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Abstract 16 

 17 

How is conceptual knowledge organized and retrieved by the brain? Recent evidence 18 

points to the anterior temporal lobe (ATL) as a crucial semantic hub integrating both abstract 19 

and concrete conceptual features according to a dorsal-to-medial gradient. It is however 20 

unclear when this conceptual gradient emerges and how semantic information reaches the 21 

ATL during conceptual retrieval. Here we used a multiple regression approach to 22 

magnetoencephalography signals of spoken words, combined with dimensionality reduction 23 

in concrete and abstract semantic feature spaces. Results showed that the dorsal-to-medial 24 

abstract-to-concrete ATL gradient emerges only in late stages of word processing: Abstract 25 

and concrete semantic information are initially encoded in posterior temporal regions and 26 

travel along separate cortical pathways eventually converging in the ATL. The present finding 27 

sheds light on the neural dynamics of conceptual processing that shape the organization of 28 

knowledge in the anterior temporal lobe. 29 

 30 
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Introduction 33 

 34 

How is conceptual knowledge organized, stored and retrieved in the human brain? A 35 

“distributed-plus-hub” view of semantic knowledge (Lambon-Ralph, Jefferies, Patterson, & 36 

Rogers, 2017; Patterson, Nestor, & Rogers, 2007) suggests that concepts are retrieved 37 

through the activation of a network of highly specialized cortical regions that encode 38 

information in given sensory modalities (e.g., visual, auditory) or experiential domains (e.g., 39 

movement, emotions, human body). During conceptual learning, modality- and domain-40 

specific information converges into a cross-modal hub, identified in the anterior temporal lobe 41 

(ATL), where integrated and specific semantic representations are formed. Evidence for this 42 

model comes from neuropsychological cases showing that damages in peripheral “spokes” 43 

regions often lead to specific semantic impairments in a given modality (e.g., visual, 44 

manipulation) or conceptual domain (e.g., tools, colors; Buxbaum, Kyle, Grossman, & Coslett, 45 

2007; Pobric, Jefferies, & Lambon Ralph, 2010; Stasenko, Garcea, Dombovy, & Mahon, 46 

2014); whereas bilateral damages of the ATL lead to a general semantic deficit across 47 

modalities and domains of knowledge (Guo et al., 2013; Hodges, Patterson, & Tyler, 1994; 48 

Rogers, Ralph, Hodges, & Patterson, 2004).  49 

A recent update of the distributed-plus-hub model (Lambon-Ralph et al., 2017) put 50 

forward the idea that semantic representations in the ATL hub are organized according to a 51 

dorsal-to-medial and abstract-to-concrete gradient: Whereas the representation of concrete 52 

features insists on the medial-ventral ATL, abstract features are represented in the dorsal-53 

lateral ATL. Empirical support for a graded ATL hub comes from functional magnetic 54 

resonance imaging (fMRI) studies comparing abstract and concrete concepts (Hoffman, 55 

Binney, & Lambon Ralph, 2015; Striem-Amit, Wang, Bi, & Caramazza, 2018). However, other 56 

fMRI studies following a similar methodology (including one meta-analysis) failed to find 57 

evidence for such an organization of semantic knowledge in ATL (Binder, Westbury, 58 

McKiernan, Possing, & Medler, 2005; Wang, Conder, Blitzer, & Shinkareva, 2010). One 59 

reason for this discrepancy may lie in the fact that the ATL is shy to fMRI, due to the drop of 60 

BOLD signal near air cavities, calling for confirmatory results using alternative methodologies. 61 

Moreover, several questions about the role of ATL in conceptual processing remain 62 

unanswered. For instance, it is unclear at which stage of conceptual retrieval semantic 63 

representations emerge as a gradient in the ATL. Indeed, previous chronometric tests 64 

focused alternatively on concrete (Borghesani & Piazza, 2017; Chan et al., 2011; García et 65 

al., 2019; Jackson, Lamobon Ralph, & Probic, 2015; Mollo et al., 2017; Teige et al., 2019) or 66 

abstract aspects of word meaning (Fahimi Hnazaee, Khachatryan, & Van Hulle, 2018), and 67 

failed to show a specific ventral or dorsal ATL activity related to concrete and abstract 68 

features. 69 

A related question is why semantic information is organized in the ATL according to a 70 

dorsal-to-medial and abstract-to-concrete gradient. One possibility is that this pattern 71 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.04.134163doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.134163
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 3 

depends on the long-range connectivity profile of different subparts of the ATL (Lambon-72 

Ralph et al., 2017). According to this hypothesis, the medial-ventral ATL responds more to 73 

concrete concepts by virtue of having greater connectivity to visual areas through the ventral 74 

occipital-temporal cortex (VOTC); whereas the dorsal-lateral ATL contributes more to abstract 75 

concepts by virtue of its greater connectivity with the posterior temporal language system and 76 

with orbito-frontal regions that support social cognition and emotional value (see Figure 3A for 77 

a depiction of this connectivity model by Lambon-Ralph and collaborators). This model is 78 

partially supported by tractographic studies (Binney, Parker, & Lambon Ralph, 2012; Chen, 79 

Lambon Ralph, & Rogers, 2017) and functional connectivity analysis during rest (Jackson, 80 

Hoffman, Pobric, & Lambon Ralph, 2016; Pascual et al., 2015) showing the presence of this 81 

cortico-cortical tracks in human subjects. However, there is no direct evidence that concrete 82 

and abstract information travels between peripherical spokes and subparts of the ATL-hub, 83 

along these cortical routes, during the retrieval of specific concepts. 84 

In the present magnetoencephalography (MEG) study we aim to investigate the 85 

spatiotemporal organization of semantic knowledge in the brain. In particular, we will focus on 86 

abstract and concrete semantic information encoding in the attempt to: (i) assess whether 87 

and when a semantic gradient emerges in the ATL and (ii) shed some light on how the 88 

information concerning abstract and concrete conceptual dimensions reaches anterior 89 

temporal brain regions. To this end we recorded MEG signals from thirty participants 90 

performing a semantic categorization task on 438 spoken words. Each word referred to a 91 

concept (e.g., chair, dog, policeman) that was independently rated across 65 feature 92 

dimensions (e.g., color, shape, happiness, arousal, cognition, etc.; Binder et al. 2016). Thus, 93 

each word could be considered as a point in a high-dimensional feature space. Principal 94 

component analysis (PCA) was implemented in order to reduce dimensionality and create 95 

high-level abstract and concrete semantic predictors. We then used a combination of multiple 96 

linear regressions analysis and source reconstruction methods to assess the spatiotemporal 97 

dynamics of abstract and concrete semantic information processing.  98 

 99 

Results 100 

 101 

Behavioral results 102 

Participants listened to auditory-presented words and were instructed to categorize 103 

each stimulus as either related to sensory perception (i.e., they refer to something that can be 104 

easily perceived with the senses, like “red” and “telephone”), or unrelated to sensory 105 

perception (i.e., they refer to something that cannot easily be perceived with the senses, like 106 

“agreement” and “shame”). We expected participants to categorize relatively concrete words 107 

as related to sensory perception and relatively abstract words as unrelated to sensory 108 

perception. To assess this, we correlated participants’ responses with concreteness 109 

estimates for each item (i.e., the concrete principal component, see below). The results 110 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 9, 2020. ; https://doi.org/10.1101/2020.06.04.134163doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.04.134163
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 4 

indicated a significant association between participants’ responses and concreteness 111 

estimates (r(436)=.82, p < .001). We did not analyze reaction times because participants’ 112 

responses were delayed in order to avoid motion-related artifacts in the MEG signal (i.e., see 113 

Material and Methods for details).  114 

 115 

Mapping sound to meaning 116 

Spatiotemporal dynamics of conceptual retrieval were inferred using multiple linear 117 

regression analysis of MEG data (Chen, Davis, Pulvermüller, & Hauk, 2013; Hauk, Davis, 118 

Ford, Pulvermüller, & Marslen-Wilson, 2006; Hauk, Pulvermüller, Ford, Marslen-Wilson, & 119 

Davis, 2009; Miozzo, Pulvermüller, & Hauk, 2015). We focused on three predictors spanning 120 

both lexical and semantic aspects of word retrieval (word frequency, and the abstract and 121 

concrete semantic predictors that were computed via PCA, see below). Also, we included in 122 

the model other predictors to control for potentially confounding variables (i.e., word duration 123 

and participants’ judgment of each item as related [1] or unrelated [0] to the senses).  124 

Word frequency was calculated as the frequency of occurrence of a given word in a 125 

large corpus of text samples (subtlex-it, Crepaldi et al., 2013). Semantic predictors were 126 

derived instead from Binder’s et al., (2016) database. As briefly mentioned above, each word 127 

in Binder’s work was rated across 65 fundamental semantic features. Some of these features 128 

were related to sensory experience (e.g., sound, shape, smell), whereas others to social, 129 

emotional or intellectual experiences (e.g., arousal, social, sad). Following the concrete 130 

versus abstract labeling provided in the original database (Binder et al., 2016),  we separated 131 

the entire semantic space (65-Dimension) into concrete (31-Dimensions) and an abstract (31-132 

Dimensions) features (with three feature dimensions discarded for missing values; See 133 

Methods). Thus, each word could be considered as a point in a concrete semantic space (see 134 

Figure 1A), and in an abstract semantic space (see Figure 1B). We used principal component 135 

analysis (PCA) to reduce the dimensionality of the dataset and adopted the first concrete 136 

(Figure 1C) and the first abstract semantic component (Figure 1D), to represent the same 137 

data in a new one-dimensional coordinate system. Importantly, the resulting semantic 138 

components do not simply reflect how concrete and how abstract a word is, but instead 139 

represents concrete and abstract aspects of concepts in a new low-dimensional space that 140 

encodes the most salient structural features of the high-dimensional space from which it is 141 

derived. For instance, in the concrete principal component, “moose” is more similar to “chair” 142 

than to “hug”, whereas the opposite is true in the abstract principal component. 143 

 144 
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 145 

Figure 1. Dimensionality reduction. A) Schematic representation of a 3-D semantic space where each word is 146 

viewed in a coordinate system defined by concrete features such as Touch, Sound and Color (the actual 147 

multidimensional space comprised 31 dimensions, here reduced to 3 for visualization purposes). B) 148 

Schematic representation of a 3-D semantic space where each word is viewed in a coordinate system 149 

defined by abstract features such as Arousal, Pleasant and Social (the actual multidimensional space 150 

comprised 31 dimensions). C) Words’ weights along the first principal component of the concrete space. D) 151 

Words’ weights along the first principal component of the abstract space.  152 

 153 

Access to any word’s lexical-semantic properties obviously depends on the unique 154 

identification of that word (Marlsen-Wilson, 1987). Therefore we aligned our multiple 155 

regression analysis to the uniqueness point of each word (UP), that is, the point in time when 156 

the acoustic and phonetic information already presented (e.g., the syllables “ba”-“nan”) is 157 

compatible with a single lexical entry (i.e., banana). Thus, for each time point, channel and 158 

subject we calculated event-related regression coefficients (ERRCs) reflecting the 159 

contribution of each predictor to the MEG signal. The spatiotemporal dynamics of the different 160 

predictors were characterized as the root-mean-square (RMS) of the signal-to-noise ratio 161 

(SNR) of ERRC (see Material and Methods).  This provided a unified measures of sensor-162 

level activity (magnetometers and gradiometers are combined together; Figure 2A). Source-163 

reconstructed statistical maps of single predictors were computed as consecutive 100ms 164 

average time-windows (Figure 2B/C/D/E). The same analysis, time-locked to the word onset, 165 

is reported in the supplementary materials and confirms the results described here 166 

(Supplementary Figure 1). 167 

Consistent with an optimally efficient recognition system, lexical access occurred 168 

shortly after the UP, essentially validating our UP estimation procedure (see also Kocagoncu, 169 

Clarke, Devereux, & Tyler, 2016). This is depicted in Figure 2A by the peak in the SNR of the 170 

word frequency predictor, from 0 to 300 ms (with zero being the uniqueness point of each 171 

word). Dual-stream models of speech processing state that, at this point in time, the 172 

spectrotemporal and phonological analysis of speech signals maps onto lexical 173 
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representations stored in middle temporal regions (Hickok & Poeppel, 2007). Accordingly, in 174 

our study, encoding of word frequency information involved bilateral middle temporal regions, 175 

the superior temporal gyrus (STG) and the inferior frontal gyrus (IFG), with an overall weak 176 

left-hemisphere bias (Figure 2E). At later time windows, the word frequency predictor was 177 

encoded in right premotor areas, right medial temporal lobe, left anterior temporal lobe and 178 

left parahippocampal formation (Supplementary Figure 2).  179 

Semantic information encoding occurred at later time stages. Specifically, abstract 180 

and concrete semantic components showed a sustained increase in the SNR starting from 181 

300ms after the UP and continuing until the end of the trial (Figure 2A). Consistently, a recent 182 

electroencephalography (EEG) study reported effects of concreteness, during spoken word 183 

recognition, in a similar time window (i.e., 400 - 900ms; Winsler, Midgley, Grainger, & 184 

Holcomb, 2018).  185 

One important prediction of the distributed-plus-hub model (Lambon-Ralph et al., 186 

2017) is that semantic representations in the ATL follow a dorsal-to-medial and abstract-to-187 

concrete gradient. To test this, we contrasted source-reconstructed ERRCs of the concrete 188 

and abstract semantic components in consecutive 100ms time windows. Figure 2D shows 189 

that, at late latencies (i.e., > 700ms), anterior temporal regions responded to both types of 190 

semantic information. Crucially, semantic information encoding followed a dorsal-to-medial, 191 

abstract-to-concrete gradient. This is illustrated in greater detail in Figure 2C where in the 192 

900ms to 1000ms time window, concrete semantic encoding engaged the left ventral and 193 

medial ATL and abstract semantic encoding involved the anterior lateral ATL and the left 194 

dorsal ATL. Additionally, the left IFG, right supramarginal gyrus (SMG) and right medial 195 

prefrontal cortex (MPFC) responded preferentially to concrete semantic information (Figure 196 

2B). Conversely, bilateral orbitofrontal cortex (OF) and left MPFC responded preferentially to 197 

abstract semantic information (Figure 2B). Different parts of the ATL (i.e., dorso-lateral and 198 

ventral-medial), therefore, seem to integrate within two different networks of regions 199 

implicated in the representation of abstract and concrete features, respectively.  200 

 201 

 202 
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 203 

Figure 2. Spatiotemporal dynamics of lexical and conceptual representations. A) Root-mean-square of the 204 

SNR of ERRC of the word frequency (grey), concrete semantic component (blue) and abstract semantic 205 

component (red) predictors. 0s = uniqueness point. B) Concrete > Abstract (one-sample t-test (two-tailed), 206 

FDR-corrected p < .05, > 15-vertex) in the .9 to 1s interval. C) Detail on the left ATL for the contrast Concrete 207 

> Abstract (one-sample t-test (two-tailed), FDR-corrected p < .05, > 15-vertex) in the .9 to 1s interval. D) 208 

Source-reconstructed statistical maps of the contrast Concrete > Abstract (one-sample t-test (two-tailed), 209 

FDR-corrected p < .05, > 15-vertex) in consecutive 100ms intervals. E) Source-reconstructed statistical maps 210 

of the Word Frequency predictor (one-sample t-test (one tail), FDR-corrected p < .05, > 15-vertex) in 211 

consecutive 100ms intervals.  212 

 213 

Streams of semantic information 214 

We hypothesized that semantic information travels along parallel paths (one dorsal-215 

abstract and one ventral-concrete) to reach the ATL. To test this hypothesis, we increased 216 

the sensitivity of our analysis (by reducing the number of multiple comparisons for which 217 

correction is required) and adopted a region of interest (ROI) approach. That is, statistical 218 

analysis of abstract and concrete semantic components was restricted to three macro-219 

regions: Early visual cortex (EVC), ventral occipito-temporal cortex (VOTC; henceforth, 220 

ventral ROI) and a macro region including the superior temporal gyrus and the orbito-frontal 221 

cortex (Figure 3B, see Material and Methods for details). Our choice of ROIs was motivated 222 

by current models of long-range ATL connectivity pathways (see Figure 3A; Lambon-Ralph et 223 

al., 2017). Moreover, we separated the EVC from the anterior ventral occipital cortex due to 224 

the fact that these two macro-regions have different roles during semantic processing (Bracci 225 

& Op de Beeck, 2016; Clarke & Tyler, 2014; Mattioni et al., 2020) as well as to balance the 226 

number of vertices across different ROIs (see Method sections for details).  227 
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The time course of concrete semantic information encoding is illustrated in Figure 3E.   228 

The EVC ROIs did not reveal any significant differences between abstract and concrete 229 

semantic information encoding. The first observable response was confined to left ventral 230 

ROI. An enlarged view of this portion of the temporal lobe in the time window of significance 231 

(i.e., 200ms to 300ms, Figure 3C) shows a cluster of activation in the posterior fusiform and 232 

mid-lateral temporal regions. Notably, encoding of concrete semantic information 233 

progressively engaged more anterior regions. Specifically, at 700ms after word recognition, 234 

concrete information was encoded in left ventral ATL and at 900ms in left medial ATL (Figure 235 

3C).  236 

With a similar time course, abstract semantic information encoding progressed from 237 

posterior to anterior portions of the left dorsal ROI (Figure 3F). Figure 3D depicts the earliest 238 

(200ms to 300ms) observable response to abstract semantic information localized in the left 239 

posterior STG. Importantly, the OF cortex responded only at later time intervals (> 500ms; 240 

Figure 3D), immediately before the dorsal ATL (> 600ms), and all these areas remained 241 

active until the end of the trial (Figure 3D; see also movies A and B). 242 

The overall pattern of results strongly suggests the existence of two streams of 243 

semantic processing. Both abstract and concrete semantic information encoding progressed 244 

from posterior to anterior temporal regions. That is, along the left ventral stream, concrete 245 

semantic information initially involved the fusiform cortex, followed by left ventral ATL and 246 

medial ATL responses. Moreover, along the left dorsal stream, abstract semantic information 247 

involved, at subsequent time intervals, STG, OF, and anterior dorsal ATL. 248 

 249 

 250 
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 251 

Figure 3. A dorsal and a ventral stream. A) Neuroanatomical sketch of hub and spokes connectivity 252 

pathways (see also Lambon-Ralph et al., 2017). B) Dorsal (red) ventral (blue) and early visual cortex (cyan) 253 

ROIs in the left hemisphere. C) Concrete semantic component activation detail on the left ventral and medial 254 

temporal cortex in the relevant time intervals (one-sample t-test (two-tailed), FDR-corrected p < .05, > 15-255 

vertex). D) Abstract semantic component activation detail on the left posterior STG and left ATL in the 256 

relevant time intervals (one-sample t-test (two-tailed), FDR-corrected p < .05, > 15-vertex). E) Source-257 

reconstructed statistical maps of the contrast Concrete > Abstract (one-sample t-test (two tailed), FDR-258 

corrected p < .05, > 15-vertex) in consecutive 100ms intervals, positive t-values. F) Source-reconstructed 259 

statistical maps of the contrast Concrete > Abstract (one-sample t-test (two-tailed), FDR-corrected p < .05, > 260 

15-vertex) in consecutive 100ms intervals, negative t-values.  261 

 262 

Discussion 263 

To test whether and when an abstract-to-concrete graded semantic representation 264 

emerges in the ATL and how does conceptual information reach anterior temporal brain 265 

regions we took advantage of the high spatiotemporal resolution of MEG signals. Using a 266 

multiple linear regression analysis of MEG-recorded brain activity we obtained for every time 267 

point, channel and subject event-related regression coefficients (ERRC) reflecting the 268 

contribution of each predictor to the data. Predictors of interest included variables associated 269 

with the frequency of each word as well as variables related to abstract and concrete 270 

dimensions of semantic knowledge. Sensor-level results showed sequential encoding of 271 

lexical and semantic information (see Figure 2A), suggestive of a serial organization of 272 

spoken word recognition (for similar findings see Brodbeck, Presacco, & Simon, 2018; 273 

Winsler et al., 2018). Furthermore, in line with prominent models of speech processing 274 

(Hickok & Poeppel, 2007), source-reconstructed cortical responses to the different predictors 275 

evidenced a sound-to-meaning mapping system that includes middle and superior temporal 276 

areas bilaterally (Supplementary materials Figure 1), and culminates in concrete and abstract 277 

semantic representations being encoded in the ATL. Crucially, left-hemispheric ventral and 278 

medial ATL regions responded preferentially to concrete aspects of conceptual knowledge. 279 

More abstract features, instead, were encoded in the anterior dorsal and lateral ATL areas. 280 

We then moved on to investigate how abstract and concrete semantic information 281 

reaches the ATL during conceptual retrieval. Using a region of interest approach motivated by 282 

current models of long-range ATL connectivity pathways (see Figure 3A), we showed that the 283 

earliest observable responses to concrete and abstract semantic information laid, 284 

respectively, in the fusiform gyrus and in the posterior STG. Moreover, whereas concrete 285 

semantic information sequentially involved more anterior areas along the ventral temporal 286 

lobe, abstract semantic processing involved, at later time stages, the orbitofrontal cortex and 287 

the dorsal anterior temporal lobe.  288 

 289 

 290 

The role of the ATL hub in conceptual processing 291 

To date, empirical evidence for a graded ATL hub mainly stems from fMRI studies 292 
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comparing abstract and concrete concepts (Hoffman et al., 2015; Striem-Amit et al., 2018). 293 

Due to the low temporal resolution of fMRI techniques, however, the time course of graded 294 

semantic representations in the ATL is still largely unknown. The present MEG study shows 295 

that the ATL gradient emerges at late time stages of spoken word recognition, with sustained 296 

neuronal response between 600 and 1000ms after lexical access (Figure 2C). This late 297 

temporal window suggests that the graded activity of the ATL may be involved in the 298 

integration of different features of a retrieved concept into a cohesive construct, a role often 299 

attributed to the ATL-hub (Clarke & Tyler, 2015; Coutanche & Thompson-Schill, 2015; 300 

Lambon-Ralph et al., 2017; Pylkkänen, 2019). Such a role is also supported by our finding 301 

that abstract and concrete features are encoded in different brain regions at earlier time 302 

windows and seem to converge into the ATL along separate cortical pathways. Moreover, this 303 

timecourse is in line with previous chronometric studies of semantic processing in the ATL 304 

using electrocorticography recordings (Chen et al., 2016), TMS (Jackson et al., 2015) and 305 

MEG (Borghesani, Buiatti, Eger, & Piazza, 2018), which show that the ATL starts to encode 306 

semantic information in a sustained way from ~300ms after stimulus onset (in the case of 307 

visually presented stimuli, which are usually processed faster and less incrementally than 308 

auditory spoken words; Vartiainen, Parviainen, & Salmelin, 2009), until 800-1000ms after 309 

stimulus onset. 310 

It is important to note, however, that some studies have reported transient semantic 311 

effects in the ATL as early as ~100ms after stimulus onset (Chan et al., 2011; Mollo et al., 312 

2017; Teige et al., 2019), and an opposite flow of semantic information, from the ATL-hub to 313 

the spokes, has been suggested (Mollo et al., 2017). However, this early ATL activity has 314 

been found only in the case of gross categorical distinction (Borghesani et al., 2018; Chan et 315 

al., 2011; Teige et al., 2019) and it is almost invariably followed by sustained ATL activations 316 

occurring between ~300 and 1000ms after stimulus onset (Borghesani et al., 2018; Chan et 317 

al., 2011; Mollo et al., 2017; Teige et al., 2019). This state of affairs opens to the intriguing 318 

possibility that the ATL may transiently encode superordinate categorical distinctions (Clarke, 319 

Devereux, Randall, & Tyler, 2015; Clarke, Taylor, Devereux, Randall, & Tyler, 2013) that 320 

facilitate the activation of the relevant spokes (Borghesani et al., 2018; Chiou & Lambon 321 

Ralph, 2019; Mollo et al., 2017), which in turn feed-back detailed domain-specific information 322 

for a full-fledged semantic access to specific concepts (Clarke & Tyler, 2015; Lambon-Ralph 323 

et al., 2017).  324 

However, an early and transient semantic activity in the ATL has been reported only 325 

in experiments using images (Clarke et al., 2015, 2013), visually presented words 326 

(Borghesani et al., 2018; Chan et al., 2011; Teige et al., 2019) or words and images together 327 

(Mollo et al., 2017), and may be specific for the visual modality. In the case of visual stimuli 328 

(especially in the case of images) the early activity in the ATL may be the consequence of an 329 

automatic feedforward sweep of neural responses through occipital and ventral temporal 330 

cortices (Chen et al., 2016; Clarke & Tyler, 2015; Rupp et al., 2017) that would be absent in 331 

the case of auditory stimuli, as in the present experiment. Indeed, explorative analysis of our 332 
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data did not provide convincing evidence for an early ATL activity related to superordinate 333 

gross categorical representations (Supplementary Figure 3C), although this result cannot be 334 

taken as conclusive. 335 

In sum, although the ATL might be involved in semantic processing at different levels 336 

(superordinate gross distinction, specific multimodal concepts) and in different timepoints 337 

(early, late activations), our results suggest that the graded organization of abstract and 338 

concrete conceptual features in the ATL emerges in the late stages of conceptual processing, 339 

as the product of convergent conceptual information from different cortical streams, and 340 

possibly coinciding with the retrieval of a cohesive and specific conceptual representation.  341 

 342 

 343 

Routes to meaning in the brain 344 

After an initial sound to meaning mapping in the middle temporal gyrus (MTG), 345 

signaled by a strong sensitivity to the frequency component right after the word uniqueness 346 

point, abstract and concrete semantic information starts to be encoded in two different 347 

temporal regions, one above and one below the MTG. Brain activity associated with concrete 348 

semantic features emerges sequentially in the fusiform gyrus, the ventral ATL and the medial 349 

ATL. Neural correlates of abstract semantic knowledge follow a parallel dorsal path: posterior 350 

STG, OFC and finally the dorsal-lateral ATL.   351 

Previous studies have provided evidence for long-distance connections between 352 

these brain regions and different subparts of the temporal pole (Binney et al., 2012; Chen et 353 

al., 2017). The discovery of these white-matter tracks suggested that the gradient-like 354 

organization of the ATL is due to the fact that sensory, emotional and linguistic information 355 

travels along different cortical pathways during conceptual learning, and is stored in different 356 

ATL regions situated at the termination of these pathways. Once the concept is stored in the 357 

ATL, it could in principle be directly reactivated without going through these cortical pathways 358 

again (Fairhall & Caramazza, 2013; Mollo et al., 2017). Instead, our chronometric data offer 359 

the first direct evidence that these pathways are at least partially retraced during conceptual 360 

retrieval. This result suggests that semantic knowledge in the ATL may emerge through the 361 

contribution of the entire network, instead of a simple re-activation of stand-alone 362 

representations. The re-instantiation of this generative process during conceptual retrieval 363 

may be useful to allow a constant representational update in long-term memory, and provide 364 

the flexibility to retrieve a given concept highlighting specific feature dimensions instead of 365 

others. Once again, this position confirms the central role of the ATL in conceptual retrieval, 366 

as suggested by several neuropsychological studies (Abel et al., 2015; Chen et al., 2016b; 367 

Coutanche & Thompson-Schill, 2015; Hoffman et al., 2015; Striem-Amit et al., 2018). 368 

The present findings corroborate the existence of two parallel cortical streams for 369 

concrete and abstract semantics travelling along dorsal and ventral temporal areas and 370 

ultimately terminating in the ATL. This result, however, does not exclude the existence of 371 

other routes. For instance, it is conceivable that sensorimotor information, mostly encoded in 372 
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parietal and motor areas (Fernandino et al., 2015; Pulvermüller, Shtyrov, & Ilmoniemi, 2005), 373 

would reach temporal and inferior frontal areas travelling along the arcuate fasciculus  374 

(Motivating the IFG modulation by the concrete semantic regressor; Pulvermüller, 2013). 375 

Alternatively, evidence from a recent tractography study (Chen et al., 2017) has suggested 376 

two possible routes connecting the ATL to the parietal cortex via the posterior middle 377 

temporal gyrus and posterior fusiform gyrus. An important open question for future research 378 

therefore concerns the relative functional contribution of different streams of information to 379 

conceptual representations. 380 

 381 

Extended networks involved in the representation of concrete and abstract 382 

features in the brain 383 

The representation of abstract and concrete semantic knowledge extends also 384 

beyond the ATL and the dorsal/ventral pathways in the left hemisphere. Abstract information 385 

additionally engages the right OFC and the left mPFC (see Sabsevitz, Medler, Seidenberg, & 386 

Binder, 2005; Wang et al., 2018; for similar results). On the other hand, the concrete 387 

regressor activated a different network of regions that are typically involved in the 388 

representation of multimodal concrete knowledge (Binder, Desai, Graves, & Conant, 2009; 389 

Binder et al., 2005; Fernandino et al., 2015) and included the left IFG, right SMG, and right 390 

mPFC. Moreover, removing the constraint originally imposed to the cluster size (>15 391 

vertices), but keeping a conservative statistical threshold (FDR-corrected p < .05 at the 392 

whole-brain level), concrete-related activity emerges also in the left angular gyrus, which is 393 

considered an important multimodal hub for the integration of concrete information (Binder et 394 

al., 2009; Fernandino et al., 2015; see Supplementary Figure 4). Thus, our results are in 395 

keeping with previous evidence showing two extended and separated sets of brain regions 396 

that support concrete and abstract knowledge (Wang et al., 2010).  397 

However, contrary to some previous studies (Binder et al., 2009; Borghesani et al., 398 

2016), we failed to find significant activity related to concrete features in the early visual 399 

cortex (EVC). One possible reason for this discrepancy is that, whereas these previous 400 

studies tracked the representation of single low-level visual features (e.g., size, color, 401 

movement), our concrete semantic predictor was derived from the dimensionality reduction of 402 

a multidimensional feature space spanning several sensory modalities (vision, touch, 403 

audition, etc.) and conceptual domains (color, face, music; see Supplementary Figure 5). This 404 

predictor is more likely to capture integrated sensorimotor information that is usually 405 

represented in convergence regions of the brain (Binder & Desai, 2011; Damasio, 1989). 406 

Indeed, the set of regions that in our analysis respond to the principal component of the 407 

concrete feature space (mPFC, Angular Gyrus, VOTC, IFG, SMG) largely coincide with 408 

regions that have been found to conjointly represent multiple concrete features (e.g., color, 409 

movement, motion, shape, manipulation) during conceptual retrieval (Fernandino et al., 410 

2015). The anterior VOTC (see Figure 3E), which support the representation of several 411 

domains of knowledge (objects, faces, animals, etc.), in a format that is not tight to the visual 412 
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modality only (Mattioni et al., 2020; Peelen & Downing, 2017; van den Hurk, Van Baelen, & 413 

Op de Beeck, 2017; Wang et al., 2015), qualifies as one of these convergence regions, in 414 

contrast with EVC that is highly modality-specific (Bottini et al., 2020; Wang et al., 2015).  415 

Another interesting difference compared to some previous results is the involvement of 416 

the inferior frontal gyrus (IFG) in the representation of concrete features. Indeed, in some 417 

previous studies (including a meta-analysis), the IFG has been associated with the 418 

processing of abstract words, arguably for its role within the language system (Hoffman et al., 419 

2015; Sabsevitz et al., 2005; Wang et al., 2010). Nevertheless, some studies before us 420 

reported IFG activation for concrete concepts, especially if related to actions (Kana, Blum, 421 

Ladden, & Ver Hoef, 2012; Rueschemeyer, Ekman, van Ackeren, & Kilner, 2014; Siri et al., 422 

2008). It is important to consider that, in order to isolate brain regions dedicated to concrete 423 

and abstract feature representations, several previous studies contrasted different sets of 424 

concrete and abstract words. However, semantic reference is hard to control when creating 425 

different sets of words: Many abstract words may hold a strong reference to concrete features 426 

(e.g., sadness may be associated with darkness and freedom with a colorful and blooming 427 

landscape), and vice versa (a computer may be associated with intense cognitive and 428 

intellectual activity; Barsalou, Dutriaux, & Scheepers, 2018). One advantage of the current 429 

design, instead, is that the same words were contrasted based on their relative “location” in 430 

two multidimensional semantic spaces, one constituted by abstract and the other by concrete 431 

dimensions. Moreover, we controlled for several nuisance variables (e.g., word duration, 432 

frequency, response) by including them in the multiple regressions model and isolating brain 433 

activity that could be explained by these variables. These technical aspects may account for 434 

the differences between the current results and some previous studies that contrasted 435 

abstract with concrete words. 436 

 437 

Conclusions 438 

We demonstrated that, during conceptual retrieval, abstract and concrete semantic 439 

information are represented in the ATL along a dorsal-to-medial gradient. During early stages 440 

of conceptual processing, right after lexical access, concrete and abstract features are 441 

encoded in posterior temporal regions and, at later time points, seem to converge into the 442 

ATL along separate cortical streams that coincide with long-range connectivity pathways 443 

leading to ATL subregions. Our timecourse analysis supports the hypothesis that the ventral-444 

medial ATL receives concrete information from the ventral stream (related to object 445 

knowledge), and the dorsal-lateral ATL receives abstract information from the posterior STG 446 

and the orbito-frontal cortex (related to language processing and emotional value). In sum, we 447 

provided direct evidence that abstract and concrete semantic information travels along 448 

separate cortical routes during conceptual retrieval to reach the ATL gradient in later time 449 

windows, possibly coinciding with the retrieval of integrated and specific conceptual 450 

representations. 451 

 452 
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Material and Methods 453 

 454 

Participants 455 

Thirty native Italian speakers (11 female, aged 28.2 ± 4.8 years) participated in the 456 

study. All participants were right-handed and had no history of neurological or psychiatric 457 

disorders. Before testing participants gave their written informed consent and received 458 

monetary reimbursement for their participation. The experiment was conducted in accordance 459 

with the Declaration of Helsinki and was approved by the local ethical committee of the 460 

University of Trento. 461 

 462 

Experimental design 463 

We derived our stimulus set from a previous work by Binder and colleagues (Binder 464 

et al., 2016). Out of 535 English words filed in Binder et al.’s (2016) original work, 438 were 465 

translated into Italian (352 nouns in the singular form, 54 verbs in the infinite tense and 32 466 

adjectives in the singular male form). Selected words were 2 to 4 syllables long (M = 2.93, SD 467 

= 0.72) and could be unambiguously translated into Italian. Stimuli were recorded as 22050 468 

Hz mono audio files, using the text-to-speech software ‘Speech2Go’ (SpeechWorks, Nuance 469 

communication, Burlington, MA, USA). Using Praat (Boersma & Weenink 2007), each audio 470 

file was trimmed of silence intervals at the beginning and at the end of the utterance and 471 

normalized to a uniform intensity. Finally, each file was inspected to detect acoustic 472 

anomalies or unnatural pronunciation. 473 

Auditory stimuli were delivered via loudspeakers (Panphonics Sound Shower) placed 474 

inside the magnetically shielded MEG room. Stimuli were played at a comfortable sound 475 

level, which was the same for all participants. Stimulus presentation was controlled via 476 

Psychtoolbox (Brainard, 1997) running in a MATLAB 2015a environment.  477 

Each trial started with 1.5s pre-stimulus silence followed by the auditory-presented 478 

word. Participants were instructed to categorize each stimulus as either related to sensory-479 

perception (i.e. they express something that is related to one or more of the senses), or 480 

unrelated to sensory-perception. An auditory cue (a “beep” sound) prompted participants’ 481 

responses 2s after stimulus onset. Responses were collected via button presses operated 482 

with the dominant hand’s index and middle fingers. The response mapping was 483 

counterbalanced across participants. The maximum time given to respond was set to 2s and 484 

was followed by an interstimulus interval randomly jittered between 0.5 s and 1.0 s. 485 

Participants were familiarized with a short version of the task (30 trials taken from a different 486 

stimulus set) on a portable PC outside the MEG chamber. Participants were all blindfolded for 487 

the entire duration of the experiment and the room was kept in the dark. Each testing session 488 

lasted approximately 50 minutes and was divided into six, seven-minutes runs separated by 489 

short breaks.  490 

 491 

Uniqueness point 492 
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The time taken to access words’ lexical-semantic properties necessarily depends on 493 

the words themselves. The words used in the present study, for instance, varied greatly in 494 

length (M = 570.6ms; SD = 119.5ms); therefore aligning our analysis solely to the onset of 495 

each auditory stimulus would be suboptimal. We estimated the uniqueness point (UP) of each 496 

word. That is, the point in time when a string of sounds corresponds to one and only one word 497 

(Marlsen-Wilson, 1987). Ideally, this process would be carried out based on the phonological 498 

forms of words; however, phonological databases for Italian are very limited in size (e.g., 499 

PhonItalia, 120000 tokens; Goslin, Galluzzi, & Romani, 2014), which would have yielded 500 

imprecise estimates. Therefore, we took advantage of the near-perfect phoneme-to-501 

grapheme correspondence in Italian, and computed UP based on orthographic databases, 502 

which are vastly larger (e.g., SUBTLEX–IT, 130M tokens; Crepaldi et al., 2013). The process 503 

can be summarized in two steps: 1) first, we divided the duration of each stimulus (auditory 504 

waveform) by the number of graphemes that constitute it. 2) The result was then multiplied by 505 

the orthographic UP (position in number of graphemes) of the lemmatized form of each 506 

stimulus (Goslin et al., 2013). The outcome of this procedure is the estimated position of the 507 

UP in each audio file. For the few words that clearly did not respect a clear phoneme-to-508 

grapheme correspondence, this procedure was manually adjusted.  509 

 510 

MEG Data acquisition and preprocessing 511 

MEG data were recorded using a whole-head 306 sensor (204 planar gradiometers; 512 

102 magneto-meters) Vector-view system (Elekta Neuromag, Helsinki, Finland). Five head-513 

position indicator coils (HPIs) were used to continuously determine the head position with 514 

respect to the MEG helmet. MEG signals were recorded at a sampling rate of 1 kHz and an 515 

online band-pass filter between 0.1 and 300 Hz. At the beginning of each experimental 516 

session, fiducial points of the head (the nasion and the left and right pre-auricular points) and 517 

a minimum of 300 other head-shape samples were digitized using a Polhemus FASTRAK 3D 518 

digitizer (Fastrak Polhemus, Inc., Colchester, VA, USA).  519 

The raw data were processed using MaxFilter 2.0 (Elekta Neuromag ®). First, bad 520 

channels (identified via visual inspection) were replaced by interpolation. External sources of 521 

noise were separated from head-generated signals using a spatio-temporal variant of signal-522 

space separation (SSS). Last, movement compensation was applied and each run was 523 

aligned to an average head position. All further analysis steps were performed in MATLAB 524 

2019a using non-commercial software packages such as Fieldtrip (Oostenveld, Fries, Maris, 525 

& Schoffelen, 2011), Brainstorm (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011) and 526 

custom scripts. Continuous MEG recordings were filtered at 0.1 Hz using a two-pass 527 

Butterworth high-pass filter and epoched from -1.5 s before to 2s after the uniqueness point. 528 

Time segments contaminated by artifacts were manually rejected (total data lost of M = 7.6% 529 

SD = 7.7%). A Butterworth low-pass filter at 40Hz was applied to the epoched data. Before 530 

encoding, each trial segment was baseline corrected with respect to a 400ms time window 531 

before stimulus onset. 532 
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 533 

Multiple linear regression analysis 534 

Multiple linear regression analysis was applied to MEG data following the approach 535 

used in previous M/EEG studies (Chen et al., 2013, 2015; Hauk et al., 2006, 2009; Miozzo et 536 

al., 2015).	 The solution of a multiple regression provides the best least-square fit of all 537 

variables simultaneously to the data (Bertero, De Mol, & Pike, 1985). In M/EEG analysis the 538 

resulting event-related regression coefficients (ERRC) reflect the contribution of each 539 

predictor to the data for each time point, channel and subject. Importantly, because 540 

regression analysis is a special form of factorial designs, ERRC can be interpreted and 541 

analyzed as difference waves in ERP signals.  542 

We focused on two semantic predictors, one abstract semantic component and one 543 

concrete semantic component (see below for details). All the regression models included 544 

psycholinguistic and word-form features as covariates (i.e., the word frequency, the duration 545 

of the word and the response given by the participant). Before encoding the predictors of 546 

each model were converted to normalized z-scores and tested for multicollinearity using a 547 

condition number test (Belsley et al., 1982). The output of the test is a condition index, which 548 

in the present study never exceeded a threshold of 4 (with values < 6 collinearity is not seen 549 

as a problem).  550 

 551 

Predictor variables 552 

The aim of the present study was to investigate the contribution of abstract and 553 

concrete semantic dimensions of conceptual knowledge to single concepts representations. 554 

On this account, we derived our stimulus set from a previous work by Binder and colleagues 555 

(Binder et al., 2016). These authors collected ratings of the salience of 65 biologically 556 

plausible features to word meaning (for a detailed description of the procedure see Binder et 557 

al., 2016). For every word in the database (e.g., lemon) more than one thousand participants 558 

were asked to rate how associated was each of the features (e.g., color) with that aspect of 559 

the experience (e.g., would you define a lemon as having a characteristic or defining color?). 560 

The result is a semantic space where concepts can be represented as single entities into a 561 

multidimensional space having perceptual and conceptual features as dimensions. Crucially, 562 

features spanned both abstract and concrete domains of conceptual knowledge thus 563 

represent an ideal framework to operationalize our assumptions. 564 

 565 

Semantic components 566 

As mentioned above, more than sixty features composed our semantic space. 567 

Encoding of the entire space in one single model, however, would be suboptimal. In fact 568 

features are highly intercorrelated between each other, leaving us with a multicollinearity 569 

issue. One way this can be avoided is through dimensionality reduction techniques 570 

(Cunningham & Yu, 2014), such as principal component analysis (PCA). PCA generates a 571 

series of principal components (PCs) representing the same data in a new coordinate system, 572 
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with the first PC usually accounting for the largest percentage of data variance. Following this 573 

rationale, we used PCA to derive two high-level semantic components. Three features (i.e., 574 

Complexity, Practice, Caused) were excluded due to incomplete ratings. An abstract 575 

component was obtained via PCA (after normalization) of 31 features encompassing Spatial, 576 

Temporal, Causal, Social, Emotion, Drive and Attention domains (the first PC explaining 577 

27.4% of the overall variance). Similarly, the concrete component was calculated as the first 578 

principal component (24.7% of variance explained) of 31 features encompassing several 579 

sensory-motor domains such as Vision, Somatic, Audition Gustation, Olfaction and Motor 580 

domains.  581 

 582 

Linguistic features 583 

For each of the selected words, we obtained several psycholinguistic features: Word 584 

duration (M = 570ms, SD = 119ms) and Word Frequency (in Zipf’s scale, M = 4, SD = 0.8) 585 

were extracted from the SUBTLEX-IT database (Crepaldi et al., 2013); first syllable frequency 586 

(in the natural logarithm of token, M = 8.7, SD = 2.1) was extracted from PhonItalia (Goslin et 587 

al., 2014).  588 

 589 

Source reconstruction 590 

Distributed minimum-norm source estimation (Hämäläinen & Ilmoniemi, 1994) was 591 

applied following the standard procedure in Brainstorm (Tadel et al., 2011). Anatomical T1-592 

weighted MRI images were acquired during a separate session in a MAGNETOM Prisma 3T 593 

scanner (Siemens, Erlangen, Germany) using a 3D MPRAGE sequence, 1-mm3 resolution, 594 

TR = 2140ms, TI = 900ms, TE = 2.9ms, flip angle 12°. Anatomical MRI images were 595 

processed using an automated segmentation algorithm of the Freesurfer software (Fischl, 596 

2012). Co-registration of MEG sensor configuration and the reconstructed scalp surfaces was 597 

based on ~300 scalp surface locations. The data noise covariance matrix was calculated from 598 

the baseline interval of different predictors from the same model. The forward model was 599 

obtained using the overlapping spheres method (Huang, Mosher, & Leahy, 1999) as 600 

implemented in the Brainstorm software. Event-related regression coefficients were then 601 

projected onto a 15000 vertices boundary element using a dynamic statistical parametric 602 

mapping approach (dSPM; Dale et al., 2000). Dipole sources were assumed to be 603 

perpendicular to the cortical surface. Last, the individual results were projected to a default 604 

template (ICBM152) and spatially smoothed (3mm FWHM). 605 

 606 

ROIs 607 

ROIs analysis was performed over three cortical areas and was restricted to the left 608 

hemisphere since the abstract-to-concrete gradient have never been found in the right ATL in 609 

previous distortion-corrected fMRI studies (Hoffman et al., 2015; Striem-Amit et al., 2018). 610 

Regions of interest included one early visual cortex (EVC) ROI (617 vertices), one ventral 611 

ROI (643 vertices) and one dorsal ROI (468 vertices) each combining brain areas adapted 612 
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from the Desikan-Killiany cortical atlas. The EVC ROI consisted of the lateral occipital cortex, 613 

the calcarine fissure and the lingual gyrus. The ventral ROI encompassed regions of the 614 

ventral temporal-occipital cortex (i.e., the fusiform gyrus, the inferior temporal gyrus, the 615 

entorhinal cortex and the ventral-medial temporal pole). Conversely, the lateral orbitofrontal 616 

cortex (which was modified in order to exclude a small area protruding into the inferior frontal 617 

gyrus) and superior temporal gyrus composed the dorsal ROI. ROIs were designed following 618 

established models of white matter pathways connecting the dorsal-lateral and ventral-medial 619 

ATL with other cortical regions (Binney et al., 2012; Chen et al., 2017; and see Figure 3A). 620 

We divided the large ventral pathway (depicted in blue in Figure 3A) in EVC and VOTC 621 

because of their different role and level of processing during conceptual retrieval (Bottini et 622 

al., 2020; Bracci & Op de Beeck, 2016; Clarke & Tyler, 2014; Mattioni et al., 2020) and to 623 

obtain ROIs of comparable size. The orbito-frontal region and the STG were united in the 624 

same dorsal ROI because, according to the graded ATL model (Lambon-Ralph et al., 2017), 625 

both regions projects into the dorsal-lateral ATL and contribute to the representation of 626 

abstract features. Moreover, including OF and STG regions in a unique ROI allowed us to 627 

obtain regions of interest with a comparable number of vertices.  628 

 629 

Statistical analysis 630 

In line with previous studies (Chen et al., 2013, 2015; Hauk et al., 2006; Miozzo et al., 631 

2015) we depicted the time course of different regressors as the root-mean-square (RMS) of 632 

the signal-to-noise ratio (SNR) of ERRC. The SNR was computed on the grand mean of all 633 

subjects, by dividing the MEG signal at each channel and time point by the standard deviation 634 

of the baseline. This provided a unified (magnetometers and gradiometers are combined 635 

together) and easy-to-interpret measure of sensor-level activity. Source-reconstructed 636 

statistical maps of single predictors (e.g., Word frequency) were computed as consecutive 637 

100ms average time-windows. Average signals within each time-window were tested against 638 

“0” using a whole-brain one-sample t-test (one tail), FDR corrected for multiple comparisons, 639 

p < .05 and a minimum number of vertices of 10. Source-reconstructed statistical maps of the 640 

contrast between predictors (e.g., Concrete > Abstract) were computed as consecutive 641 

100ms average time-windows. Average signals within each time window were tested against 642 

“0” using a whole-brain one-sample t-test (two-tailed), FDR corrected for multiple 643 

comparisons, p < .05 and a minimum number of vertices of 10. Finally, ROI-constrained 644 

statistical maps for single predictors and contrast between predictors were computed as 645 

described above and restricting statistical comparisons within each ROI. 646 
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