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Abstract

G-quadruplexes (G4s) are a class of stable structural nucleic acid motifs that are known to
play a role in a wide spectrum of genomic functions, such as DNA replication and
transcription. The classical understanding of G4 structure points to four variable length
guanine strands joined by variable length stretches of other nucleotides. Experiments using
G4 immunoprecipitation and sequencing experiments have produced a high number of highly
probable G4 forming genomic sequences. The expense and technical difficulty of
experimental techniques highlights the need for computational approaches of G4
identification. Here, we present PENGUINN, a machine learning method based on
Convolutional Neural Networks, that learns the characteristics of G4 sequences and
accurately predicts G4s outperforming the state-of-the-art. We provide both a standalone
implementation of the trained model, and a web application that can be used to evaluate
sequences for their G4 potential.

Introduction

G-quadruplexes (G4s) are stable secondary structures of nucleic acids that occur when
quartets of guanines are stabilized by a monovalent cation (Gellert, Lipsett, and Davies 1962)
and form a characteristic layered structure (Sen and Gilbert 1988) (Figure 1a). G4s are known
to play important roles in several biological processes, such as DNA replication, damage
response, RNA transcription and processing, transcriptional and translational regulation and
others (Spiegel, Adhikari, and Balasubramanian 2020). Owing to their importance as
modulators of genomic function, G4s have been studied extensively, and several attempts
have been made to model their structure in a predictive manner and several experimental
methods for their identification have been developed (Puig Lombardi and Londofio-Vallejo
2020).

Early methods of G4 prediction were focused on the identification of a consensus motif,
using a regular expression matching approach, often complemented by involved scoring
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calculations. An example of such methods is Quadparser (Huppert 2005). It was not until a
high-throughput sequencing method for genome wide identification of G4s (G4-Seq) was
established (Chambers et al. 2015) that we started understanding how common G4s were, and
how hard it is to accurately predict their genomic location. Out of over 700 thousand G4s
identified in the human genome by high-throughput sequencing, approximately 450 thousand
were not predictable by computational methods at the time. The incentive for the
improvement of G4 prediction computational methods and a dataset that would allow us to do
so, became evident. A second wave of computational methods attempted to predict G4
locations after the publication of this dataset. Among the most accurate and still functional
methods are G4Hunter (Bedrat, Lacroix, and Mergny 2016), which expands the regular
expression methods by scoring on G enrichment, Pgsfinder, which focuses on allowing
customization for non-canonical G4s and was trained on the G4-Seq dataset (Hon et al.
2017), as well as Quadron (Sahakyan et al. 2017), a Machine Learning method trained on
the G4-Seq dataset, utilizing the tree based Gradient Boosting Machine approach.

This second generation of G4 identification methods utilizes Machine Learning to classify
sequences based on their G4 forming potential. Generally, Machine Learning (ML) describes
the field of computer science that implements mathematical models which enable computers
to learn concepts and patterns embedded in data. One of the largest subfields of ML deals
with the development of artificial Neural Networks (NNs), which were initially proposed as
simplified models of neuronal function (Fitch 1944) and have recently revolutionized the
fields of speech recognition and image classification (LeCun, Bengio, and Hinton 2015). The
recent breakthrough in the field of NNs involves the utilization of Deep NNs consisting of a
large number of neuronal layers. A specific subset of these Deep NNs uses a process known
as convolution to learn increasingly complex representations of patterns in raw data. These
NNs are called Convolutional Neural Networks (CNNs). An important characteristic of
CNNs is their ability to operate on raw data such as images, time-series, DNA/RNA
sequences, without the need for complicated feature extraction. The flipside of this ability is
their need for large amounts of data. Coupled with the novel availability of high-throughput
biological data (Emmert-Streib et al. 2020), Deep NNs are quickly becoming feasible in the
field of bioinformatics (Tang et al. 2019). Another important current field of research is the
interpretation of Deep NN models, which are often seen as ‘black boxes’ due to their
complexity. Convolutional Neural Networks for G4 prediction were implemented in the
method G4detector (Barshai and Orenstein 2019).

Here, we present PENGUINN, a CNN based approach for the identification of G4s from raw
DNA sequence data, trained on G4-Seq high throughput human data. We establish that
PENGUINN outperforms the state-of-the-art in a high background testing set that simulate
high genomic variation, and interpret aspects of the learned model, validating its learning
against known characteristics of G4 sequences. All data, training scheme, trained models, and
functional code can be found at https://github.com/ML-Bioinfo-CEITEC/penguinn. An easy

to use Web Application that can run the trained model for user submitted sequences in real
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time is also made available at https://ml-bioinfo-ceitec.github.io/penguinn/.
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Figurel : a) Schematic of a typical G-quadruplex structure consisting of four G tracts with a
minimum length of 3, connected by non specific loops. b) PENGUINN convolutional neural
network model. ¢) identification of G-quadruplex subsequences via randomized mutation.

Materials and Methods

Training and Evaluation Datasets

Our dataset was generated from high-throughput sequencing of DNA G-quadruplexes from
the human genome. We used genomic coordinates obtained from a G4-seq experiment
(Chambers et al. 2015) (GEO: GSE63874). The coordinates were in three separate sets
analogous to three different stabilizers - K", PDS and K" together with PDS. Using the
original bed files and the hgl9 genome annotation we extracted DNA sequences using
bedtools (Quinlan and Hall 2010). All sequences which were longer than 200 nt were centred
and cut to the length of 200 nt. Shorter sequences were randomly padded from both sides
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with Ns to become 200 nt long. We referred to this adjusted set as the positive set of the
classification problem. For every sequence in our positive set we created a negative sequence
of the same length from a random coordinate from hg19 that did not overlap with any of the
coordinates from the positive set. Sequences shorter than 200 nt were again randomly padded
with Ns. The sequences thus obtained formed a negative set.

We randomly selected 300k sequences (150k positive and 150k negative) from the samples
as a training set with pos:neg ratio 1 (the 1:1 dataset). We also randomly selected 300k
sequences to create the pos:neg training datasets of 1:9, 1:99 and 1:999, containing 30k, 3k
and 300 positives respectively. These datasets correspond to 50%, 10%, 1% and 0.1%
positive admixtures respectively.

We selected four sets consisting of 100k sequences each as our final evaluation sets, never
seen during any training step. The individual test sets have the same pos:neg ratio as the
training sets - 1:1, 1:9, 1:99 and 1:999.

Training Scheme

We utilized a Convolutional Neural Network consisting of four convolution layers with
kernels of size 8 and 16, 8, 4 and 3 filters respectively. The output of each convolutional layer
goes through a batch normalization layer, max-pooling layer and dropout layer with the
dropout rate 0.3. The output of the last layer is flattened and goes through a
densely-connected layer with ReLU activation function. The last layer is formed of a single
neuron with a sigmoid activation function, which assigns to each input DNA sequence a
probability of having a G4 structure. Our model was implemented in Python using the Keras
library with Tensorflow backend. We used Adam optimizer with B, = 0.9 and 3, = 0.99, the
learning rate was set to 0.001. The loss function was binary crossentropy, metrics accuracy.
The model was trained over 15 epochs, the chosen batch size was 32. Figure 1B outlines the
architecture of the network.

Evaluation Scheme

We evaluated our model against five other state of the art methods. First, we tested against
the widely used regular expression '(G{3,}[ATGCN]{1,7}){3,}G{3,}', also used by a tool
called Quadparser (Huppert 2005). We implemented the regular expression in python,
returning a boolean expression dependent on the presence of a match in the presented
sequence. The remaining three methods that were developed for the scoring of G4 forming
potential are G4Hunter (Bedrat, Lacroix, and Mergny 2016), Quadron (Sahakyan et al. 2017)
and Pgsfinder (Hon et al. 2017). We re-implemented G4Hunter in python as the available
code did not appear functional (code available at our repository). We used a window of size
25 nucleotides as proposed in the original paper, and a score threshold 0 to see all putative
G4s. For every input sequence, the output of our implementation is the highest score of all
subsequences. If no G4 has been found, the output score is 0. We ran Quadron with the
default parameters. For every input sequence, we considered only scores assigned to the plus
strand and we took the maximum of all scored G4s present in the sequence. If no score has


https://paperpile.com/c/yc7oRS/ipoq
https://paperpile.com/c/yc7oRS/LMun
https://paperpile.com/c/yc7oRS/5m5N
https://paperpile.com/c/yc7oRS/T8mq
https://doi.org/10.1101/2020.06.02.129072
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.02.129072; this version posted June 3, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

been assigned, the output score was zero. For testing Pgsfinder was used following
command: 'pgsfinder(sequence, strand="t+', overlapping=TRUE, verbose=FALSE)', as an
output we took the highest scoring G4, if none has been found, the score was set to 0. Lastly,
we compared our model to another machine learning model G4detector (Barshai and
Orenstein 2019). We ran it in the testing mode using three available models trained on
random negatives and positives with K, PDS and K" + PDS stabilizers.

Interpretation of Model

In order to interpret the model, we have attempted to isolate the particular features detected
by the model which weigh the most for its decision making. For each positive testing sample
we have produced 100 sequences of the same length containing a random stretch of 40
nucleotides for every possible position. For each such sequence we re-evaluate and calculate
the average degree of score change for the subsequence. The subsequence that produces the
largest drop is marked as the ‘most important’ and extracted (Fig. 1c).

Code availability and web application

PENGUINN was developed in Python. All code accompanied by the trained models, all
training data and  the  installation  instructions can be  found @ at
https://github.com/ML-Bioinfo-CEITEC/penguinn. Moreover, we have converted the trained

PENGUINN Keras model into TensorflowJS and developed a simple web application,
available at https://ml-bioinfo-ceitec.github.io/penguinn/. The web application code can be
found in the gh-pages branch of the PENGUINN GitHub repository.

Results

Scanning across genomic regions for a specific and relatively rare structural element
is a task that involves a heavy class imbalance, since the background sequence will heavily
outnumber the target element by orders of magnitude. It is hard to know the exact prevalence
of G4s in the genome or at least the areas of the genome one would scan, but the more
imbalance datasets should approximate a realistic ratio more closely. A rough estimate could
come from equally dividing the approximately 700 thousand known G4s over the 6 billion
bases of the human genome, giving us an approximate ratio of a G4 located every 8 thousand
base pairs. For this reason, we have produced four datasets with increasing positive to
negative ratio (pos:neg) by one order of magnitude each time. Starting from the highly
unrealistic 1:1 dataset with equally balanced classes (50%) and then going up to 1:9 (10%),
1:99 (1%), and 1:999 (0.1%) ratio datasets. We have also acquired a dataset (Puig Lombardi
and Londofio-Vallejo 2020) with high class imbalance in the opposite direction consisting of
298 positives and 94 negatives (3:1 dataset).

Initially, we explored the possibility of training models in equally imbalanced datasets
and then using them to improve prediction accuracy. However, we could not see any
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measurable improvement for training with a matching pos:neg mixture when considering the
area under the precision sensitivity curve for our models, or when using an iterative negative
selection technique that previously showed improvement in a different genomic classification
task (Georgakilas et al., n.d.)(Supp. Fig. S1). Since there does not appear to exist a major
difference in performance between these models, we have elected to use the model trained on
1:1 as our main trained model. Plotting the F1 score against the prediction score of our
method for each testing dataset (Supp. Fig S2) we have identified two score values that we
proposed as score thresholds for our method (precise: 0.85, sensitive: 0.5). Users are allowed
to set their own cut-off threshold for their results depending on their needs, but having
proposed score thresholds helps new users guide their decisions to more meaningful
thresholds. For clarity of presentation, on all evaluations against state of the art we will
designate these thresholds as PENGUINN(s) for the sensitive, and PENGUINN(p) for the
precise threshold.

A commonly used method for G4 identification is the use of a sequence pattern, also
called a regular expression, consisting of up to four stretches of Gs with a minimum length of
three, spaced by random nucleotide sequences with a maximum length of seven (for exact
expression see Materials and Methods). This method was first proposed over 15 years ago
(Huppert 2005) and has been commonly used since then. We have directly compared
PENGUINN to this regular expression in all our testing datasets. Since the regular expression
cannot return a score and will only produce a binary result, it is not possible to produce a
ROC curve or similar metric across scores. Our models outperformed the G4 regular
expression in all datasets with increasing difference as datasets became more negative heavy
(Table 1, Figure 2). Despite being a widely used way of identification for G4s, the regular
expression lacks both precision and sensitivity compared to more elaborate methods such as
PENGUINN.

dataset 3:1 1:1 1:9 1:99 1:999
tool precision recall precision recall precision recall precision recall precision recall
Regular

0.99 0.66 0.99 0.33 0.95 0.32 0.64 0.33 | 0.14 0.31

Expression

PENGUINNs | 0.91 0.95 0.99 0.91 0.93 0.91 0.56 0.93 | 0.11 0.91
PENGUINNp | 0.97 0.36 1.00 0.60 0.99 0.62 0.93 0.61 0.55 0.55

Table 1: Precision and Recall values for static score prediction of Regular Expression,
PENGUINNS (sensitive) and PENGUINNp (precise) on a scale of imbalanced datasets.

Dataset 3:1 1:1 1:9 1:99 1:999
PENGUINN 0.96 1.00 0.97 0.87 0.43
G4detector K PDS 0.97 0.98 0.91 0.67 0.21
G4detector PDS 0.94 0.98 0.91 0.63 0.21
G4detector K 0.94 0.98 0.89 0.58 0.16
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G4Hunter 0.97 0.97 0.86 0.54 0.13
Quadron 0.97 0.83 0.67 0.50 0.25
PQSfinder 0.98 0.95 0.86 0.58 0.15

Table 2: Area under the Precision-Recall curve for PENGUINN and 4 state-of-the-art
programs. Underlined are the best performances for each evaluation dataset.
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Figure 2: (A) F1 score for PENGUINNp (precise), PENGUINNSs (sensitive) and Regular
Expression with datasets of different pos:neg ratio. (B) Precision-Recall curve comparison of
PENGUINN and best performing state of the art method G4detector K PDS in datasets of
different pos:neg ratio.

We proceeded to evaluate our method against 4 other state-of-the-art methods on the
same benchmark datasets. We compared their performance across the whole range of
prediction scores using the precision-recall area under curve for each evaluation dataset.
There is an evident trend of quickly diminishing performance as datasets become more
realistic in ratios with more negatives. Our method also loses performance under these
circumstances, but at a much slower rate, pointing at a comparative improvement when used
for realistic highly imbalanced datasets (Table 2). We have selected the best performing state
of the art method for direct comparison using detailed precision-recall curves for each dataset
(Figure 2B). It becomes evident that as the class imbalance increases, both methods lose
performance, but PENGUINN manages to retain a higher level of precision/sensitivity even
at highly imbalanced datasets. Comparison with all other state of the art programs shows
similar patterns as ratios become more realistic. (Supplementary Figures 3-6)

Deep Learning models consist of complex networks of neurons that abstract
information in hard-to-interpret ways. Often these models are considered uninterpretable
black boxes. However, this can lead to pitfalls such as learning data artifacts instead of real
signal. To control against such pitfalls, we identified what our model considered the most
important 40 nucleotide subsequence for 1000 samples, using a randomized permutation
approach. We sorted by the degree of change when randomized and used the top 1000 of
these sequences to identify enriched motifs using Multiple Em for Motif Elicitation (MEME)
(Bailey et al. 2006). The top motif extracted (Fig 1c) is indeed a motif containing several
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G-tracts which confirms the known theory of G4 formation and demonstrates that our model
did not primarily learn some artifact such as padding length. The motif produced by MEME
is an aggregate of several similar motifs found in these sequences, and as such is not expected
to appear as an exact ‘consensus’ G4.

Paradoxically, although elaborate ML models, such as PENGUINN, vastly
outperform the simple regular expression search for G4s, its use persists to date. Beyond the
familiarity of the method, we believe that any technical obstacle, however trivial, will deter
non-technical users from wusing other methods. As such, we decided to create a
straightforward web application that uses our best trained model to evaluate user submitted
sequences in real time. The web application can be found here:

https://ml-bioinfo-ceitec.github.io/penguinn/. The user can input a single sequence, a fasta
formatted input, or several sequences in multiple lines. The sequences will be evaluated, and
a score along with threshold evaluation returned.

Discussion

In this study we present PENGUINN, a convolutional neural network based method
that outperforms state of the art methods in the identification of nuclear G4s in highly
imbalanced datasets. PENGUINN is more robust than other methods when the pos:neg ratio
increases by several orders of magnitude. However, there is still space for improvement in the
prediction. We believe that a more elaborate modelling of the real variation of the
background genome could benefit predictive methods of this type. Such undertaking is
beyond the scope of this study.

Beyond the development of a highly effective predictive model, we have explored the
interpretation of what the model has learned. As expected, the model identified regions of
high G content as better potential targets, and has scored very highly regions showing
periodic G stretches, a structural feature known to define G4s. Convolutional Neural
Networks are notorious for being hard to interpret, as deeper network layers further abstract
information from the first layers. We believe that interpreting the network to the extent that
we can conceptualize the type of sequences it has learned to identify is an important step for
genomic sequence deep learning studies.

To allow for easier adoption of our method, we have developed both a standalone
version and a web application that can be used without any knowledge of programming. The
repository https://gitlab.com/RBP_Bioinformatics/penguinn contains all models, data, and

thorough installation and usage tutorials. The web application can accept sequences ranging
from 40nt up to hundreds of nts. For sequences smaller than 200nt, our method will pad the
sequence with Ns randomly on each side. This may create a variation in scores for really
short input sequences. For sequences larger than 200nt, our method will extract 200nt around
the midpoint of the sequence. This means that the whole sequence is not evaluated but just
the middle 200nt. Users should attempt to preprocess their data as much as possible,
centering their potential G4 sequence.
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In conclusion, PENGUINN is a powerful method, based on cutting edge Deep
Learning architecture, that increasingly outperforms the state of the art in classifying G4s in
more realistic highly imbalanced datasets. Despite the sophistication of the method, we have
developed a simple web application to assist users coming from non-bioinformatic
backgrounds to use the method. We also provide all training and testing datasets in an effort
to empower researchers to produce better, more accurate methods for realistic highly
imbalanced datasets.
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