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Abstract 
G-quadruplexes (G4s) are a class of stable structural nucleic acid motifs that are known to               
play a role in a wide spectrum of genomic functions, such as DNA replication and               
transcription. The classical understanding of G4 structure points to four variable length            
guanine strands joined by variable length stretches of other nucleotides. Experiments using            
G4 immunoprecipitation and sequencing experiments have produced a high number of highly            
probable G4 forming genomic sequences. The expense and technical difficulty of           
experimental techniques highlights the need for computational approaches of G4          
identification. Here, we present PENGUINN, a machine learning method based on           
Convolutional Neural Networks, that learns the characteristics of G4 sequences and           
accurately predicts G4s outperforming the state-of-the-art. We provide both a standalone           
implementation of the trained model, and a web application that can be used to evaluate               
sequences for their G4 potential. 

Introduction 
 
G-quadruplexes (G4s) are stable secondary structures of nucleic acids that occur when            
quartets of guanines are stabilized by a monovalent cation ​(Gellert, Lipsett, and Davies 1962)              
and form a characteristic layered structure ​(Sen and Gilbert 1988) (Figure 1a). G4s are known               
to play important roles in several biological processes, such as DNA replication, damage             
response, RNA transcription and processing, transcriptional and translational regulation and          
others ​(Spiegel, Adhikari, and Balasubramanian 2020) ​. Owing to their importance as           
modulators of genomic function, G4s have been studied extensively, and several attempts            
have been made to model their structure in a predictive manner and several experimental              
methods for their identification have been developed ​(Puig Lombardi and Londoño-Vallejo           
2020) ​. 
 
Early methods of G4 prediction were focused on the identification of a consensus motif,              
using a regular expression matching approach, often complemented by involved scoring           
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calculations. An example of such methods is Quadparser ​(Huppert 2005) ​. It was not until a               
high-throughput sequencing method for genome wide identification of G4s (G4-Seq) was           
established ​(Chambers et al. 2015) that we started understanding how common G4s were, and              
how hard it is to accurately predict their genomic location. Out of over 700 thousand G4s                
identified in the human genome by high-throughput sequencing, approximately 450 thousand           
were not predictable by computational methods at the time. The incentive for the             
improvement of G4 prediction computational methods and a dataset that would allow us to do               
so, became evident. A second wave of computational methods attempted to predict G4             
locations after the publication of this dataset. Among the most accurate and still functional              
methods are G4Hunter ​(Bedrat, Lacroix, and Mergny 2016) ​, which expands the regular            
expression methods by scoring on G enrichment, Pqsfinder, which focuses on allowing            
customization for non-canonical G4s and was trained on the G4-Seq dataset ​(Hon et al.              
2017) ​, as well as Quadron ​(Sahakyan et al. 2017) ​, a Machine Learning method trained on               
the G4-Seq dataset, utilizing the tree based Gradient Boosting Machine approach. 
 
This second generation of G4 identification methods utilizes Machine Learning to classify            
sequences based on their G4 forming potential. Generally, Machine Learning (ML) describes            
the field of computer science that implements mathematical models which enable computers            
to learn concepts and patterns embedded in data. One of the largest subfields of ML deals                
with the development of artificial Neural Networks (NNs), which were initially proposed as             
simplified models of neuronal function ​(Fitch 1944) and have recently revolutionized the            
fields of speech recognition and image classification ​(LeCun, Bengio, and Hinton 2015) ​. The             
recent breakthrough in the field of NNs involves the utilization of Deep NNs consisting of a                
large number of neuronal layers. A specific subset of these Deep NNs uses a process known                
as convolution to learn increasingly complex representations of patterns in raw data. These             
NNs are called Convolutional Neural Networks (CNNs). An important characteristic of           
CNNs is their ability to operate on raw data such as images, time-series, DNA/RNA              
sequences, without the need for complicated feature extraction. The flipside of this ability is              
their need for large amounts of data. Coupled with the novel availability of high-throughput              
biological data ​(Emmert-Streib et al. 2020) ​, Deep NNs are quickly becoming feasible in the              
field of bioinformatics ​(Tang et al. 2019) ​. Another important current field of research is the               
interpretation of Deep NN models, which are often seen as ‘black boxes’ due to their               
complexity. Convolutional Neural Networks for G4 prediction were implemented in the           
method G4detector ​(Barshai and Orenstein 2019)​. 
 
Here, we present PENGUINN, a CNN based approach for the identification of G4s from raw               
DNA sequence data, trained on G4-Seq high throughput human data. We establish that             
PENGUINN outperforms the state-of-the-art in a high background testing set that simulate            
high genomic variation, and interpret aspects of the learned model, validating its learning             
against known characteristics of G4 sequences. All data, training scheme, trained models, and             
functional code can be found at ​https://github.com/ML-Bioinfo-CEITEC/penguinn​. An easy         
to use Web Application that can run the trained model for user submitted sequences in real                
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time is also made available at ​https://ml-bioinfo-ceitec.github.io/penguinn/​. 
 
 

 
Figure1 : a) Schematic of a typical G-quadruplex structure consisting of four G tracts with a                
minimum length of 3, connected by non specific loops. b) PENGUINN convolutional neural             
network model. c) identification of G-quadruplex subsequences via randomized mutation. 

Materials and Methods 

Training and Evaluation Datasets 
Our dataset was generated from high-throughput sequencing of DNA G-quadruplexes from           
the human genome. We used genomic coordinates obtained from a G4-seq experiment            
(Chambers et al. 2015) (GEO: GSE63874). The coordinates were in three separate sets             
analogous to three different stabilizers - K ​+​, PDS and K ​+ together with PDS. Using the               
original bed files and the hg19 genome annotation we extracted DNA sequences using             
bedtools ​(Quinlan and Hall 2010) ​. All sequences which were longer than 200 nt were centred               
and cut to the length of 200 nt. Shorter sequences were randomly padded from both sides                
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with Ns to become 200 nt long. We referred to this adjusted set as the positive set of the                   
classification problem. For every sequence in our positive set we created a negative sequence              
of the same length from a random coordinate from hg19 that did not overlap with any of the                  
coordinates from the positive set. Sequences shorter than 200 nt were again randomly padded              
with Ns. The sequences thus obtained formed a negative set. 
We randomly selected 300k sequences (150k positive and 150k negative) from the samples             
as a training set with pos:neg ratio 1 (the 1:1 dataset). We also randomly selected 300k                
sequences to create the pos:neg training datasets of 1:9, 1:99 and 1:999, containing 30k, 3k               
and 300 positives respectively. These datasets correspond to 50%, 10%, 1% and 0.1%             
positive admixtures respectively. 
We selected four sets consisting of 100k sequences each as our final evaluation sets, never               
seen during any training step. The individual test sets have the same pos:neg ratio as the                
training sets - 1:1, 1:9, 1:99 and 1:999. 

Training Scheme 
We utilized a Convolutional Neural Network consisting of four convolution layers with            
kernels of size 8 and 16, 8, 4 and 3 filters respectively. The output of each convolutional layer                  
goes through a batch normalization layer, max-pooling layer and dropout layer with the             
dropout rate 0.3. The output of the last layer is flattened and goes through a               
densely-connected layer with ReLU activation function. The last layer is formed of a single              
neuron with a sigmoid activation function, which assigns to each input DNA sequence a              
probability of having a G4 structure. Our model was implemented in Python using the Keras               
library with Tensorflow backend. We used Adam optimizer with β​1 = 0.9 and β​2 = 0.99, the                 
learning rate was set to 0.001. The loss function was binary crossentropy, metrics accuracy.              
The model was trained over 15 epochs, the chosen batch size was 32. Figure 1B outlines the                 
architecture of the network. 

Evaluation Scheme 
We evaluated our model against five other state of the art methods. First, we tested against                
the widely used regular expression '(G{3,}[ATGCN]{1,7}){3,}G{3,}', also used by a tool           
called Quadparser ​(Huppert 2005) ​. We implemented the regular expression in python,           
returning a boolean expression dependent on the presence of a match in the presented              
sequence. The remaining three methods that were developed for the scoring of G4 forming              
potential are G4Hunter ​(Bedrat, Lacroix, and Mergny 2016) ​, Quadron ​(Sahakyan et al. 2017)             
and Pqsfinder ​(Hon et al. 2017) ​. We re-implemented G4Hunter in python as the available              
code did not appear functional (code available at our repository). We used a window of size                
25 nucleotides as proposed in the original paper, and a score threshold 0 to see all putative                 
G4s. For every input sequence, the output of our implementation is the highest score of all                
subsequences. If no G4 has been found, the output score is 0. We ran Quadron with the                 
default parameters. For every input sequence, we considered only scores assigned to the plus              
strand and we took the maximum of all scored G4s present in the sequence. If no score has                  
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been assigned, the output score was zero. For testing Pqsfinder was used following             
command: 'pqsfinder(sequence, strand='+', overlapping=TRUE, verbose=FALSE)', as an       
output we took the highest scoring G4, if none has been found, the score was set to 0. Lastly,                   
we compared our model to another machine learning model G4detector ​(Barshai and            
Orenstein 2019) ​. We ran it in the testing mode using three available models trained on               
random negatives and positives with K​+​, PDS and K ​+​ + PDS stabilizers. 

Interpretation of Model 
In order to interpret the model, we have attempted to isolate the particular features detected               
by the model which weigh the most for its decision making. For each positive testing sample                
we have produced 100 sequences of the same length containing a random stretch of 40               
nucleotides for every possible position. For each such sequence we re-evaluate and calculate             
the average degree of score change for the subsequence. The subsequence that produces the              
largest drop is marked as the ‘most important’ and extracted (Fig. 1c). 

Code availability and web application 
PENGUINN was developed in Python. All code accompanied by the trained models, all             
training data and the installation instructions can be found at          
https://github.com/ML-Bioinfo-CEITEC/penguinn​. Moreover, we have converted the trained       
PENGUINN Keras model into TensorflowJS and developed a simple web application,           
available at ​https://ml-bioinfo-ceitec.github.io/penguinn/​. The web application code can be         
found in the gh-pages branch of the PENGUINN GitHub repository. 

Results 
Scanning across genomic regions for a specific and relatively rare structural element            

is a task that involves a heavy class imbalance, since the background sequence will heavily               
outnumber the target element by orders of magnitude. It is hard to know the exact prevalence                
of G4s in the genome or at least the areas of the genome one would scan, but the more                   
imbalance datasets should approximate a realistic ratio more closely. A rough estimate could             
come from equally dividing the approximately 700 thousand known G4s over the 6 billion              
bases of the human genome, giving us an approximate ratio of a G4 located every 8 thousand                 
base pairs. For this reason, we have produced four ​datasets with increasing positive to              
negative ratio (pos:neg) by one order of magnitude each time. Starting from the highly              
unrealistic 1:1 dataset with equally balanced classes (50%) and then going up to 1:9 (10%),               
1:99 (1%), and 1:999 (0.1%) ratio datasets. We have also acquired a dataset ​(Puig Lombardi               
and Londoño-Vallejo 2020) with high class imbalance in the opposite direction consisting of             
298 positives and 94 negatives (3:1 dataset). 

Initially, we explored the possibility of training models in equally imbalanced datasets            
and then using them to improve prediction accuracy. However, we could not see any              

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.129072doi: bioRxiv preprint 

https://paperpile.com/c/yc7oRS/iCF1
https://paperpile.com/c/yc7oRS/iCF1
https://github.com/ML-Bioinfo-CEITEC/penguinn
https://ml-bioinfo-ceitec.github.io/penguinn/
https://paperpile.com/c/yc7oRS/9U7q
https://paperpile.com/c/yc7oRS/9U7q
https://doi.org/10.1101/2020.06.02.129072
http://creativecommons.org/licenses/by-nc-nd/4.0/


measurable improvement for training with a matching pos:neg mixture when considering the            
area under the precision sensitivity curve for our models, or when using an iterative negative               
selection technique that previously showed improvement in a different genomic classification           
task ​(Georgakilas et al., n.d.) ​(Supp. Fig. S1). Since there does not appear to exist a major                
difference in performance between these models, we have elected to use the model trained on               
1:1 as our main trained model. Plotting the F1 score against the prediction score of our                
method for each testing dataset (Supp. Fig S2) we have identified two score values that we                
proposed as score thresholds for our method (precise: 0.85, sensitive: 0.5). Users are allowed              
to set their own cut-off threshold for their results depending on their needs, but having               
proposed score thresholds helps new users guide their decisions to more meaningful            
thresholds. For clarity of presentation, on all evaluations against state of the art we will               
designate these thresholds as PENGUINN(s) for the sensitive, and PENGUINN(p) for the            
precise threshold. 

A commonly used method for G4 identification is the use of a sequence pattern, also               
called a regular expression, consisting of up to four stretches of Gs with a minimum length of                 
three, spaced by random nucleotide sequences with a maximum length of seven (for exact              
expression see Materials and Methods). This method was first proposed over 15 years ago              
(Huppert 2005) and has been commonly used since then. We have directly compared             
PENGUINN to this regular expression in all our testing datasets. Since the regular expression              
cannot return a score and will only produce a binary result, it is not possible to produce a                  
ROC curve or similar metric across scores. Our models outperformed the G4 regular             
expression in all datasets with increasing difference as datasets became more negative heavy             
(Table 1, Figure 2). Despite being a widely used way of identification for G4s, the regular                
expression lacks both precision and sensitivity compared to more elaborate methods such as             
PENGUINN.  
 
dataset 3 : 1 1 : 1 1 : 9 1 : 99 1 : 999 

tool precision recall precision recall precision recall precision recall precision recall 

Regular 
Expression 0.99 0.66 0.99 0.33 0.95 0.32 0.64 0.33 0.14 0.31 

PENGUINNs 0.91 0.95 0.99 0.91 0.93 0.91 0.56 0.93 0.11 0.91 

PENGUINNp 0.97 0.36 1.00 0.60 0.99 0.62 0.93 0.61 0.55 0.55 

Table 1: Precision and Recall values for static score prediction of Regular Expression,             
PENGUINNs (sensitive) and PENGUINNp (precise) on a scale of imbalanced datasets. 
 
Dataset 3 : 1 1 : 1 1 : 9 1 : 99 1 : 999 

PENGUINN 0.96 1.00 0.97 0.87 0.43 

G4detector K PDS 0.97 0.98 0.91 0.67 0.21 

G4detector PDS 0.94 0.98 0.91 0.63 0.21 

G4detector K 0.94 0.98 0.89 0.58 0.16 
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G4Hunter 0.97 0.97 0.86 0.54 0.13 

Quadron 0.97 0.83 0.67 0.50 0.25 

PQSfinder 0.98 0.95 0.86 0.58 0.15 

Table 2: Area under the Precision-Recall curve for PENGUINN and 4 state-of-the-art            
programs. Underlined are the best performances for each evaluation dataset. 
 

 
Figure 2: (A) F1 score for PENGUINNp (precise), PENGUINNs (sensitive) and Regular            
Expression with datasets of different pos:neg ratio. (B) Precision-Recall curve comparison of            
PENGUINN and best performing state of the art method G4detector K_PDS in datasets of              
different pos:neg ratio. 

 
We proceeded to evaluate our method against 4 other state-of-the-art methods on the             

same benchmark datasets. We compared their performance across the whole range of            
prediction scores using the precision-recall area under curve for each evaluation dataset.            
There is an evident trend of quickly diminishing performance as datasets become more             
realistic in ratios with more negatives. Our method also loses performance under these             
circumstances, but at a much slower rate, pointing at a comparative improvement when used              
for realistic highly imbalanced datasets (Table 2). We have selected the best performing state              
of the art method for direct comparison using detailed precision-recall curves for each dataset              
(Figure 2B). It becomes evident that as the class imbalance increases, both methods lose              
performance, but PENGUINN manages to retain a higher level of precision/sensitivity even            
at highly imbalanced datasets. Comparison with all other state of the art programs shows              
similar patterns as ratios become more realistic. (Supplementary Figures 3-6)  

Deep Learning models consist of complex networks of neurons that abstract           
information in hard-to-interpret ways. Often these models are considered uninterpretable          
black boxes. However, this can lead to pitfalls such as learning data artifacts instead of real                
signal. To control against such pitfalls, we identified what our model considered the most              
important 40 nucleotide subsequence for 1000 samples, using a randomized permutation           
approach. We sorted by the degree of change when randomized and used the top 1000 of                
these sequences to identify enriched motifs using Multiple Em for Motif Elicitation (MEME)             
(Bailey et al. 2006) ​. The top motif extracted (Fig 1c) is indeed a motif containing several                

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 3, 2020. ; https://doi.org/10.1101/2020.06.02.129072doi: bioRxiv preprint 

https://paperpile.com/c/yc7oRS/B17s
https://doi.org/10.1101/2020.06.02.129072
http://creativecommons.org/licenses/by-nc-nd/4.0/


G-tracts which confirms the known theory of G4 formation and demonstrates that our model              
did not primarily learn some artifact such as padding length. The motif produced by MEME               
is an aggregate of several similar motifs found in these sequences, and as such is not expected                 
to  appear as an exact ‘consensus’ G4. 

Paradoxically, although elaborate ML models, such as PENGUINN, vastly         
outperform the simple regular expression search for G4s, its use persists to date. Beyond the               
familiarity of the method, we believe that any technical obstacle, however trivial, will deter              
non-technical users from using other methods. As such, we decided to create a             
straightforward web application that uses our best trained model to evaluate user submitted             
sequences in real time. The web application can be found here:           
https://ml-bioinfo-ceitec.github.io/penguinn/​. The user can input a single sequence, a fasta          
formatted input, or several sequences in multiple lines. The sequences will be evaluated, and              
a score along with threshold evaluation returned. 

Discussion 
In this study we present PENGUINN, a convolutional neural network based method            

that outperforms state of the art methods in the identification of nuclear G4s in highly               
imbalanced datasets. PENGUINN is more robust than other methods when the pos:neg ratio             
increases by several orders of magnitude. However, there is still space for improvement in the               
prediction. We believe that a more elaborate modelling of the real variation of the              
background genome could benefit predictive methods of this type. Such undertaking is            
beyond the scope of this study. 

Beyond the development of a highly effective predictive model, we have explored the             
interpretation of what the model has learned. As expected, the model identified regions of              
high G content as better potential targets, and has scored very highly regions showing              
periodic G stretches, a structural feature known to define G4s. Convolutional Neural            
Networks are notorious for being hard to interpret, as deeper network layers further abstract              
information from the first layers. We believe that interpreting the network to the extent that               
we can conceptualize the type of sequences it has learned to identify is an important step for                 
genomic sequence deep learning studies. 

To allow for easier adoption of our method, we have developed both a standalone              
version and a web application that can be used without any knowledge of programming. The               
repository ​https://gitlab.com/RBP_Bioinformatics/penguinn contains all models, data, and       
thorough installation and usage tutorials. The web application can accept sequences ranging            
from 40nt up to hundreds of nts. For sequences smaller than 200nt, our method will pad the                 
sequence with Ns randomly on each side. This may create a variation in scores for really                
short input sequences. For sequences larger than 200nt, our method will extract 200nt around              
the midpoint of the sequence. This means that the whole sequence is not evaluated but just                
the middle 200nt. Users should attempt to preprocess their data as much as possible,              
centering their potential G4 sequence. 
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In conclusion, PENGUINN is a powerful method, based on cutting edge Deep            
Learning architecture, that increasingly outperforms the state of the art in classifying G4s in              
more realistic highly imbalanced datasets. Despite the sophistication of the method, we have             
developed a simple web application to assist users coming from non-bioinformatic           
backgrounds to use the method. We also provide all training and testing datasets in an effort                
to empower researchers to produce better, more accurate methods for realistic highly            
imbalanced datasets. 
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