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16 Abstract

18 How is conceptual knowledge organized and retrieved by the brain? Recent evidence
19 points to the anterior temporal lobe (ATL) as a crucial semantic hub integrating both abstract
20 and concrete conceptual features according to a dorsal-to-medial gradient. It is however
21 unclear when this conceptual gradient emerges and how semantic information reaches the
22 ATL during conceptual retrieval. Here we used a multiple regression approach to
23 magnetoencephalography signals of spoken words, combined with dimensionality reduction
24 in concrete and abstract semantic feature spaces. Results showed that the dorsal-to-medial
25 abstract-to-concrete ATL gradient emerges only in late stages of word processing: Abstract
26 and concrete semantic information are initially encoded in posterior temporal regions and
27 travel along separate cortical pathways eventually converging in the ATL. The present finding
28 sheds light on the neural dynamics of conceptual processing that shape the organization of

29 knowledge in the anterior temporal lobe.
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33 Introduction

34

35 How is conceptual knowledge organized, stored and retrieved in the human brain? A
36 “distributed-plus-hub” view of semantic knowledge (Lambon-Ralph, Jefferies, Patterson, &
37 Rogers, 2017; Patterson, Nestor, & Rogers, 2007) suggests that concepts are retrieved
38  through the activation of a network of highly specialized cortical regions that encode
39 information in given sensory modalities (e.g., visual, auditory) or experiential domains (e.g.,
40 movement, emotions, human body). During conceptual learning, modality- and domain-
41 specific information converges into a cross-modal hub, identified in the anterior temporal lobe
42 (ATL), where integrated and specific semantic representations are formed. Evidence for this
43 model comes from neuropsychological cases showing that damages in peripheral “spokes”
44 regions often lead to specific semantic impairments in a given modality (e.g., visual,
45 manipulation) or conceptual domain (e.g., tools, colors; Buxbaum, Kyle, Grossman, & Coslett,
46 2007; Pobric, Jefferies, & Lambon Ralph, 2010; Stasenko, Garcea, Dombovy, & Mahon,
47 2014); whereas bilateral damages of the ATL lead to a general semantic deficit across
48 modalities and domains of knowledge (Guo et al., 2013; Hodges, Patterson, & Tyler, 1994;
49 Rogers, Ralph, Hodges, & Patterson, 2004).

50 A recent update of the distributed-plus-hub model (Lambon-Ralph et al., 2017) put
51 forward the idea that semantic representations in the ATL hub are organized according to a
52 dorsal-to-medial and abstract-to-concrete gradient: Whereas the representation of concrete
53 features insists on the medial-ventral ATL, abstract features are represented in the dorsal-
54 lateral ATL. Empirical support for a graded ATL hub comes from functional magnetic
55 resonance imaging (fMRI) studies comparing abstract and concrete concepts (Hoffman,
56 Binney, & Lambon Ralph, 2015; Striem-Amit, Wang, Bi, & Caramazza, 2018). However, other
57 fMRI studies following a similar methodology (including one meta-analysis) failed to find
58 evidence for such an organization of semantic knowledge in ATL (Binder, Westbury,
59 McKiernan, Possing, & Medler, 2005; Wang, Conder, Blitzer, & Shinkareva, 2010). One
60 reason for this discrepancy may lie in the fact that the ATL is shy to fMRI, due to the drop of
61 BOLD signal near air cavities, calling for confirmatory results using alternative methodologies.
62 Moreover, several questions about the role of ATL in conceptual processing remain
63 unanswered. For instance, it is unclear at which stage of conceptual retrieval semantic
64 representations emerge as a gradient in the ATL. Indeed, previous chronometric tests
65  focused alternatively on concrete (Borghesani & Piazza, 2017; Chan et al., 2011; Garcia et
66 al., 2019; Jackson, Lamobon Ralph, & Probic, 2015; Mollo et al., 2017; Teige et al., 2019) or
67 abstract aspects of word meaning (Fahimi Hnazaee, Khachatryan, & Van Hulle, 2018), and
68 failed to show a specific ventral or dorsal ATL activity related to concrete and abstract

69 features.

70 A related question is why semantic information is organized in the ATL according to a

71 dorsal-to-medial and abstract-to-concrete gradient. One possibility is that this pattern
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72 depends on the long-range connectivity profile of different subparts of the ATL (Lambon-
73 Ralph et al., 2017). According to this hypothesis, the medial-ventral ATL responds more to
74 concrete concepts by virtue of having greater connectivity to visual areas through the ventral
75 occipital-temporal cortex (VOTC); whereas the dorsal-lateral ATL contributes more to abstract
76 concepts by virtue of its greater connectivity with the posterior temporal language system and
77 with orbito-frontal regions that support social cognition and emotional value (see Figure 3A for
78  a depiction of this connectivity model by Lambon-Ralph and collaborators). This model is
79 partially supported by tractographic studies (Binney, Parker, & Lambon Ralph, 2012; Chen,
80 Lambon Ralph, & Rogers, 2017) and functional connectivity analysis during rest (Jackson,
81 Hoffman, Pobric, & Lambon Ralph, 2016; Pascual et al., 2015) showing the presence of this
82 cortico-cortical tracks in human subjects. However, there is no direct evidence that concrete
83 and abstract information travels between peripherical spokes and subparts of the ATL-hub,

84 along these cortical routes, during the retrieval of specific concepts.

85 In the present magnetoencephalography (MEG) study we aim to investigate the
86 spatiotemporal organization of semantic knowledge in the brain. In particular, we will focus on
87 abstract and concrete semantic information encoding in the attempt to: (i) assess whether
88 and when a semantic gradient emerges in the ATL and (ii) shed some light on how the
89 information concerning abstract and concrete conceptual dimensions reaches anterior
90 temporal brain regions. To this end we recorded MEG signals from thirty participants
91 performing a semantic categorization task on 438 spoken words. Each word referred to a
92 concept (e.g., chair, dog, policeman) that was independently rated across 65 feature
93 dimensions (e.g., color, shape, happiness, arousal, cognition, etc.; Binder et al. 2016). Thus,
94 each word could be considered as a point in a high-dimensional feature space. Principal
95 component analysis (PCA) was implemented in order to reduce dimensionality and create
96 high-level abstract and concrete semantic predictors. We then used a combination of multiple
97 linear regressions analysis and source reconstruction methods to assess the spatiotemporal

98 dynamics of abstract and concrete semantic information processing.

99

100 Results

101

102 Behavioral results

103 Participants listened to auditory-presented words and were instructed to categorize
104 each stimulus as either related to sensory perception (i.e., they refer to something that can be
105 easily perceived with the senses, like “red” and “telephone”), or unrelated to sensory
106 perception (i.e., they refer to something that cannot easily be perceived with the senses, like
107 “agreement” and “shame”). We expected participants to categorize relatively concrete words
108 as related to sensory perception and relatively abstract words as unrelated to sensory
109 perception. To assess this, we correlated participants’ responses with concreteness

110 estimates for each item (i.e., the concrete principal component, see below). The results
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111 indicated a significant association between participants’ responses and concreteness
112 estimates (r(436)=.82, p < .001). We did not analyze reaction times because participants’
113 responses were delayed in order to avoid motion-related artifacts in the MEG signal (i.e., see
114 Material and Methods for details).

115

116 Mapping sound to meaning

117 Spatiotemporal dynamics of conceptual retrieval were inferred using multiple linear
118 regression analysis of MEG data (Chen, Davis, Pulvermdiller, & Hauk, 2013; Hauk, Dauvis,
119 Ford, Pulvermdller, & Marslen-Wilson, 2006; Hauk, Pulvermiiller, Ford, Marslen-Wilson, &
120 Davis, 2009; Miozzo, Pulvermiiller, & Hauk, 2015). We focused on three predictors spanning
121 both lexical and semantic aspects of word retrieval (word frequency, and the abstract and
122 concrete semantic predictors that were computed via PCA, see below). Also, we included in
123 the model other predictors to control for potentially confounding variables (i.e., word duration
124 and participants’ judgment of each item as related [1] or unrelated [0] to the senses).

125 Word frequency was calculated as the frequency of occurrence of a given word in a
126 large corpus of text samples (subtlex-it, Crepaldi et al., 2013). Semantic predictors were
127 derived instead from Binder’s et al., (2016) database. As briefly mentioned above, each word
128 in Binder’'s work was rated across 65 fundamental semantic features. Some of these features
129 were related to sensory experience (e.g., sound, shape, smell), whereas others to social,
130 emotional or intellectual experiences (e.g., arousal, social, sad). Following the concrete
131 versus abstract labeling provided in the original database (Binder et al., 2016), we separated
132 the entire semantic space (65-Dimension) into concrete (31-Dimensions) and an abstract (31-
133 Dimensions) features (with three feature dimensions discarded for missing values; See
134 Methods). Thus, each word could be considered as a point in a concrete semantic space (see
135 Figure 1A), and in an abstract semantic space (see Figure 1B). We used principal component
136 analysis (PCA) to reduce the dimensionality of the dataset and adopted the first concrete
137 (Figure 1C) and the first abstract semantic component (Figure 1D), to represent the same
138 data in a new one-dimensional coordinate system. Importantly, the resulting semantic
139 components do not simply reflect how concrete and how abstract a word is, but instead
140 represents concrete and abstract aspects of concepts in a new low-dimensional space that
141 encodes the most salient structural features of the high-dimensional space from which it is
142 derived. For instance, in the concrete principal component, “moose” is more similar to “chair”
143 than to “hug”, whereas the opposite is true in the abstract principal component.

144
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146 Figure 1. Dimensionality reduction. A) Schematic representation of a 3-D semantic space where each word is
147 viewed in a coordinate system defined by concrete features such as Touch, Sound and Color (the actual
148 multidimensional space comprised 31 dimensions, here reduced to 3 for visualization purposes). B)
149 Schematic representation of a 3-D semantic space where each word is viewed in a coordinate system
150 defined by abstract features such as Arousal, Pleasant and Social (the actual multidimensional space
151 comprised 31 dimensions). C) Words’ weights along the first principal component of the concrete space. D)
152 Words’ weights along the first principal component of the abstract space.
153
154 Access to any word’s lexical-semantic properties obviously depends on the unique

155 identification of that word (Marlsen-Wilson, 1987). Therefore we aligned our multiple
156 regression analysis to the uniqueness point of each word (UP), that is, the point in time when
157 the acoustic and phonetic information already presented (e.g., the syllables “ba”-“nan”) is
158 compatible with a single lexical entry (i.e., banana). Thus, for each time point, channel and
159 subject we calculated event-related regression coefficients (ERRCs) reflecting the
160 contribution of each predictor to the MEG signal. The spatiotemporal dynamics of the different
161 predictors were characterized as the root-mean-square (RMS) of the signal-to-noise ratio
162  (SNR) of ERRC (see Material and Methods). This provided a unified measures of sensor-
163 level activity (magnetometers and gradiometers are combined together; Figure 2A). Source-
164 reconstructed statistical maps of single predictors were computed as consecutive 100ms
165 average time-windows (Figure 2B/C/D/E). The same analysis, time-locked to the word onset,
166 is reported in the supplementary materials and confirms the results described here
167 (Supplementary Figure 1).

168 Consistent with an optimally efficient recognition system, lexical access occurred
169 shortly after the UP, essentially validating our UP estimation procedure (see also Kocagoncu,
170 Clarke, Devereux, & Tyler, 2016). This is depicted in Figure 2A by the peak in the SNR of the
171 word frequency predictor, from 0 to 300 ms (with zero being the uniqueness point of each
172 word). Dual-stream models of speech processing state that, at this point in time, the

173 spectrotemporal and phonological analysis of speech signals maps onto lexical
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174 representations stored in middle temporal regions (Hickok & Poeppel, 2007). Accordingly, in
175 our study, encoding of word frequency information involved bilateral middle temporal regions,
176 the superior temporal gyrus (STG) and the inferior frontal gyrus (IFG), with an overall weak
177 left-hemisphere bias (Figure 2E). At later time windows, the word frequency predictor was
178 encoded in right premotor areas, right medial temporal lobe, left anterior temporal lobe and
179 left parahippocampal formation (Supplementary Figure 2).

180 Semantic information encoding occurred at later time stages. Specifically, abstract
181 and concrete semantic components showed a sustained increase in the SNR starting from
182 300ms after the UP and continuing until the end of the trial (Figure 2A). Consistently, a recent
183 electroencephalography (EEG) study reported effects of concreteness, during spoken word
184 recognition, in a similar time window (i.e., 400 - 900ms; Winsler, Midgley, Grainger, &
185 Holcomb, 2018).

186 One important prediction of the distributed-plus-hub model (Lambon-Ralph et al.,
187 2017) is that semantic representations in the ATL follow a dorsal-to-medial and abstract-to-
188 concrete gradient. To test this, we contrasted source-reconstructed ERRCs of the concrete
189 and abstract semantic components in consecutive 100ms time windows. Figure 2D shows
190 that, at late latencies (i.e., > 700ms), anterior temporal regions responded to both types of
191 semantic information. Crucially, semantic information encoding followed a dorsal-to-medial,
192 abstract-to-concrete gradient. This is illustrated in greater detail in Figure 2C where in the
193 900ms to 1000ms time window, concrete semantic encoding engaged the left ventral and
194 medial ATL and abstract semantic encoding involved the anterior lateral ATL and the left
195 dorsal ATL. Additionally, the left IFG, right supramarginal gyrus (SMG) and right medial
196 prefrontal cortex (MPFC) responded preferentially to concrete semantic information (Figure
197 2B). Conversely, bilateral orbitofrontal cortex (OF) and left MPFC responded preferentially to
198 abstract semantic information (Figure 2B). Different parts of the ATL (i.e., dorso-lateral and
199 ventral-medial), therefore, seem to integrate within two different networks of regions
200 implicated in the representation of abstract and concrete features, respectively.

201

202
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204 Figure 2. Spatiotemporal dynamics of lexical and conceptual representations. A) Root-mean-square of the
205 SNR of ERRC of the word frequency (grey), concrete semantic component (blue) and abstract semantic
206 component (red) predictors. 0s = uniqueness point. B) Concrete > Abstract (one-sample t-test (two-tailed),

207 FDR-corrected p < .05, > 15-vertex) in the .9 to 1s interval. C) Detail on the left ATL for the contrast Concrete
208 > Abstract (one-sample t-test (two-tailed), FDR-corrected p < .05, > 15-vertex) in the .9 to 1s interval. D)

209 Source-reconstructed statistical maps of the contrast Concrete > Abstract (one-sample t-test (two-tailed),
210 FDR-corrected p < .05, > 15-vertex) in consecutive 100ms intervals. E) Source-reconstructed statistical maps
211 of the Word Frequency predictor (one-sample t-test (one tail), FDR-corrected p < .05, > 15-vertex) in
212 consecutive 100ms intervals.

213

214 Streams of semantic information

215 We hypothesized that semantic information travels along parallel paths (one dorsal-
216 abstract and one ventral-concrete) to reach the ATL. To test this hypothesis, we increased
217 the sensitivity of our analysis (by reducing the number of multiple comparisons for which
218 correction is required) and adopted a region of interest (ROI) approach. That is, statistical
219 analysis of abstract and concrete semantic components was restricted to three macro-
220 regions: Early visual cortex (EVC), ventral occipito-temporal cortex (VOTC; henceforth,
221 ventral ROI) and a macro region including the superior temporal gyrus and the orbito-frontal
222 cortex (Figure 3B, see Material and Methods for details). Our choice of ROls was motivated
223 by current models of long-range ATL connectivity pathways (see Figure 3A; Lambon-Ralph et
224 al., 2017). Moreover, we separated the EVC from the anterior ventral occipital cortex due to
225 the fact that these two macro-regions have different roles during semantic processing (Bracci
226 & Op de Beeck, 2016; Clarke & Tyler, 2014; Mattioni et al., 2020) as well as to balance the
227 number of vertices across different ROls (see Method sections for details).
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228 The time course of concrete semantic information encoding is illustrated in Figure 3E.
229 The EVC ROIs did not reveal any significant differences between abstract and concrete
230 semantic information encoding. The first observable response was confined to left ventral
231 ROI. An enlarged view of this portion of the temporal lobe in the time window of significance
232 (i.e., 200ms to 300ms, Figure 3C) shows a cluster of activation in the posterior fusiform and
233 mid-lateral temporal regions. Notably, encoding of concrete semantic information
234 progressively engaged more anterior regions. Specifically, at 700ms after word recognition,
235 concrete information was encoded in left ventral ATL and at 900ms in left medial ATL (Figure
236 3C).

237 With a similar time course, abstract semantic information encoding progressed from
238 posterior to anterior portions of the left dorsal ROl (Figure 3F). Figure 3D depicts the earliest
239  (200ms to 300ms) observable response to abstract semantic information localized in the left
240 posterior STG. Importantly, the OF cortex responded only at later time intervals (> 500ms;
241 Figure 3D), immediately before the dorsal ATL (> 600ms), and all these areas remained
242 active until the end of the trial (Figure 3D; see also movies A and B).

243 The overall pattern of results strongly suggests the existence of two streams of
244 semantic processing. Both abstract and concrete semantic information encoding progressed
245 from posterior to anterior temporal regions. That is, along the left ventral stream, concrete
246 semantic information initially involved the fusiform cortex, followed by left ventral ATL and
247 medial ATL responses. Moreover, along the left dorsal stream, abstract semantic information
248 involved, at subsequent time intervals, STG, OF, and anterior dorsal ATL.

249
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251

252 Figure 3. A dorsal and a ventral stream. A) Neuroanatomical sketch of hub and spokes connectivity
253 pathways (see also Lambon-Ralph et al., 2017). B) Dorsal (red) ventral (blue) and early visual cortex (cyan)
254 ROIls in the left hemisphere. C) Concrete semantic component activation detail on the left ventral and medial
255 temporal cortex in the relevant time intervals (one-sample t-test (two-tailed), FDR-corrected p < .05, > 15-
256 vertex). D) Abstract semantic component activation detail on the left posterior STG and left ATL in the
257 relevant time intervals (one-sample t-test (two-tailed), FDR-corrected p < .05, > 15-vertex). E) Source-
258 reconstructed statistical maps of the contrast Concrete > Abstract (one-sample t-test (two tailed), FDR-
259 corrected p < .05, > 15-vertex) in consecutive 100ms intervals, positive t-values. F) Source-reconstructed
260 statistical maps of the contrast Concrete > Abstract (one-sample t-test (two-tailed), FDR-corrected p < .05, >
261 15-vertex) in consecutive 100ms intervals, negative t-values.

262

263 Discussion

264 To test whether and when an abstract-to-concrete graded semantic representation
265 emerges in the ATL and how does conceptual information reach anterior temporal brain
266 regions we took advantage of the high spatiotemporal resolution of MEG signals. Using a
267 multiple linear regression analysis of MEG-recorded brain activity we obtained for every time
268 point, channel and subject event-related regression coefficients (ERRC) reflecting the
269 contribution of each predictor to the data. Predictors of interest included variables associated
270  with the frequency of each word as well as variables related to abstract and concrete
271 dimensions of semantic knowledge. Sensor-level results showed sequential encoding of
272 lexical and semantic information (see Figure 2A), suggestive of a serial organization of
273 spoken word recognition (for similar findings see Brodbeck, Presacco, & Simon, 2018;
274 Winsler et al.,, 2018). Furthermore, in line with prominent models of speech processing
275 (Hickok & Poeppel, 2007), source-reconstructed cortical responses to the different predictors
276 evidenced a sound-to-meaning mapping system that includes middle and superior temporal
277 areas bilaterally (Supplementary materials Figure 1), and culminates in concrete and abstract
278 semantic representations being encoded in the ATL. Crucially, left-hemispheric ventral and
279 medial ATL regions responded preferentially to concrete aspects of conceptual knowledge.
280 More abstract features, instead, were encoded in the anterior dorsal and lateral ATL areas.
281 We then moved on to investigate how abstract and concrete semantic information
282 reaches the ATL during conceptual retrieval. Using a region of interest approach motivated by
283 current models of long-range ATL connectivity pathways (see Figure 3A), we showed that the
284 earliest observable responses to concrete and abstract semantic information laid,
285 respectively, in the fusiform gyrus and in the posterior STG. Moreover, whereas concrete
286 semantic information sequentially involved more anterior areas along the ventral temporal
287 lobe, abstract semantic processing involved, at later time stages, the orbitofrontal cortex and
288 the dorsal anterior temporal lobe.

289

290

291 The role of the ATL hub in conceptual processing

292 To date, empirical evidence for a graded ATL hub mainly stems from fMRI studies
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293 comparing abstract and concrete concepts (Hoffman et al., 2015; Striem-Amit et al., 2018).
294 Due to the low temporal resolution of fMRI techniques, however, the time course of graded
295 semantic representations in the ATL is still largely unknown. The present MEG study shows
296 that the ATL gradient emerges at late time stages of spoken word recognition, with sustained
297 neuronal response between 600 and 1000ms after lexical access (Figure 2C). This late
298 temporal window suggests that the graded activity of the ATL may be involved in the
299 integration of different features of a retrieved concept into a cohesive construct, a role often
300  attributed to the ATL-hub (Clarke & Tyler, 2015; Coutanche & Thompson-Schill, 2015;
301 Lambon-Ralph et al., 2017; Pylkkanen, 2019). Such a role is also supported by our finding
302 that abstract and concrete features are encoded in different brain regions at earlier time
303 windows and seem to converge into the ATL along separate cortical pathways. Moreover, this
304 timecourse is in line with previous chronometric studies of semantic processing in the ATL
305 using electrocorticography recordings (Chen et al., 2016), TMS (Jackson et al., 2015) and
306 MEG (Borghesani, Buiatti, Eger, & Piazza, 2018), which show that the ATL starts to encode
307 semantic information in a sustained way from ~300ms after stimulus onset (in the case of
308 visually presented stimuli, which are usually processed faster and less incrementally than
309 auditory spoken words; Vartiainen, Parviainen, & Salmelin, 2009), until 800-1000ms after
310 stimulus onset.

311 It is important to note, however, that some studies have reported transient semantic
312 effects in the ATL as early as ~100ms after stimulus onset (Chan et al., 2011; Mollo et al.,
313 2017; Teige et al., 2019), and an opposite flow of semantic information, from the ATL-hub to
314 the spokes, has been suggested (Mollo et al., 2017). However, this early ATL activity has
315 been found only in the case of gross categorical distinction (Borghesani et al., 2018; Chan et
316 al., 2011; Teige et al., 2019) and it is almost invariably followed by sustained ATL activations
317 occurring between ~300 and 1000ms after stimulus onset (Borghesani et al., 2018; Chan et
318 al., 2011; Mollo et al., 2017; Teige et al., 2019). This state of affairs opens to the intriguing
319 possibility that the ATL may transiently encode superordinate categorical distinctions (Clarke,
320 Devereux, Randall, & Tyler, 2015; Clarke, Taylor, Devereux, Randall, & Tyler, 2013) that
321 facilitate the activation of the relevant spokes (Borghesani et al., 2018; Chiou & Lambon
322 Ralph, 2019; Mollo et al., 2017), which in turn feed-back detailed domain-specific information
323 for a full-fledged semantic access to specific concepts (Clarke & Tyler, 2015; Lambon-Ralph
324 etal.,, 2017).

325 However, an early and transient semantic activity in the ATL has been reported only
326 in experiments using images (Clarke et al., 2015, 2013), visually presented words
327 (Borghesani et al., 2018; Chan et al., 2011; Teige et al., 2019) or words and images together
328 (Mollo et al., 2017), and may be specific for the visual modality. In the case of visual stimuli
329 (especially in the case of images) the early activity in the ATL may be the consequence of an
330 automatic feedforward sweep of neural responses through occipital and ventral temporal
331 cortices (Chen et al., 2016; Clarke & Tyler, 2015; Rupp et al., 2017) that would be absent in

332 the case of auditory stimuli, as in the present experiment. Indeed, explorative analysis of our

10


https://doi.org/10.1101/2020.06.04.134163
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.04.134163; this version posted June 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

333 data did not provide convincing evidence for an early ATL activity related to superordinate
334 gross categorical representations (Supplementary Figure 3C), although this result cannot be
335 taken as conclusive.

336 In sum, although the ATL might be involved in semantic processing at different levels
337 (superordinate gross distinction, specific multimodal concepts) and in different timepoints
338 (early, late activations), our results suggest that the graded organization of abstract and
339 concrete conceptual features in the ATL emerges in the late stages of conceptual processing,
340 as the product of convergent conceptual information from different cortical streams, and
341 possibly coinciding with the retrieval of a cohesive and specific conceptual representation.

342

343

344 Routes to meaning in the brain

345 After an initial sound to meaning mapping in the middle temporal gyrus (MTG),
346 signaled by a strong sensitivity to the frequency component right after the word uniqueness
347 point, abstract and concrete semantic information starts to be encoded in two different
348 temporal regions, one above and one below the MTG. Brain activity associated with concrete
349 semantic features emerges sequentially in the fusiform gyrus, the ventral ATL and the medial
350 ATL. Neural correlates of abstract semantic knowledge follow a parallel dorsal path: posterior
351 STG, OFC and finally the dorsal-lateral ATL.

352 Previous studies have provided evidence for long-distance connections between
353 these brain regions and different subparts of the temporal pole (Binney et al., 2012; Chen et
354 al., 2017). The discovery of these white-matter tracks suggested that the gradient-like
355 organization of the ATL is due to the fact that sensory, emotional and linguistic information
356 travels along different cortical pathways during conceptual learning, and is stored in different
357 ATL regions situated at the termination of these pathways. Once the concept is stored in the
358 ATL, it could in principle be directly reactivated without going through these cortical pathways
359 again (Fairhall & Caramazza, 2013; Mollo et al., 2017). Instead, our chronometric data offer
360 the first direct evidence that these pathways are at least partially retraced during conceptual
361 retrieval. This result suggests that semantic knowledge in the ATL may emerge through the
362 contribution of the entire network, instead of a simple re-activation of stand-alone
363 representations. The re-instantiation of this generative process during conceptual retrieval
364 may be useful to allow a constant representational update in long-term memory, and provide
365 the flexibility to retrieve a given concept highlighting specific feature dimensions instead of
366 others. Once again, this position confirms the central role of the ATL in conceptual retrieval,
367  as suggested by several neuropsychological studies (Abel et al., 2015; Chen et al., 2016b;
368 Coutanche & Thompson-Schill, 2015; Hoffman et al., 2015; Striem-Amit et al., 2018).

369 The present findings corroborate the existence of two parallel cortical streams for
370 concrete and abstract semantics travelling along dorsal and ventral temporal areas and
371 ultimately terminating in the ATL. This result, however, does not exclude the existence of

372 other routes. For instance, it is conceivable that sensorimotor information, mostly encoded in
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373 parietal and motor areas (Fernandino et al., 2015; Pulvermidiller, Shtyrov, & limoniemi, 2005),
374 would reach temporal and inferior frontal areas travelling along the arcuate fasciculus
375 (Motivating the IFG modulation by the concrete semantic regressor; Pulvermdiller, 2013).
376  Alternatively, evidence from a recent tractography study (Chen et al., 2017) has suggested
377 two possible routes connecting the ATL to the parietal cortex via the posterior middle
378 temporal gyrus and posterior fusiform gyrus. An important open question for future research
379 therefore concerns the relative functional contribution of different streams of information to
380 conceptual representations.

381

382 Extended networks involved in the representation of concrete and abstract
383 features in the brain

384 The representation of abstract and concrete semantic knowledge extends also
385 beyond the ATL and the dorsal/ventral pathways in the left hemisphere. Abstract information
386  additionally engages the right OFC and the left mPFC (see Sabsevitz, Medler, Seidenberg, &
387 Binder, 2005; Wang et al., 2018; for similar results). On the other hand, the concrete
388 regressor activated a different network of regions that are typically involved in the
389 representation of multimodal concrete knowledge (Binder, Desai, Graves, & Conant, 2009;
390 Binder et al., 2005; Fernandino et al., 2015) and included the left IFG, right SMG, and right
391 mPFC. Moreover, removing the constraint originally imposed to the cluster size (>15
392 vertices), but keeping a conservative statistical threshold (FDR-corrected p < .05 at the
393 whole-brain level), concrete-related activity emerges also in the left angular gyrus, which is
394 considered an important multimodal hub for the integration of concrete information (Binder et
395 al., 2009; Fernandino et al., 2015; see Supplementary Figure 4). Thus, our results are in
396 keeping with previous evidence showing two extended and separated sets of brain regions
397 that support concrete and abstract knowledge (Wang et al., 2010).

398 However, contrary to some previous studies (Binder et al., 2009; Borghesani et al.,
399 2016), we failed to find significant activity related to concrete features in the early visual
400 cortex (EVC). One possible reason for this discrepancy is that, whereas these previous
401 studies tracked the representation of single low-level visual features (e.g., size, color,
402 movement), our concrete semantic predictor was derived from the dimensionality reduction of
403 a multidimensional feature space spanning several sensory modalities (vision, touch,
404 audition, etc.) and conceptual domains (color, face, music; see Supplementary Figure 5). This
405 predictor is more likely to capture integrated sensorimotor information that is usually
406 represented in convergence regions of the brain (Binder & Desai, 2011; Damasio, 1989).
407 Indeed, the set of regions that in our analysis respond to the principal component of the
408 concrete feature space (mPFC, Angular Gyrus, VOTC, IFG, SMG) largely coincide with
409 regions that have been found to conjointly represent multiple concrete features (e.g., color,
410 movement, motion, shape, manipulation) during conceptual retrieval (Fernandino et al,,
411 2015). The anterior VOTC (see Figure 3E), which support the representation of several

412 domains of knowledge (objects, faces, animals, etc.), in a format that is not tight to the visual
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413 modality only (Mattioni et al., 2020; Peelen & Downing, 2017; van den Hurk, Van Baelen, &
414 Op de Beeck, 2017; Wang et al., 2015), qualifies as one of these convergence regions, in
415 contrast with EVC that is highly modality-specific (Bottini et al., 2020; Wang et al., 2015).

416 Another interesting difference compared to some previous results is the involvement of
417 the inferior frontal gyrus (IFG) in the representation of concrete features. Indeed, in some
418 previous studies (including a meta-analysis), the IFG has been associated with the
419 processing of abstract words, arguably for its role within the language system (Hoffman et al.,
420 2015; Sabsevitz et al., 2005; Wang et al., 2010). Nevertheless, some studies before us
421 reported IFG activation for concrete concepts, especially if related to actions (Kana, Blum,
422 Ladden, & Ver Hoef, 2012; Rueschemeyer, Ekman, van Ackeren, & Kilner, 2014; Siri et al.,
423 2008). It is important to consider that, in order to isolate brain regions dedicated to concrete
424 and abstract feature representations, several previous studies contrasted different sets of
425 concrete and abstract words. However, semantic reference is hard to control when creating
426 different sets of words: Many abstract words may hold a strong reference to concrete features
427 (e.g., sadness may be associated with darkness and freedom with a colorful and blooming
428 landscape), and vice versa (a computer may be associated with intense cognitive and
429 intellectual activity; Barsalou, Dutriaux, & Scheepers, 2018). One advantage of the current
430 design, instead, is that the same words were contrasted based on their relative “location” in
431 two multidimensional semantic spaces, one constituted by abstract and the other by concrete
432 dimensions. Moreover, we controlled for several nuisance variables (e.g., word duration,
433 frequency, response) by including them in the multiple regressions model and isolating brain
434 activity that could be explained by these variables. These technical aspects may account for
435 the differences between the current results and some previous studies that contrasted
436 abstract with concrete words.

437

438 Conclusions

439 We demonstrated that, during conceptual retrieval, abstract and concrete semantic
440 information are represented in the ATL along a dorsal-to-medial gradient. During early stages
441 of conceptual processing, right after lexical access, concrete and abstract features are
442 encoded in posterior temporal regions and, at later time points, seem to converge into the
443 ATL along separate cortical streams that coincide with long-range connectivity pathways
444 leading to ATL subregions. Our timecourse analysis supports the hypothesis that the ventral-
445 medial ATL receives concrete information from the ventral stream (related to object
446 knowledge), and the dorsal-lateral ATL receives abstract information from the posterior STG
447 and the orbito-frontal cortex (related to language processing and emotional value). In sum, we
448 provided direct evidence that abstract and concrete semantic information travels along
449 separate cortical routes during conceptual retrieval to reach the ATL gradient in later time
450  windows, possibly coinciding with the retrieval of integrated and specific conceptual
451 representations.

452
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453 Material and Methods

454

455 Participants

456 Thirty native Italian speakers (11 female, aged 28.2 + 4.8 years) participated in the
457 study. All participants were right-handed and had no history of neurological or psychiatric
458 disorders. Before testing participants gave their written informed consent and received
459 monetary reimbursement for their participation. The experiment was conducted in accordance
460 with the Declaration of Helsinki and was approved by the local ethical committee of the
461 University of Trento.

462

463 Experimental design

464 We derived our stimulus set from a previous work by Binder and colleagues (Binder
465 et al., 2016). Out of 535 English words filed in Binder et al.’s (2016) original work, 438 were
466 translated into Italian (352 nouns in the singular form, 54 verbs in the infinite tense and 32
467  adjectives in the singular male form). Selected words were 2 to 4 syllables long (M = 2.93, SD
468 = 0.72) and could be unambiguously translated into Italian. Stimuli were recorded as 22050
469 Hz mono audio files, using the text-to-speech software ‘Speech2Go’ (SpeechWorks, Nuance
470 communication, Burlington, MA, USA). Using Praat (Boersma & Weenink 2007), each audio
471 file was trimmed of silence intervals at the beginning and at the end of the utterance and
472 normalized to a uniform intensity. Finally, each file was inspected to detect acoustic
473 anomalies or unnatural pronunciation.

474 Auditory stimuli were delivered via loudspeakers (Panphonics Sound Shower) placed
475 inside the magnetically shielded MEG room. Stimuli were played at a comfortable sound
476 level, which was the same for all participants. Stimulus presentation was controlled via
477 Psychtoolbox (Brainard, 1997) running in a MATLAB 2015a environment.

478 Each ftrial started with 1.5s pre-stimulus silence followed by the auditory-presented
479 word. Participants were instructed to categorize each stimulus as either related to sensory-
480 perception (i.e. they express something that is related to one or more of the senses), or
481 unrelated to sensory-perception. An auditory cue (a “beep” sound) prompted participants’
482 responses 2s after stimulus onset. Responses were collected via button presses operated
483 with the dominant hand’s index and middle fingers. The response mapping was
484 counterbalanced across participants. The maximum time given to respond was set to 2s and
485  was followed by an interstimulus interval randomly jittered between 0.5 s and 1.0 s.
486 Participants were familiarized with a short version of the task (30 trials taken from a different
487 stimulus set) on a portable PC outside the MEG chamber. Participants were all blindfolded for
488 the entire duration of the experiment and the room was kept in the dark. Each testing session
489 lasted approximately 50 minutes and was divided into six, seven-minutes runs separated by
490 short breaks.

491

492 Uniqueness point
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493 The time taken to access words’ lexical-semantic properties necessarily depends on
494 the words themselves. The words used in the present study, for instance, varied greatly in
495 length (M = 570.6ms; SD = 119.5ms); therefore aligning our analysis solely to the onset of
496 each auditory stimulus would be suboptimal. We estimated the uniqueness point (UP) of each
497 word. That is, the point in time when a string of sounds corresponds to one and only one word
498 (Marlsen-Wilson, 1987). Ideally, this process would be carried out based on the phonological
499 forms of words; however, phonological databases for Italian are very limited in size (e.g.,
500 Phonltalia, 120000 tokens; Goslin, Galluzzi, & Romani, 2014), which would have yielded
501 imprecise estimates. Therefore, we took advantage of the near-perfect phoneme-to-
502 grapheme correspondence in lItalian, and computed UP based on orthographic databases,
503  which are vastly larger (e.g., SUBTLEX-IT, 130M tokens; Crepaldi et al., 2013). The process
504 can be summarized in two steps: 1) first, we divided the duration of each stimulus (auditory
505  waveform) by the number of graphemes that constitute it. 2) The result was then multiplied by
506 the orthographic UP (position in number of graphemes) of the lemmatized form of each
507 stimulus (Goslin et al., 2013). The outcome of this procedure is the estimated position of the
508 UP in each audio file. For the few words that clearly did not respect a clear phoneme-to-
509 grapheme correspondence, this procedure was manually adjusted.

510

511 MEG Data acquisition and preprocessing

512 MEG data were recorded using a whole-head 306 sensor (204 planar gradiometers;
513 102 magneto-meters) Vector-view system (Elekta Neuromag, Helsinki, Finland). Five head-
514 position indicator coils (HPIs) were used to continuously determine the head position with
515 respect to the MEG helmet. MEG signals were recorded at a sampling rate of 1 kHz and an
516 online band-pass filter between 0.1 and 300 Hz. At the beginning of each experimental
517 session, fiducial points of the head (the nasion and the left and right pre-auricular points) and
518 a minimum of 300 other head-shape samples were digitized using a Polhemus FASTRAK 3D
519  digitizer (Fastrak Polhemus, Inc., Colchester, VA, USA).

520 The raw data were processed using MaxFilter 2.0 (Elekta Neuromag ®). First, bad
521 channels (identified via visual inspection) were replaced by interpolation. External sources of
522 noise were separated from head-generated signals using a spatio-temporal variant of signal-
523 space separation (SSS). Last, movement compensation was applied and each run was
524 aligned to an average head position. All further analysis steps were performed in MATLAB
525 2019a using non-commercial software packages such as Fieldtrip (Oostenveld, Fries, Maris,
526 & Schoffelen, 2011), Brainstorm (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011) and
527 custom scripts. Continuous MEG recordings were filtered at 0.1 Hz using a two-pass
528 Butterworth high-pass filter and epoched from -1.5 s before to 2s after the uniqueness point.
529 Time segments contaminated by artifacts were manually rejected (total data lost of M = 7.6%
530 SD = 7.7%). A Butterworth low-pass filter at 40Hz was applied to the epoched data. Before
531 encoding, each trial segment was baseline corrected with respect to a 400ms time window

532 before stimulus onset.
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533

534 Multiple linear regression analysis

535 Multiple linear regression analysis was applied to MEG data following the approach
536 used in previous M/EEG studies (Chen et al., 2013, 2015; Hauk et al., 2006, 2009; Miozzo et
537 al., 2015). The solution of a multiple regression provides the best least-square fit of all
538 variables simultaneously to the data (Bertero, De Mol, & Pike, 1985). In M/EEG analysis the
539 resulting event-related regression coefficients (ERRC) reflect the contribution of each
540 predictor to the data for each time point, channel and subject. Importantly, because
541 regression analysis is a special form of factorial designs, ERRC can be interpreted and
542 analyzed as difference waves in ERP signals.

543 We focused on two semantic predictors, one abstract semantic component and one
544 concrete semantic component (see below for details). All the regression models included
545 psycholinguistic and word-form features as covariates (i.e., the word frequency, the duration
546 of the word and the response given by the participant). Before encoding the predictors of
547 each model were converted to normalized z-scores and tested for multicollinearity using a
548 condition number test (Belsley et al., 1982). The output of the test is a condition index, which
549 in the present study never exceeded a threshold of 4 (with values < 6 collinearity is not seen
550  as a problem).

551

552 Predictor variables

553 The aim of the present study was to investigate the contribution of abstract and
554 concrete semantic dimensions of conceptual knowledge to single concepts representations.
555 On this account, we derived our stimulus set from a previous work by Binder and colleagues
556 (Binder et al.,, 2016). These authors collected ratings of the salience of 65 biologically
557 plausible features to word meaning (for a detailed description of the procedure see Binder et
558 al., 2016). For every word in the database (e.g., lemon) more than one thousand participants
559  were asked to rate how associated was each of the features (e.g., color) with that aspect of
560 the experience (e.g., would you define a lemon as having a characteristic or defining color?).
561 The result is a semantic space where concepts can be represented as single entities into a
562 multidimensional space having perceptual and conceptual features as dimensions. Crucially,
563 features spanned both abstract and concrete domains of conceptual knowledge thus
564 represent an ideal framework to operationalize our assumptions.

565

566 Semantic components

567 As mentioned above, more than sixty features composed our semantic space.
568 Encoding of the entire space in one single model, however, would be suboptimal. In fact
569 features are highly intercorrelated between each other, leaving us with a multicollinearity
570 issue. One way this can be avoided is through dimensionality reduction techniques
571 (Cunningham & Yu, 2014), such as principal component analysis (PCA). PCA generates a

572 series of principal components (PCs) representing the same data in a new coordinate system,
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573  with the first PC usually accounting for the largest percentage of data variance. Following this
574 rationale, we used PCA to derive two high-level semantic components. Three features (i.e.,
575 Complexity, Practice, Caused) were excluded due to incomplete ratings. An abstract
576 component was obtained via PCA (after normalization) of 31 features encompassing Spatial,
577 Temporal, Causal, Social, Emotion, Drive and Attention domains (the first PC explaining
578 27.4% of the overall variance). Similarly, the concrete component was calculated as the first
579 principal component (24.7% of variance explained) of 31 features encompassing several
580 sensory-motor domains such as Vision, Somatic, Audition Gustation, Olfaction and Motor
581 domains.

582

583 Linguistic features

584 For each of the selected words, we obtained several psycholinguistic features: Word
585 duration (M = 570ms, SD = 119ms) and Word Frequency (in Zipf's scale, M = 4, SD = 0.8)
586 were extracted from the SUBTLEX-IT database (Crepaldi et al., 2013); first syllable frequency
587 (in the natural logarithm of token, M = 8.7, SD = 2.1) was extracted from Phonltalia (Goslin et
588  al., 2014).

589

590 Source reconstruction

591 Distributed minimum-norm source estimation (Hamalainen & Ilimoniemi, 1994) was
592 applied following the standard procedure in Brainstorm (Tadel et al., 2011). Anatomical T1-
593 weighted MRI images were acquired during a separate session in a MAGNETOM Prisma 3T
594 scanner (Siemens, Erlangen, Germany) using a 3D MPRAGE sequence, 1-mm?® resolution,
595 TR = 2140ms, Tl = 900ms, TE = 2.9ms, flip angle 12°. Anatomical MRI images were
596 processed using an automated segmentation algorithm of the Freesurfer software (Fischl,
597 2012). Co-registration of MEG sensor configuration and the reconstructed scalp surfaces was
598 based on ~300 scalp surface locations. The data noise covariance matrix was calculated from
599 the baseline interval of different predictors from the same model. The forward model was
600 obtained using the overlapping spheres method (Huang, Mosher, & Leahy, 1999) as
601 implemented in the Brainstorm software. Event-related regression coefficients were then
602 projected onto a 15000 vertices boundary element using a dynamic statistical parametric
603 mapping approach (dSPM; Dale et al., 2000). Dipole sources were assumed to be
604 perpendicular to the cortical surface. Last, the individual results were projected to a default
605 template (ICBM152) and spatially smoothed (3mm FWHM).

606

607 ROIs

608 ROIs analysis was performed over three cortical areas and was restricted to the left
609 hemisphere since the abstract-to-concrete gradient have never been found in the right ATL in
610 previous distortion-corrected fMRI studies (Hoffman et al., 2015; Striem-Amit et al., 2018).
611 Regions of interest included one early visual cortex (EVC) ROI (617 vertices), one ventral

612 ROI (643 vertices) and one dorsal ROI (468 vertices) each combining brain areas adapted
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613  from the Desikan-Killiany cortical atlas. The EVC ROI consisted of the lateral occipital cortex,
614 the calcarine fissure and the lingual gyrus. The ventral ROl encompassed regions of the
615 ventral temporal-occipital cortex (i.e., the fusiform gyrus, the inferior temporal gyrus, the
616 entorhinal cortex and the ventral-medial temporal pole). Conversely, the lateral orbitofrontal
617 cortex (which was modified in order to exclude a small area protruding into the inferior frontal
618 gyrus) and superior temporal gyrus composed the dorsal ROI. ROIs were designed following
619 established models of white matter pathways connecting the dorsal-lateral and ventral-medial
620  ATL with other cortical regions (Binney et al., 2012; Chen et al., 2017; and see Figure 3A).
621 We divided the large ventral pathway (depicted in blue in Figure 3A) in EVC and VOTC
622 because of their different role and level of processing during conceptual retrieval (Bottini et
623 al., 2020; Bracci & Op de Beeck, 2016; Clarke & Tyler, 2014; Mattioni et al., 2020) and to
624 obtain ROIs of comparable size. The orbito-frontal region and the STG were united in the
625 same dorsal ROI because, according to the graded ATL model (Lambon-Ralph et al., 2017),
626 both regions projects into the dorsal-lateral ATL and contribute to the representation of
627 abstract features. Moreover, including OF and STG regions in a unique ROI allowed us to
628 obtain regions of interest with a comparable number of vertices.

629

630 Statistical analysis

631 In line with previous studies (Chen et al., 2013, 2015; Hauk et al., 2006; Miozzo et al.,
632 2015) we depicted the time course of different regressors as the root-mean-square (RMS) of
633 the signal-to-noise ratio (SNR) of ERRC. The SNR was computed on the grand mean of all
634 subjects, by dividing the MEG signal at each channel and time point by the standard deviation
635 of the baseline. This provided a unified (magnetometers and gradiometers are combined
636 together) and easy-to-interpret measure of sensor-level activity. Source-reconstructed
637 statistical maps of single predictors (e.g., Word frequency) were computed as consecutive
638 100ms average time-windows. Average signals within each time-window were tested against
639 “0” using a whole-brain one-sample t-test (one tail), FDR corrected for multiple comparisons,
640 p < .05 and a minimum number of vertices of 10. Source-reconstructed statistical maps of the
641 contrast between predictors (e.g., Concrete > Abstract) were computed as consecutive
642 100ms average time-windows. Average signals within each time window were tested against
643 “0” using a whole-brain one-sample t-test (two-tailed), FDR corrected for multiple
644 comparisons, p < .05 and a minimum number of vertices of 10. Finally, ROI-constrained
645 statistical maps for single predictors and contrast between predictors were computed as
646 described above and restricting statistical comparisons within each ROI.

647

648 Acknowledgments

649 We thank Virginie Crollen for helpful comments on an earlier version of this
650 manuscript and Valentina Di Nunzio for help with the figures. The project was funded by a
651 PRIN grant (Project number: 2015PCNJ5F_001) from the Italian Ministry of Education,

18


https://doi.org/10.1101/2020.06.04.134163
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.04.134163; this version posted June 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

652 University and Research (MIUR) awarded to Davide Crepaldi in collaboration with Olivier
653 Collignon.
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691

19


https://doi.org/10.1101/2020.06.04.134163
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.04.134163; this version posted June 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730

731

made available under aCC-BY-NC-ND 4.0 International license.

References

Abel, T. J., Rhone, A. E., Nourski, K. V., Kawasaki, H., Oya, H., Griffiths, T. D., ... Tranel, D.
(2015). Direct Physiologic Evidence of a Heteromodal Convergence Region for Proper
Naming in Human Left Anterior Temporal Lobe. Journal of Neuroscience, 35(4), 1513—
1520. https://doi.org/10.1523/JNEUROSCI.3387-14.2015

Barsalou, L. W., Dutriaux, L., & Scheepers, C. (2018). Moving beyond the distinction between
concrete and abstract concepts. Philosophical Transactions of the Royal Society B:
Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0144

Belsley, D. A. (1982). Assessing the presence of harmful collinearity and other forms of weak
data through a test for signal-to-noise. Journal of Econometrics, 20(2), 211-253.

Bertero, M., De Mol, C., & Pike, E. R. (1985). Linear inverse problems with discrete data. I.
General formulation and singular system analysis. Inverse Problems, 1(4), 301-330.
https://doi.org/10.1088/0266-5611/1/4/004

Binder, J. R., Conant, L. L., Humphries, C. J., Fernandino, L., Simons, S. B., Aguilar, M., &
Desai, R. H. (2016). Toward a brain-based componential semantic representation.
Cognitive Neuropsychology, 33(3—4), 130-174.
https://doi.org/10.1080/02643294.2016.1147426

Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in
Cognitive Sciences, 15(11), 527-536. https://doi.org/10.1016/j.tics.2011.10.001

Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic
system? A critical review and meta-analysis of 120 functional neuroimaging studies.
Cerebral Cortex, 19(12), 2767-2796. https://doi.org/10.1093/cercor/bhp055

Binder, J. R., Westbury, C. F., McKiernan, K. A., Possing, E. T., & Medler, D. A. (2005).
Distinct brain systems for processing concrete and abstract concepts. Journal of
Cognitive Neuroscience, 17(6), 905-917. https://doi.org/10.1162/0898929054021102

Binney, R. J., Parker, G. J. M., & Lambon Ralph, M. A. (2012). Convergent connectivity and
graded specialization in the Rostral human temporal Lobe as revealed by diffusion-
weighted imaging probabilistic tractography. Journal of Cognitive Neuroscience, 24(10),
1998-2014. https://doi.org/10.1162/jocn_a_00263

Boersma, P., & Weenink, D. (2007). Praat: doing phonetics by computer [Computer program].
Version 4.6. 22.

Borghesani, V., Buiatti, M., Eger, E., & Piazza, M. (2018). Conceptual and Perceptual
Dimensions of Word Meaning Are Recovered Rapidly and in Parallel during Reading.
Journal of Cognitive Neuroscience.

Borghesani, V., Pedregosa, F., Buiatti, M., Amadon, A., Eger, E., & Piazza, M. (2016). Word
meaning in the ventral visual path: a perceptual to conceptual gradient of semantic
coding. Neurolmage, 143, 128—-140. https://doi.org/10.1016/j.neuroimage.2016.08.068

Borghesani, V., & Piazza, M. (2017). The neuro-cognitive representations of symbols: the

case of concrete words. Neuropsychologia, 105(October 2016), 4—-17.

20


https://doi.org/10.1101/2020.06.04.134163
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.04.134163; this version posted June 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

771

made available under aCC-BY-NC-ND 4.0 International license.

https://doi.org/10.1016/j.neuropsychologia.2017.06.026

Bottini, R., Ferraro, S., Nigri, A., Cuccarini, V., Bruzzone, M. G., & Collignon, O. (2020). Brain
Regions Involved in Conceptual Retrieval in Sighted and Blind People. Journal of
Cognitive Neuroscience, 1-17. https://doi.org/10.1162/jocn_a_01538

Bracci, S., & Op de Beeck, H. (2016). Dissociations and associations between shape and
category representations in the two visual pathways. Journal of Neuroscience, 36(2),
432-444. https://doi.org/10.1523/JNEUROSCI.2314-15.2016

Brodbeck, C., Presacco, A., & Simon, J. Z. (2018). Neural source dynamics of brain
responses to continuous stimuli: Speech processing from acoustics to comprehension.
Neurolmage, 172(September 2017), 162-174.
https://doi.org/10.1016/j.neuroimage.2018.01.042

Buxbaum, L. J., Kyle, K., Grossman, M., & Coslett, H. B. (2007). Left inferior parietal
representations for skilled hand-object interactions: Evidence from stroke and
corticobasal degeneration. Cortex, 43(3), 411-423. https://doi.org/10.1016/S0010-
9452(08)70466-0

Chan, A. M., Baker, J. M., Eskandar, E., Schomer, D., Ulbert, I., Marinkovic, K., ... Halgren,
E. (2011). First-Pass Selectivity for Semantic Categories in Human Anteroventral
Temporal Lobe. Journal of Neuroscience, 31(49), 18119-18129.
https://doi.org/10.1523/jneurosci.3122-11.2011

Chen, L., Lambon Ralph, M. A, & Rogers, T. T. (2017). A unified model of human semantic
knowledge and its disorders. Nature Human Behaviour, 1(3).
https://doi.org/10.1038/s41562-016-0039

Chen, Y., Davis, M. H., Pulvermiller, F., & Hauk, O. (2013). Task modulation of brain
responses in visual word recognition as studied using EEG/MEG and fMRI. Frontiers in
Human Neuroscience, 7(JUN), 1-14. https://doi.org/10.3389/fnhum.2013.00376

Chen, Y., Davis, M. H., Pulvermiller, F., & Hauk, O. (2015). Early Visual Word Processing Is
Flexible: Evidence from Spatiotemporal Brain Dynamics. Journal of Cognitive
Neuroscience.

Chen, Y., Shimotake, A., Matsumoto, R., Kunieda, T., Kikuchi, T., Miyamoto, S., ... Lambon
Ralph, M. A. (2016). The “when” and “where” of semantic coding in the anterior temporal
lobe: Temporal representational similarity analysis of electrocorticogram data. Cortex,
79, 1-13. https://doi.org/10.1016/j.cortex.2016.02.015

Chiou, R., & Lambon Ralph, M. A. (2019). Unveiling the dynamic interplay between the hub-
and spoke-components of the brain’s semantic system and its impact on human
behaviour. Neurolmage, 199(April), 114—-126.
https://doi.org/10.1016/j.neuroimage.2019.05.059

Clarke, A., Devereux, B. J., Randall, B., & Tyler, L. K. (2015). Predicting the time course of
individual objects with MEG. Cerebral Cortex, 25(10), 3602—3612.
https://doi.org/10.1093/cercor/bhu203

Clarke, A., Taylor, K. |., Devereux, B., Randall, B., & Tyler, L. K. (2013). From perception to

21


https://doi.org/10.1101/2020.06.04.134163
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.04.134163; this version posted June 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

772
773
774
775
776
77
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

made available under aCC-BY-NC-ND 4.0 International license.

conception: How meaningful objects are processed over time. Cerebral Cortex, 23(1),
187-197. https://doi.org/10.1093/cercor/bhs002

Clarke, A., & Tyler, L. K. (2014). Object-Specific Semantic Coding in Human Perirhinal
Cortex. Journal of Neuroscience, 34(14), 4766—4775.
https://doi.org/10.1523/jneurosci.2828-13.2014

Clarke, A., & Tyler, L. K. (2015). Understanding What We See: How We Derive Meaning
From Vision. Trends in Cognitive Sciences, 19(11), 677—-687.
https://doi.org/10.1016/j.tics.2015.08.008

Coutanche, M. N., & Thompson-Schill, S. L. (2015). Creating concepts from converging
features in human cortex. Cerebral Cortex, 25(9), 2584—-2593.
https://doi.org/10.1093/cercor/bhu057

Crepaldi, D., Amenta, S., Pawel, M., Keuleers, E., & Brysbaert, M. (2015, September).
SUBTLEX-IT. Subtitle-based word frequency estimates for Italian. In Proceedings of the
Annual Meeting of the Italian Association For Experimental Psychology (pp. 10-12).

Cunningham, J. P., & Yu, B. M. (2014). Dimensionality reduction for large-scale neural
recordings. Nature Neuroscience, 17(11), 1500—-1509. https://doi.org/10.1038/nn.3776

Dale, A. M., Liu, A. K., Fischl, B. R., Buckner, R. L., Belliveau, J. W., Lewine, J. D., & Halgren,
E. (2000). Dynamic statistical parametric mapping: combining fMRI and MEG for high-
resolution imaging of cortical activity. Neuron, 26, 55-67.

Damasio, A. R. (1989). Time-locked multiregional retroactivation: A systems-level proposal
for the neural substrates of recall and recognition. Cognition, 33(1-2), 25-62.
https://doi.org/10.1016/0010-0277(89)90005-X

Fahimi Hnazaee, M., Khachatryan, E., & Van Hulle, M. M. (2018). Semantic Features Reveal
Different Networks During Word Processing: An EEG Source Localization Study.
Frontiers in Human Neuroscience, 12(December), 1-16.
https://doi.org/10.3389/fnhum.2018.00503

Fairhall, S. L., & Caramazza, A. (2013). Brain Regions That Represent Amodal Conceptual
Knowledge. Journal of Neuroscience, 33(25), 10552—10558.
https://doi.org/10.1523/JNEUROSCI.0051-13.2013

Fernandino, L., Binder, J. R., Desai, R. H., Pendl, S. L., Humphries, C. J., Gross, W. L., ...
Seidenberg, M. S. (2015). Concept Representation Reflects Multimodal Abstraction: A
Framework for Embodied Semantics. Cerebral Cortex, 26(5), 2018-2034.
https://doi.org/10.1093/cercor/bhv020

Fischl, B. (2012). FreeSurfer. Neurolmage, 62(2), 774-781.
https://doi.org/10.1016/j.neuroimage.2012.01.021

Garcia, A. M., Moguilner, S., Torquati, K., Garcia-Marco, E., Herrera, E., Mufoz, E., ...
Ibafiez, A. (2019). How meaning unfolds in neural time: Embodied reactivations can
precede multimodal semantic effects during language processing. Neurolmage,
197(March), 439—449. https://doi.org/10.1016/j.neuroimage.2019.05.002

Goslin, J., Galluzzi, C., & Romani, C. (2014). Phonltalia: A phonological lexicon for Italian.

22


https://doi.org/10.1101/2020.06.04.134163
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.04.134163; this version posted June 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850

851

made available under aCC-BY-NC-ND 4.0 International license.

Behavior Research Methods, 46(3), 872—886. https://doi.org/10.3758/s13428-013-0400-
8

Guo, C. C., Gorno-Tempini, M. L., Gesierich, B., Henry, M., Trujillo, A., Shany-Ur, T., ...
Seeley, W. W. (2013). Anterior temporal lobe degeneration produces widespread
network-driven dysfunction. Brain, 136(10), 2979-2991.
https://doi.org/10.1093/brain/awt222

Hamalainen, M. S., & limoniemi, R. J. (1994). Interpreting magnetic fields of the brain:
minimum norm estimates. Medical & Biological Engineering & Computing, 32(1), 35—42.
https://doi.org/10.1007/BF 02512476

Hauk, O., Davis, M. H., Ford, M., Pulvermdiiller, F., & Marslen-Wilson, W. D. (2006). The time
course of visual word recognition as revealed by linear regression analysis of ERP data.
Neurolmage, 30(4), 1383-1400. https://doi.org/10.1016/j.neuroimage.2005.11.048

Hauk, O., Pulvermidiller, F., Ford, M., Marslen-Wilson, W. D., & Davis, M. H. (2009). Can |
have a quick word? Early electrophysiological manifestations of psycholinguistic
processes revealed by event-related regression analysis of the EEG. Biological
Psychology, 80(1), 64—74. https://doi.org/10.1016/j.biopsycho.2008.04.015

Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature
Reviews Neuroscience, 8(May), 393-402.

Hodges, J. R., Patterson, K., & Tyler, L. K. (1994). Loss of semantic memory: implications for
the modularity of mind. Cognitive Neuropsychology, 11(5), 505-542.
https://doi.org/10.1080/02643299408251984

Hoffman, P., Binney, R. J., & Lambon Ralph, M. A. (2015). Differing contributions of inferior
prefrontal and anterior temporal cortex to concrete and abstract conceptual knowledge.
Cortex, 63, 250-266. https://doi.org/10.1016/j.cortex.2014.09.001

Huang, M. X., Mosher, J. C., & Leahy, R. M. (1999). A sensor-weighted overlapping-sphere
head model and exhaustive head model comparison for MEG. Physics in Medicine and
Biology, 44(2), 423-440. https://doi.org/10.1088/0031-9155/44/2/010

Jackson, R. I., Lamobon Ralph, M. A., & Probic, G. (2015). The Timing of Anterior Temporal
Lobe Involvement in Semantic Processing. Journal of Cognitive Neuroscience.

Jackson, R. L., Hoffman, P., Pobric, G., & Lambon Ralph, M. A. (2016). The semantic
network at work and rest: Differential connectivity of anterior temporal lobe subregions.
Journal of Neuroscience, 36(5), 1490-1501. https://doi.org/10.1523/JNEUROSCI.2999-
15.2016

Kana, R. K., Blum, E. R., Ladden, S. L., & Ver Hoef, L. W. (2012). “How to do things with
Words”: Role of motor cortex in semantic representation of action words.
Neuropsychologia, 50(14), 3403-34009.
https://doi.org/10.1016/j.neuropsychologia.2012.09.006

Kocagoncu, E., Clarke, A., Devereux, B. J., & Tyler, L. K. (2016). Decoding the Cortical
Dynamics of Sound-Meaning Mapping. The Journal of Neuroscience, 37(5), 1312-1319.
https://doi.org/10.1523/jneurosci.2858-16.2016

23


https://doi.org/10.1101/2020.06.04.134163
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.04.134163; this version posted June 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

852 Lambon-Ralph, M. A., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and

853 computational bases of semantic cognition. Nature Reviews Neuroscience, 18(1), 42—
854 55. https://doi.org/10.1038/nrn.2016.150

855 Mattioni, S., Rezk, M., Battal, C., Bottini, R., Mendoza, K. E. C., Oosterhof, N. N., & Collignon,
856 0. (2020). Categorical representation from sound and sight in the ventral occipito-

857 temporal cortex of sighted and blind. ELife, 9, 1-33. https://doi.org/10.7554/eLife.50732
858 Miozzo, M., Pulvermiller, F., & Hauk, O. (2015). Early parallel activation of semantics and
859 phonology in picture naming: Evidence from a multiple linear regression MEG study.
860 Cerebral Cortex, 25(10), 3343-3355. https://doi.org/10.1093/cercor/bhu137

861 Mollo, G., Cornelissen, P. L., Millman, R. E., Ellis, A. W., & Jefferies, E. (2017). Oscillatory
862 dynamics supporting semantic cognition: Meg evidence for the contribution of the

863 anterior temporal lobe hub and modality-specific spokes. PLoS ONE, 12(1), 1-25.

864 https://doi.org/10.1371/journal.pone.0169269

865 Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip: Open source

866 software for advanced analysis of MEG, EEG, and invasive electrophysiological data.
867 Computational Intelligence and Neuroscience, 2011.

868 https://doi.org/10.1155/2011/156869

869 Pascual, B., Masdeu, J. C., Hollenbeck, M., Makris, N., Insausti, R., Ding, S. L., & Dickerson,
870 B. C. (2015). Large-scale brain networks of the human left temporal pole: A functional
871 connectivity MRI study. Cerebral Cortex, 25(3), 680-702.

872 https://doi.org/10.1093/cercor/bht260

873 Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The
874 representation of semantic knowledge in the human brain. Nature Reviews

875 Neuroscience, 8(12), 976-987. https://doi.org/10.1038/nrn2277

876 Peelen, M. V., & Downing, P. E. (2017). Category selectivity in human visual cortex: Beyond
877 visual object recognition. Neuropsychologia, 105(March), 177—-183.

878 https://doi.org/10.1016/j.neuropsychologia.2017.03.033

879 Pobric, G., Jefferies, E., & Lambon Ralph, M. A. (2010). Category-Specific versus Category-
880 General Semantic Impairment Induced by Transcranial Magnetic Stimulation. Current
881 Biology, 20(10), 964—-968. https://doi.org/10.1016/j.cub.2010.03.070

882 Pulvermdller, F. (2013). How neurons make meaning: Brain mechanisms for embodied and
883 abstract-symbolic semantics. Trends in Cognitive Sciences, 17(9), 458—470.

884 https://doi.org/10.1016/j.tics.2013.06.004

885 Pulvermdiller, F., Shtyrov, Y., & llmoniemi, R. (2005). Brain signatures of meaning access in
886 action word recognition. Journal of Cognitive Neuroscience, 17(6), 884—892.

887 https://doi.org/10.1162/0898929054021111

888 Pylkkénen, L. (2019). The neural basis of combinatory syntax and semantics. Science,

889 366(6461), 62—66. https://doi.org/10.1126/science.aax0050

890 Rogers, T. T., Ralph, M. A. L., Hodges, J. R., & Patterson, K. (2004). Natural selection: The
891 impact of semantic impairment on lexical and object decision. Cognitive

24


https://doi.org/10.1101/2020.06.04.134163
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.04.134163; this version posted June 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

made available under aCC-BY-NC-ND 4.0 International license.

Neuropsychology, 21(2—4), 331-352. https://doi.org/10.1080/02643290342000366

Rueschemeyer, S. A., Ekman, M., van Ackeren, M., & Kilner, J. (2014). Observing,
Performing, and Understanding Actions: Revisiting the Role of Cortical Motor Areas in
Processing of Action Words. Journal of Cognitive Neuroscience, 1-10.

Rupp, K., Roos, M., Milsap, G., Caceres, C., Ratto, C., Chevillet, M., ... Wolmetz, M. (2017).
Semantic attributes are encoded in human electrocorticographic signals during visual
object recognition. Neurolmage, 148(January), 318-329.
https://doi.org/10.1016/j.neuroimage.2016.12.074

Sabsevitz, D. S., Medler, D. A., Seidenberg, M., & Binder, J. R. (2005). Modulation of the
semantic system by word imageability. Neurolmage, 27(1), 188-200.
https://doi.org/10.1016/j.neuroimage.2005.04.012

Siri, S., Tettamanti, M., Cappa, S. F., Rosa, P. Della, Saccuman, C., Scifo, P., & Vigliocco, G.
(2008). The neural substrate of naming events: Effects of processing demands but not
of grammatical class. Cerebral Cortex, 18(1), 171-177.
https://doi.org/10.1093/cercor/bhm043

Stasenko, A., Garcea, F. E., Dombovy, M., & Mahon, B. Z. (2014). When concepts lose their
color: A case ofobject-color knowledge impairment. Cortex, 58, 217-238.
https://doi.org/10.1016/j.cortex.2014.05.013

Striem-Amit, E., Wang, X., Bi, Y., & Caramazza, A. (2018). Neural representation of visual
concepts in people born blind. Nature Communications, 9(1), 1-12.
https://doi.org/10.1038/s41467-018-07574-3

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: A user-
friendly application for MEG/EEG analysis. Computational Intelligence and
Neuroscience, 2011. https://doi.org/10.1155/2011/879716

Teige, C., Cornelissen, P. L., Mollo, G., Rene del Jesus Gonzalez Alam, T., McCarty, K.,
Smallwood, J., & Jefferies, E. (2019). Dissociations in semantic cognition: Oscillatory
evidence for opposing effects of semantic control and type of semantic relation in
anterior and posterior temporal cortex. Cortex, 120, 308-325.
https://doi.org/10.1016/j.cortex.2019.07.002

van den Hurk, J., Van Baelen, M., & Op de Beeck, H. P. (2017). Development of visual
category selectivity in ventral visual cortex does not require visual experience.
Proceedings of the National Academy of Sciences, 114(22), E4501-E4510.
https://doi.org/10.1073/pnas.1612862114

Vartiainen, J., Parviainen, T., & Salmelin, R. (2009). Spatiotemporal convergence of semantic
processing in reading and speech perception. Journal of Neuroscience, 29(29), 9271—
9280. https://doi.org/10.1523/JNEUROSCI.5860-08.2009

Wang, J., Conder, J. A, Blitzer, D. N., & Shinkareva, S. V. (2010). Neural representation of
abstract and concrete concepts: A meta-analysis of neuroimaging studies. Human Brain
Mapping, 31(10), 1459-1468. https://doi.org/10.1002/hbm.20950

Wang, Xiaosha, Wu, W, Ling, Z., Xu, Y., Fang, Y., Wang, X,, ... Bi, Y. (2018). Organizational

25


https://doi.org/10.1101/2020.06.04.134163
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.04.134163; this version posted June 9, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

932
933
934
935
936
937
938
939
940
941
942

made available under aCC-BY-NC-ND 4.0 International license.

principles of abstract words in the human brain. Cerebral Cortex, 28(12), 4305—4318.
https://doi.org/10.1093/cercor/bhx283

Wang, Xiaoying, Peelen, M. V., Han, Z., He, C., Caramazza, A., & Bi, Y. (2015). How visual is
the visual cortex? Comparing connectional and functional fingerprints between
congenitally blind and sighted individuals. Journal of Neuroscience, 35(36), 12545—
12559. https://doi.org/10.1523/JNEUROSCI.3914-14.2015

Winsler, K., Midgley, K. J., Grainger, J., & Holcomb, P. J. (2018). An electrophysiological
megastudy of spoken word recognition. Language, Cognition and Neuroscience, 33(8),
1063-1082. https://doi.org/10.1080/23273798.2018.1455985

26


https://doi.org/10.1101/2020.06.04.134163
http://creativecommons.org/licenses/by-nc-nd/4.0/

