

1 **Evolutionary genetics of *Drosophila melanogaster* immunity: role of the X chromosome and**
2 **sex-specific dominance**

3 **Authors:**

4 Manas Geeta Arun¹, Amisha Agarwala¹, Jigisha¹, Mayank Kashyap¹, Saudamini Venkatesan^{1,2},
5 Tejinder Singh Chechi¹, Zeeshan Ali Syed^{1,3}, Vanika Gupta^{1,4}, Nagaraj Guru Prasad^{1*}

6 ¹Department of Biological Sciences, Indian Institute of Science Education and Research Mohali,
7 Sector 81, SAS Nagar, Mohali, 140306, India

8 Current addresses:

9 ² Institute of Evolutionary Biology, School of Biological Sciences, King's Buildings, University
10 of Edinburgh, Edinburgh, EH9 3FL, UK

11 ³ Department of Biology, Syracuse University, 110 Life Sciences Complex, 107 College Place
12 Syracuse, Syracuse, NY, 13244, USA

13 ⁴ Department of Entomology, Cornell University, 3130 Comstock Hall, Ithaca, NY, 14853, USA

14 MGA and AA should be considered joint first authors

15 **Corresponding Author:* Nagaraj Guru Prasad

16 Email: prasad@iisermohali.ac.in

17

18 **Author Contributions**

19 VG standardised and set up the I and S selection regimes, carried out the principal experimental
20 evolution work and highlighted the potential role of the X chromosome. NGP, ZAS, SV and
21 MGA designed the Hybrid Experiment. MGA, ZAS and SV executed the Hybrid Experiment.
22 AA, J and NGP designed the X-Cloning Experiment. AA, J, MGA, MK and TSC carried out the
23 X-Cloning experiment. MGA, AA and NGP analysed the data. All authors contributed to
24 interpreting the results. MGA and AA wrote the first draft of the manuscript. All authors
25 reviewed the manuscript.

26

27 **Acknowledgements**

28 VG, ZAS, MGA thank CSIR, Govt. of India for Junior and Senior Research Fellowships. TSC
29 thanks IISER Mohali for Senior Research Fellowship. AA thanks DST, Govt. of India for the
30 KVPY scholarship. SV MGA J MK thank DST, Govt. of India for INSPIRE-SHE. This work
31 was funded by IISER Mohali and DBT, Govt. of India (Grant No. DBT-17-0128).

32 We would like to thank Sharmi Sen, Aparajita Singh and Naginder for their help during the
33 experiments, Dr. Pierre Cornelis of the Free University of Brussels, Belgium, who provided us
34 with the bacterial strain used here and Prof. Adam Chippindale for generously providing us with
35 the Clone Generator flies.

36

37

38 **Abstract**

39 Intralocus Sexual Conflict (IaSC) ensues when males and females of the same species experience
40 divergent selection on shared traits. A large number of traits have been implicated in IaSC and
41 there is growing evidence for sexual antagonism associated with immunity. X chromosomes are
42 thought to be hotspots of sexually antagonistic genetic variation and have been shown to harbour
43 substantial immunity-related genetic variation.

44 Here, using interpopulation crosses and cytogenetic cloning, we investigated the role of the X
45 chromosome in improved immune response of laboratory populations of the fruit-fly *Drosophila*
46 *melanogaster* selected against systemic infection by *Pseudomonas entomophila*.

47 We could not detect any contribution of the X chromosome in the evolved immune response of
48 our selected populations. However, we found strong evidence of sex-specific dominance related
49 to immunity in our populations. Our results indicate that alleles that confer a superior immune
50 response to the selected populations are, on average, partially dominant in females but partially
51 recessive in males.

52 We argue that sex-specific dominance over immunity evolved as a by-product of sexually
53 antagonistic selection in the wild ancestors of our populations. We also highlight sex-specific
54 dominance as a potential mechanism of sex differences in immunity, with population-level sex
55 differences primarily driven by sex differences in heterozygotes.

56

57 **Keywords**

58 Immunity, X chromosome, sexual conflict, sex-specific dominance

59

60 **Introduction:**

61 Males and females of the same species often experience distinctly different selection pressures,
62 resulting in evolutionary conflicts (reviewed in Schenkel et al. (2018)). Sexual conflicts have
63 been classified as interlocus sexual conflict (IeSC) or intralocus sexual conflict (IaSC). In the
64 present study we focus solely on the latter. Typically, IaSC results when there are different
65 fitness optima in the two sexes for a shared trait (Bonduriansky and Chenoweth 2009). At the
66 level of a locus this translates to a scenario where different alleles are favoured in the two sexes.
67 IaSC is thought to be resolved with the evolution of sexual dimorphism, mediated by a variety of
68 processes such as sex-specific modification of expression, genomic imprinting and sex-specific
69 dominance (Spencer and Priest, 2016) to name a few. In XX-XY systems, X chromosomes are
70 thought to be hotspots of sexually antagonistic genetic variation. Using a one locus, two allele
71 model Rice (1984) predicted that X chromosomes are expected to be more conducive than
72 autosomes at establishing rare alleles with sexually antagonistic effects (But see Fry (2010)).
73 This idea does have some experimental evidence in its favour. Gibson et al. (2002) cloned 20 X
74 chromosomes from a laboratory population of *Drosophila melanogaster* and estimated that X
75 chromosomes harbour around 45% of total fitness-related genetic variation and 97% of sexually
76 antagonistic genetic variation. However, Ruzicka et al. (2019) could not detect a significant role
77 of the X-chromosome in a genome-wide association study (GWAS) of sexual antagonism on a
78 set of 202 hemi-genomes sampled from a similar base-population of *D. melanogaster*.

79 Immunity is an ideal trait to investigate the consequences of IaSC for at least three reasons. First,
80 immunity is one of the traits for which differences in the two sexes have received considerable
81 attention. In vertebrates, females consistently tend to have superior immune function relative to
82 males (Zuk and McKean 1996; Poulin 2002). An evolutionary explanation for this trend, the
83 immunocompetence handicap hypothesis (ICHH)(Karter and Folstad 1992), links immunity with
84 reproduction. The ICHH argues that the immunity of males is suppressed by the action of
85 androgens that are otherwise crucial to maintain secondary sexual characters. Evidence for
86 ICHH is plentiful in vertebrates (reviewed in Rolff (2002)). Roved et al. (2017) argue that such
87 hormone-mediated sex differences in immunity have the potential to lead to sexually antagonistic
88 selection. Similar immune-endocrine interactions have been reported in invertebrates as well
89 (Stoehr and Kokko 2006; Schwenke and Lazzaro 2017) which were previously thought to lack
90 them. Alternative hypotheses involving trade-offs between male immunity and male
91 ornamentation(Sheldon and Verhulst 1996) or the Bateman Principle (Rolff 2002) (but see
92 (Stoehr and Kokko 2006)) have also been proposed. However, empirical evidence for sex
93 differences in invertebrate immunity is equivocal. Sheridan et al. (2000), in a meta-analysis of
94 parasite infection in arthropods, did not observe any overall sex-bias in the prevalence of
95 infection, whereas Nunn et al. (2009) reported a female-bias in phenoloxidase activity of insects.
96 In a recent meta-analysis, Kelly et al. (2018) reported an overall bias towards females (which
97 was stronger in insects) but pointed out that effect sizes of this bias were small.

98 Second, there are numerous studies highlighting the intricate link between immunity and various
99 aspects of reproduction. McKean and Nunney (2005) showed using *D. melanogaster* that males
100 and females plastically modulate their investment in reproduction, depending on the availability
101 of fitness-limiting resource, leading to sex-specific effects on immunity. Conversely, pathogenic
102 infection has also been shown to have a sex-specific effect on reproductive fitness in *D.*
103 *melanogaster* (Imroze and Prasad 2011; Nystrand and Dowling 2014). This link between
104 immunity and reproduction has further been reinforced by numerous studies that have
105 investigated the effect mating has on the immune response of males as well as females (McKean
106 and Nunney 2002; Rolff and Siva-Jothy 2002; Fedorka and Zuk 2005; Kelly and Jennions 2009;
107 Short and Lazzaro 2010; Gupta et al. 2013; Syed et al. 2020) and those investigating trade-offs
108 between immunity and reproduction (reviewed in (Schwenke et al. 2015)).

109 Third, there is mounting direct evidence of IaSC related to immunity in a wide variety of taxa.
110 Some workers have documented phenotypic evidence for sexual antagonism for immunity.
111 Svensson et al. (2009) reported in the side-blotched lizard, *Uta stansburiana*, that an immunity
112 phenotype that increased survival in males decreased female fitness. In a laboratory study in *D.*
113 *melanogaster*, Vincent and Sharp (2014), using mutation accumulation lines, found a negative
114 genetic correlation between the two sexes for resistance and tolerance. Using the same lines,
115 Sharp and Vincent (2015) reported a dramatic difference in the effect of mutation accumulation
116 on the fitness of the two sexes in presence of infection by *Pseudomonas aeruginosa* but not in
117 the absence of the pathogen.

118 There is also *genetic* evidence for the sex-specific or sexually antagonistic nature of immunity.
119 In a meta-analysis of 31 immunity-related traits in humans, Gilks et al. (2014) found that 13
120 traits had a higher heritability in females while 3 had a higher heritability in males, suggesting
121 that the underlying loci were sex-dependent in their action. Genome-wide association studies
122 (GWAS) have also identified several human SNPs that have a sex-specific influence on disease
123 phenotypes (summarised in Gilks et al. (2014)). Hill-Burns and Clark (2009) reported in *D.*
124 *melanogaster* that there is considerable immunity-related variation on the X chromosome- a
125 hotspot for sexually antagonistic genetic variation (see below). They identified several SNPs that
126 influenced immunity in a sexually dimorphic or antagonistic manner.

127 Its role in investigating immunity (Hoffmann and Reichhart 2002), sexual conflicts (see above)
128 and life-history evolution (Prasad and Joshi 2003) makes *D. melanogaster* an ideal model
129 organism to investigate the link between IaSc and immunity. In the present study, we used *D.*
130 *melanogaster* as a model system to investigate the contribution of the X chromosome to
131 immunity-related genetic variation and its role in adaptation to pathogenic challenge.

132 To that end, we used replicate laboratory populations of *D. melanogaster* selected against
133 systemic infection by *Pseudomonas entomophila* and their respective controls. Both males and
134 females from the selected populations have previously been shown to have evolved higher

135 survivorship post infection relative to their counterparts from the control populations (Gupta
136 2016; Gupta et al. 2016)

137 We employed two complementary experimental approaches. First, we performed a set of
138 interpopulation crosses, a tool previously employed to investigate the evolutionary genetics of
139 desiccation resistance (Hoffmann and Parsons 1989), urea tolerance (Joshi et al. 1996), tolerance
140 to chronic juvenile malnutrition (Vijendravarma and Kawecki 2013, 2015). We set up reciprocal
141 crosses between selected populations and their respective control populations and we measured
142 the survivorship post-infection as a proxy for the immune response of the F1 progeny.

143 Second, using cytogenetic cloning (Gibson et al. 2002), we sampled a set of X chromosomes
144 from the selected and control populations and expressed them in males and females carrying the
145 rest of the genome from the ancestral baseline population. The immune response of these flies
146 was then assayed by measuring their survivorship post-infection.

147 **Methods:**

148 **I. Fly populations:** All fly populations detailed below are maintained on standard banana-
149 yeast-jaggery food unless specified otherwise.

150 **A. Experimental Evolution:**

151 **Ancestral population:** Blue Ridge Baselines (BRBs) are large outbred populations of *D. melanogaster*, maintained on a 14-day discrete generation cycle, 12:12 Light:Dark
152 regime, 25°C and 60-70% Relative Humidity. The populations have been described in
153 detail by Singh et al. (2015).

154 **Selection Regimes:** We used four replicate populations (I1-4) selected against
155 *Pseudomonas entomophila* strain L48 and their respective controls (S1-4) which have
156 been described in detail elsewhere (Gupta 2016; Gupta et al. 2016). To summarise the
157 selection regimes, for I populations, 2-3 day old adults are infected with *P. entomophila*,
158 while for the S populations they are subjected to a “sham-infection” treatment (see
159 below). In I populations, around 33% flies die over the next 96 hours. Eggs collected in
160 the next 18 hours start the next generation. Populations with a common subscript are
161 always handled on the same day and are related by ancestry (I1-4 and S1-4 populations
162 were derived from the respective BRB1-4 population). They are, therefore, treated as
163 statistical blocks. The I populations have been previously shown to have evolved a
164 superior immune response relative to the S populations (Gupta et al. 2016).

165 **B. Clone Generators (CG):** Clone generator females carry a compound X [C(1)DX^{yf}]
166 chromosome, Y chromosome, and a homozygous viable translocation of the two
167 autosomes [T(2;3) *rdgC st in rip^P bw^D*]. Males have an X [*sn su(b)*] chromosome, Y
168 chromosome and the same translocated autosomes. In this system, females inherit the
169 compound X chromosome from their mother and a Y chromosome from their father.
170 Males inherit the Y chromosome from their mother and the X chromosome from their

171

172 father. The system has been described in detail by Rice(1996). Clone generators are
173 maintained on standard cornmeal-yeast-molasses food.

174 **C. DxBRB:** The DxBRB population was created by introgressing the compound X
175 chromosome from Clone Generators into BRB₁. This population is maintained like BRB
176 populations.

177 **II. Protocol for infections/sham infections:** The infection protocol involved pricking
178 CO₂anaesthetised flies with a needle (Minutein pin 0.1 mm, Fine Science Tools, CA)
179 dipped in the bacterial suspension (prepared in sterile 10 mM MgSO₄). For sham
180 infections, the pricking protocol was similar, except we dipped the needle in a sterile 10
181 mM MgSO₄ solution.

182 This study involves two distinct assays, the Hybrid Experiment and the X-Cloning Experiment,
183 which were set up as follows:

184 **III. Hybrid Experiment design:** Experiments were carried out between 65 and 75
185 generations of selection. For each experiment, we first collected eggs from I and S flies
186 subjected to one generation of common rearing (to remove non-genetic parental effects).
187 Ten vials of 70 eggs each were set up per population. Adult males and females that
188 emerged from these vials were collected as virgins and were combined in Plexiglas cages
189 to set up the following crosses of 100 pairs each.

- 190 1. I ♀ × I ♂ (II)
- 191 2. S ♀ × S ♂ (SS)
- 192 3. I ♀ × S ♂ (IS)
- 193 4. S ♀ × I ♂ (SI)

194 In order to generate the F1 progeny to be used in our experiments, we collected 10 vials
195 each containing 70 eggs for every cross. On the 12th-day post egg collection, for every
196 cross, we set up three replicate cages, each containing 50 males and 50 females infected
197 with *P. entomophila* (OD₆₀₀=1.5). Additionally, for each cross, we also set up a cage
198 containing 50 male and 50 females that were sham-infected. We monitored mortality
199 over the next four days. Food plates in the cages were replaced with fresh ones two days
200 after the cages were set up.

201 **IV. X-Cloning Experiment:**

202 Cloning of the X chromosome: After 160 generations of selection, 30 X chromosomes
203 were randomly sampled from each I and S population, each used to create a single X
204 chromosome line.

205 In order to express the X chromosome from I and S populations in a neutral chromosomal
206 background, the following crosses were set up over 4 generations (See Figure S3 for a
207 detailed schematic):

- 208 1. I/S ♂ × CG ♀ → Progeny1_(Males) + other progeny
- 209 2. Progeny1 ♂ × DxBRB ♀ → Progeny2_(Brown-eyed Males) + other progeny

210 3. Progeny2♂ × DxBRB♀ → Progeny3_(Red-eyed Males)+ other progeny
211 4. Progeny3♂ × DxBRB♀ → Experimental flies_(Males)+ other progeny
212 Progeny3♂ × BRB₁♀ → Experimental flies_(Females)+ other progeny

213 Males from I and S populations were crossed to Clone Generator females. Males
214 resulting from this cross were crossed to virgin DxBRB females. The brown-eyed males
215 resulting from that cross were again crossed to virgin DxBRB females. In order to
216 generate male and female flies to be used in the survivorship assay, red-eyed males
217 resulting from the previous cross were crossed to virgin DxBRB and BRB females
218 respectively. The experimental flies carry the X chromosome from I or S populations, but
219 the rest of the genome is from BRB (other than the unmanipulated fourth chromosome.)
220 A single vial per X-line was maintained for all crosses. Egg densities were maintained
221 such that there were 70 viable eggs per vial. Crosses were set on the 12th-day post egg
222 collection.

223 Survivorship Assay: For the survivorship assay, 20 X-lines per population were
224 randomly selected. On the 11th-day post egg-collection (of the 4th cross), flies were sorted
225 into same sex vials (10 per vial). On the 12th day, flies were infected with *P. entomophila*
226 (OD₆₀₀=1) and transferred to fresh vials. 3 vials per X-line (8 flies per vial) were set up
227 for the infected treatment. We also set up one vial per X-line of sham controls. Mortality
228 was monitored over a 96-hour period. The surviving flies were transferred to fresh food
229 vials after 2 days.

230 We use survivorship post-infection as a read-out of immunity as I populations have previously
231 been shown to have evolved higher survivorships post infection relative to S populations during
232 the course of adapting to systemic infection by *P. entomophila* (Gupta et al. 2016). *P.*
233 *entomophila*, originally isolated from a wild *D. melanogaster* female, is a widely used model
234 pathogen for immunity studies on *D. melanogaster* (Dieppois et al. 2015). This makes
235 survivorship post infection by *P. entomophila* an ecologically relevant read-out of immunity.
236 Furthermore, it has been used as a proxy for immunity in other studies employing experimental
237 evolution of *D. melanogaster* immunity (Martins et al. 2013; Faria et al. 2015). In *D.*
238 *melanogaster*, survivorship post-infection is also fairly strongly correlated with other immune
239 read-outs such as the ability to restrict bacterial growth (measured using colony forming units or
240 CFUs) and expression of anti-microbial peptides (AMPs) (Schwenke and Lazzaro 2017).

241 **Statistical Analysis:**

242 In neither of our experiments was there any mortality in the sham control treatment. Therefore,
243 in subsequent analyses data for the sham treatment was excluded. All analyses were performed
244 on R (version 3.5.3).

245 **A) Hybrid Experiment:**

246 We performed three different analyses for this experiment.

247 First, for each combination of cross, sex, infector and block we calculated the proportion of flies
248 alive at the end of the 96-hour observation window. Using this proportion as the unit of analysis
249 we fit the following linear mixed effects model using the R packages “lme4” and “lmerTest”:

250 Proportion Survivorship ~ Cross + Sex + Cross:Sex + (1 | Block) + (1 | Sex:Block) + (1 |
251 Cross:Block) + (1|Infector).

252 Post-hoc comparisons using Tukey’s HSD were implemented with the R package “emmeans”.

253 Second, we used the R package “coxme” and fit the following Cox’s proportional hazards
254 model:

255 Time to death ~ Cross + Sex + Cross:Sex + (1 | Block/Sex/Cross) + (1 | Infector)

256 Third, we used the R package lme4 to fit the following model using logistic regression on the
257 status (dead or alive) of each individual fly at the end of the 96-hour observation window.

258 Status ~ Cross + Sex + Cross:Sex + (1 | Infector) + (1 | Block)

259 Our results (Table S1, Figure 1) suggested that differences in the two sexes were primarily
260 driven by differences between the two sexes within the hybrid crosses (IS and SI) but not within
261 the parental crosses (II and SS). Therefore, in order to investigate the possibility of sex-specific
262 dominance, we also calculated an estimate for the dominance coefficient for proportion
263 survivorship for both sexes. Since neither of our analyses could distinguish between IS and SI
264 (see results), we used the average proportion survivorship of IS and SI of the ‘n’th Block as the
265 average “heterozygote” proportion survivorship for that block. We used the following expression
266 to calculate the dominance coefficient:

267
$$D = \frac{0.5 \times (P_{IS} + P_{SI}) - P_{SS}}{(P_{II} - P_{SS})}$$

268 where “ P_{AB} ” stands for proportion survivorship of the cross “AB”. (Ewens 2004, adapted from
269 fitness scheme 1.25b, Section 1.4)

270 To test for additivity, we performed separate t tests for males and females.

271 B) X-cloning Experiment:

272 We performed four different analyses for this data.

273 We calculated proportion survivorship at the end of the 96-hour observation window for each
274 combination of block, selection regime, sex and X chromosome line. For this purpose, we pooled
275 the data from the three vials for each X chromosome line. We then fit the following linear
276 mixed-effects model using the R package lme4:

277 Y ~ SelectionRegime + Sex + SelectionRegime:Sex + (1 | Block) + (1 | X-
278 line:SelectionRegime:Block)

279 We calculated the median time to death for each vial and fit the following linear mixed-effects
280 model using lme4:

281 $Y \sim \text{SelectionRegime} + \text{Sex} + \text{SelectionRegime:Sex} + (1 | \text{Infector}) + (1 | \text{Block}) + (1 | \text{X-})$
282 $\text{line:SelectionRegime:Block})$

283 We fit the following logistic regression on the status (dead or alive) of each fly at the end of the
284 96-hour observation window:

285 $\text{Status} \sim \text{Selection Regime} + \text{Sex} + \text{SelectionRegime:Sex} + (1 | \text{Infector}) + (1 | \text{Block}) + (1 | \text{X-})$
286 $\text{line:Block:SelectionRegime})$

287 We fit the following cox's proportional hazards model:

288 $\text{Time to Death} \sim \text{SelectionRegime} + \text{Sex} + \text{SelectionRegime:Sex} + (1 |$
289 $\text{Block/SelectionRegime/Xline}) + (1 | \text{Infector})$

290 We also fit the following cox's proportional hazards model separately for each block:

291 $\text{Time to Death} \sim \text{SelectionRegime} + \text{Sex} + \text{SelectionRegime:Sex} + (1 | \text{Infector}) + (1 | \text{X-})$
292 $\text{line/SelectionRegime})$

293 Additionally, we calculated the average median time to death and proportion survivorship for
294 each X-line in both the sexes. For these two read-outs of immunity, we calculated the correlation
295 between male and female immunity, separately for each combination of selection regime and
296 block.

297 **Results:**

298 A) Hybrid Experiment:

299 In our linear mixed-effects model, we found a significant effect of Sex, Cross as well as their
300 interaction (Table 1A). The effect of Sex was primarily, if not entirely, a result of the differences
301 between the two sexes within the hybrid crosses. A post-hoc Tukey's HSD suggested that in the
302 case of II and SS the two sexes were not significantly different, but in the two hybrid crosses,
303 males fared significantly worse than females (Table S1). Furthermore, in both sexes, the II cross
304 had the highest survivorship, followed by IS and SI, which were not significantly different from
305 each other. SS had the worst survivorship (Figure 1, Figure S1).

306 The results of our Cox's proportional hazards model and logistic regression were qualitatively
307 similar (Table 1B, C). Both analyses suggested that the two hybrid crosses were similar to each
308 other but worse than the II cross. The SS cross had the worst survivorship. Overall, females had
309 higher survivorship compared to males. In both analyses the coefficients associated with
310 CrossIS:SexMale and CrossSI:SexMale were significantly different from 0, suggesting that the
311 pattern of sex differences in these crosses was different from the pattern of sex differences in the

312 II cross. At the same time the coefficient associated with CrossSS:SexMale was not significantly
313 different from 0 suggesting that the pattern of sex differences in the SS cross was similar to the II
314 cross. This clearly suggests that the significant effect of Sex was mainly a result of sex
315 differences within the two hybrid crosses, SI and IS (Figure 1).

316 The dominance coefficient for females (mean = 0.6459, standard deviation = 0.0298) was
317 significantly greater than 0.5 (p = 0.0019), while the same for males (mean = 0.3526, standard
318 deviation = 0.0747) was significantly less than 0.5 (p = 0.0271).

319 B) X-Cloning Experiment:

320 In our logistic regression and the linear mixed effects model for proportion survivorship, we
321 found a significant effect of sex, with males having marginally higher survivorships than
322 females, while there was no effect of selection regime or its interaction with sex (Table 2A,C,
323 Figure S2A). The linear mixed effects model for median time to death failed to detect any effect
324 of selection regime, sex or their interaction (Table 2B, Figure S2B).

325 Neither of our linear mixed effects models (proportion survivorship or median time to death)
326 could detect an effect of the X chromosome line.

327 In our Cox's proportional hazards model that incorporates block as a random factor (Table 2D,
328 Figure 2), we did not detect a significant effect of selection regime, sex or their interaction.

329 For our separate blockwise Cox's proportional hazards models we could not detect an effect of
330 selection regime, sex or their interaction in three of the four blocks (Table S3, Figure 2). In
331 Block 3, we found a significant effect of selection regime, sex and their interaction. Females
332 carrying X chromosomes from the I3 population had a slightly higher survivorship than females
333 carrying X chromosomes from the S3 population, while males carrying S3 X chromosomes had
334 marginally higher survivorship than males carrying I3 X chromosomes. However, as is apparent
335 in Figure 1, the magnitude of these differences was fairly small.

336 In seven of the eight selection regime × block combinations we did not detect a significant
337 correlation between male and female proportion survivorship or median time to death using
338 Spearman's rank correlation or the linear model (Table S2A,B). In I2 we find a significant but
339 weak ($R^2=0.353$) correlation between male and female proportion survivorship in the linear
340 model (Table S2B).

341

342 **Discussion:**

343 We set up crosses between replicate populations of *Drosophila melanogaster* selected against
344 infection by *Pseudomonas entomophila* with their respective controls. Subsequently, we
345 measured the immune response of the F1 progeny. We also isolated X chromosomes from the

346 selected and control populations and measured their contribution to the immune response of flies
347 carrying common ancestral autosomes. Here, we discuss two key findings of our experiment.

348 **1. Sex-specific dominance:** A rather unexpected finding of our study was that the alleles that
349 conferred improved immunity to I males and females had different dominance coefficients in the
350 two sexes. The survivorship of males was much worse than females in the two hybrid crosses (IS
351 and SI) but not so in the two parental crosses (Figure 1). Furthermore, our analysis of dominance
352 coefficients indicated that the “better-immunity” alleles on average were partially dominant in
353 females (dominance coefficient = 0.6471), but partially recessive in males (dominance
354 coefficient= 0.3541). To the best of our knowledge, this is the first report of sex-specific
355 dominance in the case of any immunity-related trait.

356 We believe that sex-specific dominance in immunity in our populations is a signature of sexual
357 antagonism historically experienced by the wild ancestors of our populations.

358 The link between sexual antagonism and sex-specific dominance has only recently begun to be
359 investigated. Using a two-locus model, Spencer and Priest (2016) showed that a modifier allele
360 that modulates the dominance coefficient of a sexually antagonistic locus in a sex-specific
361 manner can indeed invade a population, leading to the evolution of sex-specific dominance
362 coefficients. Empirical evidence for this idea is sparse. But Barson et al. (2015) were able to
363 identify a locus in salmon which exhibits sex-specific dominance for age at maturity, a trait
364 under sexually antagonistic selection. Grieshop and Arnqvist (2018) used a diallel cross design
365 on isogenic lines from a population of *Callosobruchus maculatus* and found strong evidence for
366 sex-specific dominance for sexually antagonistic polymorphisms.

367 We speculate that sex-specific dominance for immunity-related loci in our *Drosophila*
368 populations could be a result of a similar process. It is very unlikely that modifiers bringing
369 about sex-specific dominance would spread over the course of the duration of our laboratory
370 selection experiment (<100 generations). We speculate that in the wild ancestors of our
371 laboratory populations, the alleles that conferred a superior immune response were favoured in
372 females, while alleles that conferred a poorer immune response were favoured in males through
373 their pleiotropic action on male fitness in other contexts (e.g. reproduction). Given the Bateman
374 Principle, this is not an unrealistic assumption and has been invoked quite often (Rolff 2002;
375 McKean and Nunney 2005). In fact, studies have shown that I males tend to have a poorer
376 mating success when directly competing with S males (Venkatesan 2015) . We believe that this
377 antagonistic selection resulted in the evolution of sex-specific dominance for immunity-related
378 alleles such that female-beneficial alleles (also the “better immunity” alleles) evolved to become
379 more dominant in females, but less dominant in males. During the course of our study, these
380 alleles that conferred superior immunity in both sexes, but were more dominant in females than
381 in males, increased in frequency in the I population as a result of strong selection on
382 immunocompetence.

383 Our results are important in the context of sex differences in immunity. As a result of sex-
384 specific dominance, sex differences in immunity at a population level could arise solely through
385 the difference in immunocompetence of the heterozygote genotype expressed in the two sexes.
386 This, of course, would require the maintenance of heterozygotes at sufficiently high frequencies,
387 through processes such as trade-offs between male immunocompetence and reproductive output.

388 2. No evidence of an effect of X chromosome: X chromosomes have also been predicted to be
389 hotspots of sexually antagonistic fitness variation (Rice 1984). *D. melanogaster* X chromosomes
390 harbour 45% of the total fitness variation and 97% of the total sexually antagonistic fitness
391 variation (Gibson et al. 2002). Given the considerable evidence for immunity-related sexual
392 antagonism in *D. melanogaster*, we expected the improvement in the immune response of the I
393 populations to be a result of, largely, evolution of X-linked immunity-related loci. Differences in
394 the X chromosomes from I and S populations could also arise as a consequence of the “Faster X
395 Effect” (Hartl 1972; Charlesworth et al. 1987) which posits that adaptive evolution should,
396 typically, occur faster on the X chromosomes relative to autosomes.

397 But contrary to our expectation, male progeny from the two hybrid crosses (IS and SI) had
398 indistinguishable survivorships post infection suggesting that the X chromosomes from I and S
399 populations were similar in their immune performance, at least in males. One drawback of this
400 design, however, is that it does not take into account the Y chromosome. Apart from possessing
401 X chromosomes from different selection regimes, IS and SI males also inherit Y chromosomes
402 belonging to different selection regimes. While Y chromosomes are generally thought to be
403 depauperate in genes, Kutch and Fedorka (2017) reported the presence of Y-linked variation that
404 regulates autosomal immune function genes in *D. melanogaster*. Therefore, the Y chromosome
405 could potentially confound our conclusion. Our findings from the X-cloning experiment,
406 however, rule out this possibility. In neither of our analyses could we distinguish between X
407 chromosomes from the I populations from X chromosomes from the S populations with respect
408 to their immune response. This clearly suggests that the improvement in the immunity of the I
409 populations did not involve loci located on the X chromosome. This apparent dearth of X-
410 linked immunity-related loci among the loci that have evolved in the I populations is significant
411 given that in *D. melanogaster* the X chromosome contains 20% of the total genome (Turelli and
412 Begun 1997).

413 In his model Rice (1984) assumed that the dominance coefficients were identical in the two
414 sexes. Fry (2010) showed that if one relaxes this assumption such that the male (female)
415 beneficial allele is at least partially dominant in males (females), autosomes are better than the X
416 chromosome in facilitating a sexually antagonistic polymorphism. In the light of our results
417 indicating sex-specific dominance, a lack of effect of the X chromosome in our experiments is
418 quite unsurprising. Our results are consistent with a series of recent studies using laboratory
419 populations of *D. melanogaster* that did not find unequivocal evidence in support of the idea that
420 the X-chromosome is a hotspot for sexually antagonistic genetic variation. Ruzicka et al. (2019)
421 used GWAS using hemiclonal analysis and could not detect significant X-linked sexual

422 antagonism. Abbott et al. (2020) restricted the evolution of the X-chromosome to males and
423 found an increase in male fitness but not a corresponding decrease in female fitness expected
424 under sexual antagonism. Lund-Hansen et al. (2020) carried out the reciprocal experiment by
425 restricting X-chromosome evolution to females resulting in the “feminization” of body-weight
426 and development time but not female reproductive fitness and locomotory activity, a trait
427 previously shown to be under IaSC (Long and Rice 2007)

428 Our results are in stark contrast to the findings of Hill-Burns and Clark (2009), who had reported
429 considerable immunity-related variation on the X chromosome. Our results indicate that
430 selection for improved immune response did not result in any evolution of the X chromosome.
431 At a more fundamental level, in our X-cloning experiment, we could not detect an effect of X-
432 line, suggesting that there is negligible amount of X-linked immunity-related genetic variation in
433 our populations. It must be noted, however, that Hill-Burns and Clark had used bacterial
434 clearance ability as a measure of immunity, which may not necessarily translate to improved
435 survival in the face of pathogenic infection.

436 Vincent and Sharp (2014) had found a negative genetic correlation between male and female
437 immune components. For X chromosomes derived from 3 selected and 4 control populations, we
438 failed to detect any such male-female correlations.

439 Conclusion: Ours is among the first studies to use experimental evolution to investigate the
440 genetic architecture of the *D. melanogaster* immune response. Our study throws light on two
441 important aspects of *D. melanogaster* immunity genetics. Firstly, very few immunity-related loci
442 that aid a population to adapt in the face of systemic pathogenic infection are located on the X
443 chromosome. Secondly, ours is the first study to report evidence of sex-specific dominance in the
444 immune response of *D. melanogaster*. Furthermore, we identify sex-specific dominance
445 coefficients as a potential mechanism of explaining sex differences in immunity.

446

447 **References**

448 Abbott, J. K., A. K. Chippindale, and E. H. Morrow. 2020. The microevolutionary response to
449 male-limited X-chromosome evolution in *Drosophila melanogaster* reflects
450 macroevolutionary patterns. *J. Evol. Biol.* jeb.13618.

451 Barson, N. J., T. Aykanat, K. Hindar, M. Baranski, G. H. Bolstad, P. Fiske, C. Jacq, A. J. Jensen,
452 S. E. Johnston, S. Karlsson, M. Kent, T. Moen, E. Niemelä, T. Nome, T. F. Næsje, P.
453 Orell, A. Romakkaniemi, H. Sægrov, K. Urdal, J. Erkinaro, S. Lien, and C. R. Primmer.

454 2015. Sex-dependent dominance at a single locus maintains variation in age at maturity in
455 salmon. *Nature*, doi: 10.1038/nature16062.

456 Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting Linear Mixed-Effects Models
457 Using lme4. *J. Stat. Softw.* 67:1–48.

458 Bonduriansky, R., and S. F. Chenoweth. 2009. Intralocus sexual conflict. *Trends Ecol. Evol.*
459 24:280–288.

460 Charlesworth, B., J. A. Coyne, and N. H. Barton. 1987. The Relative Rates of Evolution of Sex
461 Chromosomes and Autosomes. *Am. Nat.* 130:113–146.

462 Dieppois, G., O. Opota, J. Lalucat, and B. Lemaitre. 2015. *Pseudomonas entomophila: A*
463 *Versatile Bacterium with Entomopathogenic Properties*. Pp. 25–49 in J.-L. Ramos, J. B.
464 Goldberg, and A. Filloux, eds. *Pseudomonas*. Springer Netherlands, Dordrecht.

465 Ewens, W. J. 2004. *Mathematical Population Genetics: I. Theoretical Introduction*. Second
466 Edition. Springer New York, New York.

467 Faria, V. G., N. E. Martins, T. Paulo, L. Teixeira, É. Sucena, and S. Magalhães. 2015. Evolution
468 of *Drosophila* resistance against different pathogens and infection routes entails no
469 detectable maintenance costs: EVOLUTION OF RESISTANCE HAS NO
470 MAINTENANCE COSTS. *Evolution* 69:2799–2809.

471 Fedorka, K. M., and M. Zuk. 2005. Sexual conflict and female immune suppression in the
472 cricket, *Allonemobius socius*. *J. Evol. Biol.*, doi: 10.1111/j.1420-9101.2005.00942.x.

473 Fry, J. D. 2010. The genomic location of sexually antagonistic variation: Some cautionary
474 comments. *Evolution*, doi: 10.1111/j.1558-5646.2009.00898.x.

475 Gibson, J. R., A. K. Chippindale, and W. R. Rice. 2002. The X chromosome is a hot spot for
476 sexually antagonistic fitness variation. *Proc. R. Soc. B Biol. Sci.*, doi:
477 10.1098/rspb.2001.1863.

478 Gilks, W. P., J. K. Abbott, and E. H. Morrow. 2014. Sex differences in disease genetics:
479 Evidence, evolution, and detection.

480 Grieshop, K., and G. Arnqvist. 2018. Sex-specific dominance reversal of genetic variation for
481 fitness. *PLoS Biol.*, doi: 10.1371/journal.pbio.2006810.

482 Gupta, V. 2016. In Sickness and in Health: Exploring the evolution of immune reponse using
483 *Drosophila melanogaster*.

484 Gupta, V., Z. S. Ali, and N. G. Prasad. 2013. Sexual activity increases resistance against
485 *Pseudomonas entomophila* in male *Drosophila melanogaster*. *BMC Evol. Biol.*, doi:
486 10.1186/1471-2148-13-185.

487 Gupta, V., S. Venkatesan, M. Chatterjee, Z. A. Syed, V. Nivsarkar, and N. G. Prasad. 2016. No
488 apparent cost of evolved immune response in *Drosophila melanogaster*. *Evolution*, doi:
489 10.1111/evo.12896.

490 Hartl, D. L. 1972. A Fundamental Theorem of Natural Selection for Sex Linkage or
491 Arrhenotoky. *Am. Nat.* 106:516–524.

492 Hill-Burns, E. M., and A. G. Clark. 2009. X-linked variation in immune response in *Drosophila*
493 *melanogaster*. *Genetics*, doi: 10.1534/genetics.108.093971.

494 Hoffmann, A. A., and P. A. Parsons. 1989. Selection for increased desiccation resistance in
495 *Drosophila melanogaster*: additive genetic control and correlated responses for other
496 stresses. *Genetics*.

497 Hoffmann, J. A., and J.-M. Reichhart. 2002. *Drosophila* innate immunity: an evolutionary
498 perspective. *Nat. Immunol.* 3:121–126.

499 Imroze, K., and N. G. Prasad. 2011. Sex-specific effect of bacterial infection on components of
500 adult fitness in *Drosophila melanogaster*. *J. Evol. Res.*

501 Joshi, A., C. D. Knight, and L. D. Mueller. 1996. Genetics of larval urea tolerance in *Drosophila*
502 *melanogaster*. *Heredity*, doi: 10.1038/hdy.1996.105.

503 Karter, A. J., and I. Folstad. 1992. Parasites, Bright Males, and the Immunocompetence
504 Handicap. *Am. Nat.*

505 Kelly, C. D., and M. D. Jennions. 2009. Sexually dimorphic immune response in the harem
506 polygynous Wellington tree weta *Hemideina crassidens*. *Physiol. Entomol.*, doi:
507 10.1111/j.1365-3032.2009.00671.x.

508 Kelly, C. D., A. M. Stoehr, C. Nunn, K. N. Smyth, and Z. M. Prokop. 2018. Sexual dimorphism
509 in immunity across animals: a meta-analysis.

510 Kutch, I. C., and K. M. Fedorka. 2017. A test for Y-linked additive and epistatic effects on
511 surviving bacterial infections in *Drosophila melanogaster*. *J. Evol. Biol.* 30:1400–1408.

512 Kuznetsova, A., P. B. Brockhoff, and R. H. B. Christensen. 2017. *lmerTest* Package: Tests in
513 Linear Mixed Effects Models. *J. Stat. Softw.* 82:1–26.

514 Lenth, R. 2020. *emmeans*: Estimated Marginal Means, aka Least-Squares Means.

515 Long, T. A. F., and W. R. Rice. 2007. Adult locomotory activity mediates intralocus sexual
516 conflict in a laboratory-adapted population of *Drosophila melanogaster*. *Proc. R. Soc. B*
517 *Biol. Sci.* 274:3105–3112.

518 Lund-Hansen, K. K., J. K. Abbott, and E. H. Morrow. 2020. Feminisation of complex traits in
519 *Drosophila melanogaster* via female-limited X chromosome evolution. *Evolution*
520 *evo*.14021.

521 Martins, N. E., V. G. Faria, L. Teixeira, S. Magalhães, and É. Sucena. 2013. Host Adaptation Is
522 Contingent upon the Infection Route Taken by Pathogens. *PLoS Pathog.* 9:e1003601.

523 McKean, K. A., and L. Nunney. 2005. Bateman's principle and immunity: phenotypically plastic
524 reproductive strategies predict changes in immunological sex differences. *Evol. Int. J.*
525 *Org. Evol.*

526 McKean, K. A., and L. Nunney. 2002. Increased sexual activity reduces male immune function
527 in *Drosophila melanogaster*. *Proc. Natl. Acad. Sci.*, doi: 10.1073/pnas.131216398.

528 Nunn, C. L., P. Lindenfors, E. R. Pursall, and J. Rolff. 2009. On sexual dimorphism in immune
529 function. *Philos. Trans. R. Soc. B Biol. Sci.*, doi: 10.1098/rstb.2008.0148.

530 Nystrand, M., and D. K. Dowling. 2014. Transgenerational interactions involving parental age
531 and *Drosophila melanogaster*. *Proc. R. Soc. B Biol. Sci.*

532 Poulin, R. 2002. Sexual Inequalities in Helminth Infections: A Cost of Being a Male? *Am. Nat.*,
533 doi: 10.1086/285851.

534 Prasad, N. G., and A. Joshi. 2003. What have two decades of laboratory life-history evolution
535 studies on *Drosophila melanogaster* taught us? *J. Genet.* 82:45–76.

536 R Core Team. 2018. R: A Language and Environment for Statistical Computing. R Foundation
537 for Statistical Computing, Vienna, Austria.

538 Rice, W. R. 1984. Sex Chromosomes and the Evolution of Sexual Dimorphism. *Evolution*, doi:
539 10.2307/2408385.

540 Rice, W. R. 1996. Sexually antagonistic male adaptation triggered by experimental arrest of
541 female evolution. *Nature* 381:232–234.

542 Rolff, J. 2002. Bateman's principle and immunity. *Proc. R. Soc. B Biol. Sci.*, doi:
543 10.1098/rspb.2002.1959.

544 Rolff, J., and M. T. Siva-Jothy. 2002. Copulation corrupts immunity: A mechanism for a cost of
545 mating in insects. *Proc. Natl. Acad. Sci.*, doi: 10.1073/pnas.152271999.

546 Roved, J., H. Westerdahl, and D. Hasselquist. 2017. Sex differences in immune responses:
547 Hormonal effects, antagonistic selection, and evolutionary consequences. *Horm. Behav.*
548 88:95–105.

549 Ruzicka, F., M. S. Hill, T. M. Pennell, I. Flis, F. C. Ingleby, R. Mott, K. Fowler, E. H. Morrow,
550 and M. Reuter. 2019. Genome-wide sexually antagonistic variants reveal long-standing
551 constraints on sexual dimorphism in fruit flies. *PLOS Biol.* 17:e3000244.

552 Schenkel, M. A., I. Pen, L. W. Beukeboom, and J. Billeter. 2018. Making sense of intralocus and
553 interlocus sexual conflict. *Ecol. Evol.*, doi: 10.1002/ece3.4629.

554 Schwenke, R. A., and B. P. Lazzaro. 2017. Juvenile Hormone Suppresses Resistance to Infection
555 in Mated Female *Drosophila melanogaster*. *Curr. Biol.* 27:596–601.

556 Schwenke, R. A., B. P. Lazzaro, and M. F. Wolfner. 2015. Reproduction–Immunity Trade-Offs
557 in Insects. *Annu. Rev. Entomol.*, doi: 10.1146/annurev-ento-010715-023924.

558 Sharp, N. P., and C. M. Vincent. 2015. The effect of parasites on sex differences in selection.
559 *Heredity*, doi: 10.1038/hdy.2014.110.

560 Sheldon, B. C., and S. Verhulst. 1996. Ecological immunology: Costly parasite defences and
561 trade-offs in evolutionary ecology.

562 Sheridan, L. A. D., R. Poulin, D. F. Ward, and M. Zuk. 2000. Sex differences in parasitic
563 infections among arthropod hosts: Is there a male bias? *Oikos*, doi: 10.1034/j.1600-
564 0706.2000.880211.x.

565 Short, S. M., and B. P. Lazzaro. 2010. Female and male genetic contributions to post-mating
566 immune defence in female *Drosophila melanogaster*. *P. in Proceedings of the Royal
567 Society B: Biological Sciences.*

568 Singh, K., E. Kochar, and N. G. Prasad. 2015. Egg Viability, Mating Frequency and Male
569 Mating Ability Evolve in Populations of *Drosophila melanogaster* Selected for Resistance
570 to Cold Shock. PLOS ONE 10:e0129992.

571 Spencer, H. G., and N. K. Priest. 2016. The Evolution of Sex-Specific Dominance in Response
572 to Sexually Antagonistic Selection. Am. Nat., doi: 10.1086/685827.

573 Stoehr, A. M., and H. Kokko. 2006. Sexual dimorphism in immunocompetence: What does life-
574 history theory predict? Behav. Ecol., doi: 10.1093/beheco/ark018.

575 Svensson, E. I., A. G. McAdam, and B. Sinervo. 2009. Intralocus sexual conflict over immune
576 defense, gender load, and sex-specific signaling in a natural lizard population. Evolution,
577 doi: 10.1111/j.1558-5646.2009.00782.x.

578 Syed, Z. A., V. Gupta, M. G. Arun, A. Dhiman, B. Nandy, and N. G. Prasad. 2020. Absence of
579 reproduction-immunity trade-off in male *Drosophila melanogaster* evolving under
580 differential sexual selection. BMC Evol. Biol. 20:13.

581 Therneau, T. M. 2020. coxme: Mixed Effects Cox Models.

582 Turelli, M., and D. J. Begun. 1997. Haldane's rule and X-chromosome size in *Drosophila*.
583 Genetics.

584 Venkatesan, S. 2015. Evolution of reproductive behaviour in response to selection for increased
585 pathogen resistance in *Drosophila melanogaster*. Indian Institute of Science Education
586 and Research, Pune.

587 Vijendravarma, R. K., and T. J. Kawecki. 2013. Epistasis and maternal effects in experimental
588 adaptation to chronic nutritional stress in *Drosophila*. J. Evol. Biol., doi:
589 10.1111/jeb.12248.

590 Vijendravarma, R. K., and T. J. Kawecki. 2015. Idiosyncratic evolution of maternal effects in
591 response to juvenile malnutrition in *Drosophila*. J. Evol. Biol., doi: 10.1111/jeb.12611.

592 Vincent, C. M., and N. P. Sharp. 2014. Sexual antagonism for resistance and tolerance to
 593 infection in *Drosophila melanogaster*. Proc. R. Soc. B Biol. Sci., doi:
 594 10.1098/rspb.2014.0987.

595 Yu, D., W. Qiu, Z. Zhang, K. Glass, J. Su, D. L. DeMeo, K. Tantisira, and S. T. Weiss. 2019.
 596 corTest: Robust Tests for Equal Correlation.

597 Zuk, M., and K. A. McKean. 1996. Sex differences in parasite infections: Patterns and processes.

Table 1. Summary of Hybrid Experiment results. A) Linear mixed effects model of proportion survivorship, B) Cox Proportional Hazards model of survivorship post-infection, C) Logistic Regression

A) Proportion Survivorship						
	Sum Sq	Mean Sq	NumDF	DenDF	F value	p value
Cross	2.6139	0.8713	3	80	67.851 14.640	<0.0001
Sex	0.1880	0.1880	1	3	6	0.0314
Cross:Sex	0.1170	0.0390	3	80	3.0358	0.0339
	npar	logLik	AIC	LRT	Df	p value
<none>	13	49.098	-72.196			
(1 Block)	12	47.932	-71.865	2.3313	1	0.1268
(1 Sex:Block)	12	48.82	-73.639	0.5570	1	0.4555
(1 Cross:Block)	12	49.098	-74.196	0.0000 30.863	1	1.0000
(1 Infector)	12	33.666	-43.332	9	1	<0.0001

B) Cox Proportional Hazards				
Fixed coefficients	coef	se(coef)	z value	p value
CrossIS	0.8241	0.1209	6.82	<0.0001
CrossSI	0.7901	0.1213	6.51	<0.0001
CrossSS	1.7038	0.1115	15.28	1
SexMale	0.4146	0.1508	2.75	0.0060
CrossIS:SexMale	0.3857	0.1583	2.44	0.0150
CrossSI:SexMale	0.3650	0.1587	2.3	0.0210
CrossSS:SexMale	-0.0073	0.1487	-0.05	0.9600
Random effects	Variance			

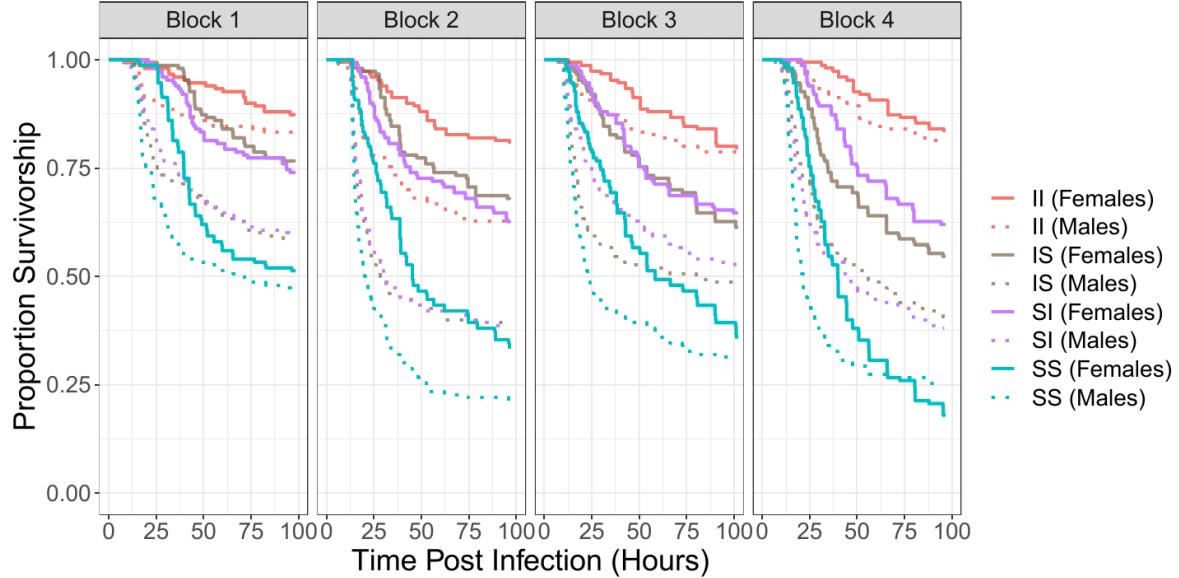
Infector	0.1843
Block/Sex/Cross	0.0004
Block/Sex	0.0115
Block	0.0951

C) Logistic Regression				
Fixed effects	Estimate	Std. Error	z value	p value
(Intercept)	1.6457	0.3217	5.116	<0.000
CrossIS	-0.9781	0.1408	-6.949	1
CrossSI	-0.947	0.141	-6.717	<0.000
CrossSS	-2.3164	0.1417	-16.35	1
SexMale	-0.3966	0.1473	-2.692	0.0071
CrossIS:SexMale	-0.4171	0.1914	-2.18	0.0293
CrossSI:SexMale	-0.4197	0.1915	-2.192	0.0284
CrossSS:SexMale	0.2285	0.1943	1.1760	0.2396
Random effects	Variance			
Block	0.1312			
Infector	0.1756			

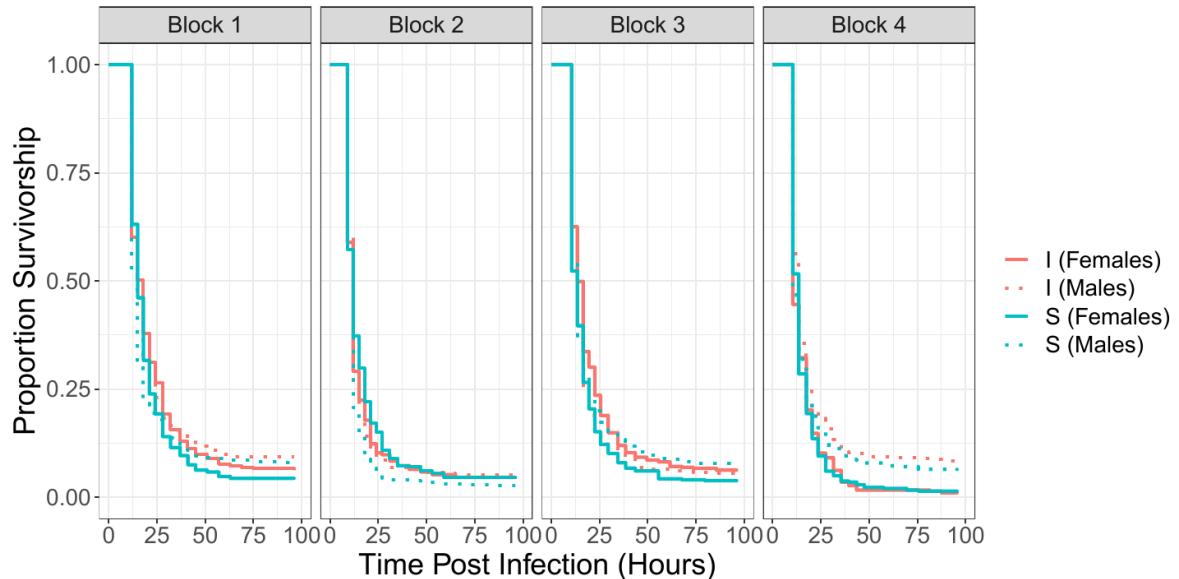
Table 2. Summary of X-Cloning Experiment results. A) Logistic Regression, Linear mixed effects model of B) median time to death and C) proportion survivorship, D) Cox Proportional Hazards model of survivorship post-infection

A) Logistic Regression				
Fixed Effects	Estimate	Std. Error	z value	p value
(Intercept)	-3.2541	0.2689	-12.1	<0.0001
SelectionS	-0.2443	0.1857	-1.315	0.1884
Sexmale	0.4386	0.1401	3.13	0.0018
SelectionS:Sexmale	0.1502	0.2069	0.726	0.4678
Random Effects	Variance			
Xline:Block:Selection	0.3050			
Block	0.0566			
Infector	0.1235			

B) Median Time to Death				
	Sum Sq	Mean Sq	NumDF	DenDF


Selection	439354	439354	1	156.13	1.6122	0.2061
Sex	11070	11070	1	801.11	0.0406	0.8403
Selection:Sex	387	387	1	801.11	0.0014	0.9699
	npar	logLik	AIC	LRT	Df	p value
<none>	8	-7360.8	14738			
(1 Infector)	7	-7374.8	14764	28.0106	1	<0.0001
(1 Block)	7	-7373.9	14762	26.2017	1	<0.0001
(1 Xline:Selection:Block)	7	-7360.9	14736	0.1795	1	0.6718

C) Proportion Survivorship


	Sum Sq	Mean Sq	NumDF	DenDF	F value	p value
Selection	0.0054	0.005367	1	155.07	1.4284	0.2338
Sex	0.0476	0.04758	1	158.01	12.6633	0.0005
Selection:Sex	0.0002	0.000159	1	158.01	0.0423	0.8374
	npar	logLik	AIC	LRT	Df	p value
<none>	7	422.33	-830.66			
(1 Xline:Block:Selection)	6	422.33	-832.66	0.0029	1	0.9572
(1 Block)	6	419.92	-827.84	4.8251	1	0.0281

D) Cox Proportional Hazards

Fixed Coefficients	coef	se(coef)	z value	p value
SelectionS	0.0583	0.0558	1.05	0.3000
Sexmale	0.0131	0.0342	0.38	0.7000
SelectionS:Sexmale	0.0293	0.0483	0.61	0.5400
Random effects	Variance			
Block/Selection/Xline	0.0777			
Block/Selection	<0.0001			
Block	0.0827			
Infector	0.0368			

Figure 1. Effect of the cross and sex on survivorship post-infection in the Hybrid Experiment. The curves show survival of the F₁ progeny as a function of time. The first letter indicates the maternal selection regime and the second, the paternal.

Figure 2. Effect of Selection Regime and sex on survivorship post-infection in the X-Cloning Experiment. The curves show survival as a function of time for I females (solid orange), I males (dashed orange), S females (solid blue) and S males (dashed blue). I and S flies carry the X

chromosome from the respective selection regime but share the rest of the genome, which comes from a neutral baseline population.