRC2-KIR2D+ phenotype is inconsistent with these criteria and likely represents a distinct (but 

sizable) CD8 subset. As a percentage of total PBMC CD8 T cells, the KLRC2+ KIR2D+/- subset is 

in the range of 0.2-10.1% while KLRC2- KIR2D+ cells ranged between 0.3-7.6% (n = 11) (Fig. 
4c). We next sorted the KLRC2+ KIR2D+/- and KLRC2- KIR2D+ CD8 T cells and measured 

ZNF683, KLRC2, and KLRC3 expression within these populations relative to each donors’ own 

sorted CD8+CD45RA-CD45RO+ memory subset using qRT-PCR. Here, we found expression of 

KLRC2 and KLRC3 was enriched in the KLRC2+ KIR2D+/- CD8 T cells, and to a lesser extent in 

the KLRC2- KIR2D+ subset (Fig. 4d). However, ZNF683 appeared to be enriched only within the 

KLRC2+ KIR2D+/- subset, supporting their identity as the putative HOBIT+ population and further 

suggesting KLRC2- KIR2D+ T cells are in fact a separate, distinct subset. Taken together, these 
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data confirm the existence of CD8+ CD45RA+ CD45ROdim/- CCR7- KLRC2+ KIR2D+/- T cells in 

peripheral blood expressing ZNF683 consistent with the HOBIT+ population, and that this subset, 

while variable across individuals, comprises a sizable fraction of the CD8 T cells (up to 10% in 

some individuals). 

CoNGA identifies GEX/TCR correlation in thymic T cells 

We next applied CoNGA to a recently published single-cell atlas of human thymic T cells 27. This 

dataset combines thymic tissue from embryonic and fetal stages as well as postnatal thymi from 

children and adults, totaling over 9400 clonotypes with paired alpha and beta TCR sequences. 

CoNGA identified a large number of significant hits in this rich and complex dataset, primarily 

within the DP (double-positive), CD8 single positive (SP), CD4 SP, Treg, and CD8αα+ thymic 

populations (Fig. 5). In TCR sequence space, we see a concentration of hits in the TRAV41 

cluster (this TRAV gene is enriched in DP cells), the TRAV1 and TRAV12 clusters (enriched in 

CD8 cells), and in the TRAV14 cluster (enriched in CD8αα cells) (Fig. 5). The CD8+ cluster pairs 

identified by CoNGA also showed high CD8 sequence scores and high scores for a measure 

('alphadist') that reflects the genomic distance between the TRAV and TRAJ gene segments 

incorporated in a clonotype's TCR alpha chain. The DP cluster pairs show low alphadist scores, 

preference for TRAV41 and other TRAV genes at the 3' end of the locus, longer CDR3 loops 

(CDR3 length has been shown to decrease during thymic selection 21), and higher scores for the 

rim, surface, and disorder amino acid properties, which may suggest more polar, less bulky, and 

less strongly interacting CDR3 regions. Consistent with the findings of Park et al., the CD8αα 

cluster pairs both show low alphadist scores, however, CoNGA further identified high iMHC 

scores and longer CDR3 loops as TCR features of these clusters. Interestingly, the CD8αα(II) 

cluster pair expressed both ZNF683 and IKZF2, which together with TCR features similar to those 

of the HOBIT+ T cells in the blood identified above, suggests a possible precursor relationship 

between these two populations that warrants further investigation.   

CoNGA graph-vs-feature analysis confirms sharing of the 

HOBIT+/HELIOS+ T cell subset across donors 

We have seen that CoNGA graph-vs-graph analysis can identify a variety of correlations between 

gene expression and TCR sequence, ranging from the invariant MAIT and iNKT lineages, to 

sequence motifs and expression biases in an epitope-specific response, to the weaker CDR3 
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sequence preferences and differentially expressed genes that characterize the HOBIT+ 

population (which would likely be difficult to identify from analysis of TCR sequence or gene 

expression alone). To be detected, these correlations must be characterized by some degree of 

elevated global similarity in both transcriptional profile and TCR sequence within the relevant cell 

population. Thus, correlations that involve only a few genes or very specific TCR sequence 

features, or ones that are not well captured by our global GEX and TCR distance measures, may 

go undetected. CoNGA graph-vs-feature analysis was developed as a complementary graph-

based approach that could detect GEX/TCR correlations that are not characterized by global 

similarity of both properties. In graph-vs-feature analysis, numerical features calculated on the 

basis of one cellular property, GEX or TCR sequence, are mapped onto a similarity graph defined 

by the other property, and the feature score distributions for each of the neighborhoods in the 

graph are compared to the background distributions to identify neighborhoods with skewed scores 

(here a graph neighborhood consists of a single central vertex together with all of its directly 

connected neighbors). As GEX features, we consider the expression levels of individual genes, 

and for TCR sequence features, we use a set of CDR3 amino acid property values as well as a 

handful of additional, sequence-based scores (Table S1 and Fig. S8).  

 

We used graph-vs-feature analysis to identify additional members of the HOBIT+/HELIOS+ 

unconventional T cell subset by looking for GEX graph neighborhoods with elevated iMHC scores. 

Although the per-clonotype iMHC score is highly variable (Fig. 6a), by computing averages over 

GEX graph neighborhoods we can identify a subregion of GEX space with enhanced scores (Fig. 
6b), whose significance can be assessed using standard statistical tests (Fig. 6c). Three of the 

four 10x_200k donors show populations of clonotypes with significantly enhanced iMHC scores 

(Fig. 6c-f) whose DEGs correlate well with one another and with the key marker genes (ZNF683, 

CD7, CD99, DUSP1/2) for the original HOBIT+ CoNGA clusters. Interestingly, the outlier donor 

with very few iMHC-high clones was also significantly older than the other 3 donors (age 50 versus 

ages 30, 31, and 38), consistent with an age-related decline of this putative natural T cell 

population. Comparison of iMHC score distributions for the HOBIT+ CoNGA clonotypes to those 

of TCRs with known MHC restriction (Fig. S10) suggests possible affinity with other MHC-

independent T cell subsets. 
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Graph-vs-feature analysis reveals differential gene expression 

across the TCR landscape 

We applied graph-vs-feature analysis in the reverse direction (i.e. between the TCR graph and 

GEX features) to identify genes that are differentially expressed in specific TCR graph 

neighborhoods. Table 3 provides the top hits from this analysis for the datasets analyzed in this 

study (the top significant gene for each cluster pair and a maximum of 10 genes per dataset are 

shown). Notable features include MAIT-associated genes such as KLRB1 and SLC4A10; genes 

associated with the iMHC population such as ZNF683 and KLRC3; and genes upregulated in the 

M158 response including ITGB1 and KLRC1 (in donor 2). We also observed TCR neighborhoods 

with elevated levels of CD8A and CD8B, which appear to overlap with the populations identified 

in the earlier graph-vs-graph correlation analysis and suggest the presence of TCR sequence 

features that bias toward the CD8+ compartment. Some associations are a consequence of the 

V(D)J recombination process itself, such as the positive association between TCR neighborhoods 

using TRBJ1 family genes and the TRBC1 constant region, which is deleted during D-J 

rearrangement involving TRBJ2-family genes and hence cannot be used in TRBJ2-containing 

TCRs.  

 
Figure 7 illustrates four graph-vs-feature correlations, showing visually how specific TCR-based 

and GEX-based features correlate across the 2D clonotype landscapes. In donor 1 (Fig. 7a), the 

correlation between the iMHC score, a TCR feature, and two GEX features, expression of the 

genes ZNF683 and KLRC3, is shown by coloring the clonotypes in the GEX UMAP projection by 

these three features, averaged over GEX graph neighborhoods. Here, the averaging serves to 

reduce noise and also to highlight TCR feature trends that are consistent with the GEX similarity 

structure (since we are averaging over the GEX graph neighborhoods). In donor 2 (Fig. 7b), we 

can see correlation, now over the TCR landscape and averaged over TCR graph neighborhoods, 

between a TCR feature, cell-surface bound A*02:01-M158 pMHC, and expression levels of two 

genes that mark the M1-responding clonotypes. In donor 3 (Fig. 7c), we see correlation over the 

TCR landscape between a TCR feature, occurrence of the canonical MAIT alpha chain, and the 

expression of two MAIT cell marker genes. Finally, in donor 4 (Fig. 7d), we can see the correlation 

over the TCR landscape between a TCR feature, usage of the TRBV30 gene segment, and 

expression of the gene EPHB6. 

 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.134536doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.134536
http://creativecommons.org/licenses/by-nd/4.0/


 

 

Our TCR graph-based differential expression analysis identified several associations with the 

EPHB6 gene (and its murine homolog Ephb6), which codes for the Ephrin-B receptor Type 6 

protein EPHB6 (Table 3, for example, the top non-MAIT association for 10x_200k_donor4 and 

the top non-iNKT association for vdj_v1_mm_balbc_pbmc). A recurring feature of these 

associations is the usage of the TRBV30 gene segment (TRBV31 in mouse). A focused search 

for covariation between TCR gene segment usage and gene expression using differential 

expression analysis confirmed a strong tendency for higher EPHB6 expression in clonotypes that 

incorporate the TRBV30 gene segment (or TRBV31 in mouse; Fig. 8 and Table S3). The TRBV30 

segment is unique among TRBV genes in being located downstream of the TRBJ and TRBC 

genes at the end of the TCR beta locus; incorporation of TRBV30 into the TCR by V(D)J 

recombination requires an altered joining process in which intervening DNA sequence is inverted 

rather than being deleted 28. Providing a potential clue into the mechanism underlying this 

covariation, EPHB6 is located adjacent to TRBV30 on Chromosome 7, ~40kb downstream from 

the TCR beta locus (Fig. 8a). The strong correlation between TRBV30 usage and EPHB6 

expression may indicate that expression of a TRBV30-containing TCR transcript also boosts 

expression of the EPHB6 gene (the mouse TRBV31 gene segment is located at an analogous 

location to that of TRBV30 in the mouse TR locus, and is also directly adjacent to the mouse 

homolog Ephb6). Given that EPHB6 has been shown to play a role in T cell activation 29,30, 

TRBV30+ clonotypes may have distinctive functional properties due to their elevated expression 

of the EPHB6 transcript. We also observed covariation, albeit weaker, between TRAV1-1 usage 

and expression of the DAD1 (Defender against cell death 1) gene (Table S3), which flanks the 

TCR alpha locus at a position analogous to that of EPHB6. Given that TRAV1-1 and DAD1 are 

located at opposite ends of the TCR alpha locus, the mechanism underlying this correlation is 

less clear. Together, these findings show an interaction between the usage of TCR genes at the 

edges of the TCR loci and the expression of non-TCR genes flanking the loci. 

Neighbor-graph analysis of TCR:pMHC binding highlights GEX 

similarity among T cells that recognize the same epitope 

The use of pMHC-multimers conjugated to DNA barcodes as cell labeling reagents enables high-

throughput interrogation of pMHC binding in parallel with other single-cell analyses. We applied 

CoNGA to investigate correlation between gene expression profiles, TCR sequences, and 

pMHC:TCR interactions in a large dataset of human T cells sorted for pMHC-multimer binding 

(10x_200k_donor1-4). To do this, we used the pMHC-binding information, stringently filtered and 
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condensed to the level of clonotypes (see Methods), to define a new neighbor graph structure in 

which edges connect clones that bind to the same pMHC. We then applied CoNGA graph-vs-

graph analysis to look for statistically significant overlap between this pMHC-binding graph and 

the GEX and TCR similarity graphs defined above. We measured graph overlap, on a per-pMHC 

basis, as the enrichment of GEX (or TCR) similarity graph edges within the pMHC positive 

clonotypes. Specifically, for each pMHC, we looked to see whether there were more GEX (or 

TCR) similarity edges within the set of clonotypes positive for that pMHC than we would expect 

by chance, and quantified this graph overlap by computing a fold-enrichment as well as an 

approximate P-value (Table 4, Figure 9). From this analysis we can see, as expected, that nearly 

all the pMHC-positive clonotype subsets show greater than expected TCR sequence similarity. 

Indeed, the only pMHCs with a negative TCR neighbor-enrichment score are A03_KLG, which 

appears to show high levels of non-specific binding (Fig. S3), and B08_RAK in donor 1, who is 

HLA-B*08:01 negative. Moreover, pMHCs with large numbers of analyzed clonotypes show highly 

significant TCR similarity as assessed by the TCR-pMHC graph overlap. Interestingly, we also 

see that all pMHC-positive populations show greater than expected GEX similarity, with highly 

significant P-values and large fold-enrichments for most pMHCs with a sufficient number of 

analyzed clones. These results suggest that clonotypes positive for the same pMHC have more 

similar gene expression profiles than would be expected by chance.  

 

We analyzed the expression patterns of specific marker genes to better understand these shared 

gene expression profiles. We performed all-against-all differential expression analyses to identify 

upregulated genes within each pMHC-positive subset. To visualize the results of this analysis, we 

selected the most common differentially expressed genes in these comparisons and created a 

gene expression heat map, clustering both the rows (pMHCs) and columns (genes) by similarity 

(Fig. 10). Examination of the expression patterns in Figure 10 reveals a number of trends: the 

naive responses (MART1 and B08_RAK in the B*08-negative donor 1) cluster together at the top 

and show higher levels of CD45RA and lower levels of CCL5 and CD45RO; flu-M158 responses 

cluster together based on shared expression of specific markers including GNLY, ITGB1, and 

IFITM1; EBV-specific responses show what may be a partitioning based on whether the antigens 

are 'early' or 'latent' genes, with the early-gene responses showing higher CCL5 and lower 

CD45RO compared to the 'latent'-gene responses (Fig. S11).    
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Discussion 
In this study, we have introduced and applied a new analytical tool, clonotype neighbor graph 

analysis or “CoNGA”, which we demonstrated to be capable of uncovering relationships within T 

cell populations defined by shared TCR sequence and gene expression features within large 

single-cell datasets. Previous works connecting the T cell state to its antigen-specificity have been 

limited to measuring variation in gene expression within cells of the same clonal lineage. CoNGA 

circumvents this strict limitation by defining neighborhoods based on TCR similarity then 

representing each clonal lineage within the neighborhood by a single representative cell, thus 

preserving phenotypic and TCR information from unexpanded clones that might otherwise be 

ignored. Application of CoNGA’s graph-vs-graph analysis on a diverse collection of datasets 

uncovered a number of previously unrecognized connections between TCR and GEX space, 

including distinct GEX profiles of epitope-specific T cells; bias in the repertoire selection of naive 

CD8+ and CD4+ T cell populations; multiple populations of thymic T cells with biased TCR 

repertoires; and a putative MHC-independent, HOBIT/HELIOS-expressing T cell subset detected 

both in the thymus and peripheral blood with distinctive CDR3 sequence features.  

 

Further, while the identification of marker genes associated with cells clustered in GEX space is 

a routine part of single-cell analysis, there are currently no available methods for systematically 

identifying genes associated with TCR clusters or TCR sequence biases that define GEX clusters. 

CoNGA addresses this gap with its graph-vs-feature analysis by measuring a number of default 

TCR properties (amino acid composition, hydrophobicity, length, TCRdist score, etc.) before 

scanning the GEX space to detect clustered areas enriched for one or more of these features. 

Applying this mode of analysis revealed the long CDR3s of the HOBIT+ population enriched for 

hydrophobic residues, and a novel and highly significant correlation between expression of the 

EPHB6 gene and usage of the TRBV30 gene segment. Importantly, this mode of analysis is not 

limited to only TCR features but any other labelled feature (e.g. pMHC, cell surface marker, etc.) 

linked, quantified, and integrated into the dataset. In this regard, CoNGA analysis applied to a 

graph defined by single-cell pMHC-binding data determined that T cell populations specific for 

different pMHCs show distinctive GEX profiles, with evidence of clustering of EBV-epitope specific 

T cell populations according to the stage (early or latent) of the gene from which the epitope is 

derived. By systematically investigating connections between TCR sequence properties and GEX 

space within the dataset, CoNGA may significantly reduce the amount of time, effort, and missed 
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correlations inherent in a manual approach. We believe that these findings and our analysis 

pipeline will be of interest to a range of researchers working on T cells and single-cell analysis.  

 

An important next step will be to validate our findings by applying CoNGA to other datasets with 

GEX and TCR (and perhaps pMHC binding) information, as they become available. The rapid 

pace of single-cell technology development suggests that new and larger datasets, with additional 

phenotypic information from DNA-barcoded tagging reagents spanning diverse biological and 

clinical settings, will become available in the near future. It will also be important to experimentally 

characterize the T cell populations identified by CoNGA, which should be possible using flow 

cytometry and the marker genes highlighted by CoNGA clustering. 

 

Our analysis has a number of important limitations that could be addressed in future work. First, 

a consequence of operating at the level of clonotypes rather than individual cells is that we miss 

out on variation within the cells of expanded clones. This includes variation in gene expression 

profile as well as variation in strength of pMHC binding (for datasets with pMHC multimer binding 

information). Although we found that gene expression was largely consistent within clonally 

related cells, it may be worth exploring approaches in which cellular resolution is preserved, for 

example by defining graphs at the level of individual cells and masking out intra-clonotype 

neighbor edges to eliminate the strong signal of clonal GEX/TCR correlation. It is also important 

to keep in mind that the results of applying CoNGA will depend critically on the distance measures 

used to define clonotype similarity and construct the neighbor graphs. Other measures of TCR 

similarity, for example derived from structural simulations, or of gene expression similarity, may 

highlight different features of GEX/TCR correlation and/or may be more sensitive. The same is 

true of other measures of TCR/GEX correlation, for example ones that directly use distances 

rather than neighbor graphs. In preliminary experiments we found neighbor-graph overlap to be 

generally superior to direct correlation of distance distributions (Fig. S12), but there are many 

other possible approaches. Another limitation is that, in our experience, successful application of 

CoNGA requires a relatively large number of unique clones (at least several hundred), which 

depending on the degree of clonal expansion may require a substantially larger number of 

individual cells. Finally, the generality of the biological observations we report here should be 

weighed against the small number of donors examined. Future studies on larger cohorts will be 

necessary to definitively assess some of our observations. 
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To our knowledge, CoNGA is the first algorithm reported for the systematic detection of GEX/TCR 

correlation. As such, there are many possible extensions to explore in future work. CoNGA is 

agnostic to the source of the clonotype graphs, and hence could be applied to graphs defined by 

new similarity measures (based on surface protein expression, for example), new T cell clustering 

approaches 31, epigenetic rather than gene expression profiles, or new immunological and clinical 

phenotypes. CoNGA could also be applied to B cell clonotypes by incorporating a BCR sequence 

similarity score analogous to TCRdist. We applied CoNGA to identify correlation between 

numerical functions defined on TCR sequence (CDR3 amino acid properties and the iMHC score) 

or on the GEX profile (expression of individual genes), but other scalar functions of 

TCR/GEX/pMHC-binding could be used instead and might allow sensitive detection of specific 

axes of GEX/TCR correlation. Another exciting direction would be to use CoNGA to analyze the 

role of genetic variation outside the TCR region on GEX profile, TCR sequence, or pMHC binding: 

merging datasets from genetically diverse individuals and defining genotype similarity graphs 

might be one approach for doing this. Finally, it will be worthwhile to explore the use of more 

sophisticated graph-correlation algorithms developed in the computer science and machine 

learning communities as alternatives to the neighborhood-overlap and neighborhood-score 

enrichment that we have applied here.  

 

The results of our analyses have a number of broader implications. First, the observation of a 

diversity of gene expression profiles across the different epitope-specific T cell populations argues 

for a broad continuum of memory T cell phenotypes 32 rather than a small number of discrete 

subsets. Indeed, the definition of memory phenotypes would seem to be significantly determined 

by the eliciting pathogen. It also suggests that improved prediction of target pMHC epitopes for T 

cells might be possible by combining TCR sequence with information on GEX profile 33. The 

putative MHC-independent and naive T cell populations identified by CoNGA hint at 

developmental influences of TCR sequence on T cell fate that go beyond the well-characterized 

role of invariant and semi-invariant TCRs 34. We are optimistic that new analytical approaches 

combined with novel high-throughput single-cell experiments will continue to illuminate new 

aspects of adaptive immunology in the coming years. 
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Methods 

CoNGA software package 

An open-source python3 package implementing CoNGA graph-vs-graph and graph-vs-feature 

analysis is available from the software repository github (https://github.com/phbradley/conga). 

The conga package is built on the scanpy 35 python package 

(https://github.com/theislab/scanpy) for single-cell analysis and makes heavy use of scanpy's 

AnnData object to store integrated gene expression and TCR sequence data. We are grateful to 

the authors of scanpy for creating such a robust and useful package. CoNGA includes an 

implementation of the TCRdist 12 distance calculation and TCR logo construction routines. Finally, 

CoNGA depends on the standard python data science tools numpy, scipy, matplotlib, 

pandas, and scikit-learn for visualization, data manipulation, and statistical calculations.  

TCR analysis 

Clonotype data from 10x genomics is first converted into a TCRdist 'clones file' and the matrix of 

TCRdist distances is computed. By default, the 10x clonotype definitions are filtered to remove 

spurious chain sharing and merge split clonotypes (for example due to partial recovery of a 

second TCRalpha transcript). Kernel principal components analysis as implemented in scikit-

learn's KernelPCA class is then used to extract the top 50 components of variation from this 

distance matrix; these kernel PCs can be directly incorporated into the standard single-cell 

workflows for clustering and dimensionality reduction in place of the principal components 

extracted from the gene expression counts matrix. For generation of 2D landscape projections, 

CoNGA uses the UMAP algorithm for dimensionality reduction 15 as implemented in 

scanpy.tl.umap. Clusters of clonotypes with similar T cell receptor sequences are identified 

with the Louvain 16,17 graph-based clustering algorithm (scanpy.tl.louvain). Both UMAP 

projection and clustering rely on a nearest neighbors calculation conducted with the 

scanpy.pp.neighbors routine with 10 neighbors and 50 principal components (the 50 kernel 

PCs computed from the distance matrix). To annotate the Louvain clusters in CoNGA 

visualizations, the most frequent V segment in each cluster is identified and appended to the 

cluster name if it is present in at least 50% of the clustered TCRs, uppercased if present in at 
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least 75% of the TCRs (clusters are initially named with consecutive integers, starting at 0 with 

the largest cluster). 

TCR sequence features 

For each clonotype, CoNGA calculates a set of TCR sequence-based scores for use in graph-vs-

feature analysis and for annotating graph-vs-graph cluster pairs (Table S1). First, a set of 28 

different amino acid properties (Fig. S8, Table S1) are averaged over the central amino acids in 

the alpha and beta chain CDR3 loops (excluding the first 4 and last 4 residues of each CDR3, 

where the full CDR3 sequence is defined as beginning with the conserved cysteine and ending 

with, and inclusive of, the phenylalanine immediately before the GXG motif in the J region). These 

scores include a set compiled from original sources 36–41 by the authors of the VDJtools package 
42 as well as the five Atchley factors 43. Seven additional sequence-based scores are calculated: 

'alphadist', which measures the ordinal distance between the Valpha and Jalpha genes when the 

full set of gene segments is ordered by genomic position; 'imhc', the iMHC score (detailed below); 

'cd8', a simple CD8-versus-CD4 preference score calculated from the TCR V and J gene usage, 

CDR3 length, and CDR3 amino acid composition, based on frequency differences between flow-

sorted CD8+ and CD4+ TCR sequence repertoires (AS, unpublished results); 'cdr3len', total 

CDR3 length; 'mait', which assigns a score of 1 to TCRs with an alpha chain using the TRAV1-2 

and TRAJ33/TRAJ20/TRAJ12 segments (TRAV1 and TRAJ33 in mouse) and a CDR3 length of 

12, and 0 to all other TCRs; 'inkt', which assigns a score of 1 to TCRs with the 

TRAV10/TRAJ18/TRBV25 gene combination and a CDR3 length of 14, 15, or 16 

(TRAV11/TRAJ18 and length 15 for mouse); and 'nndists_tcr', which measures the density of 

TCR sequences nearby the scored clonotype by calculating the average TCR distance to the 

nearest 1% of clonotypes. The iMHC (for 'independent of pMHC') score is a weighted linear 

combination of TCR sequence features (Table S2). The parameters were fit by using L1-

regularized logistic regression to discriminate the TCR sequences of HOBIT+ CoNGA hits 

(CoNGA score<0.2) in GEX cluster 2 of dataset 10x_200k_donor1 (Fig. 3) from the TCRs of the 

clonotypes in the other GEX clusters. We chose to draw the background clonotypes exclusively 

from the other GEX clusters to avoid inclusion of genuine HOBIT+ TCR sequences in our negative 

set.  
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Gene expression analysis 

Gene expression data in the form of read count matrices are processed according to standard 

workflows implemented in scanpy to eliminate cells and genes with low counts, high 

mitochondrial content, etc. Variable genes are identified and principal components analysis (PCA) 

is used to project the high-dimensional gene expression data down to a smaller set of components 

per cell (the default is 40 components). These gene expression PCs are used to select a single 

representative cell for each clonotype by taking the cell with the smallest average Euclidean 

distance in PC space to the other cells in the clonotype. Once the dataset has been reduced to a 

single cell per clone, the UMAP and Louvain clustering tools are applied to the PCA matrix to 

produce a gene expression landscape and a set of gene expression clonotype clusters. DEGs in 

clonotype groupings (for example the set of CoNGA hits in a cluster pair) are identified using the 

sc.tl.rank_genes_groups routine with the 'wilcoxon' method.    

 

The large thymus atlas T cell dataset 27 combined a heterogeneous set of donors and samples; 

merging these data to generate integrated projections and clusters required the original authors 

to perform an iterative batch correction scheme. As it was not immediately obvious how to recover 

the processed gene expression components from the publicly available data, and as a test of 

CoNGA's robustness to alternative neighbor graphs, we elected to use the provided 3D UMAP 

coordinates in lieu of gene expression PCs for the CoNGA GEX neighbor calculations described 

below. We also directly borrowed the GEX clusters from the original paper rather than reclustering 

the dataset.  

Graph-vs-graph correlation analysis 

In CoNGA graph-vs-graph correlation analysis, similarity graphs defined by gene expression and 

by TCR sequence are compared to identify vertices (clonotypes) whose neighbor sets in the two 

graphs overlap significantly. The CoNGA score assigned to a clonotype equals the probability of 

seeing an equal or larger overlap between its GEX and TCR neighborhoods by chance, multiplied 

by the total number of clonotypes to correct for multiple testing. The hypergeometric distribution 

is used to estimate this probability, as implemented in the scipy.stats module. Two types of 

similarity graphs can be used in CoNGA: K nearest neighbor (KNN) graphs, in which each 

clonotype is connected to its K nearest neighbors in gene expression or TCR space (Fig. 1a); 

and cluster graphs, in which each clonotype is connected to all the clonotypes in the same (GEX 
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or TCR) cluster. The neighbor number K for constructing KNN graphs is specified as a fraction of 

the total number of clones; for the calculations reported here, neighbor fractions of 0.01 and 0.1 

were used. The CoNGA score assigned to a clonotype is the minimum score over all graph 

comparisons, of which there were 6 combinations in the calculations reported here (GEX_KNN 

vs TCR_KNN, GEX_KNN vs TCR_cluster, and GEX_cluster vs TCR_KNN, for both the 0.01 and 

0.1 KNN neighbor fractions). Although in principle taking a minimum could lead to inflation of the 

significance scores, we find in practice from shuffling experiments that a threshold of 1.0 on the 

CoNGA score remains a useful indicator of genuine signal, particularly when we focus on cluster 

pairs with a minimum number of CoNGA hits. This may reflect correlation between neighborhoods 

of nearby clonotypes, which reduces the effective multiple-testing burden. 

Graph-vs-feature correlation analysis 

In CoNGA graph-vs-feature correlation analysis, numerical features defined on the basis of one 

property (GEX or TCR) are mapped onto similarity graphs defined by the other property, and 

graph neighborhoods with biased score distributions are identified. As GEX properties we 

consider the expression levels of all the individual genes as well as a feature ('nndists_gex') that 

captures the density of nearby clonotypes by calculating the average distance in GEX space to 

the nearest 1% of the clonotypes. The TCR features were described in an earlier section. As this 

analysis involves a large number of differential expression calculations (roughly the number of 

clonotypes times the number of different similarity graphs times the number of features), we use 

a two-step procedure that combines a pre-filter with the t-test followed by the more time-intensive 

Mann-Whitney-Wilcoxon (MWW) calculation for the top 100 hits per clonotype and graph that 

pass a t-test significance threshold ten times higher than the target threshold. The final 

significance score assigned to a detected association equals the raw MWW P-value multiplied by 

the product of the number of clonotypes and the number of features, to correct for multiple testing. 

Analysis of pMHC binding 

In the 10x_200k experiment, T cells were stained with a panel of 50 DNA-barcoded pMHC 

multimer reagents. Sequence reads for each of the pMHC barcodes were counted along with the 

reads for intracellular transcripts and included in the raw count matrix provided by 10x Genomics. 

The first step in our analysis was to assign individual T cells and T cell clonotypes as positive for 

binding to specific pMHC multimers based on the observed read counts for the pMHC DNA 

barcodes. A cell was called positive for the pMHC multimer with the highest barcode count if the 
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natural logarithm of that pMHC's barcode count exceeded the next highest log-count by at least 

2.0 (corresponding to a fold-difference in barcode counts of roughly 7.5; all counts were 

augmented by 1 prior to taking logarithms). To assign clonotypes to pMHCs, we averaged the 

log-counts for each pMHC over all the cells in the clonotype and again applied a threshold of 2.0 

between the top and second-highest averaged-log-counts. The results of this pMHC-binding 

analysis are summarized in Table 4 for all pMHCs with at least 5 positive clones in one of the four 

samples. We can see that, with the exception of the 'sticky' pMHC A03_KLG, the majority of 

pMHC+ positive cells belong to clones that are also called positive. 

Flow Cytometry Analysis and qRT-PCR of HOBIT+ population.  

To identify the HOBIT+, iMHC population of CD8 T cells using cell surface markers we performed 

flow cytometric analysis on PBMCs collected from apheresis rings of blood donors. PBMC 

samples were blocked with TruStain FcX prior to staining for CD3 (APC-Fire750, SK7), CD4 (PE-

Cy7, OKT4), CD56 (PE,  5.1H11), CCR7 (BrilliantViolet 785, G043H7),  CD11b (BrilliantViolet 

711, ICRF44),  CD45RA (BrilliantViolet 421, HI100),  CD45RO (BrilliantViolet 605, UCHL1) 

(BioLegend), CD8A (violetFluor450, RPA-T8), CD14 (biotin, 61D3), CD19 (biotin, SJ25C1),  

CD16 (biotin, 3G8) (Tonbo Bioscience), KIR2D ( FITC, NKVFS1), KLRC2 (PE-Vio615, REA205) 

(Miltenyi),  CD8B (PerCP-eFluor710, SIDI8BEE, Invitrogen), and CD248 ( AlexaFluor 647, B1/35, 

BD Biosciences) for 30’ at RT in PBS containing 2% FCS and 1 mM EDTA prior to secondary 

staining with streptavidin-BrilliantViolet 510 (Biolegend) for 15’ on ice. Stained cells were then 

analyzed with an Aurora spectral analyzer (Cytek) or sorted by an iCyt (Sony). Analysis of flow 

cytometry data was performed with FlowJo (BD Biosciences).  

 

To confirm expression of genes associated with the HOBIT+ CoNGA population, for four donors 

the PBMCs were sorted into three populations: KLRC2+ KIR2+/- (dump-, CD3+, CD56+/-, CD8+, 

CD45RA+, CD45ROdim/-, CD248-, CCR7-, KLRC2+ , KIR2D +/- ), KLRC2- KIR2+ (dump-, CD3+, 

CD56+/-, CD8+, CD45RA+, CD45ROdim, CD248-, CCR7-, KLRC2-, KIR2D+ ), and CD45RO+ 

(dump-, CD3+, CD56+/-, CD8+, CD45RA-, CD45RO+) as a control for assessing enrichment of 

the signature genes. Total RNA was extracted from the sorted cells with RNeasy Micro Columns 

(Qiagen), converted into cDNA (iScript, Bio-Rad), and assayed for ZNF683, KLRC2, KLRC3, and 

GAPDH expression using gene-specific primers and SYBR Green chemistry (iTaq, Bio-Rad) by 

qRT-PCR on a CFX96 (Bio-Rad). The fold-change relative to the CD45RO+ population was 

calculated using ΔΔCt with GAPDH as the housekeeping gene. The following are the primer 
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sequences: 

KLRC2_Fwd:CCTGATGGCCACTGTGTTAAA,KLRC2_Rev:GCGTTCTTGTATTCGGGGAA, 

KLRC3_Fwd:CAGGCCTGTGCTTCAAAGAA, KLRC3_Rev:GAAACACACCAATCCATGAGGAA, 

ZNF683_Fwd:CAAAGCGGGTCCCATTGAGTT, ZNF683_Rev:TGCACTCGTACAGGATTTTGC.  
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Figure Legends 
 

Figure 1. T cell clonotype neighbor graph analysis (CoNGA). (a) In graph-vs-graph analysis, 

CoNGA identifies correlation between T cell gene expression (GEX) and TCR sequence by 

constructing a gene expression similarity graph and a TCR sequence similarity graph and looking 

for statistically significant overlap between them. Overlap is assessed on a per-clonotype basis 

by counting the number of edges that originate at each clonotype and are shared between the 

two graphs, or equivalently by measuring the overlap between each clonotype's GEX graph 

neighbors and its TCR graph neighbors, and assigning a score that reflects the likelihood of 

seeing equal or greater overlap by chance. (b) A single clonotype and its GEX and TCR neighbors 

are shown in the GEX (left panel) and TCR (right panel) 2D UMAP projections for the 

10x_200k_donor2a dataset. The clonotype is marked with a black 'x', its GEX neighbors are 

shown as blue points, its TCR neighbors as green points, and the clonotypes that are both GEX 

and TCR neighbors are shown in red. The significance of the observed overlap---8 clones shared 

between two neighbor sets of size 24 in a total population of 2427 clonotypes---is calculated using 

the hypergeometric distribution, giving a P value of 1.7e-11. (c) In graph-vs-feature analysis, a 

numerical feature defined by one property (here gene expression) is mapped onto a similarity 

graph defined by the other property (TCR sequence), and graph neighborhoods with skewed 

score distributions are identified using statistical tests that compare the scores for each 

neighborhood (including the central vertex) with the scores of the remaining clonotypes. (d) The 

gene KLRB1 (CD161) shows a non-uniform distribution over the TCR sequence landscape---

discrete regions of higher expression (red) against a background of lower expression (blue)--- 

suggesting correlation between gene expression and TCR sequence. This is quantified for a 

single clonotype (green outline) and its TCR sequence neighbors (black outlines) in the inset violin 

plot, which shows the KLRB1 expression level for the clonotype and its neighbors on the right and 

for the remainder of the dataset on the left. The Mann-Whitney-Wilcoxon P value for this 

expression difference is 1.5e-46. 

 

Figure 2. CoNGA identifies GEX/TCR correlation in two datasets of T cells from peripheral 
blood. (a-c) A dataset of mixed CD4+ and CD8+ T cells (vdj_v1_hs_pbmc); (d-f) a dataset of 

CD8+ T cells (10x_200k_donor2a). (a,d) 2D UMAP projections of clonotypes in the dataset based 

on GEX similarity (left three panels) and TCR similarity (right three panels), colored from left to 

right by (1) GEX cluster assignment; (2) CoNGA score; (3) GEX/TCR cluster pair assignment, 
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using a bicolored disk whose left half indicates GEX cluster and whose right half indicates TCR 

cluster (only clones with CoNGA score less than 1 are shown); (4) TCR cluster; (5) CoNGA score; 

(6) GEX/TCR cluster pair assignment, restricted to clones with CoNGA score less than 1. (b,e) 
Expression of selected marker genes in the GEX UMAP landscape, for visual reference. (c,f) 
Gene expression and TCR sequence features of CoNGA hits in cluster pairs with 5 or more hits 

are summarized by a series of logo-style visualizations, from left to right: differentially expressed 

genes (DEGs), TCR sequence logos showing the V and J gene usage and CDR3 sequences for 

the alpha and beta chains 12; biased TCR sequence scores, with red indicating elevated scores 

and blue indicating decreased scores relative to the rest of the dataset (see Table S1 for score 

definitions); expression of a panel of marker genes shown with red disks colored by mean 

expression and sized according to the fraction of cells expressing the gene (gene names are 

given above). DEG and TCRseq sequence logos are scaled by the adjusted P value of the 

associations: full logo height requires a top adjusted P value below 10-6, with partial height and 

the relative apportionment of height within the logo dictated by the square root of the negative 

base 10 logarithm of the P values. DEGs with fold-change less than 2 are shown in gray. Each 

cluster pair is indicated by a bicolored disk colored according to GEX cluster (left half) and TCR 

cluster (right half). The two numbers above each disk show the number of CoNGA hits (on the 

left) and the total number of cells in those clonotypes (on the right) The dendrogram at the left 

shows similarity relationships among the cluster pairs based on connections in the GEX and TCR 

neighbor graphs.  

 

Figure 3. CoNGA plots and cluster logos for a large dataset of CD8+ T cells 
(10x_200k_donor1). Same arrangement of plots as in Figure 2. Only cluster pairs containing at 

least 21 CoNGA hits (.1% of the dataset) are shown. The three colored and dashed boxes group 

related cluster pairs. 

 

Figure 4. Identification of KLRC2+ CD8 T cells as the HOBIT+ iMHC-elevated population. 

(a)  2D GEX projection of the 10x_200k_donor1 dataset colored by 'is_hobit' (an indicator variable 

for the HOBIT+ CoNGA population), iMHC score, CD45RA and CD45RO TotalSeq, CCR7, 

KLRC2,  KLRC3, and KIR2DL3 expression averaged in its GEX graph neighborhood (with 

neighborhood size equal to 0.1% of the dataset). The is_hobit variable is 1 for all CoNGA hits in 

GEX cluster 2 and 0 otherwise. (b) Detection of KLRC2+ KIR2D+/- and KLRC2- KIR2D+ CD8 T 

cells in human PBMCs of two representative donors. Gated on lineage-, CD56+/-, CD3+, CD8+, 

CD4-, CD45RA+, CD45ROdim/- , CCR7-, CD248- cells (Full gating strategy in Figure S10). (c) 
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Frequency of cell populations in panel (b) as frequency of CD8 T cells. (d) ZNF683, KLRC2, and 

KLRC3 expression in sorted KLRC2+ KIR2D+/- and KLRC2- KIR2D+ CD8 T cells shown as fold-

change relative to CD8+ CD45RO+ T cells within each PBMC donor (n=4) .  

 

Figure 5. CoNGA plots and cluster logos for a large dataset of thymic T cells 
(thymus_atlas). Same arrangement of plots as in Figure 2, with two additions: below the raw 

GEX landscape thumbnails are added GEX-neighborhood averages of Z-score normalized 

expression levels, to aid in detecting differential expression of marker genes; to the right of the 

GEX landscape thumbnails are plotted four TCR feature scores, also GEX-neighborhood 

averaged ('ad' is short for the alphadist score and 'len' is short for cdr3len; see main text and 

Table S1). Only cluster pairs containing at least 9 CoNGA hits (0.1% of the dataset) are shown. 

The five colored and dashed boxes group related cluster pairs as annotated by the text labels.  

 

Figure 6. Graph-vs-feature correlation analysis reveals GEX neighborhoods with elevated 
iMHC scores across multiple donors. (a) 2D GEX projection of the 10x_200k_donor1 dataset 

colored by iMHC score (standardized to have mean 0 and standard deviation 1). (b) The same 

projection as in (a) but each clonotype is colored by the average iMHC score in its GEX graph 

neighborhood. (c) The same projection as in (a) but colored by P-values for iMHC enrichment in 

each clonotype's graph neighborhood (the set of iMHC scores in each clonotype's neighborhood 

are compared to the remainder of the iMHC scores using an unpaired, 1-sided Mann-Whitney-

Wilcoxon test). (d) 2D GEX projection of the 10x_200k_donor2 dataset colored by iMHC score 

neighborhood enrichment P-values. (e) 2D GEX projection of the 10x_200k_donor3 dataset 

colored by iMHC score neighborhood enrichment P-values. (f) 2D GEX projection of the 

10x_200k_donor4 dataset colored by iMHC score neighborhood enrichment P-values. (g) Top 10 

DEGs for the clonotypes with significant iMHC enrichment in the 10x_200k_donor1 dataset. (h) 
Top 10 DEGs for the clonotypes with significant iMHC enrichment in the 10x_200k_donor3 

dataset. (i) Top 10 DEGs for the clonotypes with significant iMHC enrichment in the 

10x_200k_donor4 dataset. (There were too few clonotypes with significant iMHC enrichment in 

the 10x_200k_donor2 dataset to identify differentially expressed genes). 

 

Figure 7. Graph-vs-feature correlation analysis highlights TCR:GEX covariation. In each of 

the four panel groupings, correlation between a score derived from the TCR sequence (left panel) 

and 1-2 scores derived from the GEX profile (right panels) is illustrated by mapping the scores 

onto the 2D UMAP GEX or TCR landscape for the given dataset (after Z-score normalizing and 
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averaging over graph neighborhoods).  (a) iMHC score averaged over GEX neighborhoods 

correlates well with marker genes ZNF683 and KLRC3 for the HOBIT+ population. (b) KLRB1 

and SLC4A10 averaged over TCR neighborhoods correlate with the MAIT cell population as 

defined by TCRα sequence. (c) ITGB1 and KLRC1 are elevated in the Flu A*02:M158 response, 

here defined by the surface counts for the multimerized A*02:M158 pMHC. (d) T cells with 

TRBV30-containing TCRs have elevated EPHB6 expression.  

 

Figure 8. TRBV30 gene usage and EPHB6 expression are correlated. (a) Genomic locations 

of TRBV30 and EPHB6 at the end of the human TCRbeta locus. (b-c) Average EPHB6 expression 

for TRBV30-negative and TRBV30-positive clonotypes in (b) 9 human datasets and (c) 3 mouse 

datasets. Each marker represents the average over all (TRBV30- or TRBV30+) clonotypes for a 

single dataset. The two markers for each dataset are connected by a dashed line. (d-g) 2D 

projections based on TCR sequence of a mouse (d-e) and human (f-g) dataset colored by 

TRBV30 (TRBV31 in mouse) usage (d,f) and EPHB6 expression (e,g) averaged over TCR 

neighborhoods. Strong correlation is evident between the two features, one derived from the TCR 

sequence and one from the gene expression profile. 

 

Figure 9. CoNGA identifies convergence of TCR sequence and gene expression profile 
within pMHC-positive clonotype subsets. Each marker represents a population of pMHC-

positive clonotypes in one of the four 10x_200k donors. Markers are labeled with the two-digit 

HLA allele and the first three amino acids of the peptide for the given pMHC (see Table 4 for 

details); colors indicate the source donor and symbols are sized based on the number of pMHC+ 

clonotypes found as indicated in the legend. Markers are positioned based on the rate of intra-

subset GEX (a) or TCR (b) graph edges relative to random expectation (x-axis; >1 indicates 

enrichment while <1 indicates depletion) and corresponding P value (y-axis).  

 

Figure 10. pMHC-positive clonotype populations show distinctive gene expression 
profiles. Each row corresponds to a pMHC-positive population; each row corresponds to a 

differentially expressed gene. Cells are colored according to the normalized transcript count 

(log+1 transformed) for the given gene in the corresponding population. 

 

Supplementary Figure 1. T cells belonging to the same clonotype have similar gene 
expression profiles. Gene expression UMAP projections of the 10x_200k_donor2a dataset 
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before condensing to a single cell per clonotype, with the 16 largest clonotypes shown in blue 

(one per panel) and the remainder of the dataset in gray. 

 

Supplementary Figure 2. CoNGA graph-vs-graph analysis of human and mouse peripheral 
blood T cells. CoNGA graph-vs-graph results for two additional PBMC T cell datasets: (a-c) 
human CD4 and CD8 T cells (vdj_v1_hs_pbmc3); (d-f) mouse CD4 and CD8 T cells 

(vdj_v1_mm_balbc_pbmc). Same arrangement of plots as in main text Figure 2. 

 

Supplementary Figure 3. Specific versus non-specific binding in the 10x_200k dataset. 
Comparison of binding data for four 'specific' pMHC multimers (A02_GIL, A02_ELA, B08_RAK, 

A02_GLC) and four 'sticky' pMHC multimers (A03_KLG, A03_RLR, A03_RIA, A11_AVF) in the 

10x_200k_donor2 dataset. (a) GEX landscapes colored by pMHC binding signal 

(log(barcode_read_count+1)). (b) TCR landscapes colored by pMHC binding signal. The 'specific' 

pMHCs show binding that is focused in specific areas of the landscapes, whereas the binding of 

the putative 'sticky' pMHCs is dispersed across the landscapes. (c) The Pearson correlation 

between binding profiles for different pMHCs is shown in matrix form according to the indicated 

color mapping. The specific pMHCs show very little correlation whereas the sticky pMHCs are 

significantly correlated in their binding, suggesting that a shared cellular property (TCR or CD8 

surface expression, general level of activation) is jointly influencing their binding. Note that 

A11_AVF (and A11_IVT) show additional specific binding in donor 1, who is A*11:01 positive; the 

A*03:01 pMHC multimers appear non-specific regardless of donor HLA type (data not shown). 

 

Supplementary Figures 4-7. CoNGA graph-vs-graph results for 10x_200k_donor1 - 

10x_200k_donor4, showing logos for all cluster pairs of size>=5. For each cluster pair, the top 

two pMHCs and their average (log) read counts are shown in the cluster pair dendrogram below 

the cluster pair sizes. Note that the top pMHCs for the HOBIT+ cluster pairs in donor 1 belong to 

the set of sticky pMHCs shown in Figure S3. 

 

Supplementary Figure 8. The 28 amino acid property scores currently used in CoNGA 
analyses. (a) Clustering dendrogram (left) and matrix visualization of the amino acid property 

scores, normalized to have mean 0 and variance 1. (b) The correlation matrix used to construct 

the dendrogram in (a). Each entry is colored by the absolute value of the Pearson correlation 

coefficient of the property values for the corresponding row and column. 
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Supplementary Figure 9. Gating strategy for KLRC2+ KIR2D+/- and KLRC2- KIR2D- CD8 T 
cells in Figure 5.  
 

Supplementary Figure 10. Single-chain iMHC score distributions for TCR subsets. Score 

distributions for CDR3α repertoires are shown on the left and for CDR3β repertoires on the right. 

Single-chain variants of the iMHC score were fit with L1-regularized logistic regression just as for 

the paired iMHC score. Subset labels are as follows: 'CD1b', GMM:CD1b-tetramer sorted T cells 

from Ref 44; 'VDJdb-MHC1', TCRs reported to bind to MHC class 1 presented epitopes in the 

VDJdb database 45; 'VDJdb-MHC2', TCRs reported to bind to MHC class 2 presented epitopes in 

the VDJdb database; 'dMAIT', diverse MAIT TCR sequences from Ref 46; 'hobit', T cells belonging 

to the HOBIT+/HELIOS+ population in 10x_200k donors 1, 3, and 4. 

 

Supplementary Figure 11. Epitope-specific T cell populations differ in CD45RA/RO 
expression levels. Log-transformed read counts for DNA-barcoded anti-CD45RA (x-axis) and 

anti-CD45RO (y-axis) antibodies, averaged over pMHC+ clonotypes, are plotted for the pMHCs 

shown in Figure 10. In the panel on the left, clonotypes are weighted equally, while in the panel 

on the right, larger clonotypes are given more weight (proportional to the logarithm of the clone 

size) to better reflect the underlying distribution of cells (particularly for the d1_A11 pMHCs, both 

of which have a relatively large number of positive cells distributed unevenly among a small 

number of clonotypes). 

 

Supplementary Figure 12. Comparison of graph-based and distance-based measures for 
assessing GEX/TCR correlation. Comparison of CoNGA scores to a distance-based score 

('distcorr') that measures, for each clonotype, the degree of correlation between the GEX and 

TCR distances from that clonotype to all other clonotypes in the dataset. Correlation is assessed 

using the Pearson correlation coefficient and associated P-value as returned by the 

scipy.stats.linregress function. (a) Scatter plots directly comparing the (negative log10-

transformed) significance scores assigned to each clonotype in the datasets. The majority of 

points with significant P values lie below the y=x line, indicating that the CoNGA graph-overlap 

measure assigns a higher significance score than distance correlation. One difficulty with raw 

distance correlation is that it doesn't discriminate between a set of clonotypes with low distances 

for both measures (nearby in GEX and in TCR space), on the one hand, and a set of clonotypes 

with high distances for both measures (far away in GEX and in TCR space), on the other: both 

increase the correlation coefficient, so a tight cluster in GEX and TCR space (like MAIT cells) can 
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artificially elevate distcorr scores for distant clones. (b) CoNGA and distcorr scores mapped to the 

GEX and TCR landscapes for 10x_200k_donor2a. The red ellipses indicate the A*02:M158 clones, 

which appear to be completely missed by the distcorr measure. 
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Table 1: Single-cell datasets analyzed in this study

Dataset Clonotypes Cells CoNGA Hitsa Description
vdj v1 hs pbmc 1539 1630 113 CD4 and CD8 T cells from the peripheral blood of a

healthy donorb

vdj v1 hs pbmc3 2783 2945 145 CD4 and CD8 T cells from the peripheral blood of a
healthy donorc

vdj v1 mm balbc pbmc 1421 1423 66 CD4 and CD8 T cells from the peripheral blood of a
balbc moused

10x 200k donor2a 2427 4721 149 CD8 T cells from the peripheral blood of a healthy
donore

10x 200k donor1 20 861 33 643 1956 CD8 T cells from the peripheral blood of a healthy
donor, sorted for pMHC-multimer bindingf

10x 200k donor2 8807 51 123 893 CD8 T cells from the peripheral blood of a healthy
donor, sorted for pMHC-multimer bindingg

10x 200k donor3 11 971 28 748 277 CD8 T cells from the peripheral blood of a healthy
donor, sorted for pMHC-multimer bindingh

10x 200k donor4 10 967 20 416 125 CD8 T cells from the peripheral blood of a healthy
donor, sorted for pMHC-multimer bindingi

thymus atlas 9410 9452 1044 Thymic T cells from embryonic, fetal, pediatric, and
adult samplesj

a Graph-vs-graph hits with CoNGA score ≤ 1
b https://support.10xgenomics.com/single-cell-vdj/datasets/2.2.0/vdj v1 hs pbmc 5gex
c https://support.10xgenomics.com/single-cell-vdj/datasets/3.1.0/vdj v1 hs pbmc3
d https://support.10xgenomics.com/single-cell-vdj/datasets/3.0.0/vdj v1 mm balbc pbmc 5gex
e Ref. 19, https://support.10xgenomics.com/single-cell-vdj/datasets/3.0.2/vdj v1 hs aggregated donor2
f Ref. 19, https://support.10xgenomics.com/single-cell-vdj/datasets/3.0.2/vdj v1 hs aggregated donor1
g Ref. 19, https://support.10xgenomics.com/single-cell-vdj/datasets/3.0.2/vdj v1 hs aggregated donor2
h Ref. 19, https://support.10xgenomics.com/single-cell-vdj/datasets/3.0.2/vdj v1 hs aggregated donor3
i Ref. 19, https://support.10xgenomics.com/single-cell-vdj/datasets/3.0.2/vdj v1 hs aggregated donor4
j Ref. 27, doi:10.5281/zenodo.3711134
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Table 2: Top 20 sequence features of the HOBIT+ subset in 10x 200k donor1

Feature Chain(s)a t-Statistic P valueb HOBIT+ mean BG meanc

CDR3 length AB 41.2 2.81×10−306 31.631 28.096
CDR3 length B 39.2 1.85×10−272 16.839 14.523
CDR3 length A 20.0 5.88×10−87 14.792 13.572
TRP per length AB 13.4 7.43×10−60 0.022 0.009
TRP per length B 11.9 2.99×10−59 0.027 0.011
surface B −15.0 4.93×10−54 0.058 0.061
CYS per length B 14.7 3.53×10−52 0.003 0.000
volume B 15.0 6.96×10−52 99.295 93.423
volume AB 14.0 4.26×10−49 189.896 181.447
charge B 14.1 1.39×10−47 0.020 −0.049
charge AB 13.9 2.34×10−45 −0.020 −0.123
mjenergy AB −12.8 1.15×10−43 −5.738 −5.540
surface AB −10.4 5.40×10−43 0.118 0.122
disorder AB −13.3 1.92×10−42 0.784 0.955
rim B −13.5 4.42×10−42 0.058 0.060
kf2 B 13.5 5.19×10−42 −0.298 −0.482
rim AB −10.3 5.51×10−38 0.118 0.121
strength AB 12.3 4.01×10−37 0.460 0.379
turn AB −10.6 6.00×10−36 2.306 2.383
CYS per length AB 12.7 2.37×10−32 0.002 0.000
a CDR3 regions over which the feature is computed
b Mann-Whitney-Wilcoxon P value
c Mean feature value over the remainder of the dataset
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Table 3: Top differentially-expressed genes in TCR graph neighborhoods

Cluster Invariant
Dataset Gene P valuea Enrichb pair Vα Vβ fractionc Comment

vdj vd1 hs pbmc NKG7 2.75e-54 3.86 (5,8) TRAV1-2 TRBV6-4 0.71 MAIT
vdj vd1 hs pbmc SLC4A10 2.69e-22 3.70 (5,4) TRAV1-2 TRBV20-1 0.91 MAIT
vdj vd1 hs pbmc GZMA 7.12e-13 4.18 (0,8) TRAV1-2 TRBV6-4 1.00 MAIT
vdj vd1 hs pbmc RP11-291B21.2 8.33e-04 1.56 (2,3) TRAV14/DV4 TRBV7-9 0.00 CD8 naive?
vdj vd1 hs pbmc SLC4A10 3.89e-120 6.29 (4,9) TRAV1-2 TRBV6-4 1.00 MAIT
vdj vd1 hs pbmc NKG7 1.91e-39 5.60 (4,11) TRAV1-2 TRBV20-1 1.00 MAIT
vdj vd1 hs pbmc CD8B 8.45e-05 1.25 (2,3) TRAV14/DV4 TRBV19 0.00 CD4/CD8 preference
vdj vd1 hs pbmc CD8A 4.20e-04 1.17 (2,9) TRAV1-2 TRBV6-2 0.28 MAIT
vdj vd1 hs pbmc S100A4 3.58e-03 0.81 (4,5) TRAV1-1 TRBV20-1 0.45 MAIT
vdj vd1 hs pbmc CD8B 4.98e-03 1.16 (2,4) TRAV12-1 TRBV10-2 0.00 CD4/CD8 preference
vdj mm balbc pbmc Cxcr6 5.68e-128 7.82 (7,12) TRAV11 TRBV13-2 1.00 iNKT
vdj mm balbc pbmc Ephb6 8.29e-18 3.31 (2,4) TRAV6-6 TRBV31 0.00 EPHB6/TRBV30
vdj mm balbc pbmc Wasf2 2.13e-04 1.19 (1,0) TRAV10D TRBV13-3 0.00 CD8 naive?
10x 200k donor2a SLC4A10 7.79e-64 5.12 (4,5) TRAV1-2 TRBV6-4 0.86 MAIT
10x 200k donor2a KLRB1 2.87e-23 5.27 (4,11) TRAV1-2 TRBV20-1 1.00 MAIT
10x 200k donor2a CCL5 2.77e-04 2.92 (2,12) TRAV27 TRBV19 0.00 Flu M1
10x 200k donor2a HLA-C 4.16e-02 0.29 (4,6) TRAV1-2 TRBV20-1 0.45 MAIT
10x 200k donor1 SLC4A10 0.00e+00 7.07 (4,6) TRAV1-2 TRBV6-1 1.00 MAIT
10x 200k donor1 SLC4A10 0.00e+00 5.98 (4,14) TRAV1-2 TRBV20-1 0.97 MAIT
10x 200k donor1 LGALS3 1.02e-124 4.11 (4,5) TRAV25 TRBV19 0.00 Flu M1
10x 200k donor1 LGALS3 2.18e-81 3.72 (4,12) TRAV3 TRBV19 0.00 Flu M1
10x 200k donor1 ZNF683 2.30e-22 0.94 (2,1) TRAV9-2 TRBV11-2 0.00 Hobit+
10x 200k donor1 ITGB1 6.02e-20 1.92 (4,0) TRAV12-2 TRBV19 0.00 Flu M1
10x 200k donor1 ZNF683 6.09e-20 0.93 (2,4) TRAV38-2/DV8 TRBV4-3 0.00 Hobit+
10x 200k donor1 TRBC1 1.55e-19 0.61 (0,1) TRAV36/DV7 TRBV13 0.00 V(D)J recombination
10x 200k donor1 KLRD1 3.15e-19 0.85 (2,3) TRAV13-2 TRBV11-2 0.00 Hobit+
10x 200k donor1 GZMK 3.48e-19 0.84 (2,5) TRAV20 TRBV19 0.00 Hobit+
10x 200k donor2 SLC4A10 1.49e-207 5.25 (8,5) TRAV1-2 TRBV6-4 0.86 MAIT
10x 200k donor2 SLC4A10 1.33e-182 5.37 (8,13) TRAV1-2 TRBV20-1 1.00 MAIT
10x 200k donor2 KLRC1 4.47e-39 3.18 (2,11) TRAV12-3 TRBV19 0.00 Flu M1
10x 200k donor2 ITGB1 1.06e-31 1.15 (2,6) TRAV38-2/DV8 TRBV19 0.00 Flu M1
10x 200k donor2 ITGB1 4.07e-31 1.14 (2,4) TRAV25 TRBV19 0.00 Flu M1
10x 200k donor2 ITGB1 7.83e-24 1.04 (2,3) TRAV8-3 TRBV19 0.00 Flu M1
10x 200k donor2 CCL5 3.15e-20 0.97 (2,1) TRAV12-2 TRBV19 0.00 Flu M1?
10x 200k donor2 ITGB1 2.11e-18 2.12 (9,11) TRAV35 TRBV19 0.00 Flu M1
10x 200k donor2 GNLY 3.79e-18 3.13 (2,18) TRAV12-3 TRBV19 0.00 Flu M1
10x 200k donor2 HLA-DRB1 4.02e-13 2.32 (1,2) TRAV13-1 TRBV12-3 0.00 EBV BZLF1
10x 200k donor3 SLC4A10 0.00e+00 6.71 (3,5) TRAV1-2 TRBV6-4 0.97 MAIT
10x 200k donor3 KLRB1 1.63e-52 3.99 (3,14) TRAV1-2 TRBV20-1 0.97 MAIT
10x 200k donor3 GZMA 1.01e-22 2.48 (2,5) TRAV1-2 TRBV6-4 0.73 MAIT
10x 200k donor3 DAD1 5.82e-07 0.55 (0,5) TRAV1-1 TRBV9 0.05 DAD1/TRAV1
10x 200k donor3 TRBC1 1.06e-06 0.62 (1,0) TRAV6 TRBV4-1 0.00 V(D)J recombination
10x 200k donor3 GZMA 2.22e-06 1.88 (2,4) TRAV14/DV4 TRBV18 0.00 other response
10x 200k donor3 TRBC1 7.70e-06 0.59 (2,0) TRAV39 TRBV6-5 0.00 V(D)J recombination
10x 200k donor3 TRBC1 9.81e-05 0.58 (0,0) TRAV26-2 TRBV4-1 0.00 V(D)J recombination
10x 200k donor3 RPL34 6.34e-04 0.38 (1,5) TRAV1-2 TRBV9 0.11 naive?
10x 200k donor3 TRBC1 7.18e-04 0.55 (1,3) TRAV12-3 TRBV14 0.00 V(D)J recombination
10x 200k donor4 KLRB1 0.00e+00 7.28 (7,8) TRAV1-2 TRBV6-1 0.96 MAIT
10x 200k donor4 EPHB6 3.10e-213 4.16 (0,13) TRAV29/DV5 TRBV30 0.00 EPHB6/TRBV30
10x 200k donor4 EPHB6 1.30e-66 3.75 (1,13) TRAV12-3 TRBV30 0.00 EPHB6/TRBV30
10x 200k donor4 GZMK 7.68e-35 2.95 (7,7) TRAV1-2 TRBV20-1 0.67 MAIT
10x 200k donor4 GZMK 7.06e-14 1.08 (4,8) TRAV1-2 TRBV10-2 0.38 MAIT
10x 200k donor4 CD3 TotalSeqC 8.55e-05 0.15 (0,1) TRAV14/DV4 TRBV7-9 0.00 CD3 ↑ in TRAV14/38
10x 200k donor4 TRBC1 4.40e-04 0.55 (1,0) TRAV6 TRBV30 0.00 V(D)J recombination
10x 200k donor4 TRBC1 1.38e-03 0.52 (0,3) TRAV17 TRBV28 0.00 V(D)J recombination
10x 200k donor4 TRBC1 1.21e-02 0.52 (1,3) TRAV6 TRBV19 0.00 V(D)J recombination
thymus atlas HIST1H4C 4.11e-34 1.07 (7,13) TRAV41 TRBV19 0.00 DP(P) proliferation
thymus atlas DNTT 6.94e-28 1.30 (8,13) TRAV41 TRBV19 0.00 DP(Q) TCR rearrangement
thymus atlas EPHB6 3.23e-26 2.82 (0,0) TRAV10 TRBV30 0.00 EPHB6/TRBV30
thymus atlas EPHB6 1.88e-25 2.68 (8,3) TRAV6 TRBV30 0.00 EPHB6/TRBV30
thymus atlas HIST1H4C 6.47e-25 0.91 (7,3) TRAV20 TRBV12-4 0.00 DP(P) proliferation
thymus atlas EPHB6 7.69e-24 2.67 (0,3) TRAV6 TRBV30 0.00 EPHB6/TRBV30
thymus atlas EPHB6 8.18e-23 2.75 (14,3) TRAV30 TRBV30 0.00 EPHB6/TRBV30
thymus atlas HIST1H4C 1.52e-22 0.78 (7,2) TRAV19 TRBV7-9 0.00 DP(P) proliferation
thymus atlas TSC22D3 1.59e-22 0.83 (3,2) TRAV19 TRBV7-9 0.00 CD8αα(II)
thymus atlas EPHB6 5.51e-22 2.62 (0,5) TRAV12-3 TRBV30 0.00 EPHB6/TRBV30
a Mann-Whitney-Wilcoxon P value
b log2-fold enrichment
c Fraction with MAIT or iNKT canonical TCRα chain
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Table 4: pMHC binding analysis

Clone GEX nbr GEX nbr TCR nbr TCR nbr HLA allele
Donor pMHC Cells Clones fractiona enrichb P valuec enrichd P valuee (matched)f Peptide Source

1 A02 ELA 79 72 100.0 0.58 1.99e-03 2.41 2.91e-39 A*02:01(+) ELAGIGILTV MART1/Cancer
1 B08 RAK 21 17 81.0 1.56 4.47e-07 −0.44 1.69e-01 B*08:01(−) RAKFKQLL BZLF1(early)/EBV
1 A03 KLG 12 8 66.7 1.42 9.88e-02 −0.90 1.00e+00 A*03:01(−) KLGGALQAK IE1/CMV
1 A02 GIL 1437 234 99.9 2.79 4.93e-189 4.76 1.43e-272 A*02:01(+) GILGFVFTL MP/Flu
1 A11 AVF 1080 9 99.8 0.19 2.95e-01 2.10 4.83e-01 A*11:01(+) AVFDRKSDAK EBNA3B(latent)/EBV
1 A11 IVT 1845 26 99.8 1.15 2.97e-04 0.89 4.85e-02 A*11:01(+) IVTDFSVIK EBNA3B(latent)/EBV
1 A02 MLD 6 6 100.0 1.74 2.60e-01 0.74 3.99e-01 A*02:01(+) MLDLQPETT 16E7/HPV
1 A02 GLC 18 10 100.0 2.00 2.97e-05 5.36 6.61e-12 A*02:01(+) GLCTLVAML BMLF1(early)/EBV
1 A02 FLY 12 7 100.0 2.09 1.06e-01 6.41 6.31e-12 A*02:01(+) FLYALALLL LMP2A(latent)/EBV
1 A02 LLD 57 6 100.0 1.59 5.02e-02 3.74 1.33e-01 A*02:01(+) LLDFVRFMGV EBNA3B(latent)/EBV
2 A02 GIL 3510 352 99.3 2.19 3.34e-168 3.92 2.29e-305 A*02:01(+) GILGFVFTL MP/Flu
2 B08 FLR 24 6 100.0 2.48 2.60e-01 0.00 1.00e+00 B*08:01(+) FLRGRAYGL EBNA3A(latent)/EBV
2 A02 GLC 755 25 99.3 3.09 4.01e-21 3.64 1.09e-09 A*02:01(+) GLCTLVAML BMLF1(early)/EBV
2 B08 RAK 12713 146 99.6 2.36 1.47e-58 3.07 3.52e-60 B*08:01(+) RAKFKQLL BZLF1(early)/EBV
2 A03 KLG 26 6 23.1 1.59 2.74e-03 0.00 1.00e+00 A*03:01(−) KLGGALQAK IE1/CMV
2 A02 ELA 11 11 100.0 2.19 4.52e-02 2.65 3.98e-06 A*02:01(+) ELAGIGILTV MART1/Cancer
2 A02 FLY 95 11 100.0 1.96 1.59e-03 6.52 5.80e-20 A*02:01(+) FLYALALLL LMP2A(latent)/EBV
3 A02 ELA 8 8 100.0 0.69 1.87e-01 1.52 2.14e-02 A*02:01(−) ELAGIGILTV MART1/Cancer
4 A02 ELA 5 5 100.0 0.00 1.00e+00 3.25 4.96e-04 A*02:01(−) ELAGIGILTV MART1/Cancer

a Fraction of positive cells in a positive clone
b log2-fold enrichment of GEX neighbor edges within pMHC-positive clonotypes
c Approx. P value for observed GEX neighbor enrichment
d log2-fold enrichment of TCR neighbor edges within pMHC-positive clonotypes
e Approx. P value for observed TCR neighbor enrichment
f HLA allele for pMHC, followed by ‘(+)’ if carried by the given donor and ‘(−)’ otherwise.

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.134536doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.134536
http://creativecommons.org/licenses/by-nd/4.0/


Graph-vs-graph correlation Graph-vs-feature correlation

a

b d

c

8 1616

2386

Overlap Pvalue 1.7e-11

Gene expression
neighbor graph

TCR sequence
neighbor graph

Shared
edges

TCR graph colored
by GEX feature

TCR graph colored by
nbrhood feature enrichment

Figure 1: T cell clonotype neighbor graph analysis (CoNGA). (a) In graph-vs-graph analysis, CoNGA identifies correlation between
T cell gene expression (GEX) and TCR sequence by constructing a gene expression similarity graph and a TCR sequence similarity graph
and looking for statistically significant overlap between them. Overlap is assessed on a per-clonotype basis by counting the number
of edges that originate at each clonotype and are shared between the two graphs, or equivalently by measuring the overlap between
each clonotype’s GEX graph neighbors and its TCR graph neighbors, and assigning a score that reflects the likelihood of seeing equal
or greater overlap by chance. (b) A single clonotype and its GEX and TCR neighbors are shown in the GEX (left panel) and TCR
(right panel) 2D UMAP projections for the 10x 200k donor2a dataset. The clonotype is marked with a black ’x’, its GEX neighbors
are shown as blue points, its TCR neighbors as green points, and the clonotypes that are both GEX and TCR neighbors are shown
in red. The significance of the observed overlap—8 clones shared between two neighbor sets of size 24 in a total population of 2427
clonotypes—is calculated using the hypergeometric distribution, giving a P value of 1.7×10−11 (c) In graph-vs-feature analysis, a
numerical feature defined by one property (here gene expression) is mapped onto a similarity graph defined by the other property (TCR
sequence), and graph neighborhoods with skewed score distributions are identified using statistical tests that compare the scores for
each neighborhood (including the central vertex) with the scores of the remaining clonotypes. (d) The gene KLRB1 (CD161) shows a
non-uniform distribution over the TCR sequence landscape—discrete regions of higher expression (red) against a background of lower
expression (blue)—suggesting correlation between gene expression and TCR sequence. This is quantified for a single clonotype (green
outline) and its TCR sequence neighbors (black outlines) in the inset violin plot, which shows the KLRB1 expression level for the
clonotype and its neighbors on the right and for the remainder of the dataset on the left. The Mann-Whitney-Wilcoxon P value for this
expression difference is 1.5×10−46

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.04.134536doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.134536
http://creativecommons.org/licenses/by-nd/4.0/


a

b

c

d

e

f

Figure 2: CoNGA identifies GEX/TCR correlation in two datasets of T cells from peripheral blood. (a-c) A dataset of mixed
CD4+ and CD8+ T cells (vdj v1 hs pbmc); (d-f) a dataset of CD8+ T cells (10x 200k donor2a). (a,d) 2D UMAP projections of
clonotypes in the dataset based on GEX similarity (left three panels) and TCR similarity (right three panels), colored from left to right
by (1) GEX cluster assignment; (2) CoNGA score; (3) GEX/TCR cluster pair assignment, using a bicolored disk whose left half indicates
GEX cluster and whose right half indicates TCR cluster (only clones with CoNGA score less than 1 are shown); (4) TCR cluster; (5)
CoNGA score; (6) GEX/TCR cluster pair assignment, restricted to clones with CoNGA score less than 1. (b,e) Expression of selected
marker genes in the GEX UMAP landscape, for visual reference. (c,f) Gene expression and TCR sequence features of CoNGA hits in
cluster pairs with 5 or more hits are summarized by a series of logo-style visualizations, from left to right: differentially expressed genes
(DEGs), TCR sequence logos showing the V and J gene usage and CDR3 sequences for the alpha and beta chains (Dash et al. 2017);
biased TCR sequence scores, with red indicating elevated scores and blue indicating decreased scores relative to the rest of the dataset
(see Table S1 for score definitions); expression of a panel of marker genes shown with red disks colored by mean expression and sized
according to the fraction of cells expressing the gene (gene names are given above). DEG and TCRseq sequence logos are scaled by the
adjusted P value of the associations: full logo height requires a top adjusted P value below 1×10−6 , with partial height and the relative
apportionment of height within the logo dictated by the mapping P →

√
− ln(P ). DEGs with fold-change less than 2 are shown in

gray. Each cluster pair is indicated by a bicolored disk colored according to GEX cluster (left half) and TCR cluster (right half). The
two numbers above each disk show the number of CoNGA hits (on the left) and the total number of cells in those clonotypes (on the
right). The dendrogram at the left shows similarity relationships among the cluster pairs based on connections in the GEX and TCR
neighbor graphs.
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Figure 3: CoNGA plots and cluster logos for a large dataset of CD8+ T cells (10x 200k donor1). Same arrangement of plots
as in Figure 2. The three colored and dashed boxes group related cluster pairs.
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iMHC

Figure 4: Identification of KLRC2+ CD8 T cells as the HOBIT+ iMHC-elevated population. (a) 2D GEX projection of the
10x 200k donor1 dataset colored by ‘is hobit’ (an indicator variable for the HOBIT+ CoNGA population), iMHC score, CD45RA and
CD45RO TotalSeq, CCR7, KLRC2, KLRC3, and KIR2DL3 expression averaged in its GEX graph neighborhood (with neighborhood
size equal to 0.1% of the dataset). The is hobit variable is 1 for all CoNGA hits in GEX cluster 2 and 0 otherwise. (b) Detection of
KLRC2+ KIR2D+/- and KLRC2- KIR2D+ CD8 T cells in human PBMCs of two representative donors. Gated on lineage-, CD56+/-,
CD3+, CD8+, CD4-, CD45RA+, CD45ROdim/- , CCR7-, CD248- cells (full gating strategy in Figure S10). (c) Frequency of cell
populations in panel (b) as frequency of CD8 T cells. (d) ZNF683, KLRC2, and KLRC3 expression in sorted KLRC2+ KIR2D+/- and
KLRC2- KIR2D+ CD8 T cells shown as fold-change relative to CD8+ CD45RO+ T cells within each PBMC donor (n=4).
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Figure 5: CoNGA plots and cluster logos for a large dataset of thymic T cells (thymus atlas). Same arrangement of plots as in
Figure 2, with two additions: below the raw GEX landscape thumbnails are added GEX-neighborhood averages of Z-score normalized
expression levels, to aid in detecting differential expression of marker genes; to the right of the GEX landscape thumbnails are plotted
four TCR feature scores, also GEX-neighborhood averaged (‘ad’ is short for the alphadist score and ‘len’ is short for cdr3len; see main
text and Table S1). The five colored and dashed boxes group related cluster pairs as annotated by the text labels.
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Figure 6: Graph-vs-feature correlation analysis reveals GEX neighborhoods with elevated iMHC scores across multiple donors.
(a) 2D GEX projection of the 10x 200k donor1 dataset colored by iMHC score (standardized to have mean 0 and standard deviation
1). (b) The same projection as in (a) but each clonotype is colored by the average iMHC score in its GEX graph neighborhood. (c)
The same projection as in (a) but colored by P values for iMHC enrichment in each clonotype’s graph neighborhood (the set of iMHC
scores in each clonotype’s neighborhood are compared to the remainder of the iMHC scores using an unpaired, 1-sided Mann-Whitney-
Wilcoxon test). (d) 2D GEX projection of the 10x 200k donor2 dataset colored by iMHC score neighborhood enrichment P-values. (e)
2D GEX projection of the 10x 200k donor3 dataset colored by iMHC score neighborhood enrichment P-values. (f) 2D GEX projection
of the 10x 200k donor4 dataset colored by iMHC score neighborhood enrichment P-values. (g) Top 10 DEGs for the clonotypes with
significant iMHC enrichment in the 10x 200k donor1 dataset. (h) Top 10 DEGs for the clonotypes with significant iMHC enrichment in
the 10x 200k donor3 dataset. (i) Top 10 DEGs for the clonotypes with significant iMHC enrichment in the 10x 200k donor4 dataset.
(There were too few clonotypes with significant iMHC enrichment in the 10x 200k donor2 dataset to identify differentially expressed
genes).
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Figure 7: Graph-vs-feature correlation analysis highlights TCR:GEX covariation. In each of the four rows, correlation between a
score derived from the TCR sequence (left panel) and 1-2 scores derived from the GEX profile (right panels) is illustrated by mapping
the scores onto the 2D UMAP GEX or TCR landscape for the given dataset (after Z-score normalizing and averaging over graph
neighborhoods). (a) iMHC score averaged over GEX neighborhoods correlates well with marker genes ZNF683 and KLRC3 for the
HOBIT+ population. (b) KLRB1 and SLC4A10 averaged over TCR neighborhoods correlate with the MAIT cell population as defined
by TCRα sequence. (c) ITGB1 and KLRC1 are elevated in the Flu A*02:M158 response, here defined by the surface counts for the
multimerized A*02:M158 pMHC. (d) T cells with TRBV30-containing TCRs have elevated EPHB6 expression.
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Figure 8: TRBV30 gene usage and EPHB6 expression are correlated. (a) Genomic locations of TRBV30 and EPHB6 at the
3’ end of the human TCRβ locus. (b-c) Average EPHB6 expression for TRBV30-negative and TRBV30-positive clonotypes in (b) 9
human datasets and (c) 3 mouse datasets. Each marker represents the average over all (TRBV30− or TRBV30+) clonotypes for a
single dataset. The two markers for each dataset are connected by a dashed line. (d-g) 2D projections based on TCR sequence of a
mouse (d-e) and human (f-g) dataset colored by TRBV30 (TRBV31 in mouse) usage (d,f) and EPHB6 expression (e,g) averaged over
TCR neighborhoods. Strong correlation is evident between the two features, one derived from the TCR sequence and one from the
gene expression profile.
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Figure 9: CoNGA identifies convergence of TCR sequence and gene expression profile within pMHC-positive clonotype
subsets. Each marker represents a population of pMHC-positive clonotypes in one of the four 10x 200k donors. Markers are labeled
with the two-digit HLA allele and the first three amino acids of the peptide for the given pMHC (see Table 4 for details); colors
indicate the source donor and symbols are sized based on the number of pMHC+ clonotypes found as indicated in the legend. Markers
are positioned based on the relative enrichment or depletion of GEX (a) or TCR (b) graph edges between pMHC-positive clonotypes
compared to random expectation (x-axis; > 1 indicates enrichment while < 1 indicates depletion) and corresponding P value (y-axis).
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Figure 10: pMHC-positive clonotype populations show distinctive gene expression profiles. Each row corresponds to a pMHC-
positive population; each row corresponds to a differentially expressed gene. Cells are colored according to the normalized transcript
count (log+1 transformed) for the given gene in the corresponding population.
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Table S1: TCR sequence feature descriptions

Featurea Description
alphadist Ordinal distance between the Vα and Jα gene segments when the TCRα locus is ordered by genomic position
cd8 CD8 vs CD4 preference score
cdr3len Combined length of the CDR3α and CDR3β regions
inkt 1 for TCRs matching an iNKT sequence consensus, 0 otherwise
mait 1 for TCRs matching a MAIT sequence consensus, 0 otherwise
imhc MHC-independent score fit to discriminate the Hobit+/Helios+ TCRs
nndists tcr TCR neighborhood distance score equal to average TCRdist to nearest 1% of clonotypes in dataset
alpha36 Preference to appear in alpha helices
beta36 Preference to appear in beta sheets
turn36 Preference to appear in turns
surface39 Frequency in protein surface away from protein-protein interfaces
rim39 Frequency in rim region of protein-protein interfaces
core39 Frequency in core region of protein-protein interfaces
disorder40 Disorder-promoting amino acid score
charge Amino acid charge
pH Amino acid pH level
polarity Polar/non-polar amino acids
hydropathy Amino acid hydropathy
volume Amino acid volume
strength38 Strongly-interacting amino acids as defined by analysis of MJ statistical potential
mjenergy37 Mean value of MJ statistical potential for each amino acid
kf1...kf1041 Values of 10 Kidera factors summarizing physicochemical properties of amino acids
af1...af543 Values of 5 Atchley factors summarizing physicochemical properties of amino acids
a Features ‘alpha’ through ‘kf10’ were compiled by the authors of the VDJtools42 package
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Table S2: iMHC score coefficients

Feature Coefficient Std. coefficienta Std. dev.b

len AB 0.368 495 1.013 617 2.750 693
len B 0.321 411 0.606 267 1.886 267
charge AB 0.603 610 0.137 170 0.227 249
charge B 0.902 453 0.136 966 0.151 771
volume AB 0.006 965 0.129 819 18.638 504
Wfrac AB 4.141 282 0.117 301 0.028 325
disorder AB −0.290 458 −0.114 851 0.395 414
volume B 0.009 481 0.114 739 12.102 429
arofrac AB 1.217 256 0.093 160 0.076 533
surface B −15.068 416 −0.088 320 0.005 861
Cfrac B 5.998 254 0.032 482 0.005 415
Kfrac AB 0.441 505 0.011 270 0.025 526
Cfrac AB 2.313 601 0.009 199 0.003 976
Ffrac AB 0.013 840 0.000 550 0.039 716
model intercept −41.230 464
a Coefficient scaled by feature standard deviation
b Feature standard deviation over the 10x 200k donor1 dataset.
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Figure S1: T cells belonging to the same clonotype have similar gene expression profiles. Gene expression UMAP projections
of the 10x 200k donor2a dataset before condensing to a single cell per clonotype, with the 16 largest clonotypes shown in blue (one
per panel) and the remainder of the dataset in gray.
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Figure S2: CoNGA graph-vs-graph analysis of human and mouse peripheral blood T cells. CoNGA graph-vs-graph results for
two additional PBMC T cell datasets: (a-c) human CD4 and CD8 T cells (vdj v1 hs pbmc3); (d-f) mouse CD4 and CD8 T cells
(vdj v1 mm balbc pbmc). Same arrangement of plots as in main text Figure 2.
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Figure S3: Specific versus non-specific binding in the 10x 200k dataset. Comparison of binding data for four ‘specific’ pMHC
multimers (A02 GIL, A02 ELA, B08 RAK, A02 GLC) and four ‘sticky’ pMHC multimers (A03 KLG, A03 RLR, A03 RIA, A11 AVF) in
the 10x 200k donor2 dataset. (a) GEX landscapes colored by pMHC binding signal (log-transformed barcode read counts). (b) TCR
landscapes colored by pMHC binding signal. The ‘specific’ pMHCs show binding that is focused in specific areas of the landscapes,
whereas the binding of the putative ‘sticky’ pMHCs is dispersed across the landscapes. (c) The Pearson correlation between binding
profiles for different pMHCs is shown in matrix form according to the indicated color mapping. The specific pMHCs show very little
correlation whereas the sticky pMHCs are significantly correlated in their binding, suggesting that a shared cellular property (TCR
or CD8 surface expression, general level of activation) is jointly influencing their binding. Note that A11 AVF (and A11 IVT) show
additional specific binding in donor 1, who is A*11:01 positive; the A*03:01 pMHC multimers appear non-specific regardless of donor
HLA type (data not shown).
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Figure S4: CoNGA graph-vs-graph results for the 10x 200k donor1 dataset
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Figure S5: CoNGA graph-vs-graph results for 10x 200k donor2 dataset. Logos are shown for all cluster pairs with at least 5
CoNGA hits. For each cluster pair, the top two pMHCs and their average (log) read counts are shown in the cluster pair dendrogram
below the cluster pair sizes.
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Figure S6: CoNGA graph-vs-graph results for 10x 200k donor3 dataset. Logos are shown for all cluster pairs with at least 5
CoNGA hits. For each cluster pair, the top two pMHCs and their average (log) read counts are shown in the cluster pair dendrogram
below the cluster pair sizes.
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Figure S7: CoNGA graph-vs-graph results for 10x 200k donor4 dataset. Logos are shown for all cluster pairs with at least 5
CoNGA hits. For each cluster pair, the top two pMHCs and their average (log) read counts are shown in the cluster pair dendrogram
below the cluster pair sizes.
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Figure S8: The 28 amino acid property scores currently used in CoNGA analyses. (a) Clustering dendrogram (left) and matrix
visualization of the amino acid property scores, normalized to have mean 0 and variance 1. (b) The correlation matrix used to construct
the dendrogram in (a). Each entry is colored by the absolute value of the Pearson correlation coefficient of the property values for the
corresponding row and column.
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Figure S9: Gating strategy for KLRC2+ KIR2D+/- and KLRC2- KIR2D- CD8 T cells in Figure 5.
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Figure S10: Single-chain iMHC score distributions for TCR subsets. Score distributions for CDR3α repertoires are shown on the
left and for CDR3β repertoires on the right. Single-chain variants of the iMHC score were fit with L1-regularized logistic regression
just as for the paired iMHC score. Subset labels are as follows: ’CD1b’, GMM:CD1b-tetramer sorted T cells from DeWitt et al.44;
’VDJdb-MHC1’, TCRs reported to bind to MHC class 1 presented epitopes in the VDJdb database45; ’VDJdb-MHC2’, TCRs reported
to bind to MHC class 2 presented epitopes in the VDJdb database; ’dMAIT’, diverse MAIT TCR sequences from Gherardin et al.46

2016); ’hobit’, T cells belonging to the HOBIT+/HELIOS+ population in 10x 200k donors 1, 3, and 4.
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Figure S11: Epitope-specific T cell populations differ in CD45RA/RO expression levels. Log-transformed read counts for DNA-
barcoded anti-CD45RA (x-axis) and anti-CD45RO (y-axis) antibodies, averaged over pMHC+ clonotypes, are plotted for the pMHCs
shown in main text Figure 10. In the panel on the left, clonotypes are weighted equally, while in the panel on the right, larger clonotypes
are given more weight (proportional to the logarithm of the clone size) to better reflect the underlying distribution of cells (particularly
for the d1 A11 pMHCs, both of which have a relatively large number of positive cells distributed unevenly among a small number of
clonotypes).
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Figure S12: Comparison of graph-based and distance-based measures for assessing GEX/TCR correlation. Comparison of
CoNGA scores to a distance-based score (‘distcorr’) that measures, for each clonotype, the degree of correlation between the GEX
and TCR distances from that clonotype to all other clonotypes in the dataset. Correlation is assessed using the Pearson correlation
coefficient and associated P-value as returned by the scipy.stats.linregress function. (a) Scatter plots directly comparing the (negative
log10-transformed) significance scores assigned to each clonotype in the datasets. The majority of points with significant P values lie
below the y = x line, indicating that the CoNGA graph-overlap measure assigns higher significance than distance correlation. One
difficulty with raw distance correlation is that it doesn’t discriminate between a set of clonotypes with low distances for both measures
(nearby in GEX and in TCR space), on the one hand, and a set of clonotypes with high distances for both measures (far away in GEX
and in TCR space), on the other: both increase the correlation coefficient, so a tight cluster in GEX and TCR space (like MAIT cells)
can artificially elevate distcorr scores for distant clones. (b) CoNGA and distcorr scores mapped to the GEX and TCR landscapes for
10x 200k donor2a. The red ellipses indicate the A*02:M158 clones, which appear to be completely missed by the distcorr measure.
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