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Abstract

Multi-modal single-cell technologies capable of simultaneously assaying gene expression and
surface phenotype across large numbers of immune cells have described extensive heterogeneity
within these complex populations, in healthy and diseased states. In the case of T cells, these
technologies have made it possible to profile clonotype, defined by T cell receptor (TCR)
sequence, and phenotype, as reflected in gene expression (GEX) profile, surface protein
expression, and peptide:MHC (pMHC) binding, across large and diverse cell populations. These
rich, high-dimensional datasets have the potential to reveal new relationships between TCR
sequence and T cell phenotype that go beyond identification of features shared by clonally related
cells. In order to uncover these connections in an unbiased way, we developed a graph-theoretic
approach---clonotype neighbor-graph analysis or "CoNGA"---that identifies correlations between
GEX profile and TCR sequence through statistical analysis of a pair of T cell similarity graphs,
one in which cells are linked based on gene expression similarity and another in which cells are
linked by similarity of TCR sequence. Applying CoNGA across diverse human and mouse T cell
datasets uncovered known and novel associations between TCR sequence features and cellular
phenotype including the classical invariant T cell subsets; a novel defined population of human
blood CD8+ T cells expressing the transcription factors HOBIT and HELIOS, NK-associated
receptors, and a biased TCR repertoire, representing a potential previously undescribed lineage
of “natural lymphocytes”; a striking association between usage of a specific V-beta gene segment
and expression of the EPHB6 gene that is conserved between mouse and human; and TCR
sequence determinants of differentiation in developing thymocytes. As the size and scale of
single-cell datasets continue to grow, we expect that CONGA will prove to be a useful tool for
deconvolving complex relationships between TCR sequence and cellular state in single-cell

applications.
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Introduction

Previous work pairing gene expression and TCR sequence has largely focused on the TCR
sequence as a unique 'barcode' by which to identify clonally related cells. Indeed, this approach
has revealed important insights into the development and interrelatedness of different T cell

-6 infectious disease 7, and homeostasis 8. From these

subsets within the context of cancer
works we see that T cell clones derived from a common clonal ancestor tend to display a similar
transcriptional profile. However, the relationship between TCR sequence similarity and cellular
phenotype has not, to our knowledge, been systematically explored using the large single-cell
datasets now available. Researchers have mapped the TCR sequence properties of previously

identified T cell subsets *

, but approaches that can identify completely new populations or
subpopulations by correlating GEX and TCR sequence have not been reported. Also lacking are
methods for identifying correlations between TCR sequence and GEX that do not extend to global
similarity or associate with a defined cell population, for example, correlations between specific

TCR sequence properties and expressed genes that might span multiple cell subsets.

In parallel to the developments in single-cell profiling, methods for quantifying TCR repertoire
features and identifying patterns within them have matured, helping extend our understanding of
T cell biology. Previously, we introduced TCRdist, a measure for assessing inter-TCR similarity
capable of identifying closely-related clonotypes based on shared sequence features 2. Based

on this work and others >4

, it is clear that T cells targeting the same pathogen-derived epitope
utilize T cell receptors that share consistent, definable amino acid motifs. In addition to these
conventional T cell responses, it is well known that certain unconventional T cell populations, such
as mucosal-associated invariant T (MAIT) cells and invariant natural killer T (iNKT) cells, are
characterized by conserved TCR sequence features and GEX profiles *'°. The repertoires for a
number of distinct T cell subsets with suitable markers for their enrichment have been described,
however, it is likely other subsets linked by TCR and GEX remain undiscovered. We hypothesized
that by identifying correlations between “TCR neighborhoods”, defined by shared sequence
features, and gene expression, we could overcome the strict limitation of examining these
correlations within individual clonal families and potentially identify novel associations between T

cell antigen-specificities and phenotypes.
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To this end, we developed a graph theoretic approach for clonotype neighbor-graph analysis,
CoNGA, that identifies correlations between GEX profile and TCR sequence features through
analysis of similarity graphs defined on the set of T cell clonotypes and applied it to a collection
of publicly-available T cell datasets in an unbiased search for T cell populations linked by
covariation in their repertoire features and GEX profiles. In addition to capturing the MAIT
and iNKT populations as expected, CONGA also identified T cell populations for which the
linkage was more subtle. These included a ZNF683+/IKZF2+ (aka HOBIT+/HELIOS+)
population with long and biased CDR3 regions that we hypothesize may represent an
unconventional T cell population; CD4 and CD8-positive T cell clusters in mixed PBMC
datasets with TCR sequence features that bias CD4 vs CD8 compartment choice; epitope-
specific T cell populations; and multiple correlations between gene expression and TCR
sequence in a recently published dataset of thymic T cells. Additionally, CoONGA uncovered
a striking correlation between expression of the gene EPHB6, which flanks the TCR beta
locus, and usage of a specific TCR V gene segment, TRBV30 (Ephb6 and TRBV31 in mice).
Applying CoNGA to four datasets that included pMHC binding profiles derived from
sequencing of cell-surface bound, DNA-barcoded pMHC multimers revealed strong
correlations between pMHC binding and both TCR sequence and gene expression. T cell
populations specific for individual pMHC epitopes showed distinct gene expression profiles,
with EBV epitope-specific T cell populations appearing to cluster according to the stage (latent

vs early) of the antigen from which the peptide epitope was derived.

We are not the first to analyze single-cell datasets with parallel TCR and GEX information,
however, much of this prior work has used the TCR sequence primarily as a unique tag to identify
and track clones. The main contribution of this study is in laying out a systematic approach for
discovering relationships between TCR sequence and T cell phenotype in large and
heterogeneous single-cell datasets. CONGA does not require prior identification or isolation of
specific subsets in order to identify defining sequence features. CoNGA can also identify
GEX/TCR correlations that span multiple T cell clusters rather than simply focusing on one cluster
at a time. Thus we are optimistic that as the throughput of single-cell experiments continues to
increase, and the dimensionality and multi-modal nature of these experiments continues to grow,
graph-based approaches like the one introduced here will play an important role as we leverage

these technologies to better understand the adaptive immune system.
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Results

CoNGA algorithm

CoNGA was developed to identify correlations between gene expression profile and TCR
sequence in diverse T cell populations without prior knowledge of the precise nature of these
correlations. We envisioned two broad categories of correlation: one based on similarity, in which
cells similar with respect to GEX are also similar with respect to TCR sequence, and one based
on features, in which specific aspects of GEX and of TCR sequence are correlated, without global
similarity of both properties. CONGA graph-vs-graph correlation (details below) was developed to
detect the first category of correlation, using the mathematical concept of graph neighborhoods
to formalize our intuitive notion of global similarity. De novo discovery of feature-based
correlations, without prior knowledge of the correlated features, is more challenging, as it requires
enumeration and testing of all possible feature pairs. CoNGA graph-vs-feature analysis
represents a compromise approach in which we assume that, at least on one side of the
correlation, some degree of global similarity is present (this is the "graph-" side); we then
enumerate possible features defined by the other property, and test for graph neighborhoods with
biased feature distributions. In practice, we find substantial overlap between the results of these
two approaches, as, for example, when the identified features in graph-vs-feature correlations are
marker genes for a subpopulation of cells that also share detectable global similarity of gene
expression. However, we also see cases in which graph-vs-feature analysis reveals a correlation,
for example between expression of a specific gene and usage of a particular V gene segment,
that is not characterized by global similarity with respect to both gene expression and TCR
sequence. These two approaches are also quite complementary: retrospective analysis of graph-
vs-graph correlations can, as in the case of the putative MHC-independent population described
below, suggest specific gene expression or TCR sequence features that can then be input to

graph-vs-feature analysis for sensitive detection of specific correlations.

CoNGA similarity graphs are defined at the level of clonotypes rather than individual cells. We
and others have observed that T cells of the same clonotype, which by definition have the same
TCR sequence, tend to have similar GEX profiles (Fig. S1). Thus, similarity graphs based on
gene expression drawn at the level of individual cells will contain many edges connecting cells
within the same clonal family. To identify correlations between TCR sequence and gene

expression profile beyond the level of individual clonal families, we chose to define similarity
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graphs at the level of clonotypes rather than individual cells. Henceforth, for brevity, the term
"clonotype" refers to a group of individual cells inferred to be descended from a common clonal
ancestor due to their shared expression of a unique, rearranged TCR sequence. In the TCR
similarity graph, each node (clonotype) is connected by edges to its K nearest-neighbor (KNN)
nodes based on TCR similarity as assessed by the TCRdist measure '?, which scores sequence
similarity in the pMHC-contacting CDR loops of the TCR alpha and beta chains (here K is an
adjustable parameter specified as a fraction of the total number of clonotypes). In the gene
expression (GEX) similarity graph, each clonotype is connected by edges to its KNN clonotypes
based on similarity in GEX profile (see Methods). Expanded clones are represented by the GEX
profile of a single representative cell, the one with the smallest average distance to the rest of the

clonal family.

In graph-vs-graph correlation analysis (Fig. 1a,b), CoNGA identifies statistically significant
overlap between the GEX similarity graph and the TCR similarity graph. We consider each node
(clonotype) in turn, count the overlap between its neighbors in the two graphs (i.e., we count how
many other nodes are connected to it by both a TCR-similarity edge and a GEX-similarity edge),
and assign a significance score that contrasts this observed overlap to that expected under a
simple null model: the CoNGA score for this clonotype, equal to the hypergeometric probability of
seeing the observed overlap by chance, multiplied by the total number of clonotypes, to adjust for
multiple testing. CONGA scores range from 0 to the number of clonotypes; scores close to 0 are
significant, scores around 1 are borderline, and scores above 1 are expected to occur by chance
(see Methods).This mode of analysis identifies T cell clonotypes whose neighbors in gene
expression space overlap significantly with their neighbors in TCR sequence space. Here, we
model the concept of a clonotype's neighbors in GEX or TCR space using the mathematical
concept of a graph neighborhood, defined as all the vertices directly connected to one central
vertex (the colored points in Fig. 1b, for example, or the circled points in Fig. 1d). CoNGA's
second mode of analysis, graph-vs-feature analysis, was developed to detect GEX/TCR
correlation that involves specific gene expression or TCR features rather than overall similarity.
This mode of analysis can identify TCR sequence neighborhoods with differentially expressed
genes (DEGs), for example, or gene expression neighborhoods with distinctive CDR3 sequence
features (length, hydrophobicity, charge, etc). In graph-vs-feature correlation analysis (Fig. 1c,d),
CoNGA maps numerical features derived from one property (gene expression or TCR sequence)
onto the similarity graph defined by the other property and looks for neighborhoods in the graph

with unexpectedly high or low feature distributions. The results of CoNGA analyses are
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summarized in informative visualizations that condense the high-dimensional complexity of these

datasets into interpretable plots and graphs.

CoNGA graph-vs-graph analysis identifies correlation between

gene expression and TCR sequence

We applied CoNGA to a collection of publicly-available T cell datasets that featured, at a minimum,
single-cell GEX and paired TCRaf sequencing, in an unbiased search for known and novel T cell
populations defined by covariation between TCR sequence and GEX profile (see Table 1 for a
list of the datasets analyzed in this work). Figure 2 illustrates the CONGA graph-vs-graph analysis
workflow for two datasets of human peripheral blood T cells, one a mix of CD4+ and CD8+ cells
(vdj_v1_hs_pbmc, Fig. 2a-c) and one containing flow-sorted CD8+ T cells (70x_200k_donor2a,
Fig. 2d-f; Table 1). First, the UMAP algorithm '* is applied to the gene expression and TCRdist
matrices of each dataset to generate two dimensional projections of the GEX (Fig. 2a/d, left three
panels) and TCR landscapes (Fig. 2al/d, right three panels). Next, a graph-based clustering

algorithm 617

is applied to the GEX matrix to partition the dataset into clusters of clonotypes with
similar transcriptional profiles (Fig. 2a/d, panel 1) and to the TCR distance matrix to produce
clusters of clonotypes with similar TCR sequences (Fig. 2al/d, panel 4). The GEX and TCR
landscape projections are colored by CoNGA score to visualize the relative location of the top-
scoring CoNGA hits in these landscapes (Fig. 2al/d, panels 2 and 5). Finally, the GEX and TCR
cluster assignments of CONGA hits with scores below a threshold (here 1.0) are shown in the 2D
projections using bicolored disks whose left (right) half corresponds to the GEX (TCR) cluster

assignment (Fig. 2a/d, panels 3 and 6 for the GEX and TCR landscapes, respectively).

These plots reveal that both datasets contain a substantial number of clonotypes with significant
CoNGA scores, and that these CoNGA hits are located in specific regions of the GEX and TCR
landscapes. To gain insight into these groups of related clonotypes, we leverage the fact that
each dataset has been clustered for both GEX and TCR sequence similarity, independently, and
thus each clonotype maps to a pair of clusters (a GEX cluster and a TCR sequence cluster).
These cluster pairs provide useful handles by which to identify CoNGA hits because they contain
information on GEX and TCR, allowing us to map between the two landscapes (which would
require a four-dimensional plot for direct visual correspondence). For example, in Figure 2a at
the top of the GEX landscape we can see a cluster of CONGA hits which all belong to GEX cluster
2 (light green on the left half of the disk) and TCR cluster 3 (red on the right half of the disk), or
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equivalently, cluster pair (2,3); we can infer that these correspond to the group of clonotypes in
the TCR landscape also located near the top of the plot, that they are likely CD8+ (from the
thumbnail in Fig. 2b), and largely TRAV14 (from the TCR cluster identifier in Fig. 2a). Each cluster
pair containing an arbitrary minimum number of CONGA hits (here 5) is characterized by a row of
sequence-logo '® style visualizations (Fig. 2c/f) that identify the distinguishing features of those
CoNGA hits, including the most significant DEGs, TCR gene segment usage, CDR3 motifs, and
a GEX logo highlighting several hallmark genes defining canonical T cell subsets (CD4, CD8,
etc.). These are arranged in a consistent format that can be scanned for rapid assessment of a

cluster’s position within major cell subsets.

Five CoNGA cluster pairs of size 5 or greater were identified in the dataset of mixed CD4 and
CD8 human T cells (Fig. 2c). The two largest clusters---(5,8) and (5,4), where the first number in
each pair indicates the GEX cluster and the second the TCR cluster and we shorten 'cluster pair'
to 'cluster' where context allows---represent MAIT cells: they show high expression of the gene
KLRB1 (CD161) and an invariant TRAV1-2/TRAJ33 alpha chain and restricted V3 usage. Cluster
(2,3) contains naive phenotype CD8+ cells that score highly on a sequence-based CD8
compartment preference score (red 'cd8' in the "'TCRseq features' column; see Methods). Their
significant CONGA scores may reflect the presence of shared sequence features that bias toward
the CD8 phenotype and hence correlate with greater similarity of gene expression. Similarly,
clusters (0,2) and (4,2) contain CD4+ cells and score low on the CD8 sequence score (blue 'cd8'
in the TCRseq features column) and hence may reflect shared TCR sequence features and gene
expression consistent with CD4+ fate choice. Application of CONGA to a second human PBMC
dataset and to a mouse PBMC dataset yielded similar results (Fig. $2), with iINKT cells replacing
MAIT cells as the dominant invariant subset in the mouse. Turning to the dataset of human CD8+
T cells (Fig. 2f), we again see two MAIT clusters, (4,71) and (4,5), differentiated by their TCR
beta chain V gene usage (TRBV20 versus TRBV6). Cluster (2,12) is characterized by a strong
TCR beta chain sequence motif and high expression of cytotoxicity/activation markers including
GNLY and CCL5. The TCR sequence motif matches the consensus for the response to the
immunodominant A*02:01-restricted Influenza M1ss epitope '?. The assignment of this specificity
to these cells is supported by the fact that the top DEG for this cluster ('A02_GILG9') is actually
the read count for a DNA-barcoded A*02:01-M1ss multimer that was included in the experiment
(note that these pMHC read counts were used for cluster annotation by differential expression
analysis but were excluded from the CoNGA neighbor graph construction, 2D projection, and

clustering steps so as not to bias the results).
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CoNGA defines a HOBIT+/HELIOS+ T cell population shared
across multiple donors

We next applied CoNGA to four large datasets of peripheral blood CD8+ T cells that were
enriched for binding to a panel of 50 DNA-barcoded pMHC multimers (10x_200k_donor1-4 ).
The majority of these cells were sorted for positive binding to at least one of the pMHC multimers,
and indeed our analysis of TCR:pMHC binding described below finds a number of strong epitope-
specific responses. For a few of the pMHC multimers, however, we observed significant levels of
non-specific binding (Fig. S3), for example to MAIT cells, or to cells that were very likely part of
epitope-specific responses to other epitopes. For this reason, these datasets also include diverse
T cells whose binding specificity extends beyond the pMHC multimer panel. CONGA detected a
large number of significant GEX/TCR correlations across these datasets, identifying 62 cluster
pairs of size at least 5 (Figs. S4-7) and 42 using the more stringent size threshold of .1% of the
dataset. Figure 3 provides an overview of all cluster pairs with at least 21 CoNGA-identified
clonotypes (.1% threshold) in the 710x_200k _donor1 dataset. Further examination allowed
categorization of the CoNGA cluster pairs depicted in Figure 3 into three groups: (1) Flu M1sg-
responding clones; (2) MAIT cells; (3) a population of clonotypes with a shared expression profile
(high expression of genes including the transcription factors ZNF683 (aka HOBIT) and IKZF2 (aka
HELIOS), along with DUSP1/2, CD7, CD99, and KLRD1), diverse TCR gene usage, and rather
long CDR3 regions.

To gain further insight into the large population of HOBIT-expressing clonotypes identified by
CoNGA, we compared their TCR sequences to a background set formed by pooling all the
remaining TCR sequences in the dataset (Table 2; see Table S1 and Fig. S8 for details on the
amino acid property scores). As expected from examination of the TCR sequence logos in Figure
3, the CDR3a and CDR3 loops are significantly longer in the HOBIT+ CoNGA population than
in background (P<10°%). The CDR3s are also (1) more positively charged (P<10°); (2) higher
in aromatic residues, particularly tryptophan (P<107%°), and hydrophobic and bulky amino acids in
general (low 'surface' and high 'volume' scores in Table 2); and (3) higher in cysteine (>100-fold
enriched in the CDR3B, P<10%). These sequence characteristics are strikingly similar to features
identified in a comparison of MHC-independent versus MHC-restricted TCR sequences from an
experimental study of TCR repertoires in MHC-knockout mice ?°. Similar trends were also seen

in comparisons of simulated and measured TCR sequences from pre- versus post-selection

21-23 24,25

repertoires , and in CD8aa intraepithelial lymphocytes and their thymic precursors
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Depletion of cysteine from the CDR3 loops of MHC-restricted TCRs has been hypothesized to
reflect a penalty for disulfide bond formation with cysteines in MHC-presented peptides imposed
by negative selection in the thymus; hydrophobic residues positioned within the apex of the CDR3
region are important for mediating interactions with self-peptide MHC in the thymus . Based on
these trends, we hypothesize that this CONGA-identified population represents a noncanonical,
self-specific or MHC-independent, T cell population. To facilitate analysis, we developed a
numerical score, the iMHC score (for 'independent of pMHC'), that captures their defining CDR3

sequence features (see Methods and Table S2).

We next sought to determine the frequency of the HOBIT+ population in peripheral blood T cells
based on putative cell surface markers identified from their DEGs. Analysis of the features
distinguishing the HOBIT+ population in 70x_200k_donor1 suggested that they were likely
CD45RA" CD45R0O“™ based on TotalSeq labeling, negative for CCR7 expression, and positive
for KLRC2, KLRC3, and a number of KIR genes (Fig. 4a). Therefore, we predicted the HOBIT+
cells would be CD45RA* CD45R0O%™" CCR7- KLRC2* KLRC3" KIR" in their surface marker
phenotype (see Fig. S9 for gating strategy). We were unable to examine the protein levels of
either HOBIT or KLRC3 directly due to the lack of commercially available antibodies. Notably, in
the report describing the generation of a HOBIT monoclonal antibody its expression was found to
be highest in CD45RA* CCR7-CD8 T cells %. Labeling of PBMC samples from healthy blood
donors with these cell surface markers for flow cytometric analysis confirmed the presence of
CD45RA* CD45RO*™- CCR7- CD8 T cells expressing all combinations of KLRC2 and KIR2D (i.e.
KLRC2'KIR2D", KLRC2*KIR2D", and KLRC2'KIR2D") (Fig. 4b). The presence of both KLRC2*
KIR2D™ and KLRC2'KIR2D" populations is consistent with the ubiquitous KLRC2 expression and
stochastic KIR2D expression within the HOBIT+ population of 10x_200k_donor1. However, the
KLRC2KIR2D" phenotype is inconsistent with these criteria and likely represents a distinct (but
sizable) CD8 subset. As a percentage of total PBMC CD8 T cells, the KLRC2* KIR2D*" subset is
in the range of 0.2-10.1% while KLRC2 KIR2D" cells ranged between 0.3-7.6% (n = 11) (Fig.
4c). We next sorted the KLRC2* KIR2D*" and KLRC2 KIR2D* CD8 T cells and measured
ZNF683, KLRC2, and KLRC3 expression within these populations relative to each donors’ own
sorted CD8+CD45RA-CD45R0O+ memory subset using qRT-PCR. Here, we found expression of
KLRC2 and KLRC3 was enriched in the KLRC2* KIR2D*- CD8 T cells, and to a lesser extent in
the KLRC2" KIR2D" subset (Fig. 4d). However, ZNF683 appeared to be enriched only within the
KLRC2" KIR2D"" subset, supporting their identity as the putative HOBIT+ population and further
suggesting KLRC2  KIR2D* T cells are in fact a separate, distinct subset. Taken together, these
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data confirm the existence of CD8+ CD45RA* CD45R0O%™ CCR7- KLRC2" KIR2D"" T cells in
peripheral blood expressing ZNF683 consistent with the HOBIT+ population, and that this subset,
while variable across individuals, comprises a sizable fraction of the CD8 T cells (up to 10% in

some individuals).

CoNGA identifies GEX/TCR correlation in thymic T cells

We next applied CONGA to a recently published single-cell atlas of human thymic T cells ?’. This
dataset combines thymic tissue from embryonic and fetal stages as well as postnatal thymi from
children and adults, totaling over 9400 clonotypes with paired alpha and beta TCR sequences.
CoNGA identified a large number of significant hits in this rich and complex dataset, primarily
within the DP (double-positive), CD8 single positive (SP), CD4 SP, Treg, and CD8aa" thymic
populations (Fig. 5). In TCR sequence space, we see a concentration of hits in the TRAV41
cluster (this TRAV gene is enriched in DP cells), the TRAV1 and TRAV12 clusters (enriched in
CD8 cells), and in the TRAV14 cluster (enriched in CD8aa cells) (Fig. 5). The CD8+ cluster pairs
identified by CoNGA also showed high CD8 sequence scores and high scores for a measure
(‘'alphadist') that reflects the genomic distance between the TRAV and TRAJ gene segments
incorporated in a clonotype's TCR alpha chain. The DP cluster pairs show low alphadist scores,
preference for TRAV41 and other TRAV genes at the 3' end of the locus, longer CDR3 loops
(CDR3 length has been shown to decrease during thymic selection ?'), and higher scores for the
rim, surface, and disorder amino acid properties, which may suggest more polar, less bulky, and
less strongly interacting CDR3 regions. Consistent with the findings of Park et al., the CD8aa
cluster pairs both show low alphadist scores, however, CoNGA further identified high iIMHC
scores and longer CDR3 loops as TCR features of these clusters. Interestingly, the CD8aa(ll)
cluster pair expressed both ZNF683 and IKZF2, which together with TCR features similar to those
of the HOBIT+ T cells in the blood identified above, suggests a possible precursor relationship

between these two populations that warrants further investigation.

CoNGA graph-vs-feature analysis confirms sharing of the
HOBIT+/HELIOS+ T cell subset across donors

We have seen that CONGA graph-vs-graph analysis can identify a variety of correlations between
gene expression and TCR sequence, ranging from the invariant MAIT and iNKT lineages, to

sequence motifs and expression biases in an epitope-specific response, to the weaker CDR3
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sequence preferences and differentially expressed genes that characterize the HOBIT+
population (which would likely be difficult to identify from analysis of TCR sequence or gene
expression alone). To be detected, these correlations must be characterized by some degree of
elevated global similarity in both transcriptional profile and TCR sequence within the relevant cell
population. Thus, correlations that involve only a few genes or very specific TCR sequence
features, or ones that are not well captured by our global GEX and TCR distance measures, may
go undetected. CONGA graph-vs-feature analysis was developed as a complementary graph-
based approach that could detect GEX/TCR correlations that are not characterized by global
similarity of both properties. In graph-vs-feature analysis, numerical features calculated on the
basis of one cellular property, GEX or TCR sequence, are mapped onto a similarity graph defined
by the other property, and the feature score distributions for each of the neighborhoods in the
graph are compared to the background distributions to identify neighborhoods with skewed scores
(here a graph neighborhood consists of a single central vertex together with all of its directly
connected neighbors). As GEX features, we consider the expression levels of individual genes,
and for TCR sequence features, we use a set of CDR3 amino acid property values as well as a

handful of additional, sequence-based scores (Table S1 and Fig. S8).

We used graph-vs-feature analysis to identify additional members of the HOBIT+/HELIOS+
unconventional T cell subset by looking for GEX graph neighborhoods with elevated iMHC scores.
Although the per-clonotype iIMHC score is highly variable (Fig. 6a), by computing averages over
GEX graph neighborhoods we can identify a subregion of GEX space with enhanced scores (Fig.
6b), whose significance can be assessed using standard statistical tests (Fig. 6¢). Three of the
four 10x_200k donors show populations of clonotypes with significantly enhanced iMHC scores
(Fig. 6¢-f) whose DEGs correlate well with one another and with the key marker genes (ZNF683,
CD7, CD99, DUSP1/2) for the original HOBIT+ CoNGA clusters. Interestingly, the outlier donor
with very few iIMHC-high clones was also significantly older than the other 3 donors (age 50 versus
ages 30, 31, and 38), consistent with an age-related decline of this putative natural T cell
population. Comparison of iIMHC score distributions for the HOBIT+ CoNGA clonotypes to those
of TCRs with known MHC restriction (Fig. $10) suggests possible affinity with other MHC-

independent T cell subsets.
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Graph-vs-feature analysis reveals differential gene expression

across the TCR landscape

We applied graph-vs-feature analysis in the reverse direction (i.e. between the TCR graph and
GEX features) to identify genes that are differentially expressed in specific TCR graph
neighborhoods. Table 3 provides the top hits from this analysis for the datasets analyzed in this
study (the top significant gene for each cluster pair and a maximum of 10 genes per dataset are
shown). Notable features include MAIT-associated genes such as KLRB1 and SLC4A10; genes
associated with the iIMHC population such as ZNF683 and KLRCS3; and genes upregulated in the
M1sg response including ITGB1 and KLRC1 (in donor 2). We also observed TCR neighborhoods
with elevated levels of CD8A and CD8B, which appear to overlap with the populations identified
in the earlier graph-vs-graph correlation analysis and suggest the presence of TCR sequence
features that bias toward the CD8+ compartment. Some associations are a consequence of the
V(D)J recombination process itself, such as the positive association between TCR neighborhoods
using TRBJ1 family genes and the TRBC1 constant region, which is deleted during D-J
rearrangement involving TRBJ2-family genes and hence cannot be used in TRBJ2-containing
TCRs.

Figure 7 illustrates four graph-vs-feature correlations, showing visually how specific TCR-based
and GEX-based features correlate across the 2D clonotype landscapes. In donor 1 (Fig. 7a), the
correlation between the iIMHC score, a TCR feature, and two GEX features, expression of the
genes ZNF683 and KLRC3, is shown by coloring the clonotypes in the GEX UMAP projection by
these three features, averaged over GEX graph neighborhoods. Here, the averaging serves to
reduce noise and also to highlight TCR feature trends that are consistent with the GEX similarity
structure (since we are averaging over the GEX graph neighborhoods). In donor 2 (Fig. 7b), we
can see correlation, now over the TCR landscape and averaged over TCR graph neighborhoods,
between a TCR feature, cell-surface bound A*02:01-M1ss pMHC, and expression levels of two
genes that mark the M1-responding clonotypes. In donor 3 (Fig. 7¢), we see correlation over the
TCR landscape between a TCR feature, occurrence of the canonical MAIT alpha chain, and the
expression of two MAIT cell marker genes. Finally, in donor 4 (Fig. 7d), we can see the correlation
over the TCR landscape between a TCR feature, usage of the TRBV30 gene segment, and

expression of the gene EPHB6.
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Our TCR graph-based differential expression analysis identified several associations with the
EPHB6 gene (and its murine homolog Ephb6), which codes for the Ephrin-B receptor Type 6
protein EPHB6 (Table 3, for example, the top non-MAIT association for 10x_200k_donor4 and
the top non-iINKT association for vdj v1_mm_balbc_pbmc). A recurring feature of these
associations is the usage of the TRBV30 gene segment (TRBV31 in mouse). A focused search
for covariation between TCR gene segment usage and gene expression using differential
expression analysis confirmed a strong tendency for higher EPHB6 expression in clonotypes that
incorporate the TRBV30 gene segment (or TRBV31 in mouse; Fig. 8 and Table S3). The TRBV30
segment is unique among TRBV genes in being located downstream of the TRBJ and TRBC
genes at the end of the TCR beta locus; incorporation of TRBV30 into the TCR by V(D)J
recombination requires an altered joining process in which intervening DNA sequence is inverted
rather than being deleted ?®. Providing a potential clue into the mechanism underlying this
covariation, EPHBE6 is located adjacent to TRBV30 on Chromosome 7, ~40kb downstream from
the TCR beta locus (Fig. 8a). The strong correlation between TRBV30 usage and EPHB6
expression may indicate that expression of a TRBV30-containing TCR transcript also boosts
expression of the EPHB6 gene (the mouse TRBV31 gene segment is located at an analogous
location to that of TRBV30 in the mouse TR locus, and is also directly adjacent to the mouse
homolog Ephb6). Given that EPHB6 has been shown to play a role in T cell activation 2°%°,
TRBV30+ clonotypes may have distinctive functional properties due to their elevated expression
of the EPHBG6 transcript. We also observed covariation, albeit weaker, between TRAV1-1 usage
and expression of the DAD1 (Defender against cell death 1) gene (Table S3), which flanks the
TCR alpha locus at a position analogous to that of EPHB6. Given that TRAV1-1 and DAD1 are
located at opposite ends of the TCR alpha locus, the mechanism underlying this correlation is
less clear. Together, these findings show an interaction between the usage of TCR genes at the

edges of the TCR loci and the expression of non-TCR genes flanking the loci.

Neighbor-graph analysis of TCR:pMHC binding highlights GEX
similarity among T cells that recognize the same epitope

The use of pMHC-multimers conjugated to DNA barcodes as cell labeling reagents enables high-
throughput interrogation of pMHC binding in parallel with other single-cell analyses. We applied
CoNGA to investigate correlation between gene expression profiles, TCR sequences, and
pMHC:TCR interactions in a large dataset of human T cells sorted for pMHC-multimer binding

(70x_200k_donor1-4). To do this, we used the pMHC-binding information, stringently filtered and
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condensed to the level of clonotypes (see Methods), to define a new neighbor graph structure in
which edges connect clones that bind to the same pMHC. We then applied CoNGA graph-vs-
graph analysis to look for statistically significant overlap between this pMHC-binding graph and
the GEX and TCR similarity graphs defined above. We measured graph overlap, on a per-pMHC
basis, as the enrichment of GEX (or TCR) similarity graph edges within the pMHC positive
clonotypes. Specifically, for each pMHC, we looked to see whether there were more GEX (or
TCR) similarity edges within the set of clonotypes positive for that pMHC than we would expect
by chance, and quantified this graph overlap by computing a fold-enrichment as well as an
approximate P-value (Table 4, Figure 9). From this analysis we can see, as expected, that nearly
all the pMHC-positive clonotype subsets show greater than expected TCR sequence similarity.
Indeed, the only pMHCs with a negative TCR neighbor-enrichment score are A0O3_KLG, which
appears to show high levels of non-specific binding (Fig. S3), and B08_RAK in donor 1, who is
HLA-B*08:01 negative. Moreover, pMHCs with large numbers of analyzed clonotypes show highly
significant TCR similarity as assessed by the TCR-pMHC graph overlap. Interestingly, we also
see that all pMHC-positive populations show greater than expected GEX similarity, with highly
significant P-values and large fold-enrichments for most pMHCs with a sufficient number of
analyzed clones. These results suggest that clonotypes positive for the same pMHC have more

similar gene expression profiles than would be expected by chance.

We analyzed the expression patterns of specific marker genes to better understand these shared
gene expression profiles. We performed all-against-all differential expression analyses to identify
upregulated genes within each pMHC-positive subset. To visualize the results of this analysis, we
selected the most common differentially expressed genes in these comparisons and created a
gene expression heat map, clustering both the rows (pbMHCs) and columns (genes) by similarity
(Fig. 10). Examination of the expression patterns in Figure 10 reveals a number of trends: the
naive responses (MART1 and BO8_RAK in the B*08-negative donor 1) cluster together at the top
and show higher levels of CD45RA and lower levels of CCL5 and CD45R0O; flu-M158 responses
cluster together based on shared expression of specific markers including GNLY, ITGB1, and
IFITM1; EBV-specific responses show what may be a partitioning based on whether the antigens
are 'early’ or 'latent' genes, with the early-gene responses showing higher CCL5 and lower

CD45R0O compared to the 'latent'-gene responses (Fig. S11).
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Discussion

In this study, we have introduced and applied a new analytical tool, clonotype neighbor graph
analysis or “CoNGA”, which we demonstrated to be capable of uncovering relationships within T
cell populations defined by shared TCR sequence and gene expression features within large
single-cell datasets. Previous works connecting the T cell state to its antigen-specificity have been
limited to measuring variation in gene expression within cells of the same clonal lineage. CoONGA
circumvents this strict limitation by defining neighborhoods based on TCR similarity then
representing each clonal lineage within the neighborhood by a single representative cell, thus
preserving phenotypic and TCR information from unexpanded clones that might otherwise be
ignored. Application of CoONGA’s graph-vs-graph analysis on a diverse collection of datasets
uncovered a number of previously unrecognized connections between TCR and GEX space,
including distinct GEX profiles of epitope-specific T cells; bias in the repertoire selection of naive
CD8+ and CD4+ T cell populations; multiple populations of thymic T cells with biased TCR
repertoires; and a putative MHC-independent, HOBIT/HELIOS-expressing T cell subset detected

both in the thymus and peripheral blood with distinctive CDR3 sequence features.

Further, while the identification of marker genes associated with cells clustered in GEX space is
a routine part of single-cell analysis, there are currently no available methods for systematically
identifying genes associated with TCR clusters or TCR sequence biases that define GEX clusters.
CoNGA addresses this gap with its graph-vs-feature analysis by measuring a number of default
TCR properties (amino acid composition, hydrophobicity, length, TCRdist score, etc.) before
scanning the GEX space to detect clustered areas enriched for one or more of these features.
Applying this mode of analysis revealed the long CDR3s of the HOBIT+ population enriched for
hydrophobic residues, and a novel and highly significant correlation between expression of the
EPHB6 gene and usage of the TRBV30 gene segment. Importantly, this mode of analysis is not
limited to only TCR features but any other labelled feature (e.g. pMHC, cell surface marker, etc.)
linked, quantified, and integrated into the dataset. In this regard, CONGA analysis applied to a
graph defined by single-cell pMHC-binding data determined that T cell populations specific for
different pMHCs show distinctive GEX profiles, with evidence of clustering of EBV-epitope specific
T cell populations according to the stage (early or latent) of the gene from which the epitope is
derived. By systematically investigating connections between TCR sequence properties and GEX

space within the dataset, CONGA may significantly reduce the amount of time, effort, and missed
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correlations inherent in a manual approach. We believe that these findings and our analysis

pipeline will be of interest to a range of researchers working on T cells and single-cell analysis.

An important next step will be to validate our findings by applying CoNGA to other datasets with
GEX and TCR (and perhaps pMHC binding) information, as they become available. The rapid
pace of single-cell technology development suggests that new and larger datasets, with additional
phenotypic information from DNA-barcoded tagging reagents spanning diverse biological and
clinical settings, will become available in the near future. It will also be important to experimentally
characterize the T cell populations identified by CoNGA, which should be possible using flow

cytometry and the marker genes highlighted by CoNGA clustering.

Our analysis has a number of important limitations that could be addressed in future work. First,
a consequence of operating at the level of clonotypes rather than individual cells is that we miss
out on variation within the cells of expanded clones. This includes variation in gene expression
profile as well as variation in strength of pMHC binding (for datasets with pMHC multimer binding
information). Although we found that gene expression was largely consistent within clonally
related cells, it may be worth exploring approaches in which cellular resolution is preserved, for
example by defining graphs at the level of individual cells and masking out intra-clonotype
neighbor edges to eliminate the strong signal of clonal GEX/TCR correlation. It is also important
to keep in mind that the results of applying CoNGA will depend critically on the distance measures
used to define clonotype similarity and construct the neighbor graphs. Other measures of TCR
similarity, for example derived from structural simulations, or of gene expression similarity, may
highlight different features of GEX/TCR correlation and/or may be more sensitive. The same is
true of other measures of TCR/GEX correlation, for example ones that directly use distances
rather than neighbor graphs. In preliminary experiments we found neighbor-graph overlap to be
generally superior to direct correlation of distance distributions (Fig. $12), but there are many
other possible approaches. Another limitation is that, in our experience, successful application of
CoNGA requires a relatively large number of unique clones (at least several hundred), which
depending on the degree of clonal expansion may require a substantially larger number of
individual cells. Finally, the generality of the biological observations we report here should be
weighed against the small number of donors examined. Future studies on larger cohorts will be

necessary to definitively assess some of our observations.
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To our knowledge, CoNGA is the first algorithm reported for the systematic detection of GEX/TCR
correlation. As such, there are many possible extensions to explore in future work. CONGA is
agnostic to the source of the clonotype graphs, and hence could be applied to graphs defined by
new similarity measures (based on surface protein expression, for example), new T cell clustering
approaches *', epigenetic rather than gene expression profiles, or new immunological and clinical
phenotypes. CONGA could also be applied to B cell clonotypes by incorporating a BCR sequence
similarity score analogous to TCRdist. We applied CoNGA to identify correlation between
numerical functions defined on TCR sequence (CDR3 amino acid properties and the iMHC score)
or on the GEX profile (expression of individual genes), but other scalar functions of
TCR/GEX/pMHC-binding could be used instead and might allow sensitive detection of specific
axes of GEX/TCR correlation. Another exciting direction would be to use CoNGA to analyze the
role of genetic variation outside the TCR region on GEX profile, TCR sequence, or pMHC binding:
merging datasets from genetically diverse individuals and defining genotype similarity graphs
might be one approach for doing this. Finally, it will be worthwhile to explore the use of more
sophisticated graph-correlation algorithms developed in the computer science and machine
learning communities as alternatives to the neighborhood-overlap and neighborhood-score

enrichment that we have applied here.

The results of our analyses have a number of broader implications. First, the observation of a
diversity of gene expression profiles across the different epitope-specific T cell populations argues
for a broad continuum of memory T cell phenotypes * rather than a small number of discrete
subsets. Indeed, the definition of memory phenotypes would seem to be significantly determined
by the eliciting pathogen. It also suggests that improved prediction of target pMHC epitopes for T
cells might be possible by combining TCR sequence with information on GEX profile *. The
putative MHC-independent and naive T cell populations identified by CoNGA hint at
developmental influences of TCR sequence on T cell fate that go beyond the well-characterized
role of invariant and semi-invariant TCRs 3*. We are optimistic that new analytical approaches
combined with novel high-throughput single-cell experiments will continue to illuminate new

aspects of adaptive immunology in the coming years.
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Methods

CoNGA software package

An open-source python3 package implementing CoNGA graph-vs-graph and graph-vs-feature

analysis is available from the software repository github (https://github.com/phbradley/conga).

The conga package is built on the scanpy 3 python package

(https://github.com/theislab/scanpy) for single-cell analysis and makes heavy use of scanpy's

AnnData object to store integrated gene expression and TCR sequence data. We are grateful to
the authors of scanpy for creating such a robust and useful package. CoNGA includes an
implementation of the TCRdist 2 distance calculation and TCR logo construction routines. Finally,
CoNGA depends on the standard python data science tools numpy, scipy, matplotlib,

pandas, and scikit-learn for visualization, data manipulation, and statistical calculations.

TCR analysis

Clonotype data from 10x genomics is first converted into a TCRdist 'clones file' and the matrix of
TCRdist distances is computed. By default, the 10x clonotype definitions are filtered to remove
spurious chain sharing and merge split clonotypes (for example due to partial recovery of a
second TCRalpha transcript). Kernel principal components analysis as implemented in scikit-
learn's KernelPCA class is then used to extract the top 50 components of variation from this
distance matrix; these kernel PCs can be directly incorporated into the standard single-cell
workflows for clustering and dimensionality reduction in place of the principal components
extracted from the gene expression counts matrix. For generation of 2D landscape projections,

15

CoNGA uses the UMAP algorithm for dimensionality reduction as implemented in

scanpy.tl.umap. Clusters of clonotypes with similar T cell receptor sequences are identified

with the Louvain "7

graph-based clustering algorithm (scanpy.tl.louvain). Both UMAP
projection and clustering rely on a nearest neighbors calculation conducted with the
scanpy.pp.neighbors routine with 10 neighbors and 50 principal components (the 50 kernel
PCs computed from the distance matrix). To annotate the Louvain clusters in CoNGA
visualizations, the most frequent V segment in each cluster is identified and appended to the

cluster name if it is present in at least 50% of the clustered TCRs, uppercased if present in at
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least 75% of the TCRs (clusters are initially named with consecutive integers, starting at 0 with

the largest cluster).

TCR sequence features

For each clonotype, CoNGA calculates a set of TCR sequence-based scores for use in graph-vs-
feature analysis and for annotating graph-vs-graph cluster pairs (Table $1). First, a set of 28
different amino acid properties (Fig. S8, Table S1) are averaged over the central amino acids in
the alpha and beta chain CDR3 loops (excluding the first 4 and last 4 residues of each CDR3,
where the full CDR3 sequence is defined as beginning with the conserved cysteine and ending
with, and inclusive of, the phenylalanine immediately before the GXG motif in the J region). These
scores include a set compiled from original sources *~*' by the authors of the VDJtools package
42 as well as the five Atchley factors **. Seven additional sequence-based scores are calculated:
'alphadist’, which measures the ordinal distance between the Valpha and Jalpha genes when the
full set of gene segments is ordered by genomic position; 'imhc', the iIMHC score (detailed below);
'cd8', a simple CD8-versus-CD4 preference score calculated from the TCR V and J gene usage,
CDR3 length, and CDR3 amino acid composition, based on frequency differences between flow-
sorted CD8+ and CD4+ TCR sequence repertoires (AS, unpublished results); 'cdr3len’, total
CDR3 length; 'mait', which assigns a score of 1 to TCRs with an alpha chain using the TRAV1-2
and TRAJ33/TRAJ20/TRAJ12 segments (TRAV1 and TRAJ33 in mouse) and a CDR3 length of
12, and 0 to all other TCRs; 'inkt', which assigns a score of 1 to TCRs with the
TRAV10/TRAJ18/TRBV25 gene combination and a CDR3 length of 14, 15, or 16
(TRAV11/TRAJ18 and length 15 for mouse); and 'nndists_tcr', which measures the density of
TCR sequences nearby the scored clonotype by calculating the average TCR distance to the
nearest 1% of clonotypes. The iIMHC (for 'independent of pMHC') score is a weighted linear
combination of TCR sequence features (Table S2). The parameters were fit by using L1-
regularized logistic regression to discriminate the TCR sequences of HOBIT+ CoNGA hits
(CoNGA score<0.2) in GEX cluster 2 of dataset 10x_200k_donor1 (Fig. 3) from the TCRs of the
clonotypes in the other GEX clusters. We chose to draw the background clonotypes exclusively
from the other GEX clusters to avoid inclusion of genuine HOBIT+ TCR sequences in our negative

set.
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Gene expression analysis

Gene expression data in the form of read count matrices are processed according to standard
workflows implemented in scanpy to eliminate cells and genes with low counts, high
mitochondrial content, etc. Variable genes are identified and principal components analysis (PCA)
is used to project the high-dimensional gene expression data down to a smaller set of components
per cell (the default is 40 components). These gene expression PCs are used to select a single
representative cell for each clonotype by taking the cell with the smallest average Euclidean
distance in PC space to the other cells in the clonotype. Once the dataset has been reduced to a
single cell per clone, the UMAP and Louvain clustering tools are applied to the PCA matrix to
produce a gene expression landscape and a set of gene expression clonotype clusters. DEGs in
clonotype groupings (for example the set of CONGA hits in a cluster pair) are identified using the

sc.tl.rank_genes_groups routine with the 'wilcoxon' method.

The large thymus atlas T cell dataset 2’ combined a heterogeneous set of donors and samples;
merging these data to generate integrated projections and clusters required the original authors
to perform an iterative batch correction scheme. As it was not immediately obvious how to recover
the processed gene expression components from the publicly available data, and as a test of
CoNGA's robustness to alternative neighbor graphs, we elected to use the provided 3D UMAP
coordinates in lieu of gene expression PCs for the CONGA GEX neighbor calculations described
below. We also directly borrowed the GEX clusters from the original paper rather than reclustering

the dataset.

Graph-vs-graph correlation analysis

In CoNGA graph-vs-graph correlation analysis, similarity graphs defined by gene expression and
by TCR sequence are compared to identify vertices (clonotypes) whose neighbor sets in the two
graphs overlap significantly. The CoNGA score assigned to a clonotype equals the probability of
seeing an equal or larger overlap between its GEX and TCR neighborhoods by chance, multiplied
by the total number of clonotypes to correct for multiple testing. The hypergeometric distribution
is used to estimate this probability, as implemented in the scipy.stats module. Two types of
similarity graphs can be used in CoNGA: K nearest neighbor (KNN) graphs, in which each
clonotype is connected to its K nearest neighbors in gene expression or TCR space (Fig. 1a);

and cluster graphs, in which each clonotype is connected to all the clonotypes in the same (GEX
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or TCR) cluster. The neighbor number K for constructing KNN graphs is specified as a fraction of
the total number of clones; for the calculations reported here, neighbor fractions of 0.01 and 0.1
were used. The CoNGA score assigned to a clonotype is the minimum score over all graph
comparisons, of which there were 6 combinations in the calculations reported here (GEX_KNN
vs TCR_KNN, GEX_KNN vs TCR_cluster, and GEX_cluster vs TCR_KNN, for both the 0.01 and
0.1 KNN neighbor fractions). Although in principle taking a minimum could lead to inflation of the
significance scores, we find in practice from shuffling experiments that a threshold of 1.0 on the
CoNGA score remains a useful indicator of genuine signal, particularly when we focus on cluster
pairs with a minimum number of CONGA hits. This may reflect correlation between neighborhoods

of nearby clonotypes, which reduces the effective multiple-testing burden.

Graph-vs-feature correlation analysis

In CoNGA graph-vs-feature correlation analysis, numerical features defined on the basis of one
property (GEX or TCR) are mapped onto similarity graphs defined by the other property, and
graph neighborhoods with biased score distributions are identified. As GEX properties we
consider the expression levels of all the individual genes as well as a feature ('nndists_gex') that
captures the density of nearby clonotypes by calculating the average distance in GEX space to
the nearest 1% of the clonotypes. The TCR features were described in an earlier section. As this
analysis involves a large number of differential expression calculations (roughly the number of
clonotypes times the number of different similarity graphs times the number of features), we use
a two-step procedure that combines a pre-filter with the t-test followed by the more time-intensive
Mann-Whitney-Wilcoxon (MWW) calculation for the top 100 hits per clonotype and graph that
pass a t-test significance threshold ten times higher than the target threshold. The final
significance score assigned to a detected association equals the raw MWW P-value multiplied by

the product of the number of clonotypes and the number of features, to correct for multiple testing.

Analysis of pMHC binding

In the 10x_200k experiment, T cells were stained with a panel of 50 DNA-barcoded pMHC
multimer reagents. Sequence reads for each of the pMHC barcodes were counted along with the
reads for intracellular transcripts and included in the raw count matrix provided by 10x Genomics.
The first step in our analysis was to assign individual T cells and T cell clonotypes as positive for
binding to specific pMHC multimers based on the observed read counts for the pMHC DNA

barcodes. A cell was called positive for the pMHC multimer with the highest barcode count if the
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natural logarithm of that pMHC's barcode count exceeded the next highest log-count by at least
2.0 (corresponding to a fold-difference in barcode counts of roughly 7.5; all counts were
augmented by 1 prior to taking logarithms). To assign clonotypes to pMHCs, we averaged the
log-counts for each pMHC over all the cells in the clonotype and again applied a threshold of 2.0
between the top and second-highest averaged-log-counts. The results of this pMHC-binding
analysis are summarized in Table 4 for all pMHCs with at least 5 positive clones in one of the four
samples. We can see that, with the exception of the 'sticky' pMHC A03_KLG, the majority of

pMHC+ positive cells belong to clones that are also called positive.

Flow Cytometry Analysis and gRT-PCR of HOBIT+ population.

To identify the HOBIT+, iMHC population of CD8 T cells using cell surface markers we performed
flow cytometric analysis on PBMCs collected from apheresis rings of blood donors. PBMC
samples were blocked with TruStain FcX prior to staining for CD3 (APC-Fire750, SK7), CD4 (PE-
Cy7, OKT4), CD56 (PE, 5.1H11), CCR7 (BrilliantViolet 785, G043H7), CD11b (BrilliantViolet
711, ICRF44), CD45RA (BrilliantViolet 421, HI100), CD45RO (BrilliantViolet 605, UCHL1)
(BioLegend), CD8A (violetFluor450, RPA-T8), CD14 (biotin, 61D3), CD19 (biotin, SJ25C1),
CD16 (biotin, 3G8) (Tonbo Bioscience), KIR2D ( FITC, NKVFS1), KLRC2 (PE-Vio615, REA205)
(Miltenyi), CD8B (PerCP-eFluor710, SIDIS8BEE, Invitrogen), and CD248 ( AlexaFluor 647, B1/35,
BD Biosciences) for 30’ at RT in PBS containing 2% FCS and 1 mM EDTA prior to secondary
staining with streptavidin-BrilliantViolet 510 (Biolegend) for 15’ on ice. Stained cells were then
analyzed with an Aurora spectral analyzer (Cytek) or sorted by an iCyt (Sony). Analysis of flow

cytometry data was performed with FlowJo (BD Biosciences).

To confirm expression of genes associated with the HOBIT+ CoNGA population, for four donors
the PBMCs were sorted into three populations: KLRC2+ KIR2+/- (dump-, CD3+, CD56+/-, CD8+,
CD45RA+, CD45R0Odim/-, CD248-, CCR7-, KLRC2+ , KIR2D +/- ), KLRC2- KIR2+ (dump-, CD3+,
CD56+/-, CD8+, CD45RA+, CD45R0Odim, CD248-, CCR7-, KLRC2-, KIR2D+ ), and CD45RO+
(dump-, CD3+, CD56+/-, CD8+, CD45RA-, CD45R0+) as a control for assessing enrichment of
the signature genes. Total RNA was extracted from the sorted cells with RNeasy Micro Columns
(Qiagen), converted into cDNA (iScript, Bio-Rad), and assayed for ZNF683, KLRC2, KLRC3, and
GAPDH expression using gene-specific primers and SYBR Green chemistry (iTaq, Bio-Rad) by
gRT-PCR on a CFX96 (Bio-Rad). The fold-change relative to the CD45R0O+ population was
calculated using AACt with GAPDH as the housekeeping gene. The following are the primer
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sequences:

KLRC2_Fwd:CCTGATGGCCACTGTGTTAAA KLRC2_Rev:GCGTTCTTGTATTCGGGGAA,
KLRC3_Fwd:CAGGCCTGTGCTTCAAAGAA, KLRC3_Rev:GAAACACACCAATCCATGAGGAA,
ZNF683_Fwd:CAAAGCGGGTCCCATTGAGTT, ZNF683_Rev:TGCACTCGTACAGGATTTTGC.
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Figure Legends

Figure 1. T cell clonotype neighbor graph analysis (CoNGA). (a) In graph-vs-graph analysis,
CoNGA identifies correlation between T cell gene expression (GEX) and TCR sequence by
constructing a gene expression similarity graph and a TCR sequence similarity graph and looking
for statistically significant overlap between them. Overlap is assessed on a per-clonotype basis
by counting the number of edges that originate at each clonotype and are shared between the
two graphs, or equivalently by measuring the overlap between each clonotype's GEX graph
neighbors and its TCR graph neighbors, and assigning a score that reflects the likelihood of
seeing equal or greater overlap by chance. (b) A single clonotype and its GEX and TCR neighbors
are shown in the GEX (left panel) and TCR (right panel) 2D UMAP projections for the
10x_200k_donor2a dataset. The clonotype is marked with a black 'x', its GEX neighbors are
shown as blue points, its TCR neighbors as green points, and the clonotypes that are both GEX
and TCR neighbors are shown in red. The significance of the observed overlap---8 clones shared
between two neighbor sets of size 24 in a total population of 2427 clonotypes---is calculated using
the hypergeometric distribution, giving a P value of 1.7e-11. (¢) In graph-vs-feature analysis, a
numerical feature defined by one property (here gene expression) is mapped onto a similarity
graph defined by the other property (TCR sequence), and graph neighborhoods with skewed
score distributions are identified using statistical tests that compare the scores for each
neighborhood (including the central vertex) with the scores of the remaining clonotypes. (d) The
gene KLRB1 (CD161) shows a non-uniform distribution over the TCR sequence landscape---
discrete regions of higher expression (red) against a background of lower expression (blue)---
suggesting correlation between gene expression and TCR sequence. This is quantified for a
single clonotype (green outline) and its TCR sequence neighbors (black outlines) in the inset violin
plot, which shows the KLRB1 expression level for the clonotype and its neighbors on the right and
for the remainder of the dataset on the left. The Mann-Whitney-Wilcoxon P value for this

expression difference is 1.5e-46.

Figure 2. CoNGA identifies GEX/TCR correlation in two datasets of T cells from peripheral
blood. (a-c) A dataset of mixed CD4+ and CD8+ T cells (vdj_v1_hs_pbmc); (d-f) a dataset of
CD8+ T cells (10x_200k_donor2a). (a,d) 2D UMAP projections of clonotypes in the dataset based
on GEX similarity (left three panels) and TCR similarity (right three panels), colored from left to
right by (1) GEX cluster assignment; (2) CoNGA score; (3) GEX/TCR cluster pair assignment,
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using a bicolored disk whose left half indicates GEX cluster and whose right half indicates TCR
cluster (only clones with CoNGA score less than 1 are shown); (4) TCR cluster; (5) CoNGA score;
(6) GEX/TCR cluster pair assignment, restricted to clones with CONGA score less than 1. (b,e)
Expression of selected marker genes in the GEX UMAP landscape, for visual reference. (c,f)
Gene expression and TCR sequence features of CoNGA hits in cluster pairs with 5 or more hits
are summarized by a series of logo-style visualizations, from left to right: differentially expressed
genes (DEGs), TCR sequence logos showing the V and J gene usage and CDR3 sequences for
the alpha and beta chains '; biased TCR sequence scores, with red indicating elevated scores
and blue indicating decreased scores relative to the rest of the dataset (see Table S1 for score
definitions); expression of a panel of marker genes shown with red disks colored by mean
expression and sized according to the fraction of cells expressing the gene (gene names are
given above). DEG and TCRseq sequence logos are scaled by the adjusted P value of the
associations: full logo height requires a top adjusted P value below 10, with partial height and
the relative apportionment of height within the logo dictated by the square root of the negative
base 10 logarithm of the P values. DEGs with fold-change less than 2 are shown in gray. Each
cluster pair is indicated by a bicolored disk colored according to GEX cluster (left half) and TCR
cluster (right half). The two numbers above each disk show the number of CoNGA hits (on the
left) and the total number of cells in those clonotypes (on the right) The dendrogram at the left
shows similarity relationships among the cluster pairs based on connections in the GEX and TCR

neighbor graphs.

Figure 3. CoNGA plots and cluster logos for a large dataset of CD8+ T cells
(710x_200k_donor1). Same arrangement of plots as in Figure 2. Only cluster pairs containing at
least 21 CoNGA hits (.1% of the dataset) are shown. The three colored and dashed boxes group

related cluster pairs.

Figure 4. Identification of KLRC2+ CD8 T cells as the HOBIT+ iMHC-elevated population.
(a) 2D GEX projection of the 10x_200k_donor1 dataset colored by 'is_hobit' (an indicator variable
for the HOBIT+ CoNGA population), iIMHC score, CD45RA and CD45RO TotalSeq, CCR?7,
KLRC2, KLRC3, and KIR2DL3 expression averaged in its GEX graph neighborhood (with
neighborhood size equal to 0.1% of the dataset). The is_hobit variable is 1 for all CONGA hits in
GEX cluster 2 and 0 otherwise. (b) Detection of KLRC2" KIR2D*- and KLRC2" KIR2D* CD8 T
cells in human PBMCs of two representative donors. Gated on lineage-, CD56"", CD3*, CD8",
CD4°, CD45RA*, CD45R0O%™"  CCR7", CD248" cells (Full gating strategy in Figure S$10). (c)
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Frequency of cell populations in panel (b) as frequency of CD8 T cells. (d) ZNF683, KLRC2, and
KLRC3 expression in sorted KLRC2" KIR2D*" and KLRC2 KIR2D* CD8 T cells shown as fold-
change relative to CD8" CD45RO" T cells within each PBMC donor (n=4) .

Figure 5. CoNGA plots and cluster logos for a large dataset of thymic T cells
(thymus_atlas). Same arrangement of plots as in Figure 2, with two additions: below the raw
GEX landscape thumbnails are added GEX-neighborhood averages of Z-score normalized
expression levels, to aid in detecting differential expression of marker genes; to the right of the
GEX landscape thumbnails are plotted four TCR feature scores, also GEX-neighborhood
averaged (‘ad' is short for the alphadist score and 'len' is short for cdr3len; see main text and
Table S1). Only cluster pairs containing at least 9 CoNGA hits (0.1% of the dataset) are shown.

The five colored and dashed boxes group related cluster pairs as annotated by the text labels.

Figure 6. Graph-vs-feature correlation analysis reveals GEX neighborhoods with elevated
iMHC scores across multiple donors. (a) 2D GEX projection of the 10x_200k_donor1 dataset
colored by iMHC score (standardized to have mean 0 and standard deviation 1). (b) The same
projection as in (a) but each clonotype is colored by the average iIMHC score in its GEX graph
neighborhood. (¢) The same projection as in (a) but colored by P-values for iIMHC enrichment in
each clonotype's graph neighborhood (the set of IMHC scores in each clonotype's neighborhood
are compared to the remainder of the iIMHC scores using an unpaired, 1-sided Mann-Whitney-
Wilcoxon test). (d) 2D GEX projection of the 70x_200k_donor2 dataset colored by iMHC score
neighborhood enrichment P-values. (e) 2D GEX projection of the 10x_200k_donor3 dataset
colored by IMHC score neighborhood enrichment P-values. (f) 2D GEX projection of the
10x_200k_donor4 dataset colored by iMHC score neighborhood enrichment P-values. (g) Top 10
DEGs for the clonotypes with significant IMHC enrichment in the 10x_200k_donor1 dataset. (h)
Top 10 DEGs for the clonotypes with significant iIMHC enrichment in the 70x_200k_donor3
dataset. (i) Top 10 DEGs for the clonotypes with significant iIMHC enrichment in the
10x_200k_donor4 dataset. (There were too few clonotypes with significant IMHC enrichment in

the 10x_200k_donor2 dataset to identify differentially expressed genes).

Figure 7. Graph-vs-feature correlation analysis highlights TCR:GEX covariation. In each of
the four panel groupings, correlation between a score derived from the TCR sequence (left panel)
and 1-2 scores derived from the GEX profile (right panels) is illustrated by mapping the scores

onto the 2D UMAP GEX or TCR landscape for the given dataset (after Z-score normalizing and


https://doi.org/10.1101/2020.06.04.134536
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.04.134536; this version posted June 5, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

averaging over graph neighborhoods). (a) iIMHC score averaged over GEX neighborhoods
correlates well with marker genes ZNF683 and KLRC3 for the HOBIT+ population. (b) KLRB1
and SLC4A10 averaged over TCR neighborhoods correlate with the MAIT cell population as
defined by TCRa sequence. (¢) ITGB1 and KLRC1 are elevated in the Flu A*02:M1sg response,
here defined by the surface counts for the multimerized A*02:M1ss pMHC. (d) T cells with
TRBV30-containing TCRs have elevated EPHB6 expression.

Figure 8. TRBV30 gene usage and EPHBG6 expression are correlated. (a) Genomic locations
of TRBV30 and EPHB6 at the end of the human TCRbeta locus. (b-c) Average EPHB6 expression
for TRBV30-negative and TRBV30-positive clonotypes in (b) 9 human datasets and (c) 3 mouse
datasets. Each marker represents the average over all (TRBV30- or TRBV30+) clonotypes for a
single dataset. The two markers for each dataset are connected by a dashed line. (d-g) 2D
projections based on TCR sequence of a mouse (d-e) and human (f-g) dataset colored by
TRBV30 (TRBV31 in mouse) usage (d,f) and EPHB6 expression (e,g) averaged over TCR
neighborhoods. Strong correlation is evident between the two features, one derived from the TCR

sequence and one from the gene expression profile.

Figure 9. CoNGA identifies convergence of TCR sequence and gene expression profile
within pMHC-positive clonotype subsets. Each marker represents a population of pMHC-
positive clonotypes in one of the four 10x_200k donors. Markers are labeled with the two-digit
HLA allele and the first three amino acids of the peptide for the given pMHC (see Table 4 for
details); colors indicate the source donor and symbols are sized based on the number of pMHC+
clonotypes found as indicated in the legend. Markers are positioned based on the rate of intra-
subset GEX (a) or TCR (b) graph edges relative to random expectation (x-axis; >1 indicates

enrichment while <1 indicates depletion) and corresponding P value (y-axis).

Figure 10. pMHC-positive clonotype populations show distinctive gene expression
profiles. Each row corresponds to a pMHC-positive population; each row corresponds to a
differentially expressed gene. Cells are colored according to the normalized transcript count

(log+1 transformed) for the given gene in the corresponding population.

Supplementary Figure 1. T cells belonging to the same clonotype have similar gene

expression profiles. Gene expression UMAP projections of the 710x_200k_donor2a dataset
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before condensing to a single cell per clonotype, with the 16 largest clonotypes shown in blue

(one per panel) and the remainder of the dataset in gray.

Supplementary Figure 2. CONGA graph-vs-graph analysis of human and mouse peripheral
blood T cells. CONGA graph-vs-graph results for two additional PBMC T cell datasets: (a-c)
human CD4 and CD8 T cells (vdj_vi1_hs pbmc3); (d-f) mouse CD4 and CD8 T cells

(vdj_v1_mm_balbc_pbmc). Same arrangement of plots as in main text Figure 2.

Supplementary Figure 3. Specific versus non-specific binding in the 70x_200k dataset.
Comparison of binding data for four 'specific' pMHC multimers (A02_GIL, A02_ELA, B08_RAK,
A02_GLC) and four 'sticky' pMHC multimers (A03_KLG, A03_RLR, A03_RIA, A11_AVF) in the
10x_200k_donor2 dataset. (a) GEX landscapes colored by pMHC binding signal
(log(barcode_read_count+1)). (b) TCR landscapes colored by pMHC binding signal. The 'specific'
pMHCs show binding that is focused in specific areas of the landscapes, whereas the binding of
the putative 'sticky' pMHCs is dispersed across the landscapes. (c¢) The Pearson correlation
between binding profiles for different pMHCs is shown in matrix form according to the indicated
color mapping. The specific pMHCs show very little correlation whereas the sticky pMHCs are
significantly correlated in their binding, suggesting that a shared cellular property (TCR or CD8
surface expression, general level of activation) is jointly influencing their binding. Note that
A11_AVF (and A11_IVT) show additional specific binding in donor 1, who is A*11:01 positive; the
A*03:01 pMHC multimers appear non-specific regardless of donor HLA type (data not shown).

Supplementary Figures 4-7. CoNGA graph-vs-graph results for 710x_200k_donor1 -
10x_200k_donor4, showing logos for all cluster pairs of size>=5. For each cluster pair, the top
two pMHCs and their average (log) read counts are shown in the cluster pair dendrogram below
the cluster pair sizes. Note that the top pMHCs for the HOBIT+ cluster pairs in donor 1 belong to

the set of sticky pMHCs shown in Figure S3.

Supplementary Figure 8. The 28 amino acid property scores currently used in CoNGA
analyses. (a) Clustering dendrogram (left) and matrix visualization of the amino acid property
scores, normalized to have mean 0 and variance 1. (b) The correlation matrix used to construct
the dendrogram in (a). Each entry is colored by the absolute value of the Pearson correlation

coefficient of the property values for the corresponding row and column.
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Supplementary Figure 9. Gating strategy for KLRC2+ KIR2D+/- and KLRC2- KIR2D- CD8 T

cells in Figure 5.

Supplementary Figure 10. Single-chain iMHC score distributions for TCR subsets. Score
distributions for CDR3a repertoires are shown on the left and for CDR3 repertoires on the right.
Single-chain variants of the IMHC score were fit with L1-regularized logistic regression just as for
the paired IMHC score. Subset labels are as follows: 'CD1b', GMM:CD1b-tetramer sorted T cells
from Ref **; 'VDJdb-MHC1', TCRs reported to bind to MHC class 1 presented epitopes in the
VDJdb database *°; 'VDJdb-MHC2', TCRs reported to bind to MHC class 2 presented epitopes in
the VDJdb database; 'dMAIT', diverse MAIT TCR sequences from Ref “¢; 'hobit', T cells belonging
to the HOBIT+/HELIOS+ population in 70x_200k donors 1, 3, and 4.

Supplementary Figure 11. Epitope-specific T cell populations differ in CD45RA/RO
expression levels. Log-transformed read counts for DNA-barcoded anti-CD45RA (x-axis) and
anti-CD45RO0O (y-axis) antibodies, averaged over pMHC+ clonotypes, are plotted for the pMHCs
shown in Figure 10. In the panel on the left, clonotypes are weighted equally, while in the panel
on the right, larger clonotypes are given more weight (proportional to the logarithm of the clone
size) to better reflect the underlying distribution of cells (particularly for the d1_A11 pMHCs, both
of which have a relatively large number of positive cells distributed unevenly among a small

number of clonotypes).

Supplementary Figure 12. Comparison of graph-based and distance-based measures for
assessing GEX/TCR correlation. Comparison of CoONGA scores to a distance-based score
(‘distcorr') that measures, for each clonotype, the degree of correlation between the GEX and
TCR distances from that clonotype to all other clonotypes in the dataset. Correlation is assessed
using the Pearson correlation coefficient and associated P-value as returned by the
scipy.stats.linregress function. (a) Scatter plots directly comparing the (negative log10-
transformed) significance scores assigned to each clonotype in the datasets. The majority of
points with significant P values lie below the y=x line, indicating that the CoNGA graph-overlap
measure assigns a higher significance score than distance correlation. One difficulty with raw
distance correlation is that it doesn't discriminate between a set of clonotypes with low distances
for both measures (nearby in GEX and in TCR space), on the one hand, and a set of clonotypes
with high distances for both measures (far away in GEX and in TCR space), on the other: both

increase the correlation coefficient, so a tight cluster in GEX and TCR space (like MAIT cells) can
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artificially elevate distcorr scores for distant clones. (b) CoNGA and distcorr scores mapped to the
GEX and TCR landscapes for 10x_200k_donor2a. The red ellipses indicate the A*02:M1sg clones,

which appear to be completely missed by the distcorr measure.
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Table 1: Single-cell datasets analyzed in this study

Dataset Clonotypes Cells CoNGA Hits? Description

vdj_v1l_hs_pbmc 1539 1630 113 CD4 and CD8 T cells from the peripheral blood of a
healthy donor®

vdj_v1l_hs_pbmc3 2783 2945 145 CD4 and CD8 T cells from the peripheral blood of a
healthy donor®

vdj_vl_mm_balbc_pbmc 1421 1423 66 CD4 and CD8 T cells from the peripheral blood of a
balbc mouse?

10x_200k_donor2a 2427 4721 149 CD8 T cells from the peripheral blood of a healthy
donor®

10x_200k_donorl 20861 33643 1956 CD8 T cells from the peripheral blood of a healthy
donor, sorted for pMHC-multimer binding’

10x_200k_donor?2 8807 51123 893 CD8 T cells from the peripheral blood of a healthy
donor, sorted for pMHC-multimer binding®

10x_200k_donor3 11971 28748 277 CD8 T cells from the peripheral blood of a healthy
donor, sorted for pMHC-multimer bindingh

10x_200k_donor4 10967 20416 125 CD8 T cells from the peripheral blood of a healthy
donor, sorted for pMHC-multimer binding'

thymus_atlas 9410 9452 1044 Thymic T cells from embryonic, fetal, pediatric, and

adult samples’

@ Graph-vs-graph hits with CoNGA score < 1

® https://support.10xgenomics.com /single-cell-vdj/datasets/2.2.0 /vdj_v1_hs_pbmc_5gex

¢ https://support.10xgenomics.com/single-cell-vdj/datasets/3.1.0 /vdj_v1_hs_pbmc3

4 https: //support.10xgenomics.com /single-cell-vdj/datasets/3.0.0 /vdj_vl_mm _balbc_pbmc_5gex

¢ Ref. 19, https://support.10xgenomics.com/single-cell-vdj/datasets/3.0.2/vdj_v1_hs_aggregated_donor2
f Ref. 19, https://support.10xgenomics.com /single-cell-vdj/datasets/3.0.2/vdj_v1_hs_aggregated_donorl
& Ref. 19, https://support.10xgenomics.com/single-cell-vdj/datasets/3.0.2 /vdj_v1l_hs_aggregated_donor2
P Ref. 19, https://support.10xgenomics.com /single-cell-vdj/datasets/3.0.2/vdj_v1_hs_aggregated_donor3
" Ref. 19, https://support.10xgenomics.com /single-cell-vdj/datasets/3.0.2/vdj_v1_hs_aggregated_donor4
J Ref. 27, d0i:10.5281/zenodo.3711134
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Table 2: Top 20 sequence features of the HOBIT+ subset in 10x_200k_donorl

Feature Chain(s)® t-Statistic P value® HOBIT+ mean BG mean®
CDR3_length AB 412 2.81x 10306 31.631 28.096
CDR3_length B 39.2 1.85x107272 16.839 14.523
CDR3_length A 20.0 5.88x 108 14.792 13.572
TRP_per_length AB 13.4 7.43x107%0 0.022 0.009
TRP_per_length B 11.9 2.99x10%° 0.027 0.011
surface B -15.0 4.93x10754 0.058 0.061
CYS_per_length B 14.7 3.53x10752 0.003 0.000
volume B 15.0 6.96x 10752 99.295 93.423
volume AB 14.0 4.26x10~% 189.896 181.447
charge B 14.1 1.39x10~% 0.020 —0.049
charge AB 13.9 2.34x10~% —0.020 —0.123
mjenergy AB -12.38 1.15x10~% —5.738 —5.540
surface AB -104 5.40x10~% 0.118 0.122
disorder AB —133 1.92x10~% 0.784 0.955
rim B -135 4.42x10742 0.058 0.060
kf2 B 13.5 5.19x10~% —0.298 —0.482
rim AB -10.3 5.51x10~38 0.118 0.121
strength AB 12.3 4.01x107% 0.460 0.379
turn AB —-10.6 6.00x1073¢ 2.306 2.383
CYS_per_length AB 12.7 2.37x10~% 0.002 0.000

2 CDRS3 regions over which the feature is computed
P Mann-Whitney-Wilcoxon P value
¢ Mean feature value over the remainder of the dataset
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Table 3: Top differentially-expressed genes in TCR graph neighborhoods

Cluster Invariant
Dataset Gene P value*  EnrichP pair Vo VB fraction® Comment
vdj_vd1_hs_pbmc NKG7 2.75e-54 3.86 (5.8) TRAV1-2 TRBV6-4 0.71 MAIT
vdj_vd1_hs_pbmc SLC4A10 2.69e-22 3.70 (5.4) TRAV1-2 TRBV20-1 0.91 MAIT
vdj_vd1_hs_pbmc GZMA 7.12e-13 4.18 (0,8) TRAV1-2 TRBV6-4 1.00 MAIT
vdj_vd1_hs_pbmc RP11-291B21.2 8.33e-04 1.56 (2,3) TRAV14/DV4 TRBV7-9 0.00 CD8 naive?
vdj_vd1l_hs_pbmc SLC4A10 3.89e-120 6.29 (4.9) TRAV1-2 TRBV6-4 1.00 MAIT
vdj_vd1_hs_pbmc NKG7 1.91e-39 5.60 (4,11) TRAV1-2 TRBV20-1 1.00 MAIT
vdj_vd1_hs_pbmc CD8B 8.45e-05 1.25 (2,3) TRAV14/DV4 TRBV19 0.00 CD4/CD8 preference
vdj_vd1_hs_pbmc CD8A 4.20e-04 1.17 (2,9) TRAV1-2 TRBV6-2 0.28 MAIT
vdj_vd1_hs_pbmc S100A4 3.58e-03 0.81 (4,5) TRAV1-1 TRBV20-1 0.45 MAIT
vdj_vd1_hs_pbmc CD8B 4.98e-03 1.16 (2,4) TRAV12-1 TRBV10-2 0.00 CD4/CDS8 preference
vdj_-mm_balbc_pbmc Cxcr6 5.68e-128 7.82 (7,12) TRAV11 TRBV13-2 1.00 iNKT
vdj-mm_balbc_pbmc Ephb6 8.29e-18 3.31 (2,4) TRAV6-6 TRBV31 0.00 EPHB6/TRBV30
vdj_mm_balbc_pbmc Wasf2 2.13e-04 1.19 (1,0) TRAV10D TRBV13-3 0.00 CD8 naive?
10x_200k_donor2a SLC4A10 7.79e-64 5.12 (4,5) TRAV1-2 TRBV6-4 0.86 MAIT
10x_-200k_donor2a KLRB1 2.87e-23 5.27 (4,11) TRAV1-2 TRBV20-1 1.00 MAIT
10x_200k_donor2a CCL5 2.77e-04 2.92 (212) TRAV27 TRBV19 0.00 Flu M1
10x-200k_donor2a HLA-C 4.16e-02 0.29 (4.6) TRAV1-2 TRBV20-1 0.45 MAIT
10x_200k_donorl SLC4A10 0.00e+00 7.07 (4,6) TRAV1-2 TRBV6-1 1.00 MAIT
10x_200k_donorl SLC4A10 0.00e+00 5.98 (4.14) TRAV1-2 TRBV20-1 0.97 MAIT
10x-200k_donorl LGALS3 1.02e-124 4.11 (4,5) TRAV25 TRBV19 0.00 Flu M1
10x_200k_donorl LGALS3 2.18e-81 3.72 (4.12) TRAV3 TRBV19 0.00 Flu M1
10x_200k_donorl ZNF683 2.30e-22 0.94 (21) TRAV9-2 TRBV11-2 0.00 Hobit+
10x-200k_donorl ITGB1 6.02e-20 1.92 (4,0) TRAV12-2 TRBV19 0.00 Flu M1
10x-200k_donorl ZNF683 6.09e-20 0.93 (2,4) TRAV38-2/DV8 TRBV4-3 0.00 Hobit+
10x_200k_donorl TRBC1 1.55e-19 0.61 (0,1) TRAV36/DV7 TRBV13 0.00 V(D)J recombination
10x-200k_donorl KLRD1 3.15e-19 0.85 (2,3) TRAV13-2 TRBV11-2 0.00 Hobit+
10x-200k_donorl GZMK 3.48e-19 0.84 (2,5) TRAV20 TRBV19 0.00 Hobit+
10x_200k_donor2 SLC4A10 1.49e-207 5.25 (8,5) TRAV1-2 TRBV6-4 0.86 MAIT
10x_200k_donor2 SLC4A10 1.33e-182 5.37 (8,13) TRAV1-2 TRBV20-1 1.00 MAIT
10x-200k_donor2 KLRC1 4.47e-39 3.18 (2,11) TRAV12-3 TRBV19 0.00 Flu M1
10x-200k_donor2 ITGB1 1.06e-31 1.15 (2,6) TRAV38-2/DV8 TRBV19 0.00 Flu M1
10x-200k_donor2 ITGB1 4.07e-31 1.14 (2,4) TRAV25 TRBV19 0.00 Flu M1
10x-200k_donor2 ITGB1 7.83e-24 1.04 (2,3) TRAVS-3 TRBV19 0.00 Flu M1
10x-200k_donor2 CCL5 3.15e-20 0.97 (21) TRAV12-2 TRBV19 0.00 Flu M17
10x_200k_donor2 ITGB1 2.11e-18 2.12 (9.11) TRAV35 TRBV19 0.00 Flu M1
10x-200k_donor2 GNLY 3.79e-18 3.13 (2,18) TRAV12-3 TRBV19 0.00 Flu M1
10x-200k_donor2 HLA-DRB1 4.02e-13 2.32 (1,2) TRAV13-1 TRBV12-3 0.00 EBV BZLF1
10x_200k_donor3 SLC4A10 0.00e+00 6.71 (3.5) TRAV1-2 TRBV6-4 0.97 MAIT
10x-200k_donor3 KLRB1 1.63e-52 3.99 (3.14) TRAV1-2 TRBV20-1 0.97 MAIT
10x-200k_donor3 GZMA 1.01e-22 2.48 (2,5) TRAV1-2 TRBV6-4 0.73 MAIT
10x_200k_donor3 DAD1 5.82e-07 0.55 (0,5) TRAV1-1 TRBV9 0.05 DAD1/TRAV1
10x-200k_donor3 TRBC1 1.06e-06 0.62 (1,0) TRAV6 TRBV4-1 0.00 V(D)J recombination
10x-200k_donor3 GZMA 2.22e-06 1.88 (2,4) TRAV14/DV4 TRBV18 0.00 other response
10x-200k_donor3 TRBC1 7.70e-06 0.59 (2,0) TRAV39 TRBV6-5 0.00 V(D)J recombination
10x-200k_donor3 TRBC1 9.81e-05 0.58 (0,0) TRAV26-2 TRBV4-1 0.00 V(D)J recombination
10x_200k_donor3 RPL34 6.34e-04 0.38 (1,5) TRAV1-2 TRBV9 0.11 naive?
10x-200k_donor3 TRBC1 7.18e-04 0.55 (1,3) TRAV12-3 TRBV14 0.00 V(D)J recombination
10x_200k_donor4 KLRB1 0.00e+00 7.28 (7,8) TRAV1-2 TRBV6-1 0.96 MAIT
10x-200k_donor4 EPHB6 3.10e-213 4.16 (0,13) TRAV29/DV5 TRBV30 0.00 EPHB6/TRBV30
10x-200k_donor4 EPHB6 1.30e-66 3.75 (1,13) TRAV12-3 TRBV30 0.00 EPHB6/TRBV30
10x_200k_donor4 GZMK 7.68e-35 2.95 (7.7) TRAV1-2 TRBV20-1 0.67 MAIT
10x-200k_donor4 GZMK 7.06e-14 1.08 (4.8) TRAV1-2 TRBV10-2 0.38 MAIT
10x_200k_donor4 CD3_TotalSeqC  8.55e-05 0.15 (0,1) TRAV14/DV4 TRBV7-9 0.00 CD31 in TRAV14/38
10x_-200k_donor4 TRBC1 4.40e-04 0.55 (1,0) TRAV6 TRBV30 0.00 V(D)J recombination
10x_200k_donor4 TRBC1 1.38e-03 0.52 (0,3) TRAV17 TRBV28 0.00 V(D)J recombination
10x-200k_donor4 TRBC1 1.21e-02 0.52 (1,3) TRAV6 TRBV19 0.00 V(D)J recombination
thymus_atlas HIST1H4C 4.11e-34 1.07  (7,13) TRAV41 TRBV19 0.00 DP(P) proliferation
thymus_atlas DNTT 6.94e-28 1.30 (8,13) TRAV41 TRBV19 0.00 DP(Q) TCR rearrangement
thymus_atlas EPHB6 3.23e-26 2.82 (0,0) TRAV10 TRBV30 0.00 EPHB6/TRBV30
thymus_atlas EPHB6 1.88e-25 2.68 (8,3) TRAV6 TRBV30 0.00 EPHB6/TRBV30
thymus_atlas HIST1H4C 6.47e-25 0.91 (7,3) TRAV20 TRBV12-4 0.00 DP(P) proliferation
thymus_atlas EPHB6 7.69e-24 2.67 (0,3) TRAV6 TRBV30 0.00 EPHB6/TRBV30
thymus_atlas EPHB6 8.18e-23 2.75 (14,3) TRAV30 TRBV30 0.00 EPHB6/TRBV30
thymus_atlas HIST1H4C 1.52e-22 0.78 (7,2) TRAV19 TRBV7-9 0.00 DP(P) proliferation
thymus_atlas TSC22D3 1.59e-22 0.83 (3.2) TRAV19 TRBV7-9 0.00 CD8axox(l1)
thymus_atlas EPHB6 5.51e-22 2.62 (0,5) TRAV12-3 TRBV30 0.00 EPHB6/TRBV30

2 Mann-Whitney-Wilcoxon P value
b log,-fold enrichment
¢ Fraction with MAIT or iNKT canonical TCRx chain
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Table 4: pMHC binding analysis

Clone GEXnbr GEXnbr TCRnbr TCR nbr HLA allele
Donor pMHC Cells Clones fraction®  enrich® P value® enrichd P value® (matched)f Peptide Source
1 AO02_ELA 79 72 100.0 0.58 1.99e-03 2.41 2.91e-39  A*02:01(+) ELAGIGILTV MART1/Cancer
1 B08_RAK 21 17 81.0 1.56 4.47e-07 —0.44 1.69e-01 B*08:01(—) RAKFKQLL BZLF1(early)/EBV
1 AO03_KLG 12 8 66.7 1.42 9.88e-02 —0.90 1.00e+00  A*03:01(—) KLGGALQAK IE1/CMV
1 A02_GIL 1437 234 99.9 2.79 4.93e-189 4.76 1.43e-272  A*02:01(+) GILGFVFTL MP /Flu
1 All1_AVF 1080 9 99.8 0.19 2.95e-01 2.10 4.83e-01  A*11:01(+) AVFDRKSDAK EBNA3B(latent)/EBV
1 AL1IVT 1845 26 99.8 1.15 2.97e-04 0.89 4.85e-02  A*11:01(+) IVTDFSVIK EBNA3B(latent)/EBV
1 A02_MLD 6 6 100.0 1.74 2.60e-01 0.74 3.99e-01  A*02:01(+) MLDLQPETT  16E7/HPV
1 A02_GLC 18 10 100.0 2.00 2.97e-05 5.36 6.61e-12  A*02:01(+) GLCTLVAML BMLF1(early)/EBV
1 AO02_FLY 12 7 100.0 2.09 1.06e-01 6.41 6.31e-12  A*02:01(+) FLYALALLL LMP2A(latent)/EBV
1 A02_LLD 57 6 100.0 1.59 5.02e-02 3.74 1.33e-01  A*02:01(+) LLDFVRFMGV EBNA3B(latent)/EBV
2 A02_GIL 3510 352 99.3 2.19 3.34e-168 3.92 2.29e-305  A*02:01(+) GILGFVFTL MP/Flu
2 BO8_FLR 24 6 100.0 2.48 2.60e-01 0.00 1.00e+00 B*08:01(+) FLRGRAYGL EBNA3A(latent)/EBV
2 A02_GLC 755 25 99.3 3.09 4.0le-21 3.64 1.09e-09  A*02:01(+) GLCTLVAML BMLF1(early)/EBV
2 BO8_RAK 12713 146 99.6 2.36 1.47e-58 3.07 3.52e-60 B*08:01(+) RAKFKQLL BZLF1(early)/EBV
2 A03_KLG 26 6 23.1 1.59 2.74e-03 0.00 1.00e+00  A*03:01(—) KLGGALQAK IE1/CMV
2 AO02_ELA 11 11 100.0 2.19 4.52e-02 2.65 3.98e-06  A*02:01(+) ELAGIGILTV MART1/Cancer
2 AO02_FLY 95 11 100.0 1.96 1.59e-03 6.52 5.80e-20  A*02:01(+) FLYALALLL LMP2A(latent) /EBV
3 AO02_ELA 8 8 100.0 0.69 1.87e-01 1.52 2.14e-02  A*02:01(-) ELAGIGILTV MART1/Cancer
4 AO02_ELA 5 5 100.0 0.00 1.00e+00 3.25 4.96e-04  A*02:01(—) ELAGIGILTV MART1/Cancer

@ Fraction of positive cells in a positive clone

P log,-fold enrichment of GEX neighbor edges within pMHC-positive clonotypes
¢ Approx. P value for observed GEX neighbor enrichment
d log,-fold enrichment of TCR neighbor edges within pMHC-positive clonotypes
¢ Approx. P value for observed TCR neighbor enrichment

f HLA allele for pMHC, followed by ‘(+)" if carried by the given donor and ‘(=)' otherwise.
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Figure 1: T cell clonotype neighbor graph analysis (CoNGA). (a) In graph-vs-graph analysis, CONGA identifies correlation between
T cell gene expression (GEX) and TCR sequence by constructing a gene expression similarity graph and a TCR sequence similarity graph
and looking for statistically significant overlap between them. Overlap is assessed on a per-clonotype basis by counting the number
of edges that originate at each clonotype and are shared between the two graphs, or equivalently by measuring the overlap between
each clonotype's GEX graph neighbors and its TCR graph neighbors, and assigning a score that reflects the likelihood of seeing equal
or greater overlap by chance. (b) A single clonotype and its GEX and TCR neighbors are shown in the GEX (left panel) and TCR
(right panel) 2D UMAP projections for the 10x_200k_donor2a dataset. The clonotype is marked with a black 'x', its GEX neighbors
are shown as blue points, its TCR neighbors as green points, and the clonotypes that are both GEX and TCR neighbors are shown
in red. The significance of the observed overlap—38 clones shared between two neighbor sets of size 24 in a total population of 2427
clonotypes—is calculated using the hypergeometric distribution, giving a P value of 1.7x107! (c) In graph-vs-feature analysis, a
numerical feature defined by one property (here gene expression) is mapped onto a similarity graph defined by the other property (TCR
sequence), and graph neighborhoods with skewed score distributions are identified using statistical tests that compare the scores for
each neighborhood (including the central vertex) with the scores of the remaining clonotypes. (d) The gene KLRBI (CD161) shows a
non-uniform distribution over the TCR sequence landscape—discrete regions of higher expression (red) against a background of lower
expression (blue)—suggesting correlation between gene expression and TCR sequence. This is quantified for a single clonotype (green
outline) and its TCR sequence neighbors (black outlines) in the inset violin plot, which shows the KLRBI expression level for the
clonotype and its neighbors on the right and for the remainder of the dataset on the left. The Mann-Whitney-Wilcoxon P value for this
expression difference is 1.5x10~46
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Figure 2: CoNGA identifies GEX/TCR correlation in two datasets of T cells from peripheral blood. (a-c) A dataset of mixed
CD4+ and CD8+ T cells (vdj_vI_hs_pbmc); (d-f) a dataset of CD8+ T cells (10x_200k_donor2a). (a,d) 2D UMAP projections of
clonotypes in the dataset based on GEX similarity (left three panels) and TCR similarity (right three panels), colored from left to right
by (1) GEX cluster assignment; (2) CoNGA score; (3) GEX/TCR cluster pair assignment, using a bicolored disk whose left half indicates
GEX cluster and whose right half indicates TCR cluster (only clones with CoNGA score less than 1 are shown); (4) TCR cluster; (5)
CoNGA score; (6) GEX/TCR cluster pair assignment, restricted to clones with CoNGA score less than 1. (b,e) Expression of selected
marker genes in the GEX UMAP landscape, for visual reference. (c,f) Gene expression and TCR sequence features of CoNGA hits in
cluster pairs with 5 or more hits are summarized by a series of logo-style visualizations, from left to right: differentially expressed genes
(DEGs), TCR sequence logos showing the V and J gene usage and CDR3 sequences for the alpha and beta chains (Dash et al. 2017);
biased TCR sequence scores, with red indicating elevated scores and blue indicating decreased scores relative to the rest of the dataset
(see Table S1 for score definitions); expression of a panel of marker genes shown with red disks colored by mean expression and sized
according to the fraction of cells expressing the gene (gene names are given above). DEG and TCRseq sequence logos are scaled by the
adjusted P value of the associations: full logo height requires a top adjusted P value below 1x107® , with partial height and the relative
apportionment of height within the logo dictated by the mapping P — \/—In(P). DEGs with fold-change less than 2 are shown in
gray. Each cluster pair is indicated by a bicolored disk colored according to GEX cluster (left half) and TCR cluster (right half). The
two numbers above each disk show the number of CONGA hits (on the left) and the total number of cells in those clonotypes (on the
right). The dendrogram at the left shows similarity relationships among the cluster pairs based on connections in the GEX and TCR
neighbor graphs.
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Figure 3: CoNGA plots and cluster logos for a large dataset of CD8+ T cells (10x_200k_donor1). Same arrangement of plots
as in Figure 2. The three colored and dashed boxes group related cluster pairs.
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Figure 4: ldentification of KLRC2+ CD8 T cells as the HOBIT+ iMHC-elevated population. (a) 2D GEX projection of the
10x_200k_donorl dataset colored by ‘is_hobit’ (an indicator variable for the HOBIT+ CoNGA population), iMHC score, CD45RA and
CD45RO TotalSeq, CCR7, KLRC2, KLRC3, and KIR2DL3 expression averaged in its GEX graph neighborhood (with neighborhood
size equal to 0.1% of the dataset). The is_hobit variable is 1 for all CONGA hits in GEX cluster 2 and 0 otherwise. (b) Detection of
KLRC2+ KIR2D+/- and KLRC2- KIR2D+ CD8 T cells in human PBMCs of two representative donors. Gated on lineage-, CD56+/-,
CD3+, CD8+, CD4-, CD45RA+, CD45ROdim/- , CCR7-, CD248- cells (full gating strategy in Figure S10). (c) Frequency of cell
populations in panel (b) as frequency of CD8 T cells. (d) ZNF683, KLRC2, and KLRC3 expression in sorted KLRC2+ KIR2D+/- and
KLRC2- KIR2D+ CD8 T cells shown as fold-change relative to CD8+ CD45RO+ T cells within each PBMC donor (n=4).
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Figure 5: CoNGA plots and cluster logos for a large dataset of thymic T cells (thymus_atlas). Same arrangement of plots as in
Figure 2, with two additions: below the raw GEX landscape thumbnails are added GEX-neighborhood averages of Z-score normalized
expression levels, to aid in detecting differential expression of marker genes; to the right of the GEX landscape thumbnails are plotted
four TCR feature scores, also GEX-neighborhood averaged (‘ad’ is short for the alphadist score and ‘len’ is short for cdr3len; see main
text and Table S1). The five colored and dashed boxes group related cluster pairs as annotated by the text labels.
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Figure 6: Graph-vs-feature correlation analysis reveals GEX neighborhoods with elevated iMHC scores across multiple donors.
(a) 2D GEX projection of the 10x_200k_donorl dataset colored by iMHC score (standardized to have mean 0 and standard deviation
1). (b) The same projection as in (a) but each clonotype is colored by the average iMHC score in its GEX graph neighborhood. (c)
The same projection as in (a) but colored by P values for iIMHC enrichment in each clonotype's graph neighborhood (the set of iIMHC
scores in each clonotype’s neighborhood are compared to the remainder of the iMHC scores using an unpaired, 1-sided Mann-Whitney-
Wilcoxon test). (d) 2D GEX projection of the 10x_200k_donor2 dataset colored by iMHC score neighborhood enrichment P-values. (e)
2D GEX projection of the 10x_200k_donor3 dataset colored by iMHC score neighborhood enrichment P-values. (f) 2D GEX projection
of the 10x_200k_donor4 dataset colored by iMHC score neighborhood enrichment P-values. (g) Top 10 DEGs for the clonotypes with
significant IMHC enrichment in the 10x_200k_donor1 dataset. (h) Top 10 DEGs for the clonotypes with significant iIMHC enrichment in
the 10x_200k_donor3 dataset. (i) Top 10 DEGs for the clonotypes with significant iMHC enrichment in the 10x_200k_donor4 dataset.
(There were too few clonotypes with significant iMHC enrichment in the 10x_.200k_donor2 dataset to identify differentially expressed
genes).
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neighborhoods). (a) iIMHC score averaged over GEX neighborhoods correlates well with marker genes ZNF683 and KLRC3 for the
HOBIT+ population. (b) KLRBI and SLC4A10 averaged over TCR neighborhoods correlate with the MAIT cell population as defined
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Figure 8: TRBV30 gene usage and EPHBG6 expression are correlated. (a) Genomic locations of TRBV30 and EPHB6 at the
3" end of the human TCRf locus. (b-c) Average EPHB6 expression for TRBV30-negative and TRBV30-positive clonotypes in (b) 9
human datasets and (c) 3 mouse datasets. Each marker represents the average over all (TRBV30— or TRBV30+) clonotypes for a
single dataset. The two markers for each dataset are connected by a dashed line. (d-g) 2D projections based on TCR sequence of a
mouse (d-e) and human (f-g) dataset colored by TRBV30 (TRBV31 in mouse) usage (d,f) and EPHB6 expression (e,g) averaged over
TCR neighborhoods. Strong correlation is evident between the two features, one derived from the TCR sequence and one from the

gene expression profile.
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Figure 9: CoNGA identifies convergence of TCR sequence and gene expression profile within pMHC-positive clonotype
subsets. Each marker represents a population of pMHC-positive clonotypes in one of the four 10x_200k donors. Markers are labeled
with the two-digit HLA allele and the first three amino acids of the peptide for the given pMHC (see Table 4 for details); colors
indicate the source donor and symbols are sized based on the number of pMHC+ clonotypes found as indicated in the legend. Markers
are positioned based on the relative enrichment or depletion of GEX (a) or TCR (b) graph edges between pMHC-positive clonotypes
compared to random expectation (z-axis; > 1 indicates enrichment while < 1 indicates depletion) and corresponding P value (y-axis).
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Figure 10: pMHC-positive clonotype populations show distinctive gene expression profiles. Each row corresponds to a pMHC-
positive population; each row corresponds to a differentially expressed gene. Cells are colored according to the normalized transcript
count (log+1 transformed) for the given gene in the corresponding population.
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Table S1: TCR sequence feature descriptions

Feature® Description

alphadist Ordinal distance between the V& and Jx gene segments when the TCR«x locus is ordered by genomic position
cd8 CD8 vs CD4 preference score

cdr3len Combined length of the CDR3x and CDR3[3 regions

inkt 1 for TCRs matching an iNKT sequence consensus, 0 otherwise

mait 1 for TCRs matching a MAIT sequence consensus, 0 otherwise

imhc MHC-independent score fit to discriminate the Hobit+/Helios+ TCRs
nndists_tcr  TCR neighborhood distance score equal to average TCRdist to nearest 1% of clonotypes in dataset
alpha® Preference to appear in alpha helices

beta* Preference to appear in beta sheets

turn® Preference to appear in turns

surface® Frequency in protein surface away from protein-protein interfaces

rim* Frequency in rim region of protein-protein interfaces

core® Frequency in core region of protein-protein interfaces

disorder® Disorder-promoting amino acid score

charge Amino acid charge

pH Amino acid pH level

polarity Polar/non-polar amino acids

hydropathy ~ Amino acid hydropathy

volume Amino acid volume

strength® Strongly-interacting amino acids as defined by analysis of MJ statistical potential

mjenergy®  Mean value of MJ statistical potential for each amino acid
kfl...kf10**  Values of 10 Kidera factors summarizing physicochemical properties of amino acids
afl...af5* Values of 5 Atchley factors summarizing physicochemical properties of amino acids

2 Features ‘alpha’ through ‘kf10’ were compiled by the authors of the VDJtools*? package
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Table S2: iIMHC score coefficients

Feature Coefficient Std. coefficient? Std. dev.?
len_AB 0.368 495 1.013617 2.750 693
len_B 0.321411 0.606 267 1.886 267
charge_AB 0.603610 0.137170 0.227 249
charge B 0.902 453 0.136 966 0.151771
volume_AB 0.006 965 0.129819 18.638 504
Wrfrac_AB 4.141 282 0.117301 0.028 325
disorder_AB —0.290458 —0.114 851 0.395414
volume_B 0.009481 0.114739 12.102429
arofrac_AB 1.217 256 0.093160 0.076 533
surface_B —15.068416 —0.088320 0.005 861
Cfrac_B 5.998 254 0.032482 0.005415
Kfrac_AB 0.441505 0.011270 0.025526
Cfrac_AB 2.313601 0.009199 0.003976
Ffrac_.AB 0.013840 0.000550 0.039716
model_intercept —41.230464

@ Coefficient scaled by feature standard deviation
® Feature standard deviation over the 10x_200k_donorl dataset.
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Figure S1: T cells belonging to the same clonotype have similar gene expression profiles. Gene expression UMAP projections
of the 10x_200k_donor2a dataset before condensing to a single cell per clonotype, with the 16 largest clonotypes shown in blue (one
per panel) and the remainder of the dataset in gray.
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Figure S2: CoNGA graph-vs-graph analysis of human and mouse peripheral blood T cells. CoNGA graph-vs-graph results for
two additional PBMC T cell datasets: (a-c) human CD4 and CD8 T cells (vdj_vi_hs_pbmc3); (d-f) mouse CD4 and CD8 T cells
(vdj_vl_mm_balbc_pbmc). Same arrangement of plots as in main text Figure 2.
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Figure S3: Specific versus non-specific binding in the 10x_200k dataset. Comparison of binding data for four ‘specific’ pMHC
multimers (A02_GIL, A02_ELA, B08_RAK, A02_GLC) and four 'sticky’ pMHC multimers (A03_KLG, A03_RLR, AO3_RIA, A11_AVF) in
the 10x_200k_donor2 dataset. (a) GEX landscapes colored by pMHC binding signal (log-transformed barcode read counts). (b) TCR
landscapes colored by pMHC binding signal. The ‘specific’ pMHCs show binding that is focused in specific areas of the landscapes,
whereas the binding of the putative ‘sticky’ pMHCs is dispersed across the landscapes. (c) The Pearson correlation between binding
profiles for different pMHCs is shown in matrix form according to the indicated color mapping. The specific pMHCs show very little
correlation whereas the sticky pMHCs are significantly correlated in their binding, suggesting that a shared cellular property (TCR
or CD8 surface expression, general level of activation) is jointly influencing their binding. Note that A11_AVF (and A11_IVT) show
additional specific binding in donor 1, who is A*11:01 positive; the A*03:01 pMHC multimers appear non-specific regardless of donor
HLA type (data not shown).
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Figure S4: CoNGA graph-vs-graph results for the 10x_200k_donor1 dataset
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Figure S5: CoNGA graph-vs-graph results for 10x_200k_donor2 dataset. Logos are shown for all cluster pairs with at least 5
CoNGA hits. For each cluster pair, the top two pMHCs and their average (log) read counts are shown in the cluster pair dendrogram
below the cluster pair sizes.
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Figure S6: CoNGA graph-vs-graph results for 10x_200k_donor3 dataset. Logos are shown for all cluster pairs with at least 5
CoNGA hits. For each cluster pair, the top two pMHCs and their average (log) read counts are shown in the cluster pair dendrogram
below the cluster pair sizes.
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Figure S7: CoNGA graph-vs-graph results for 10x_200k_donor4 dataset. Logos are shown for all cluster pairs with at least 5
CoNGA hits. For each cluster pair, the top two pMHCs and their average (log) read counts are shown in the cluster pair dendrogram
below the cluster pair sizes.
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Figure S8: The 28 amino acid property scores currently used in CoNGA analyses. (a) Clustering dendrogram (left) and matrix
visualization of the amino acid property scores, normalized to have mean 0 and variance 1. (b) The correlation matrix used to construct
the dendrogram in (a). Each entry is colored by the absolute value of the Pearson correlation coefficient of the property values for the
corresponding row and column.
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Figure S9: Gating strategy for KLRC2+4+ KIR2D+ /- and KLRC2- KIR2D- CD8 T cells in Figure 5.
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Figure S10: Single-chain iMHC score distributions for TCR subsets. Score distributions for CDR3«x repertoires are shown on the
left and for CDR3[3 repertoires on the right. Single-chain variants of the iMHC score were fit with L1-regularized logistic regression
just as for the paired iMHC score. Subset labels are as follows: 'CD1b’, GMM:CD1b-tetramer sorted T cells from DeWitt et al. 44
'VDJdb-MHC1', TCRs reported to bind to MHC class 1 presented epitopes in the VDJdb database*’; 'VDJdb-MHC2’, TCRs reported
to bind to MHC class 2 presented epitopes in the VDJdb database; 'dMAIT’, diverse MAIT TCR sequences from Gherardin et al.46
2016); 'hobit’, T cells belonging to the HOBIT+/HELIOS+ population in 10x_.200k donors 1, 3, and 4.
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Figure S11: Epitope-specific T cell populations differ in CD45RA /RO expression levels. Log-transformed read counts for DNA-
barcoded anti-CD45RA (x-axis) and anti-CD45RO (y-axis) antibodies, averaged over pMHC+ clonotypes, are plotted for the pMHCs
shown in main text Figure 10. In the panel on the left, clonotypes are weighted equally, while in the panel on the right, larger clonotypes
are given more weight (proportional to the logarithm of the clone size) to better reflect the underlying distribution of cells (particularly
for the d1_A11l pMHCs, both of which have a relatively large number of positive cells distributed unevenly among a small number of
clonotypes).
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Figure S12: Comparison of graph-based and distance-based measures for assessing GEX/TCR correlation. Comparison of
CoNGA scores to a distance-based score (‘distcorr’) that measures, for each clonotype, the degree of correlation between the GEX
and TCR distances from that clonotype to all other clonotypes in the dataset. Correlation is assessed using the Pearson correlation
coefficient and associated P-value as returned by the scipy.stats.linregress function. (@) Scatter plots directly comparing the (negative
log,-transformed) significance scores assigned to each clonotype in the datasets. The majority of points with significant P values lie
below the y = =z line, indicating that the CoNGA graph-overlap measure assigns higher significance than distance correlation. One
difficulty with raw distance correlation is that it doesn't discriminate between a set of clonotypes with low distances for both measures
(nearby in GEX and in TCR space), on the one hand, and a set of clonotypes with high distances for both measures (far away in GEX
and in TCR space), on the other: both increase the correlation coefficient, so a tight cluster in GEX and TCR space (like MAIT cells)
can artificially elevate distcorr scores for distant clones. (b) CoNGA and distcorr scores mapped to the GEX and TCR landscapes for
10x_200k_donor2a. The red ellipses indicate the A*02:M15g clones, which appear to be completely missed by the distcorr measure.


https://doi.org/10.1101/2020.06.04.134536
http://creativecommons.org/licenses/by-nd/4.0/

	conga_paper_ss1.pdf
	conga_tables.pdf

