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ABSTRACT 

The ability to interrogate total RNA content of single cells would enable better mapping of the transcriptional 

logic behind emerging cell types and states. However, current RNA-seq methods are unable to 

simultaneously monitor both short and long, poly(A)+ and poly(A)- transcripts at the single-cell level, and 

thus deliver only a partial snapshot of the cellular RNAome. Here, we describe Smart-seq-total, a method 

capable of assaying a broad spectrum of coding and non-coding RNA from a single cell. Built upon the 

template-switch mechanism, Smart-seq-total bears the key feature of its predecessor, Smart-seq2, namely, 

the ability to capture full-length transcripts with high yield and quality. It also outperforms current poly(A)–

independent total RNA-seq protocols by capturing transcripts of a broad size range, thus, allowing us to 
simultaneously analyze protein-coding, long non-coding, microRNA and other non-coding RNA transcripts 

from single cells. We used Smart-seq-total to analyze the total RNAome of human primary fibroblasts, 

HEK293T and MCF7 cells as well as that of induced murine embryonic stem cells differentiated into 

embryoid bodies. We show that simultaneous measurement of non-coding RNA and mRNA from the same 

cell enables elucidation of new roles of non-coding RNA throughout essential processes such as cell cycle 

or lineage commitment. Moreover, we show that cell types can be distinguished based on the abundance 

of non-coding transcripts alone.  

 
MAIN 
Efforts in characterizing transcriptional states of single cells have so far mostly focused on protein-coding 
RNA1–4. However, a growing number of studies indicate that non-coding RNAs (ncRNAs), are actively 

involved in cell function and specialization5–8. Importantly, compared to the coding RNA, which is transcribed 

from only ~1-2% of the genome, the non-coding RNA constitutes a major fraction of all cellular transcripts 

and covers ~70% of the genomic content9. The role of these transcripts in shaping different cell types and 

states remains poorly understood. 
 
Several groups have demonstrated the possibility of measuring the levels of ncRNA in single cells10,11. The 

respective methods, however, are designed to target only a subset of non-coding transcripts, which are 
either short (~18-200 nt, e.g. microRNA)11,12 or long (>200 nt, e.g. lncRNA or circRNA)10,13–15, while none of 

them offer a simultaneous assessment of all RNA types within a cell. This limits one’s ability to map the 

regulatory connection between coding, and different types of non-coding transcripts within a cell and calls 

for the development of novel single-cell technologies capable of assaying both poly(A)+ and poly(A)− RNA, 

irrespective of transcript length. 
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In the present study we describe Smart-seq-total, a scalable method designed to capture both coding 

and non-coding transcripts regardless of their length. Inspired by the widely used Smart-seq2 protocol16, 

this method harnesses template switching capability of MMLV reverse transcriptase to generate full-length 

cDNA with high yield and quality. In addition, Smart-seq-total is designed to capture non-polyadenylated 

RNA through template-independent addition of polyA tails and further oligo-dT priming of all cellular 

transcripts. Therefore, Smart-seq-total simultaneously measures cellular levels of mRNA alongside other 

RNA types in the same cell, which permits the discovery of non-coding regulatory patterns of a cell and at 

the same time facilitates the integration of this data with the existent single cell RNA-seq datasets. 

Smart-seq-total relies on the ability of E.coli poly(A) polymerase to add adenine tails to the 3’ prime of RNA 

molecules. Total polyadenylated RNA is then reverse transcribed using anchored oligo dT, in the presence 

of the template switch oligo (TSO)17 (Fig. 1a). Compared to previous studies that explored similar 

approaches to construct libraries from total RNAs18,19, Smart-seq-total utilizes an optimized version of the 

(TSO16), specifically engineered to be rapidly eliminated from the reaction directly following the reverse 

transcription. This allows us to remove the “contaminant” constructs, originating from polyA-tailing and 

mispriming of TSO, which otherwise dominate the resulting sequencing library and render the short RNA 

transcripts undetectable (see Supplementary Fig. 1a-b). Additionally, we employ a CRISPR-mediated 

removal of overrepresented sequences, which allows us to eliminate the majority of the sequences 

corresponding to ribosomal RNA from the final library in a single-pool reaction (targeting 69 rRNA regions; 

see Supplementary table 1). Applied to single HEK293T cells Smart-seq-total identified, alongside mRNA, 

a broad spectrum of non-coding RNA genes, such as snoRNA, scaRNA, histone RNA and lncRNA. The 

majority of these molecules endogenously lack poly(A) tails and thus cannot be captured through a direct 

polyA-priming employed by Smart-seq2 or other popular scRNA-seq methods1 (Fig. 1b; see 

Supplementary Fig. 1c). Among other ncRNA, detected uniquely by Smart-seq-total are tRNAs and mature 

miRNAs (Fig. 1c; see Supplementary Fig. 1d). 

To assess the scalability of the method, we sequenced total RNA from individual human primary dermal 

fibroblasts (n=277), HEK293T (n=245) and MCF7 (n=90) cells sorted in 384-well plates and processed in 

1/10 of the standard Smart-seq2 volume16. Within all three cell types we identified a broad spectrum of 

transcripts such as mRNA, miRNA, lncRNA, and snoRNA in each profiled cell (Fig. 1d; see Supplementary 

Fig. 2a-c). We found metazoan cytoplasmic RNA7SK and RN7SL1, annotated as ‘miscellaneous RNA’ type 

(miscRNA) in GENCODE database, to be the most abundant in our data comprising together ~40 % of all 

mapped reads (Fig. 1d; see Supplementary Fig. 3). Among cell-type specific transcripts we found well-

characterized marker genes for either fibroblasts (COL1A2, FN1, MEG3), HEK293T (CKB, AMOT, HEY1) 

or MCF7 cells (KRT8, TFF1) (Fig. 1e; see Supplementary Fig. 4a) as well as transcripts which belong to 

various types of ncRNA, such as microRNA, snoRNA and lncRNA (Fig. 1e; see Supplementary Fig. 4). 

For example, we found high levels of MIR222 in fibroblasts while could not detect it in MCF7 cells. We also 

observed that oncogenic miRNA cluster MIR17HG is specific to HEK293T cells, while not found in neither 

fibroblasts nor MCF7 cells. In contrast, MCF7-specific transcripts include lncRNA, such as LINC00052, as 

well as snoRNA, such as SNORD71 and SNORD104. 
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Given the observed differences in the levels of non-coding RNA across profiled cells, we next asked whether 

non-coding RNA alone could be used to distinguish cell types. To answer this question, we performed 

principal component analysis (PCA) followed by the dimensionality reduction on the genes corresponding 

to one or multiple ncRNA types. Evaluation of the similarity between cells in two-dimensional space revealed 

that, taken alone, lncRNA, and miRNA separate the investigated cell types into three distinct clusters, while 

combining snoRNA, scaRNA, snRNA and tRNA together allowed us to achieve similar results (Fig. 1f). 

In addition to cell-type dependent differences in ncRNA, the abundance of certain non-coding transcripts 

also changed throughout the cell cycle (Fig. 2a). In agreement with previous bulk studies, suggesting the 

involvement or miRNA in cell-cycle regulation20,21, we found that levels of a subset of miRNAs in a cell 

dynamically change through the cell cycle, peaking at either S, G2M or G1 phase (Fig. 2a). For example, 

our data showed that the levels of MIR16-2 in fibroblasts are high during the S phase and later gradually 

decrease during G2M and G1 phases (see Supplementary Fig. 5). The opposite holds true for MIR222, in 

both fibroblasts and HEK293T cells, which is upregulated during cell proliferation (G1) and decays during 

DNA replication (S) and cell division (G2M) phases (Fig. 2a; see Supplementary Fig. 6).  Among miRNAs 

upregulated during G2M phase we identified MIR27A, MIR103A2, and MIR877 (see Supplementary Fig. 

5-7). In addition to miRNA, a large number of lncRNA, snRNA, scaRNA snoRNA and miscRNA were also 

upregulated during the G2M phase (Fig. 2a, see Supplementary Fig. 5-7). Given the active role of these 

RNA types in splicing and ribosome biogenesis, we suggest that they are produced by the cell in response 

to a rapid demand for protein synthesis and cell growth during the G2M phase.    

To further link the observed non-coding RNA dynamics with the expression of well-characterized cell-cycle 

mRNA markers, we searched for co-regulated coding and non-coding genes throughout the cell cycle. We 

identified 24 clusters comprised of co-expressed coding and non-coding genes specific to either one or 

multiple cell types (Fig. 2b, see Supplementary Fig. 8, Supplementary Table 2).  Two of these mixed-

gene clusters (33 genes upregulated in the S phase and 53 genes upregulated in the G2M phase) showed 

identical patterns in all three profiled cell types. Interestingly, both clusters are marked by landmark cell-

cycle genes, such as CCNA2, MCM6 and TOP2A, but also include miRNAs, lncRNAs and snRNAs 

previously unknown to follow a distinct expression pattern upon transition between phases.  

Histone RNA is another type of mainly non-polyadenylated RNA which we observed to be strongly 

correlated with the cell cycle. Consistent with prior studies22,23, histone RNA levels sharply rise during the S 

phase in all three profiled cell types (Fig. 2c). The ability to capture non-polyadenylated histones also has 

a strong impact on cell clustering, by introducing a cell cycle bias. Particularly, histones drive the separation 

of each cell type into two distinct populations (see Supplementary Fig. 9a), marked by increased levels of 

the majority of histone genes during the DNA replication phase (see Supplementary Fig. 9b).  

In addition to being expressed in a cell cycle-dependent manner, we also identified several histones to be 

cell type specific. For example, HIST1H4L is expressed in fibroblasts but absent in HEK293T and MCF7 

cells, while HIST1H1B, is absent in HEK293T cells while present in the other two cell types (Fig. 2d). Given 

the importance of histones in establishing and maintaining a distinct chromatin landscape of a cell, we 
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anticipate that the ability to measure corresponding transcripts could be valuable for predicting the 

epigenetic state of a cell.  

Finally, we sought to understand whether the unique non-coding signature acquired by different cell types 

is established during early stages of cell development and if so, how dynamic it is with respect to cellular 

transcriptome. To address this question we referred to an in vitro model of early lineage commitment: the 

differentiation of pluripotent stem cells into embryoid bodies24. The role of ncRNA in maintaining stem cell 

pluripotency and lineage commitment has been demonstrated previously through bulk experiments25,26. 

Thus, we hypothesized that applying Smart-seq-total to single cells at different stages of embryoid body 

formation would allow us to identify co-expressed coding and non-coding transcripts within emerging 

lineages. As such, we analyzed the RNAome of primed pluripotent stem cells and that of individual cells 

obtained from dissociated embryoid bodies at days 4, 8 and 12 of culture (Fig. 3a). We found that the 

fraction of mRNA with respect to all other analyzed transcripts was higher in pluripotent compared to 

differentiated cells (65% vs 50-54%) (Fig. 3a). Consistent with previous studies27, the number of coding 

genes expressed by pluripotent stem cells was also higher compared to differentiated progenitors (see 

Supplementary Fig. 10a). This was also the case for several non-coding RNA types, such as lncRNA, 

miRNA and scaRNA (see Supplementary Fig. 10b). Specifically, we observed that the levels of certain 

snoRNAs (such as Snord17, Snora23, Snord87), scaRNAs (such as Scarna13 and Scarna6), lncRNAs 

(Platr3, Lncenc1, Snhg9, Gm31659, etc.) and miRNAs (Mir92-2, Mir302b, Mir19b-2) go down after cells exit 

pluripotency (Fig. 3b). In contrast, we also identified that the levels of several lncRNAs (Tug1, Meg3, Lockd) 

and miRNAs (Mir298, Mir351, Mir370) increase with differentiation (Fig. 3b).  

Louvain clustering of all collected cells revealed the presence of six molecularly distinct populations which 

we assigned to: primed mESC, pre-Ectoderm, Ectoderm, Endoderm, Ectomesoderm and Mesoderm (Fig. 

3c), based on the expression of known lineage-specific marker genes (e.g. Nanog and Pou5f1 for pluripotent 

cells, Pax6 and Olfr787 for ectoderm, Afp and Shh for endoderm, Acta2 and Col3a1 for mesoderm28) (Fig. 

3d, see Supplementary Fig. 11). The analysis of genes differentially expressed between primed mESCs 

and each of the identified clusters showed that in addition to well-characterized lineage-specific mRNAs 

(see Supplementary Fig. 12a)29,30 and lncRNAs (Tug1 in ectodermal and Meg3 mesodermal lineages 

respectively)6, other ncRNA genes such as miRNAs, scaRNAs, snoRNAs, tRNAs and histone RNAs are 

either specifically expressed or downregulated within a certain lineage (Fig. 3e).   

 

We next used PAGA31 to infer a developmental trajectory and compute pseudotime coordinates for each 

cell in our dataset (see Methods) (Fig. 3f-g). Aligning cells in pseudotime within each lineage further 

confirmed the existence of expression gradient within different RNA types (Fig. 3h). Furthermore, we found 

that the majority of identified variable non-coding transcripts were germ-layer specific. Examples of such 

transcripts include Mir2137, Mir320, Gm49024 and Gm38708 in ectoderm, Mir351, Mir370 and Meg3 in 

mesoderm as well as Neat1 in endoderm. Mir296 and Mir298 were expressed in both mesoderm and 

endoderm but were absent in ectoderm (Fig. 3i, see Supplementary Fig. 13). 

 

Finally, to understand the relationship between mRNA and non-coding RNA genes we performed a pairwise 

correlation analysis of gene expression across all sampled cells. We found that the expression of ~ 50% of 
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identified histone-coding genes correlated with the expression of other protein-coding genes (Spearman rho 

> 0.5) (Fig. 3j). In addition, we found that multiple ncRNAs from all assayed RNA types (e.g. miRNA, 

snoRNA, snRNA, etc.) are positively correlated with the expression of protein-coding genes. Most of these 

ncRNAs represent putative uncharacterized regulators of lineage commitment. 

 

Altogether, Smart-seq-total enables an unbiased exploration of a broad spectrum of coding and non-coding 

RNA transcripts in individual cells. Further improvements to Smart-seq-total can include incorporation of 

unique molecular identifiers, enhancement of ncRNA capture through sequence optimization or enzymatic 

5’prime cap addition32 as well as depletion of a wider range of overrepresented RNAs. We anticipate Smart-

seq-total to facilitate the identification of non-coding regulatory patterns and its functional role in regulating 

cellular functions and shaping cellular identity. This also means shifting the current protein-centered view of 

gene regulation towards comprehensive maps featuring both, protein and RNA regulators.  
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METHODS 
Cell culture  

HEK293T cells were cultured in complete DMEM high glucose medium (Gibco, ThermoFisher 11965092) 

supplemented with 5% Fetal Bovine Serum (ThermoFisher 16000044), 1mM Sodium Pyruvate 

(ThermoFisher 11360070) and 100 μg/mL Penicillin/Streptomycin (ThermoFisher 15070063). Human 

primary dermal fibroblasts were obtained from ATCC (ATCC® PCS-201-012™). Cells were cultured and 

passaged four times in Fibroblast Basal Medium (ATCC® PCS-201-030™) supplemented with 5ng/mL rh 

FGF β, 7.5mM L-glutamine, 50 ug/mL Ascorbic acid, 5ug/mL rh Insulin, and 1% Fetal Bovine Serum 

(Fibroblast Growth kit- low serum, ATCC® PCS-201-041™). MCF7 cells (ATCC® HTB22™) were cultured 

in complete DMEM high glucose medium (Gibco, ThermoFisher 11965092) supplemented with 10% Fetal 

Bovine Serum (ThermoFisher 16000044), 1mM Sodium Pyruvate (ThermoFisher 11360070) and 100 

μg/mL Penicillin/Streptomycin (ThermoFisher 15070063). Cells were collected 2-4h after passaging, 

dissociated using 0.25% Trypsin-EDTA (ThermoFisher 25200056) and sorted in either 96-well plates 

containing 3uL lysis buffer or 384-well plates containing 0.3 uL of lysis buffer in each well. 

mESCs were maintained and differentiated as described previously35,36. Briefly, mESCs were grown in 

serum-free 2i+LIF medium (complete medium: DMEM/F12 glutaMAX (Gibco, ThermoFisher  10565018) , 

1% N2 supplement (Gemini Bio), 2% B27 supplement (Gemini Bio), 0.05% BSA fraction V (ThermoFisher, 

15260037), 1% MEM-non-essential amino acids (ThermoFisher 11140050), and 110 μM 2-

mercaptoethanol (Pierce); supplemented with MEK inhibitor PD0325901 (0.8 μM), GSK3β inhibitor 

CHIR99021 (3.3 μM) and 10ng/mL mouse LIF (Gibco, PMC9484)) in tissue culture (TC) dishes pretreated 

with 7.5 μg/ml polyL-ornithine (Sigma) and 5 μg/ml laminin (BD). To induce spontaneous embryoid body 

formation cells were washed with PBS, dissociated with StemPro Accutase (Gibco, ThermoFisher 

A1110501), transferred to serum-rich medium (complete medium: DMEM/F12 glutaMAX (Gibco) , 1% N2 

supplement (Gemini Bio), 2% B27 supplement (Gemini Bio), 0.05% BSA fraction V, 1% MEM-non-essential 

amino acids, and 110 μM 2-mercaptoethanol; supplemented with 10% FBS (ThermoFisher 10439001)) and 

diluted to 10^6 cells/mL. Each 10 uL of cell suspension were plated as a hanging drop in 10 cm2 TC dishes 

(15-20 drops per dish). 10uL of fresh serum-rich media was added to each drop on the day 4 post seeding. 

Primed mESCs were collected 6h after seeding. Embryoid bodies were collected and dissociated at days 

4, 8 and 12 of culture.  

 

Cell sort 
Lysis plates were prepared by dispensing 0.3μL lysis buffer (4 U Recombinant RNase Inhibitor (RRI) 

(Takara Bio, 2313B), 0.12% TritonTM X-100 (Sigma, 93443-100ML), 1μM Smart-seq-total oligo-dT primer 

(5’-Biotin-CATAGTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGT30VN-3’;IDT) (see 

Supplementary Table 3 for a full list of oligos used in the present study) into 384-well hard-shell PCR 

plates (Bio-Rad HSP3901) using Mantis liquid handler (Formulatrix). 96-well lysis plates were prepared with 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.131060doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.02.131060
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 μl lysis buffer. All plates were sealed with AlumaSeal CS Films (Sigma-Aldrich Z722634), spun down and 

snap-frozen on dry ice.  

Cells were stained with calcein-AM and ethidium homodimer-1 (LIVE/DEAD® Viability/Cytotoxicity Kit, 

ThermoFisher L3224) and individual live cells were sorted in 384 well lysis plates using SONY sorter 

(SH800S) with 100um nozzle chip. Plates were spun down and stored at -80 degrees immediately after 

sorting.   

 

Generation of Smart-seq-total libraries 

To facilitate cell lysis and denaturation of the RNA, plates were incubated at 72 degrees for 3 min, and 

immediately placed on ice afterwards. Next, 0.2 uL of polyA tailing mix, containing 1.25U E.coli PolyA (NEB 

M0276S), 1.25X PolyA buffer (NEB), 1.25 mM ATPs (NEB) and 4U of RRI (Takara); were added to each 

samples. PolyA tailing was carried out for 15 minutes at 37 °C followed by 72 °C for 4 minutes. After polyA 

tailing plates were immediately placed on ice for 2-5 minutes. 1uL of reverse transcription mix, containing 

15U SuperScript II (ThermoFisher), 4U RRI (Takara), 1.5X First-Strand Buffer, 1.5 μM TSO (Exiqon, 5′-

biotin-UCGUCGGCAGCGUCAGUUGUAUCAACUCAGACAUrGrG+G-3′), 7.5 mM DTT, 1.5 M Betaine 

(Sigma, B0300-5VL), 10 mM MgCl2 (Sigma, M1028-10X1ML) and 1.5 mM dNTPs (ThermoFisher, 

18427013); was added to each well. Reverse transcription was carried out at 42 °C for 90 min, and 

terminated by heating at 85 °C for 5 min. Subsequently, 0.3 uL of TSO digestion buffer containing 1U Uracil-

DNA glycosylase (UDG, NEB M0280S) were added to each well. Plates were incubated for 30 minutes at 

37 °C. PCR preamplification was performed directly after TSO digestion by adding 3.2 μL of PCR mix to 

each well, bringing the reaction concentration to 1x KAPA HiFi MIX (Roche), 0.5 μM Forward PCR primer 

(5’- TCGTCGGCAGCGTCAGTTGTATCAACT-3’; IDT), 0.5 μM Reverse PCR primer (5’-

GTCTCGTGGGCTCGGAGATGTG-3’ ; IDT). PCR was cycled as follows: 1) 95 °C for 3 min, 2) 21 cycles 

of 98 °C for 20 s, 67 °C for 15 s and 72 °C for 6 min, and 3) 72 °C for 5 min. The amplified product was 

cleaned up using 1X ratio of AMPure beads on Bravo liquid handler platform (Agilent).  Concentrations of 

purified product were measured with a dye-fluorescence assay (Quant-iT PicoGreen dsDNA High 

Sensitivity kit; Thermo Fisher, Q33120) on a SpectraMax i3x microplate reader (Molecular Devices). 

Samples were then diluted to 0.2 ng/uL. To generate sequencing libraries, 1.5uL of diluted samples was 

amplified in a final volume of 5uL using 2X KAPA mix and 0.4 μl of 5 μM i5 indexing primer, 0.4 μl of 5 μM 

i7 indexing primer. PCR amplification was carried out using the following program: 1) 95 °C for 3 min, 2) 8 

cycles of 98 °C for 20 s, 65 °C for 15 s and 72 °C for 1 min, and 3) 72 °C for 5 min. 

 

Library pooling, ribosomal sequence digestion and sequencing 

After library preparation, wells of each library plate were pooled using a Mosquito liquid handler (TTP 

Labtech). Pooling was followed by a purification with 0.8x AMPure beads (Fisher, A63881). Ribosomal 
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reads were digested using DASH as described in 33. Briefly, 135 guides designed to target 45S rRNA 

sequence (Supplementary Table 1) were combined with tracer RNA and assembled with Cas9 protein in 

2:1 ratio. The assembled complexes were incubated with the sequencing library in 1X Cas9 buffer 

(Supplementary Table 1) for 1h at 37°C. Following rRNA sequence digestion Cas9 was inactivated through 

incubation with proteinase K for 15min at 50°C. Library was then purified twice, first using 1.2X and then 

0.8x AMPure beads:DNA ratio. Library quality was assessed using capillary electrophoresis on a Fragment 

Analyzer (AATI), and libraries were quantified by qPCR (Kapa Biosystems, KK4923) on a CFX96 Touch 

Real-Time PCR Detection System (Biorad). Plate pools were normalized to 2 nM and equal volumes from 

8 plates were mixed together to make the sequencing sample pool. A PhiX control library was spiked in at 

10% before sequencing. Libraries were sequenced on the NovaSeq 6000 Sequencing System (Illumina) 

using 1 × 75 or 1x100-bp single-end reads (using custom Read 1 sequencing primer :5’- 

TCGGCAGCGTCAGTTGTATCAACTCAGACATGGG-3’) and 2 × 12-bp index reads.  

Data processing 

Sequences from the NovaSeq were de-multiplexed using bcl2fastq version 2.19.0.316. Reads were 

trimmed from polyA tails using cutadapt v 1.18 with the following parameters: -m 18 -j 4 -a AAAAAAAAAA 

-a TTTTTTTTTT. Reads were then aligned to the human (GRCh38) or mouse (GRCm38) genomes using 

STAR v2.7.0d37 with the following parameters --outFilterMismatchNoverLmax 0.05 --outFilterMatchNmin 

18 --outFilterMatchNminOverLread 0 --outFilterScoreMinOverLread 0  --outMultimapperOrder Random. 

Reads mapping to multiple locations were assigned either to a location with the best mapping score or, 

in the case of equal multimapping score – to the genomic location randomly chosen as “primary”. 

Transcripts were counted using featureCounts v 1.6.1 38 with the following parameters -M –primary -s 1. 

GENCODE v32 and GENCODE M2339 annotations were used for human and mouse reads respectively. 

tRNA was quantified using high-confidence gene set obtained from GtRNA40. To account for multimappers 

“primary” alignment reported by STAR was counted. For miRNA and tRNA all reads mapping to arms 

or the stem loop were summed to quantify the expression at the gene level.  

Comparison of Smart-seq2 and Smart-seq-total  
HEK293T cells were sorted in 96-well plates containing 3uL of lysis buffer (as described above). The 

reaction volumes for Smart-seq-total were scaled 10 times compared to 384-plate format, i.e. RNA from 

each cell was polyadenylated in 5uL, reverse transcribed in 15 uL and cDNA was pre-amplified in 15uL 

total volume. We retrieved Smart-seq2 data from (Picelli et al., 2013; GSE49321). Smart-seq2 and Smart-

seq-total reads were mapped using STAR and counted using featureCounts as described above. 

Comparisons between protocols in Fig 1b were generated on depth-normalized libraries, using 2.5 million 
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randomly selected reads per adaptor-trimmed library (or all reads for libraries that had less than 2.5 million 

reads) to compute expression levels (cpm). 

 

Unsupervised clustering and dimensionality reduction analysis of human cell types 

Standard procedures for filtering, variable gene selection, dimensionality reduction and clustering were 

performed using the Seurat package version 3.1.441. Cells with fewer than 2000 detected genes and those 

with more than 2 Mio reads were excluded from the analysis. Counts were log-normalized for each cell 

using the natural logarithm of 1 + counts per million. Variable genes were selected based on overdispersion 

analysis and projected onto a low-dimensional subspace using principal component (PC) analysis. The 

number of PCs was selected on the basis of inspection of the plot of variance explained. Cells were 

visualized using a 2-dimensional t-distributed Stochastic Neighbor Embedding of the PC-projected data. 

Dimensionality reduction parameters for tSNE (resolution and number of PCs) were adjusted on a per-cell 

type and per-biotype basis and can be viewed in the Rmd files available on GitHub. Cells were assigned a 

cell cycle score using Seurat’s CellCycleScoring() function using cell cycle markers described in 42. 

Clustering of coding and non-coding genes 

Clusters of coding and non-coding genes shown in Fig. 2b were computed and visualized using DEGreport 

R package43. Top 250 marker genes for each cell cycle phase and all non-coding genes with average 

expression ln(cpm+1)> 0.05 in at least one phase were used for this analysis. Gene expression values 

were normalized using variance stabilizing transformation44 before clustering. Further details of the analysis 

can be viewed in the Rmd files available on GitHub.  

Pre-processing and clustering of mESCs 

Standard procedures for filtering, variable gene selection, dimensionality reduction and clustering were 

performed using the Seurat package version 3.1.441. Cells with fewer than 1000 detected genes and those 

with more than 2 Mio reads were excluded from the analysis. Counts were log-normalized for each cell 

using log1p(counts) and 1e4 scale factor. Variable genes were projected onto a low-dimensional subspace 

using PC analysis. The number of PCs was selected on the basis of inspection of the variance explained 

plot. A shared-nearest-neighbor graph was constructed on the basis of the Euclidean distance in the low-

dimensional subspace spanned by the top PCs. Cells were visualized using Uniform manifold 

Approximation and Projection (UMAP) algorythm45 of the PC-projected data. Clusters were annotated 

based on the expression of known marker genes corresponding to one of the three germ layers. Cells were 

assigned a cell cycle score using Seurat’s CellCycleScoring() function and cell cycle markers described 

in42. 
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Developmental trajectory inference of EB differentiation 

Developmental trajectory of mESC differentiation was inferred using PAGA through dynoverse wrapper46. 

Pseudotime coordinates computed from the trajectory were appended to Seurat object and further used to 

generate Figures 1f-i.  

Correlation between coding and non-coding RNA levels 

Spearman coefficients were computed for all pair-wise correlations of expressed genes (average 

ln(cpm+1)>2 across all cells). The resulting matrix was subset to only mRNA:non-coding RNA correlations. 

Pairs with Spearman rho > 0.5 were used to generate a chord diagram shown in Figure 3h and pairs with 

Spearman rho < -0.5 were used to generate a chord diagram shown in Supplementary Figure 12b. 

Code availability 

All code used for analysis is available on GitHub (https://github.com/aisakova/smart-seq-total/). 

Data availability 
The datasets generated and analyzed in the study are available in the NCBI Gene 

Expression Omnibus (GEO) under the entry GEO: GSE151334. 
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Figure captions: 

 

Figure 1. Smart-seq-total performance. 

a. Schematic comparison of Smart-seq2 and Smart-seq-total pipelines. Following cell lysis, total 

cellular RNA is polyadenylated, primed with anchored oligodT and reverse transcribed in a presence of the 

custom degradable TSO. After reverse transcription, TSO is enzymatically cleaved, single-stranded cDNA 

is amplified and cleaned up. Amplified cDNA is then indexed, pooled and depleted from ribosomal 

sequences using DASH33. Resulting indexed libraries are then pooled and sequenced on Illumina platform. 

b. Average number of genes per biotype detected by Smart-seq2 and Smart-seq-total in single 

HEK293T cells. Genes were assigned to a specific biotype based on GENCODE v32 annotation for the 

reference genome. tRNA was quantified using high-confidence gene set obtained from GtRNAdb. Adaptor-

depleted libraries, for both Smart-seq2 and Smart-seq-total, were depth normalized to ~2.5 Mio reads per 

cell. Error bars denote standard deviation (n=4). 

c. Coverage of multiple gene biotypes shown for Smart-seq2 and Smart-seq-total data. Computed 

as a sum of n=4 cells.  

d. Distribution of mapped reads across RNA types in human primary fibroblasts, HEK293T and 

MCF7 cells. Percentage of total reads mapped to each RNA type. 

e. Examples of coding and non-coding marker genes for each cell type. Top exemplary markers 

per biotype computed among cell types using Wilcoxon Rank Sum test. RNY1 belongs to miscRNA, 

SCARNA23 and SCARNA20 – to scaRNA, MT-TD – to mitochondrial tRNA class.  

f. t-SNE plots of three profiled human cell types generated using indicated subset of genes. From 

left to right: protein coding, lncRNA, miRNA and other small ncRNA (include snoRNA, snRNA, scaRNA, 

scRNA and miscRNA). We have excluded histone coding genes from protein coding (polyA+) set, since a 

large fraction of these RNAs are known to lack polyA tails34.  

 

 

Figure 2. Dynamics of cellular non-coding transcripts throughout the cell cycle.  

a. Cell-cycle dependent expression of non-coding genes. Examples of lncRNA, miRNA and snoRNA 

differentially expressed throughout the cell cycle in human primary dermal fibroblasts. Circular charts depict 

average expression of a given gene across all cells identified to be in a certain phase of the cell cycle.  

b. Cell-cycle specific gene clusters comprised of coding and non-coding RNA. Clusters were 

identified through hierarchical clustering of top 750 mRNA differentially expressed during the cell-cycle 

and all non-coding genes expressed in at least one phase. 

c. Expression of known cell-cycle and histone genes across G1, S and G2M phases. A curated list 

of histone RNA detected in all three cell types is shown. 

d. Examples of histone mRNA differentially expressed between three profiled cell types. Top three 

marker histone genes per cell type are shown. 

 

 

Figure 3. Coding and non-coding signature of differentiated single mESCs. 

a. Microscope images and corresponding schematic representations of EB formation at four 

sampled time points.  Pie charts represent distribution of mapped reads across RNA types. Genes were 
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 7 

assigned to a specific biotype based on GENCODE M23 annotation for the reference chromosomes. tRNA 

was quantified by mapping the reads, non-mapping to any other RNA type, to the high-confidence gene set 

obtained from GtRNAdb.  

b. Exemplary coding and non-coding genes that are up- or downregulated during EB formation. 

Subpanels are grouped according to RNA type. 

c. UMAP plot of collected cells colored by timepoint. Cells were clustered using k-nearest neighbor 

algorithm and cell lineages were annotated based on the expression of marker genes within the identified 

clusters. 

d. UMAP plots showing the expression of lineage markers. Color scale adjacent to each plot denotes 

 the expression of a given gene as log1p(counts). 

e. Non-coding genes differentially expressed between annotated lineages and primed mESCs. 

Primed mESCs are marked by the expression of Nanog, Pou5f1 and Esrrb. 

f. Lineage tree of EB differentiation. Each dot represents a cell colored according to the assigned 

lineage. Cells are arranged according to the computed pseudotime. 

g. UMAP plot of collected cells colored by pseudotime.  

h. Heatmap showing the variability in coding and non-coding gene expression across identified 

clusters. 

i. Temporal and lineage-specific expression of selected protein-coding, lncRNA and miRNA 

genes. Each column from left to right shows genes specific to: pluripotency state, ectoderm, mesoderm 

or endoderm lineages.  

j. Co-expression of coding and non-coding genes in differentiating mESCs. Gene co-expression 

was evaluated through pairwise correlation analysis across all cells collected at four stages of EB 

formation. Genes with spearman rho > 0.5 were considered co-expressed. 
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