

1 **Partitiviruses infecting *Drosophila melanogaster* and *Aedes aegypti* exhibit efficient**  
2 **biparental vertical transmission**

3  
4 Shaun T. Cross<sup>1</sup>, Bernadette L. Maertens<sup>1</sup>, Tillie J. Dunham<sup>1</sup>, Case P. Rodgers<sup>1</sup>, Ali L. Brehm<sup>1</sup>,  
5 Megan R. Miller<sup>1</sup>, Alissa M. Williams<sup>2</sup>, Brian D. Foy, Mark D. Stenglein<sup>1,\*</sup>

6  
7 1. Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine  
8 and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA

9 2. Department of Biology, Colorado State University, Fort Collins, CO, USA

10 \* Correspondence to: [Mark.Stenglein@colostate.edu](mailto:Mark.Stenglein@colostate.edu)

11  
12 **Abstract**

13 Partitiviruses are segmented, multipartite dsRNA viruses that until recently were only known to  
14 infect fungi, plants, and protozoans. Metagenomic surveys have revealed that partitivirus-like  
15 sequences are also commonly associated with arthropods. One arthropod-associated partitivirus,  
16 galbut virus, is extraordinarily common in wild populations of *Drosophila melanogaster* fruit  
17 flies. To begin to understand the processes that underlie this virus's high global prevalence, we  
18 established colonies of wild-caught infected flies. Infection remained at stably high levels over  
19 three years, with between 63-100% of individual flies infected. Galbut virus infects fly cells and  
20 replicates in tissues throughout infected adults, including reproductive tissues and the gut  
21 epithelium. We detected no evidence of horizontal transmission via ingestion but vertical  
22 transmission from either infected females or infected males was ~100% efficient. Vertical  
23 transmission of a related partitivirus, verdadero virus, that we discovered in a laboratory colony  
24 of *Aedes aegypti* mosquitoes was similarly efficient. This suggests that efficient biparental  
25 vertical transmission may be a feature of at least a subset of insect-infecting partitiviruses. To  
26 study the impact of galbut virus infection free from the confounding effect of other viruses, we  
27 generated an inbred line of flies with galbut virus as the only detectable virus infection. We were  
28 able to transmit infection experimentally via microinjection of homogenate from these galbut-  
29 only flies. This sets the stage for experiments to understand the biological impact and possible  
30 utility of partitiviruses infecting important model organisms and disease vectors.

31  
32  
33 **Keywords:**

34 *Drosophila melanogaster*, *Aedes aegypti*, galbut virus, verdadero virus, partitivirus, arthropod,  
35 vertical transmission, metagenomics, virus discovery, virome.

36

### 37 **Importance**

38

39 Galbut virus is a recently discovered partitivirus that is extraordinarily common in wild  
40 populations of the model organism *Drosophila melanogaster*. Like most viruses discovered  
41 through metagenomics, most of the basic biological questions about this virus remain  
42 unanswered. We found that galbut virus, along with a closely related partitivirus found in *Aedes*  
43 *aegypti* mosquitoes, is transmitted from infected females or males to offspring with ~100%  
44 efficiency and can be maintained in laboratory colonies over years. This represents one of the  
45 most efficient means of virus transmission described, and likely underlies the successful spread  
46 of these viruses through insect populations. We created *Drosophila* lines that contained galbut  
47 virus as the only virus infection and showed that these flies can be used as a source for  
48 experimental infections. This provides insight into how arthropod-infecting partitiviruses may be  
49 maintained in nature and sets the stage for exploration of their biology and potential utility.

50

### 51 **Introduction**

52

53 Metagenomic surveys of wild organisms have revealed a breathtaking abundance and diversity  
54 of viruses (1–10). Some recent studies have described hundreds or thousands of new virus or  
55 virus-like sequences (1, 2, 4, 10). These have contributed substantially to our understanding of  
56 virus evolution and genome structure, have expanded the known host range of some virus types,  
57 and have led to the establishment of entirely new families of viruses (11).

58

59 The explosion of virus discovery from metagenomics is an important advance in virology, but  
60 questions remain about the biological impact of these viruses. Virus sequences can often not  
61 even be confidently assigned to a particular host, since many metagenomic datasets derive from  
62 intact organisms (holobionts) or from pools of organisms. A virus sequence could therefore  
63 represent infection of microbiota of the targeted organism. For example, Webster *et al.* described  
64 a variety of novel virus-like sequences associated with wild *Drosophila* fruit flies (12). A

65 subsequent study on one of these viruses, Twyford virus/Entomophthovirus, revealed that it was  
66 in fact a virus of a fungal parasite of flies (13).

67

68 Like many groups of RNA viruses, the partitiviruses (family *Partitiviridae*) have undergone a  
69 recent expansion via metagenomics (2, 12, 14–18). Partitiviruses were previously only known to  
70 infect plants, fungi, and protozoa, and what is known about these viruses is from studies in these  
71 hosts (19–24). Partitiviruses genomes are composed of two or more segments of double stranded  
72 (ds) RNA. The particles of these viruses are non-enveloped and multipartite: individual particles  
73 contain a single segment. Although infections are persistent and generally not associated with  
74 clear phenotypic differences, partitivirus infection can alter hosts in measurable ways.

75 Partitivirus RNA levels were correlated with increased fecundity of *Cryptosporidium parvum*  
76 parasites (25). Some partitiviruses of fungal pathogens confer hypovirulence to their hosts (26–  
77 29). A partitivirus of jalapeño pepper plants made infected plants less attractive to aphids (30).

78

79 We had previously observed partitivirus-like sequences in wild-caught *Anopheles gambiae*  
80 mosquitoes from Liberia, Senegal, and Burkina Faso (14). Partitivirus-like sequences have also  
81 been identified in a variety of other types of mosquitoes (8, 14, 17, 18, 31). At the time we  
82 identified the partitivirus-like sequences in *Anopheles* mosquitoes, among the most closely  
83 related sequences were those of galbut virus, a partitivirus-like sequence that had first been  
84 identified in *Drosophila melanogaster* fruit flies (12). Galbut virus was found to be literally  
85 ubiquitous in sampled populations of *D. melanogaster* and present in related species in the  
86 melanogaster group (12, 16, 32, 33). Although small RNA profiles suggested that galbut virus  
87 legitimately infected fly cells, it was not clear whether this was indeed the case. Recognizing this  
88 uncertainty, Webster et al named galbut after the Lithuanian word galbūt, meaning maybe (12).

89

90 We therefore undertook studies to better understand the biology of partitiviruses that were  
91 common constituents of the viromes of important model organisms and disease vectors. We  
92 established colonies of wild-caught galbut virus infected *D. melanogaster*. We also discovered  
93 that a laboratory colony of *Aedes aegypti* mosquitoes harbored a pre-existing infection of a  
94 related partitivirus, which we named verdadero virus. We confirmed infection in *Drosophila*

95 cells, quantified efficiency of horizontal and vertical transmission, isolated galbut virus through  
96 inbreeding, and established a system for experimental infection by microinjection.

97

98 **Materials and Methods:**

99

100 **Drosophila Collections.** Wild *Drosophila* were collected in Fort Collins, Colorado, USA, from a  
101 backyard compost bin. Subsets of flies were moved to rearing bottles for colony establishment or  
102 stored at -80°C. Laboratory reared *D. melanogaster* strain w<sup>1118</sup> were provided by Dr. Susan  
103 Tsunoda. Additional stocks of flies from the Drosophila Genetic Reference Panel (DGRP; strains  
104 360, 399, and 517) were obtained via the Bloomington Drosophila Stock Center (34).

105

106 **Arthropod Maintenance and Rearing.** Both wild-derived and laboratory-derived *Drosophila*  
107 were reared at 25°C on the Bloomington Drosophila Stock Center Cornmeal *Drosophila* medium  
108 (<https://bdsc.indiana.edu/information/recipes/bloomfood.html>). *Drosophila* stocks were moved  
109 to new bottles every 2 weeks.

110

111 *Aedes aegypti* strain Poza Rica (partitivirus infected) (35) and strains New Orleans and Vergel  
112 (partitivirus uninfected) (36) were used for vertical transmission experiments. Mosquitoes were  
113 reared as previously described (37).

114

115 **Vertical and Horizontal Transmission Experiments.** To quantify vertical transmission of  
116 galbut virus, virgin male and female flies were crossed. Infected wild-caught colonized flies  
117 (colony FoCo-17) and uninfected flies (strain w<sup>1118</sup>) were used for experiments. Individual  
118 mating pairs were maintained in the same bottle with an apple agar egg plate and yeast paste (1:1  
119 yeast and water) to promote egg laying. Egg plates were removed daily and eggs collected. Eggs  
120 were placed in a 50% bleach solution for 2 min to remove the outer chorion layer, after which  
121 they were immediately transferred to clean ddH<sub>2</sub>O to remove residual bleach. Bleached eggs  
122 were then placed either in vials containing media either together (experiment 1) or as individuals  
123 (experiment 2), allowing offspring to rear to adulthood. FoCo-17 parents from which the eggs  
124 were derived were tested via quantitative reverse transcription polymerase chain reaction (qRT-  
125 PCR) for galbut virus, and if positive, 2-5 day old offspring were collected and also tested via

126 qRT-PCR. Primer sequences were: galbut virus: CCGTGAAGCAAGGAATCAAT,  
127 TGCCGATTTCTGCTTTT; RpL-32: TGCTAAGCTGTCGCACAAATGG,  
128 TCGCCTGTTCGATCCGTAAC. Crosses consisted of either a FoCo-17 female and w<sup>1118</sup> male  
129 (maternal transmission) or w<sup>1118</sup> female and FoCo-17 male (paternal transmission). Exact  
130 binomial 95% confidence intervals were calculated with the binom R package.

131  
132 For vertical transmission of verdadero virus, virgin male and female *Aedes aegypti* were crossed.  
133 Verdadero-infected mosquitoes from the Poza Rica colony were crossed with the uninfected  
134 New Orleans and Vergel strains. Previous qRT-PCR screening showed that 100% of the males  
135 and females of the Poza Rica colony were infected by verdadero virus, while verdadero infection  
136 was undetectable in the other colonies. Primer sequences were: verdadero virus:  
137 ATATGGGTCGTGTCGAAAGC, CACCCCGAAATTTCTCAA. Groups of 30 male and 30  
138 female mosquitoes were placed together for 2 days to allow mating. After this period, female  
139 mosquitoes were blood fed with defibrinated calf blood (Colorado Serum Company, Denver,  
140 USA) for egg production, and eggs were collected 3 days post blood meal. Eggs were then reared  
141 to adulthood and adults collected 0-2 days post eclosion. These offspring were then tested for  
142 virus presence via qRT-PCR. Groups consisted of either infected females and uninfected males  
143 (maternal transmission) or infected males and uninfected females (paternal transmission). Exact  
144 (Clopper-Pearson) 95% binomial confidence intervals were calculated with the binom R package  
145 (38).

146  
147 Horizontal transmission of galbut virus was measured by allowing uninfected (DGRP 399 and  
148 517) flies to ingest homogenate from FoCo-17 line #30 galbut virus infected flies. This  
149 homogenate was infectious by microinjection (see below). Homogenate was created by grinding  
150 200 *Drosophila* with a Dounce homogenizer in 150 µL 1X Phosphate-buffered solution (PBS;  
151 137 mM NaCl, 2.7 mM KCl, 10 mM Na<sub>2</sub>HPO<sub>4</sub>, 1.8 mM KH<sub>2</sub>PO<sub>4</sub>). To remove cellular debris,  
152 homogenate was spun down at 12,000xg for 1 min, and supernatant was transferred to a new  
153 vial. This was repeated for a total of three spins. The 150 µL of homogenate was mixed with 850  
154 µL of 5% sucrose and 5% yeast extract in ddH<sub>2</sub>O. As a negative control, a second food solution  
155 was prepared with sterile 1X PBS instead of homogenate. A single drop of blue food coloring  
156 was added to the solution to allow visualization of ingestion. Capillary tubes were filled with 7

157  $\mu$ L of food solution. Capillary feeder systems were set up following the protocol by Zer et al.  
158 (39). Two exceptions to this setup included the lack of piercing holes in the vial and wetting the  
159 cap. 3-5 day old virgin female and male flies were starved for 9 hours, after which they were  
160 placed in the capillary feeding vials containing either virus inoculated food or control inoculated  
161 food. Flies were allowed to feed for 17 hours. Flies that had a blue abdomen were moved to vials  
162 containing standard fly medium. Flies were moved to fresh media as needed until 21 days post  
163 inoculation, at which point they were frozen at -80°C. Flies were tested for virus presence via  
164 qRT-PCR as above.

165

166 **RNA Extractions.** We developed and validated a high throughput, magnetic bead based method  
167 to extract RNA from flies and mosquitoes. Individual flies or mosquitoes were added to a 96-  
168 well round bottom plate (Corning catalog #3958) with 1 metal BB ball and 100  $\mu$ L lysis buffer  
169 (5M guanidine thiocyanate, 0.1M Tris-HCl, pH 7.5, 0.01M Na<sub>2</sub>EDTA, pH 8.0, and 6.25mL 2-  
170 mercaptoethanol ( $\beta$ ME)) and homogenized at 30Hz for 3 min in a TissueLyzer II (Qiagen). 60  
171  $\mu$ L of 100% isopropanol was added to each tube and incubated for 1 min. To remove cellular  
172 debris, samples were spun down in a centrifuge at 1,200xg for 1 min. Supernatant was removed  
173 and added and mixed well by pipetting to 96-well plates containing 90  $\mu$ L RNA magnetic beads  
174 (1 mM trisodium citrate, 2.5 M NaCl, 20% PEG 8000, 0.05% Tween 20, pH 6.4, and 1 mL Sera-  
175 Mag SpeedBeads (Thermo Scientific) in a total volume of 50 mL) and 10  $\mu$ L enhancer  
176 (Proteinase K 200ug/mL, 20% glycerol, and 0.5% SDS). Samples were incubated in beads for 5-  
177 10 minutes. Using magnetic racks, beads were separated from the supernatant by incubation for  
178 2-3 min, and the supernatant was removed. Tubes were removed from the rack, and the beads  
179 were washed with 150  $\mu$ L wash buffer 1 (20% ethanol, 900 mM guanidine thiocyanate, and  
180 10mM Tris-HCl, pH 7.5) for 2 min. Beads were pelleted again using the magnetic rack and  
181 supernatant removed. Beads were then washed with 150  $\mu$ L wash buffer 2 (WB2; 1X Tris-EDTA  
182 buffer (10 mM Tris HCl, 1.0 mM EDTA) pH 8.0, and 80% ethanol) for 2 min. Supernatant was  
183 removed. Following this step, beads were resuspended in 30  $\mu$ L of a DNase I mixture, consisting  
184 of 3  $\mu$ L DNase I (NEB), 3  $\mu$ L 10xDNase I Buffer (NEB), and 24  $\mu$ L WB2. Beads were incubated  
185 in this mixture for 30 minutes at room temperature. Following incubation, tubes were removed  
186 from the magnetic rack and resuspended by pipetting with 100  $\mu$ L binding buffer (5M Gu-HCl,  
187 and 30% isopropanol), and incubated for 5 min. Beads were added to magnetic rack and

188 supernatant removed as previously described. Beads were then washed twice with WB2 as  
189 previously described. Following the second wash, tubes were left on the magnetic rack and beads  
190 air dried for 3 min. To elute RNA from the beads, tubes were removed from the magnetic rack,  
191 beads resuspended by pipetting with 25  $\mu$ L of nuclease-free H<sub>2</sub>O, and incubated for 5 min at  
192 room temperature. Tubes were placed back on the magnetic rack, and 23  $\mu$ L of the supernatant,  
193 containing the extracted RNA, removed. RNA was quantified fluorometrically using a Qubit  
194 instrument (Thermo Fisher) and stored at -80°C.  
195

196 **cDNA Synthesis and Virus Screening.** *Drosophila* were screened for various viruses, including  
197 galbut virus, via qRT-PCR. First, RNA was subjected to cDNA synthesis: 5.5  $\mu$ L of RNA was  
198 added to 200 pmol of random 15-mer oligonucleotides and incubated for 5 min at 65 °C, then set  
199 on ice for 1 min. A RT mixture containing the following was added (10  $\mu$ L reaction volume): 1 $\times$   
200 SuperScript III (SSIII) FS reaction buffer (Thermo Fisher), 5 mM dithiothreitol (Invitrogen), 1  
201 mM each deoxynucleotide triphosphates (dNTPs; NEB), and 100 U SSIII reverse transcriptase  
202 enzyme (Thermo Fisher), then incubated at 42 °C for 30 min, 50 °C for 30 min, then at 70 °C for  
203 15 min. 90  $\mu$ L of nuclease-free H<sub>2</sub>O was added to dilute the cDNA to a final volume of 100  $\mu$ L.  
204

205 Following cDNA synthesis, qPCR reactions were set up using Luna Universal qPCR Master Mix  
206 (NEB) following the manufacturer's protocol. The qPCR reaction was performed on LightCycler  
207 480 (Roche) with the following protocol: 95°C for 3 min, 40 cycles of 95°C for 10s, then 60°C  
208 for 45s, and then followed by a melting curve analysis of 95°C for 5s, 65°C for 1 min, and an  
209 acquisition starting from 97°C with a ramp rate of 0.11 °C/s and 5 acquisitions per degree. Some  
210 qPCR products were validated by running on a 2% agarose gel and Sanger sequencing. Gels  
211 were stained with ethidium bromide and imaged on a Gel Doc (Bio-Rad). Primer sequences  
212 were: vera virus: CGTCGGGTGTTAGAGGTA, TAACGATGGTGTCCAAGGT; La Jolla  
213 virus: ACCGTATGGCGTCTACTTC, AAAGTATCAGCAGCGCAAT; Thika virus:  
214 CAGCAGGTCCCTTGCTAAAG, TGGTCAGCATATGACCGAAA; Nora virus:  
215 GCACCTGGTCGATTGAATCC, CGTTCAGGGCATAGTCAAGC.

216  
217 **Shotgun Metagenomic Library Preparation.** Library preparation for the *Drosophila* samples  
218 utilized a KAPA HyperPrep kit following the manufacturer's protocol. All libraries were

219 sequenced on an Illumina NextSeq 500 instrument and NextSeq 500 Mid Output v2 Kits  
220 (Illumina). w<sup>1118</sup> *Drosophila* samples were made with a final target library size of 380-430bp and  
221 were sequenced using paired-end 2x150bp. FoCo-17 and FoCo-18 flies were sequenced using  
222 single-end 1x150bp reads.

223

224 **Sequence and Data Analysis.** Metagenomic sequencing datasets were processed to  
225 taxonomically assign viral reads as previously described (40). Species were assigned to  
226 individual flies or pools of flies using a competitive mapping approach. A collection of  
227 cytochrome C oxidase subunit 1 (COX1) sequences were collected and curated. Sequences were  
228 retrieved from the NCBI nucleotide database by BLASTN searching using as a query the *D.*  
229 *melanogaster* COX1 sequence (NC\_024511.2:1474-3009) with an e-value cutoff of 10<sup>-12</sup> (41).  
230 Sequences longer than 1400 bp were retained and collapsed into a set of representative COX1  
231 sequences using cd-hit-est and a similarity threshold of 97% (-c 0.97) (42). These operations  
232 produced a set of 233 representative COX1 sequences. Quality and adapter trimmed reads from  
233 sequencing datasets were aligned to these sequences using bowtie2 with parameters --local and --  
234 score-min C,120,1, and the number of reads mapping to the various COX1 sequences were  
235 tabulated (43). Code and the set of representative sequences available at  
236 [https://github.com/scross92/partitivirus\\_transmission\\_paper](https://github.com/scross92/partitivirus_transmission_paper). All additional data analysis scripts  
237 can be found at this location as well. All sequencing datasets have been deposited in the NCBI  
238 Sequence Read Archive (SRA) under the BioProject accession PRJNA635623. Assembled  
239 genome sequences are deposited in GenBank under accessions <GenBank accessions pending>.

240

241 **Phylogenetic analysis.** Sequences similar to the predicted galbut virus RNA dependent RNA  
242 polymerase were retrieved from the NCBI protein database using blastp with an E-value cutoff  
243 of 10<sup>-30</sup>. Sequences longer than 400 amino acids were retained and collapsed into a set of  
244 representative sequences using cd-hit and a similarity threshold of 95% (-c 0.95). Sequences  
245 were aligned using the MAFFT aligner using the --auto setting (44). Multiple sequence  
246 alignments were trimmed with the trimAL tool using setting -automated1 to remove  
247 uninformative columns (45). The highest scoring model for tree inference (LG+I+G4) was  
248 selected using the modeltest-ng software (46). Maximum likelihood trees were inferred using  
249 raxml-ng and bootstraps were allowed to run until convergence (47). Trees were visualized using

250 the ggtree R package (48). Code and alignments are available at the above mentioned github  
251 repository.

252

253 **Antibody creation.** Polyclonal rabbit sera targeting the putative galbut virus capsid protein  
254 (encoded on RNA 2) was generated by Pacific Immunology (Ramona, California) using the  
255 synthetic peptide Cys-QPRRMIRDKPSLREEAHES.

256

257 **Western blotting.** Whole flies were homogenized in a cold protein extraction buffer (49)  
258 containing 20 mM HEPES (pH 7.5), 100 mM KCl, 5% glycerol, 10 mM EDTA, 0.1% Triton X-  
259 100, 1 mM DTT and Complete protease inhibitor cocktail (Sigma). Samples were spun for 5  
260 minutes at 12,000 x g and the supernatant was retained. The protein samples were quantified  
261 using the BCA Protein Assay Kit (Thermo Fisher) and diluted 1:10. 15 µg of protein were  
262 suspended in NuPAGE LDS Sample Buffer (4X) (Thermo Fisher), heated at 70°C for 10  
263 minutes, then loaded onto a NuPAGE 4-12% Bis-Tris, 1.0mm x 12 well gel (Thermo Fisher).  
264 Protein samples were separated via SDS-PAGE and transferred onto a 0.45 µm nitrocellulose  
265 membrane (BioRad). The membrane was incubated with anti galbut virus capsid rabbit serum at  
266 a dilution of 1:100 and pre-immune rabbit serum at a dilution of 1:100. Primary antibody was  
267 detected using a fluorescently-labeled goat anti-rabbit secondary antibody (Li-Cor). Blots were  
268 imaged using an Odyssey scanner (Li-Cor).

269

270 **Immunofluorescence Assay.** Slides were prepared according to Stenglein et al. (50). Whole  
271 adult *D. melanogaster* tissue sections were prepared for immunofluorescence assays. Adult  
272 *Drosophila* were collected, knocked down at 4°C, and legs and wings were removed. Flies were  
273 placed in 4% paraformaldehyde in 1X PBS and fixed for 24 hours at 4°C. Following fixation,  
274 *Drosophila* were removed from paraformaldehyde and stored in 1X PBS. Fixed *Drosophila* were  
275 sent to Colorado State University Veterinary Diagnostic Laboratories' histology lab for paraffin  
276 embedding and sectioning. Sections were deparaffinized in xylene, rehydrated in graded ethanol,  
277 placed in 1 mM EDTA at 99°C for 20 min, and rinsed with water. Sections were washed 2 x 5  
278 min in 1X Tris-buffered saline (TBS; 50 mM Tris-Cl pH 7.5, 150 mM NaCl) + 0.025% Tween-  
279 20, permeabilized in 1X PBS + 0.1% Triton X-100 for 10 min, and washed 3 x 5 min in TBS +  
280 0.05% Tween-20 (TBS-T). Slides were then blocked with 1X TBS + 1% BSA for 20 min,

281 incubated for 30 min with anti-galbut rabbit serum at a dilution of 1:500 and pre-immune rabbit  
282 serum at a dilution of 1:500, washed in TBS-T, incubated for 30 min with Alexa-Fluor 488-  
283 conjugated goat anti-rabbit secondary antibody, and washed again. The second wash included  
284 0.5 µg/ml Hoechst 33342. Sections were mounted in Vectashield, coverslipped and sealed with  
285 clear nail polish, then imaged with an Olympus IX81 Inverted Confocal Laser Scanning  
286 Microscope.

287

288 **Intrathoracic Microinjections.** 100 adult flies from the galbut-only line (FoCo17 line #30)  
289 were placed in 200 µL 1X PBS and homogenized by hand with a 1.5 mL homogenizer.  
290 Homogenate was spun down at 12,000xg in a microcentrifuge for 1 min to remove cellular  
291 debris. This was performed three times to remove all cellular debris. Homogenate was filtered at  
292 0.22 µM filter to remove any cellular material. 50 nL of the homogenate was injected into flies  
293 intrathoracically using a Drummond Nanoject II.

294

## 295 **Results:**

296

### 297 **Galbut virus in local wild *Drosophila melanogaster* populations and establishment of 298 colonies of galbut virus infected flies**

299

300 Webster et al described galbut virus as an apparently ubiquitous infection of wild *D.*  
301 *melanogaster*. Motivated to better understand the biological impact of galbut virus on infected  
302 flies and the dynamics that produced this high global prevalence, we sampled local fly  
303 populations and established colonies of wild-caught infected flies. We collected flies from Fort  
304 Collins, Colorado and performed metagenomic sequencing to characterize their viromes. Local  
305 populations of *D. melanogaster* were as expected infected with galbut virus (Fig. 1). We  
306 collected flies from the same backyard compost bin over 3 years and found 94%, 84%, and 67%  
307 of individual flies infected in 2017, 2018, and 2019 (Fig. 1A). We used subsets of collected flies  
308 to establish colonies, which we called FoCo-17, -18, and -19.

309

310 We first determined whether colonized flies would retain galbut virus infection, as a previous  
311 analysis of laboratory-reared *Drosophila* transcriptomic datasets showed a general absence of

312 galbut virus (12). We tested galbut virus stability in the FoCo-17 population over four  
313 generations and then again after 2 years in the laboratory. We found that the parental generation  
314 had a prevalence of 93% while F1-F4 offspring maintained a prevalence between 63% and 92%  
315 (**Fig. 1B**). After two years, 66 out of 66 sampled FoCo-17 flies were infected (**Fig. 1B**). The  
316 FoCo-18 colony appears to have a similarly high prevalence of galbut virus infection months  
317 after establishment (**Fig. 1C**).

318

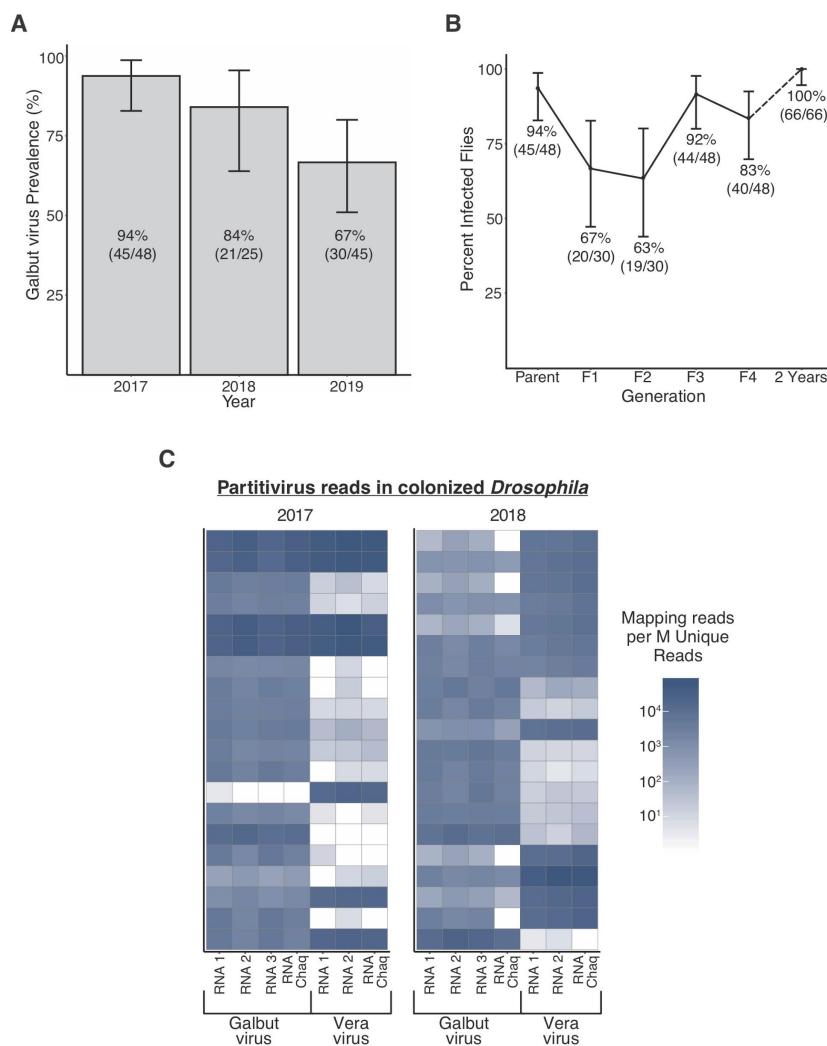
319

320 **Identification of additional partitiviruses in flies and mosquitoes**

321

322 We identified the sequence of a second partitivirus in our metagenomic datasets from wild flies  
323 and from flies in our FoCo-17 and FoCo-18 colonies. We named this virus vera virus (vera  
324 means true in Esperanto). The vera virus genome consisted of an RNA encoding an RdRp (RNA  
325 #1), an RNA encoding a putative capsid protein (RNA #2), and a chaq virus-like RNA segment  
326 (**Fig. 2**). We did not identify any contigs with detectable sequence similarity to the predicted  
327 protein encoded on galbut virus RNA 3, nor contigs with similar occurrence patterns and  
328 coverage levels as vera virus RNAs 1 and 2. Like galbut virus, vera virus was detectable in wild-  
329 caught flies, and remained as a stable persistent infection in colonized populations over multiple  
330 years (**Fig. 1C**).

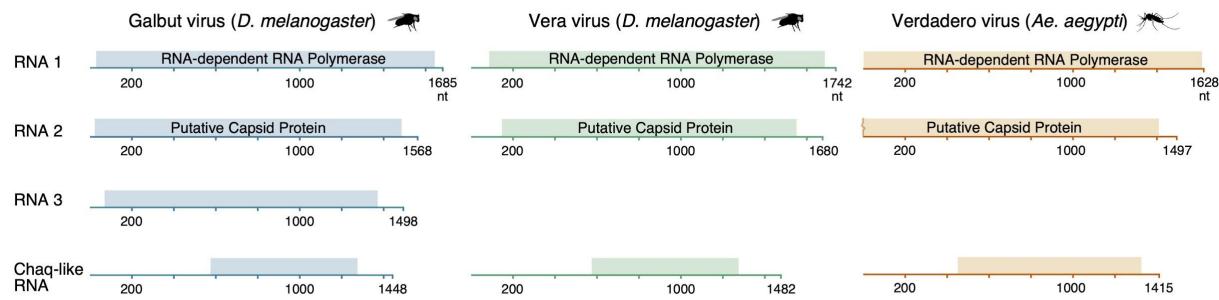
331


332 We also serendipitously identified another partitivirus as a persistent infection of a colony of  
333 *Aedes aegypti* mosquitoes originally derived from Poza Rica, Mexico. We named this virus  
334 verdadero virus (verdadero = true in Spanish, **Fig. 2**). The verdadero virus genome consisted of  
335 an RNA encoding an RdRp (RNA #1), an RNA encoding a putative capsid protein (RNA #2),  
336 and a chaq virus-like RNA segment. As was the case for vera virus, we could not identify a  
337 segment with similarity to RNA #3 of galbut virus. We tested 48 (24 male, 24 female) adult  
338 mosquitoes in the colony and 100% of these were positive for verdadero virus RNA by qRT-  
339 PCR [confidence interval 92.6-100%]. Other  *Ae. aegypti* colonies housed at Colorado State  
340 University (strains New Orleans and Vergel) were negative for verdadero virus by qRT-PCR.

341

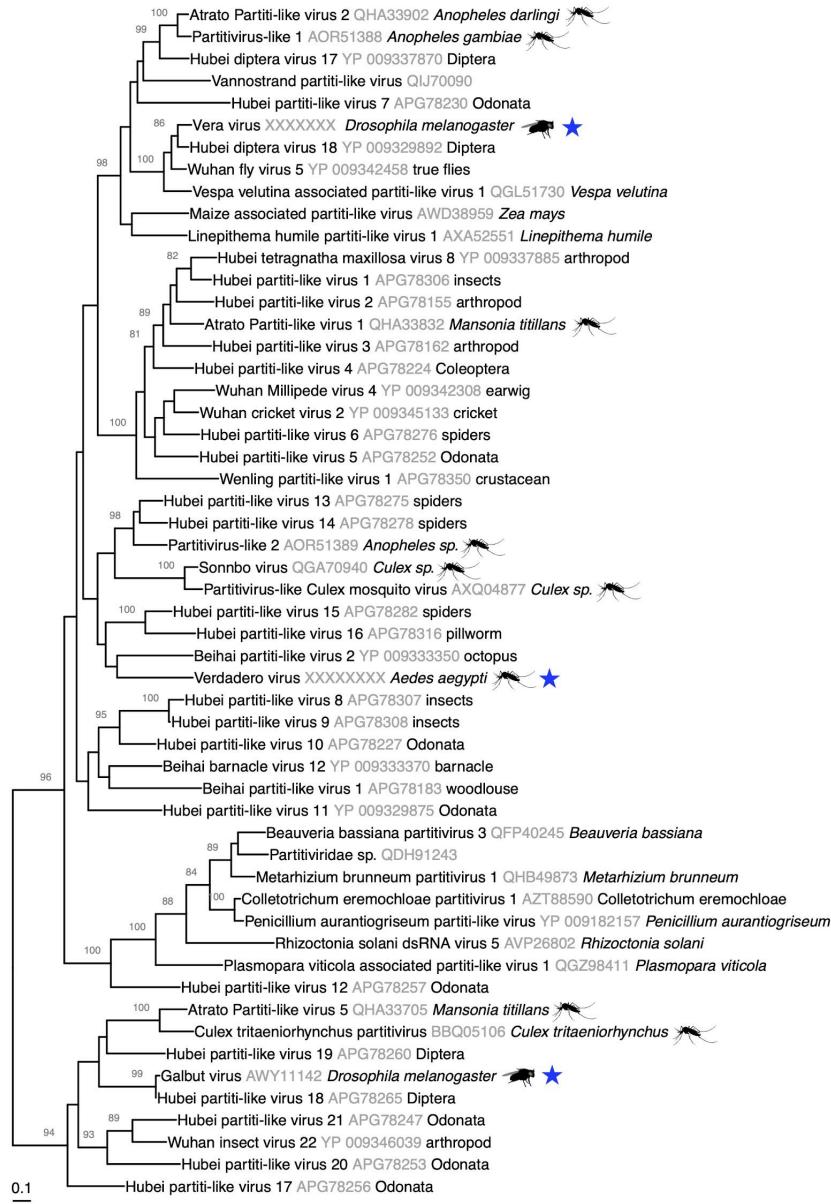
342 We created maximum likelihood phylogenies using these new partitivirus sequences and  
343 previously described similar sequences (Fig. 3). This tree includes a number of sequences from  
344 metagenomic surveys of invertebrates and some fungi-derived sequences. The invertebrate-  
345 derived sequences did not form a well-supported monophyletic cluster. In some cases, sequences  
346 from related hosts clustered together. For instance, Atrato Partiti-like virus 2 and Partitivirus-like  
347 1 from *An. darlingi* and *An. gambiae* formed a well-supported group. But overall there was a  
348 notable lack of concordance by host. Mosquito-derived sequences were spread throughout the  
349 tree. Galbut virus and vera virus, both from the same populations of *Drosophila melanogaster*,  
350 were distantly placed on the tree.

351


352



353


354 **Figure 1: Galbut virus is found in wild populations consistently and can be maintained in**  
355 **colonized populations of *Drosophila melanogaster* over multiple years. A)** Prevalence of  
356 galbut virus in wild-caught flies from the same backyard compost bin in Fort Collins, Colorado  
357 over 3 years. Numbers of flies positive by qRT-PCR and number of flies sampled are indicated.  
358 Error bars indicate 95% confidence intervals. B) Galbut virus was maintained for at least two  
359 years in colonized populations of wild *D. melanogaster* collected in Fort Collins, CO, USA in  
360 2017 (FoCo-17). C) Metagenomic sequencing of individual *D. melanogaster* flies from colonies  
361 established in 2017 and 2018 shows prevalence and relative loads of galbut virus, vera virus, and  
362 their associated chq and chq-like segments. Each row represents an individual fly. Reads are  
363 normalized as mapping reads per million unique reads.

364



365

366 **Figure 2: Genome structure of galbut virus, vera virus, and verdadero virus.** Depictions of  
367 the genome structures of these viruses with predicted open reading frames indicated. RNA 1 of  
368 these viruses is predicted to encode RNA dependent RNA polymerases and RNA 2 a putative  
369 capsid protein. RNA 3 and the chaq virus-like segments are predicted to encode proteins of  
370 unknown function. The open reading frame on verdadero virus RNA 2 extends beyond the  
371 partial sequence that we recovered.



372

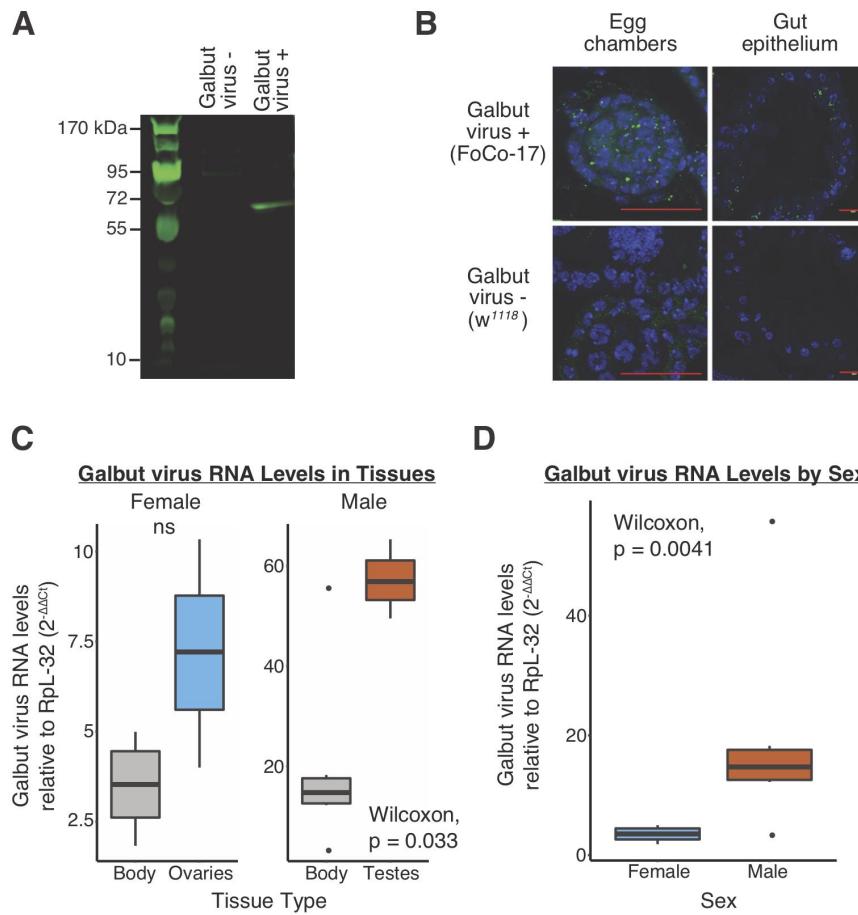
373 **Figure 3: Phylogenetic tree of partitivirus-like sequences.** Unrooted maximum likelihood  
374 phylogenetic tree of partitivirus-like RdRp sequences related to those described here (galbut  
375 virus, vera virus, and verdadero virus; marked with blue star). Sequences from mosquitoes and  
376 *Drosophila* are indicated with images. The host from each sequence's metadata in NCBI is noted  
377 after the accession number. In many cases, exact hosts are uncertain because sequences derive  
378 from pools of different organisms.

379

380 **Galbut virus replicates in *Drosophila* cells**

381

382 Two lines of evidence suggested that galbut virus actually infects flies. First, galbut virus derived  
383 small RNA profiles matched those expected for a virus that replicated in fly cells (12). Second,  
384 galbut virus clusters phylogenetically with a large group of partitivirus-like sequences from  
385 arthropod samples (**Fig. 3**). Nevertheless, direct evidence of galbut virus replication in fly cells  
386 had not been published, and it remained possible that galbut virus sequences actually derived  
387 from another microbial symbiont or were dietary in origin.


388

389 We therefore raised an antibody against the galbut virus putative capsid protein encoded on RNA  
390 segment 2. Laboratory strain w<sup>1118</sup> flies tested negative for galbut virus RNA both by qRT-PCR  
391 and subsequent metagenomic sequencing. Extracts from FoCo-17 and w<sup>1118</sup> flies were subjected  
392 to western blotting to confirm the specificity of the antibody. A band of the expected size, ~63  
393 KDa, was present in galbut-infected FoCo-17 flies but not in uninfected w<sup>1118</sup> flies (**Fig. 4A**). We  
394 used immunofluorescence microscopy using this antibody to identify sites of virus replication  
395 within sections of formalin fixed paraffin-embedded adult flies. We observed foci of staining  
396 within cells and tissues throughout adult male and female flies. Locations of infection included  
397 gut tissues (foregut, midgut, hindgut) and in egg chambers. These fluorescent foci were not  
398 evident in lab-reared, galbut virus uninfected w<sup>1118</sup> flies (**Fig. 4B**).

399

400 Both ovaries and testes were positive for galbut virus RNA by qRT-PCR (**Fig. 4C**). In female  
401 flies, galbut virus RNA levels were higher in ovaries than RNA levels in whole bodies but not  
402 significantly so. Galbut virus RNA levels in testes were on average 3.9-fold higher than in whole  
403 male bodies (**Fig. 4C**; higher, Wilcoxon test, bonferroni adj., p = 0.033). When comparing galbut  
404 virus RNA levels in bodies by sex, we found RNA levels to be significantly higher (4.2-fold  
405 higher) in males than females (**Fig. 4D**; higher, Wilcoxon test, bonferroni adj., p = 0.0041). In  
406 general, galbut virus RNA levels were higher than those of ribosomal protein L32 (RpL32)  
407 mRNA, which is categorized as having “extremely high expression” in the modEncode database  
408 (51)

409



410

411 **Figure 4: Screening of adult *Drosophila melanogaster* by immunofluorescence assay (IFA)**  
412 **and qPCR indicate galbut virus infects fly tissues.** A) Galbut virus antibody specificity was  
413 confirmed by detection of a single band of the expected size of ~63kDa in infected flies (FoCo-  
414 17). B) Screening of galbut virus in adult FoCo-17 *D. melanogaster* by IFA showed foci of viral  
415 protein in cells in various tissues including the egg chambers and gut epithelium. Green color  
416 indicates staining by antibody raised against the putative galbut virus capsid protein; blue color  
417 indicates staining by Hoescht 33342 (DNA) C) Galbut virus RNA levels relative to the  
418 housekeeping gene RpL-32 ( $2^{-\Delta\Delta C_t}$  method) in dissected ovaries and testes as compared to adult  
419 bodies. Boxplots depict median values from 7 whole bodies of each sex and 3 pools per sex  
420 tissue type (10 testes or ovaries per pool). (Wilcoxon test, bonferroni adj., p = 0.033; ns: not  
421 significant). D) Galbut virus RNA levels relative to the housekeeping gene RpL-32 ( $2^{-\Delta\Delta C_t}$   
422 method) in adult bodies compared by sex. Boxplots depict median values from 7 adult flies of  
423 each sex. (Wilcoxon test, bonferroni adj.; p = 0.0041).

424

425 **Galbut virus exhibits efficient biparental vertical transmission**

426

427 We set out to determine what modes of transmission could contribute to galbut virus's  
428 exceptional high global prevalence. Having visualized viral protein in the egg chambers (**Fig.**  
429 **4B**) and because dissected testes and ovaries tested positive for galbut virus by qRT-PCR (**Fig.**  
430 **4C**), we first evaluated maternal and paternal vertical transmission. We performed several  
431 experiments to quantify transmission efficiency. For all experiments, vertical transmission  
432 efficiency was quantified by testing for galbut virus RNA in adult offspring collected 2-5 days  
433 post eclosion.

434

435 In the first experiment, we set up individual crosses between FoCo-17 infected and  $w^{1118}$   
436 uninfected adults, collected and bleached eggs, and placed eggs together in one vial per cross. Of  
437 the 6 independent maternal crosses (infected female, uninfected male), 34 of the 34 offspring  
438 were positive (100% transmission efficiency, confidence interval 89.7-100%; **Table 1**). Of the 5  
439 independent paternal crosses (uninfected female, infected male), 27 of the 28 offspring tested  
440 positive (~96% transmission efficiency, confidence interval 81.7-99.9%; **Table 1**).

441

442 In the second experiment we separated bleached eggs into individual vials to avoid possible  
443 horizontal transmission between siblings during development. Of the 4 independent maternal  
444 crosses, 44 of 44 offspring tested positive (100% transmission efficiency, confidence interval  
445 92.0-100%; **Table 1**). Of the 2 independent paternal crosses, 18 of 18 offspring tested positive  
446 (100% transmission efficiency, confidence interval 81.5-100%; **Table 1**).

447

448 In the third experiment, to verify that this high efficiency was not an artifact associated with  
449 laboratory-reared flies, we trapped wild female *D. melanogaster*, separated them into individual  
450 bottles, allowed them to lay eggs, and then tested mothers and offspring for galbut virus RNA.  
451 Offspring from 7 independent galbut virus positive females were tested, and we found a vertical  
452 transmission efficiency of 99% (119/120 offspring; confidence interval 95.4-100%; **Table 1**),  
453 indicating that efficient vertical transmission was not only associated with laboratory  
454 environments. We could not discern the infection status of the unknown fathers.

455

456 **No evidence of horizontal transmission by ingestion**

457

458 To quantify galbut virus horizontal transmission (experiment 4), adult female and male flies were  
459 exposed through ingestion of homogenate derived from wild flies. This homogenate was  
460 infectious by microinjection (see below). Homogenate was mixed with a dyed food solution and  
461 placed in capillary feeding tubes. Ingestion was confirmed by visual inspection of fly abdomens.  
462 After feeding, flies were returned to normal food for 21 days. Following this incubation period,  
463 flies were collected and screened via qRT-PCR for galbut virus RNA. Virus levels in  
464 experimental flies were compared to virus loads in flies that were immediately flash frozen after  
465 ingestion of homogenate to establish an upper limit for residual RNA levels in the absence of  
466 viral replication. Although 3 of the 54 injected flies did test positive for galbut virus RNA after  
467 21 days, their  $C_t$  values were on average 4.9 higher (~30 fold less RNA), than  $C_t$  values from  
468 immediately-frozen injected flies. We interpreted that these low level signals were likely derived  
469 from residual injected RNA. Therefore, we detected no evidence of active replication in any of  
470 the 54 flies tested (0% horizontal transmission; confidence interval 0-13.2%). This indicated that  
471 horizontal transmission, at least by ingestion, is unlikely to contribute substantially to  
472 maintenance of galbut virus infection in fly populations.

473

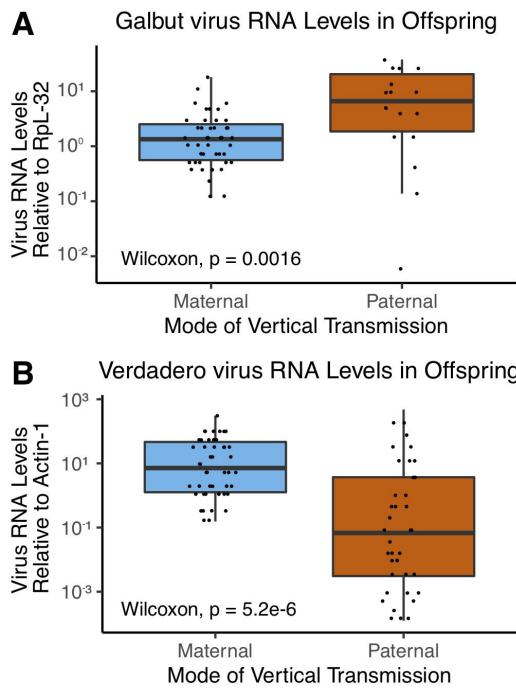
474 **A mosquito partitivirus also exhibits efficient biparental vertical transmission**

475

476 We performed similar experiments to quantify vertical transmission efficiency of verdadero virus  
477 in *Aedes aegypti* by crossing infected female or male mosquitoes from the Poza Rica colony with  
478 uninfected counterparts from the New Orleans and Vergel colonies (experiment 5). Maternally,  
479 verdadero virus was transmitted at 100% efficiency (48/48 offspring, confidence interval 92.6-  
480 100%, **Table 1**) and paternally it was transmitted at 97% efficiency (38/39 offspring, confidence  
481 interval 86.5-99.9%, **Table 1**). This indicated that high vertical transmission efficiency is a  
482 characteristic of multiple dipteran infecting partitiviruses.

483

| Experiment | Transmission | Species                | Type      | Group         | # Crosses | # Screened* | Total Positive | Transmission Efficiency |
|------------|--------------|------------------------|-----------|---------------|-----------|-------------|----------------|-------------------------|
| 1          | Vertical     | <i>D. melanogaster</i> | Maternal  | Female+/Male- | 6         | 34          | 34             | 100% [89.7, 100%]       |
|            |              | <i>D. melanogaster</i> | Paternal  | Female-/Male+ | 5         | 28          | 27             | 100% [81.7, 99.9%]      |
| 2          | Vertical     | <i>D. melanogaster</i> | Maternal  | Female+/Male- | 4         | 44          | 44             | 100% [92.0, 100%]       |
|            |              | <i>D. melanogaster</i> | Paternal  | Female-/Male+ | 2         | 18          | 18             | 100% [81.5, 100%]       |
| 3          | Vertical     | <i>D. melanogaster</i> | Maternal  | Wild Female+  | 7         | 120         | 119            | 99% [95.4, 100%]        |
| 4          | Horizontal   | <i>D. melanogaster</i> | Ingestion | Female        | NA        | 28          | 0              | 0% [0, 12.3%]           |
|            |              | <i>D. melanogaster</i> | Ingestion | Male          | NA        | 26          | 0              | 0% [0, 13.2%]           |
| 5          | Vertical     | <i>Ae. aegypti</i>     | Maternal  | Female+/Male- | 4         | 48          | 48             | 100% [92.6, 100%]       |
|            |              | <i>Ae. aegypti</i>     | Paternal  | Female-/Male+ | 4         | 39          | 38             | 97% [86.5, 99.9%]       |


\*Offspring screened in vertical transmission, exposed adults screened in horizontal transmission

484  
485 **Table 1: *Drosophila melanogaster* and *Aedes aegypti* partitiviruses exhibit efficient**  
486 **biparental vertical transmission.** Transmission efficiencies of vertical (maternal, paternal, and  
487 wild maternal) and horizontal (ingestion) routes. Numbers in brackets represent exact binomial  
488 confidence intervals.

489  
490 **Partitivirus RNA levels in *Drosophila* and mosquito offspring**

491  
492 Although both maternal and paternal transmission were ~100% efficient (Table 1), we were  
493 curious whether the exact route of vertical transmission impacted viral loads (total viral RNA  
494 relative to host reference genes) in offspring. In sigma virus, another biparentally transmitted  
495 virus in *Drosophila*, lower viral levels following paternal transmission lead to decreased paternal  
496 transmission in subsequent generations (52, 53). For galbut virus in *Drosophila*, offspring from  
497 paternal transmission (n=18) had significantly higher galbut virus RNA levels (5-fold median  
498 difference) compared to those infected by maternal transmission (n=44) (Fig. 5A, p = 0.0016).  
499 However, in *Aedes aegypti*, we saw the opposite trend: offspring from maternal transmission had  
500 significantly higher verdadero levels (107-fold median difference) than offspring infected via  
501 paternal transmission (Fig. 5B, p = 5.2x10<sup>-6</sup>). In both flies and mosquitoes, individual offspring  
502 exhibited broad distributions of viral loads that overlapped between sexes. Nevertheless, the  
503 route of vertical transmission impacted average partitivirus loads in offspring, and the direction  
504 of this effect was opposite for these two viruses.

505

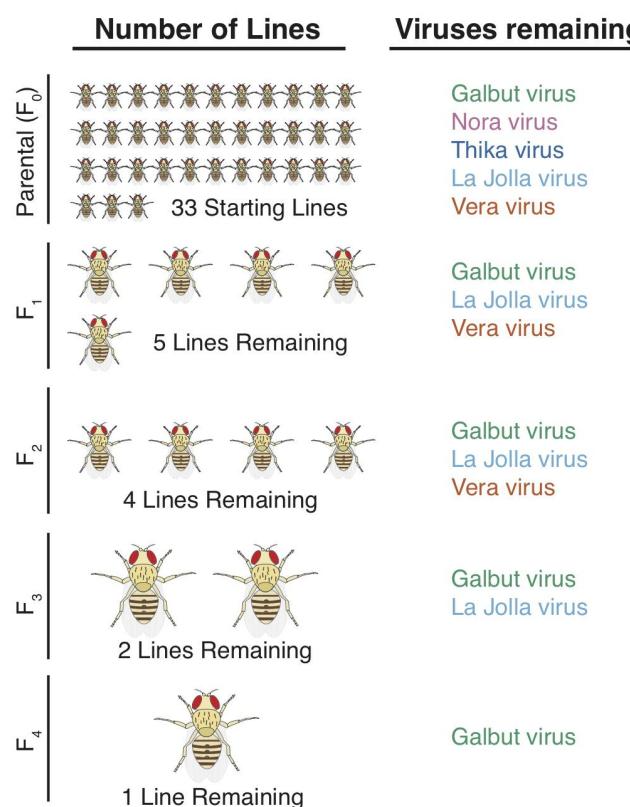


506

507 **Figure 5: Galbut virus and verdadero virus RNA levels in offspring infected via maternal**  
508 **or paternal transmission. A) Galbut virus RNA levels in offspring (maternal n=44; paternal**  
509 **n=18) relative to the housekeeping gene RpL-32 (Wilcoxon test,  $p = 1.6 \times 10^{-3}$ ). B) Verdadero**  
510 **virus RNA levels in offspring (maternal n=48; paternal n=38) relative to the housekeeping gene**  
511 **Actin-1 (Wilcoxon test,  $p = 5.2 \times 10^{-6}$ ).**

512

### 513 Isolation of galbut virus through inbreeding


514

515 A challenge associated with the vast number of novel viruses being discovered by sequencing is  
516 their isolation for further biological characterization (5, 54). We attempted to isolate galbut virus  
517 in cell culture using *Drosophila* S2 cells but detected no evidence of replication. We also  
518 attempted to purify galbut virus particles by ultracentrifugation as described previously for  
519 Kallithea virus, but did not succeed, though this was not an exhaustive effort (55). We therefore  
520 designed a breeding scheme to create inbred fly lines that were only infected with galbut virus  
521 that took advantage of galbut virus's efficient vertical transmission.

522

523 We randomly crossed pairs of virgins from the FoCo-17 population that harbored 5 viruses:  
524 galbut virus, vera virus, La Jolla virus, Nora virus, and Thika virus (12, 56). Eggs from 33

525 independent crosses were collected, bleached and placed in individual vials. This created a  
526 bottleneck to remove horizontally transmitted viruses and those with less efficient vertical  
527 transmission than galbut virus (57). Parents were retrospectively tested by qRT-PCR for all 5  
528 viruses, and if both parents had fewer viruses than the previous generation, sibling offspring  
529 were randomly crossed again, eggs collected and screening repeated. We were able to generate a  
530 line detectable with only galbut virus after 4 generations, which we named FoCo-17 line #30  
531 (**Fig. 6**). Also observed in this breeding scheme was the eventual purge of vera virus, the other  
532 partitivirus we identified in *Drosophila* (**Fig. 1**, **Fig. 2**). This suggested that although galbut virus  
533 and verdadero virus were transmitted efficiently at ~100% (**Table 1**), this efficiency may not be  
534 a universal feature of all arthropod-infecting partitiviruses.



535

536 **Figure 6: Creation of a line of *D. melanogaster* singly infected with galbut virus.** Iterative  
537 inbreeding of *D. melanogaster* coupled to purging of lines that did not contain fewer viruses,  
538 lead to the establishment of a *D. melanogaster* line with galbut virus as the only detectable virus  
539 after four generations. Virus names on the right of the figure indicate the viruses present in any  
540 of the lines remaining at the indicated generation.

541 **Experimental infection**

542

543 To establish a system for experimental infection we performed intrathoracic (IT) microinjection  
544 of virgin uninfected flies with a filtered homogenate from FoCo-17 line #30. We injected  
545 between 61 and 120 flies from each of three *Drosophila* Genetic Reference Panel (DGRP) strains  
546 (~50% of each sex) (34). 9 days post injection, we tested 5 male and 5 female injected flies per  
547 strain using qRT-PCR and in all cases 10/10 injected flies tested positive (**Table 2**). To verify  
548 that these flies were truly infected and that we were not detecting residual injected viral RNA,  
549 the remaining flies were crossed and we tested offspring from IT injected parents at 9, 15, and 19  
550 days post injection. Offspring whose eggs were laid 9 or 15 days post injection were not  
551 uniformly infected (range 0-100%; **Table 2**). But, by 19 days post injection, all offspring tested  
552 were positive by qRT-PCR (**Table 2**). This confirmed that injected parents were legitimately  
553 infected and that infection had disseminated to tissues involved in vertical transmission in all  
554 DGRP strains by 15 days post injection. These infected offspring were used to establish colonies  
555 that differed from the original inbred DGRP lines only in their galbut virus infection status.  
556 Testing these colonies 50 days later (~4-5 generations), we found that DGRP strains 399 and 517  
557 maintained 100% prevalence (24/24 flies for each positive by qRT-PCR, **Table 2**). However,  
558 DGRP 357 only had a galbut virus prevalence of ~21% (5/24 flies, **Table 2**). This suggested that  
559 multigenerational vertical transmission efficiency was a function of host genetic background.  
560

| Strain   | Adults Positive (n=10) | Days Post Injection | Prevalence in F <sub>1</sub> Offspring (n=12) | Prevalence in F <sub>5</sub> Offspring (n=24) |
|----------|------------------------|---------------------|-----------------------------------------------|-----------------------------------------------|
| DGRP-357 | 100% [69.2, 100%]      | 9                   | 0% [0, 26.5%]                                 | 21% [7.1, 42.2.%]                             |
|          |                        | 15                  | 92% [61.5, 99.8%]                             |                                               |
|          |                        | 19                  | 100% [73.5, 100%]                             |                                               |
| DGRP-399 | 100% [69.2, 100%]      | 9                   | 25% [5.5, 57.2%]                              | 100% [85.7, 100%]                             |
|          |                        | 15                  | 100% [73.5, 100%]                             |                                               |
|          |                        | 19                  | 100% [73.5, 100%]                             |                                               |
| DGRP-517 | 100% [69.2, 100%]      | 9                   | 100% [73.5, 100%]                             | 100% [85.7, 100%]                             |
|          |                        | 15                  | 100% [73.5, 100%]                             |                                               |
|          |                        | 19                  | 100% [73.5, 100%]                             |                                               |

561 **Table 2: Experimental infection of galbut virus by microinjection and subsequent**  
562 **transmission to offspring.** Adult flies from three DGRP strains were injected with a  
563 homogenate from galbut virus infected line #30. Ten injected flies per strain were tested for  
564 galbut virus RNA by qRT-PCR 9 days post injection; the percent positive of each set of 10 is  
565 indicated. Additional injected flies were allowed to mate, with subsequent testing of offspring  
566 from the first and 5th generation to monitor vertical transmission from injected parents and  
567

568 stability of transmission across multiple generations. First generation offspring whose eggs were  
569 laid 9, 15, or 19 days post injection were tested; the percent positive of each set of 12 flies are  
570 indicated. Infected colonies were established using offspring from days 15 and 19, and  
571 prevalence was tested 50 days after establishment (~4-5 generations). Numbers in brackets  
572 represent the lower and upper 95% confidence intervals. DGRP: *Drosophila* Genetic Reference  
573 Panel.

574

## 575 **Discussion:**

576

577 In this study, we began to characterize the biology of a recently discovered virus – galbut virus –  
578 that is unusually common in an important model organism. We confirmed that this “maybe”  
579 virus is indeed a virus of its putative fruit fly host and found that it can be transmitted efficiently  
580 from infected fathers or mothers to their offspring. This property is shared by at least one more  
581 insect-infecting partitivirus, verdadero virus, which we identified as a persistent infection in a  
582 colony of *Aedes aegypti* mosquitoes. This expands the known host range of the partitiviruses and  
583 suggests that the large number of partitivirus sequences that have been identified in a broad  
584 range of arthropods are likely legitimate viruses of those hosts. Efficient vertical transmission  
585 may be a mechanism that generally supports the success of these viruses.

586

587 An apparent paradox associated with this efficient biparental vertical transmission is that galbut  
588 virus has only been detected in ~60% of individual wild flies tested (**Fig. 1**, (12, 32)). Modeling  
589 indicates that highly efficient biparental transmission should eventually produce 100% of  
590 susceptible individuals to be infected, unless infection exacts a high fitness cost (58). Several  
591 hypotheses could account for this apparent discrepancy. First, it is possible that galbut virus is  
592 increasing or decreasing in frequency. In our sampling, prevalence decreased slightly over three  
593 years, though it is unclear whether this was just a stochastic effect nor whether these flies and  
594 viruses represented a single population lineage (**Fig. 1A**). Webster et al. suggested that the  
595 common ancestor of galbut virus in *D. melanogaster* and *D. simulans* populations existed ~200  
596 years ago (12), and perhaps galbut virus has not setted to an equilibrium frequency. Additional  
597 longitudinal sampling will shine light on this.

598

599 A related hypothesis is that galbut virus might exact enough of a fitness cost that it is driving an  
600 increase in host resistance alleles (59–62). This phenomenon has been observed for *D.*  
601 *melanogaster* sigma virus: although sigma virus exhibits biparental vertical transmission, it  
602 negatively impacts host fitness resulting in prevalences of 0–30% worldwide (12, 63). Our  
603 experiments using different DGRP strains provided evidence that host genetics can modulate  
604 galbut virus transmission efficiency (Table 2). Contrary evidence is that we observed an increase  
605 in infection frequency to ~100% in 2 separately colonized populations (Fig. 1C). It may be that  
606 fitness costs are negligible in a laboratory environment. A final hypothesis is that variable  
607 communities of other microbiota in different individual flies could alter galbut virus infection  
608 efficiency (64, 65).

609

610 The efficient vertical transmission observed for these insect-infecting partitiviruses is  
611 reminiscent of what has been observed for their plant and fungus-infecting counterparts. Plant-  
612 infecting partitiviruses are completely dependent on vertical transmission, and horizontal  
613 transmission does not occur even when infected plants are grafted onto uninfected counterparts  
614 (19, 21, 24). Fungus-infecting partitiviruses also exhibit efficient vertical transmission (22–24),  
615 but the efficiency varies (66–72). Unlike the plant-infecting partitiviruses, fungus-infecting  
616 partitiviruses are able to transmit horizontally through processes such as hyphal anastomosis (22,  
617 71, 73, 74). It appears that galbut virus and verdadero virus depend on vertical transmission like  
618 their plant-infecting counterparts (Table 1). Vera virus on the other hand, did not appear to have  
619 similarly efficient vertical transmission, as we were able to purge it relatively easily during the  
620 creation of *Drosophila* singly infected with galbut virus (Fig. 6).

621

622 Although we did not observe any evidence for horizontal transmission of galbut virus, there is  
623 evidence that galbut virus and other partitiviruses can transmit across species boundaries, so  
624 horizontal transmission does happen. First, there was a general lack of host-virus phylogenetic  
625 concordance, consistent with past cross-species transmission (Fig. 3). Second, galbut virus has  
626 been detected in a number of *Drosophila* species in the melanogaster group, including *D.*  
627 *simulans* and *D. suzukii* (12, 16, 32, 33). And, cross-species transmission of fungus-infecting  
628 partitiviruses has been documented (71, 75–77). Several possible mechanisms could allow cross-  
629 species transmission: The lack of horizontal transmission that we observed for galbut virus may

630 not be representative of related viruses, and we only tested a single mode of horizontal infection.  
631 Other modes of horizontal transmission including sexual transmission, possibly during  
632 intraspecific mating attempts, could contribute. Mites or other parasites could serve as vectors  
633 for partitiviruses, as has been proposed for sigma viruses (78).

634

635 Some instances of cross species partitivirus transmission may involve jumps to distantly related  
636 organisms in other eukaryotic kingdoms. There is a well-supported clade of fungi-associated  
637 partitiviruses nested within the arthropod-associated partitiviruses (**Fig. 3**). Similar phylogenetic  
638 interspersion of plant and fungus infecting partitiviruses has been noted (22, 79). Additional  
639 phylogenetic and experimental studies will be needed to address the intriguing possibility that  
640 partitiviruses are capable of long-range host switches.

641

642 Chaq virus was originally described as a virus-like sequence whose presence was correlated with  
643 galbut virus. It was postulated that chaq virus might be a satellite virus of galbut virus (chaq also  
644 means maybe, in Klingon) (12, 32). Consistent with previous reports, we found that chaq virus  
645 usually but not always co-occurred with galbut virus segments (**Fig. 1C**). We also identified chaq  
646 virus-like segments associated with vera and verdadero viruses, which are only distantly related  
647 to galbut virus (they share ~25-30% pairwise amino acid identity in their RdRp sequences). This  
648 indicates that if chaq-like segments are satellites of partitiviruses, this association has existed  
649 over long evolutionary time frames. An alternative interpretation is that chaq-like segments  
650 represent “optional” partitivirus segments not strictly required for replication, as has been  
651 described for multipartite mosquito-infecting jingmenviruses (80). A reverse genetics system for  
652 insect infecting partitiviruses would allow characterization of the function of individual viral  
653 proteins.

654

655 The highly efficient biparental vertical transmission that we documented for galbut and  
656 verdadero viruses is unusual for insect infecting viruses. Although many insect viruses are  
657 maintained both vertically and horizontally (81–84), there are several cases where insect viruses,  
658 like galbut virus, seem to be dependent on vertical transmission (63, 85, 86). In most  
659 documented cases however, maternal transmission is more efficient than paternal (63, 81, 86–  
660 88). An exception is rice stripe virus, where paternal transmission is more efficient in its

661 leafhopper vector (89). The best precedent is probably *Drosophila*-infecting sigma viruses,  
662 which can be transmitted biparentally, allowing for sweeps through fly populations (63, 90).  
663 Parental transmission of *D. melanogaster* sigma virus is less efficient than maternal (~100% vs  
664 65%), and paternally infected flies transmit infection less efficiently to the subsequent generation  
665 (52). We did observe different viral loads in offspring following paternal or maternal  
666 transmission, although for galbut virus, paternally infected flies had higher viral loads (**Fig. 5**).  
667 Whether a similar multigenerational phenomenon occurs for partitiviruses remains to be  
668 determined.

669

670 A particular challenge associated with understanding the biology of novel viruses identified via  
671 metagenomics is the inability to isolate them through classical methods such as cell culture.  
672 Many viruses are not culturable or not easily culturable. Here, we circumvent that obstacle  
673 through an iterative breeding scheme to generate flies with galbut virus as the only detectable  
674 infection (**Fig. 6**). We propose that this isolation method could be applied to other newly  
675 identified viruses. The isolation of galbut virus and the initial characterization described here  
676 establishes essential groundwork for further understanding the biological impacts and possible  
677 utility of arthropod-infecting partitiviruses.

678

679

680

## 681 Acknowledgements

682

683 We thank Marylee Kapuscinski, Justin Lee, and the CSU Next Generation Sequencing Core  
684 Facility for assistance with sequencing, and Rebekah Kading for helpful discussion. We would  
685 like to acknowledge Dr. Bill Black for providing *Aedes aegypti* strains and Dr. Susan Tsunoda  
686 for providing *D. melanogaster* strain w<sup>1118</sup>.

687

688

689

## 690 Funding

691 Stocks obtained from the Bloomington Drosophila Stock Center (NIH P40OD018537) were used  
692 in this study. This work was supported by the Colorado State University College of Veterinary

693 Medicine and Biomedical Sciences College Research Council. Computational resources were  
694 supported by NIH/NCATS Colorado CTSA Grant Number UL1 TR002535. STC was supported  
695 in part by National Science Foundation (NSF) NRT grant 1450032. MRR was supported as a  
696 NSF Graduate Fellow (Grant No. 5325000). BDF was supported by NIH/NIAID grants  
697 R21AI129464 and U01AI138910. Any opinions, findings, conclusions or recommendations  
698 expressed in this paper are those of the author(s) and do not necessarily reflect the views of the  
699 funding organizations.

700  
701  
702

703 **References cited**

- 705 1. Li C-X, Shi M, Tian J-H, Lin X-D, Kang Y-J, Chen L-J, Qin X-C, Xu J, Holmes EC, Zhang Y-Z. 2015. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. *eLife* 4:e05378.
- 706 2. Shi M, Lin X-D, Tian J-H, Chen L-J, Chen X, Li C-X, Qin X-C, Li J, Cao J-P, Eden J-S, Buchmann J, Wang W, Xu J, Holmes EC, Zhang Y-Z. 2016. Redefining the invertebrate RNA virosphere. *Nature* 540:539.
- 707 3. Wang D. 2015. Fruits of Virus Discovery: New Pathogens and New Experimental Models. *Journal of Virology* 89:1486–1488.
- 708 4. Tisza MJ, Pastrana DV, Welch NL, Stewart B, Peretti A, Starrett GJ, Pang Y-YS, Krishnamurthy SR, Pesavento PA, McDermott DH, Murphy PM, Whited JL, Miller B, Brenchley J, Rosshart SP, Rehermann B, Doorbar J, Ta’ala BA, Pletnikova O, Troncoso JC, Resnick SM, Bolduc B, Sullivan MB, Varsani A, Segall AM, Buck CB. 2020. Discovery of several thousand highly diverse circular DNA viruses. *Elife* 9.
- 709 5. Greninger AL. 2018. A decade of RNA virus metagenomics is (not) enough. *Virus Res* 244:218–229.
- 710 6. Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, Chaffron S, Cruaud C, Vargas C de, Gasol JM, Gorsky G, Gregory AC, Guidi L, Hingamp P, Iudicone D, Not F, Ogata H, Pesant S, Poulos BT, Schwenck SM, Speich S, Dimier C, Kandels-Lewis S, Picheral M, Searson S, Coordinators TO, Bork P, Bowler C, Sunagawa S, Wincker P, Karsenti E, Sullivan MB. 2015. Patterns and ecological drivers of ocean viral communities. *Science* 348.
- 711 7. Yutin N, Bäckström D, Ettema TJG, Krupovic M, Koonin EV. 2018. Vast diversity of prokaryotic virus genomes encoding double jelly-roll major capsid proteins uncovered by genomic and metagenomic sequence analysis. *Virol J* 15:67.
- 712 8. Sadeghi M, Altan E, Deng X, Barker CM, Fang Y, Coffey LL, Delwart E. 2018. Virome of > 12 thousand *Culex* mosquitoes from throughout California. *Virology* 523:74–88.
- 713 9. Roossinck MJ, Martin DP, Roumagnac P. 2015. Plant Virus Metagenomics: Advances in Virus Discovery. *Phytopathology®* 105:716–727.
- 714 10. Shi M, Lin X-D, Chen X, Tian J-H, Chen L-J, Li K, Wang W, Eden J-S, Shen J-J, Liu L, Holmes EC, Zhang Y-Z. 2018. The evolutionary history of vertebrate RNA viruses. *Nature* 556:197–202.
- 715 11. Koonin EV, Dolja VV. 2018. Metaviromics: a tectonic shift in understanding virus evolution. *Virus Research* 246:A1–A3.
- 716 12. Webster CL, Waldron FM, Robertson S, Crowson D, Ferrari G, Quintana JF, Brouqui J-M, Bayne EH, Longdon B, Buck AH, Lazzaro BP, Akorli J, Haddrell PR, Obbard DJ. 2015. The Discovery, Distribution, and Evolution of Viruses Associated with *Drosophila melanogaster*. *PLOS Biology* 13:e1002210.

740 13. Coyle MC, Elya CN, Bronski MJ, Eisen MB. 2018. Entomophthovirus: An insect-derived iflavirus  
741 that infects a behavior manipulating fungal pathogen of dipterans.

742 14. Fauver JR, Grubaugh ND, Krajacich BJ, Weger-Lucarelli J, Lakin SM, Fakoli LS, Bolay FK,  
743 DiClaro JW, Dabiré KR, Foy BD, Brackney DE, Ebel GD, Stenglein MD. 2016. West African  
744 *Anopheles gambiae* mosquitoes harbor a taxonomically diverse virome including new insect-  
745 specific flaviviruses, mononegaviruses, and totiviruses. *Virology* 498:288–299.

746 15. Li C-X, Shi M, Tian J-H, Lin X-D, Kang Y-J, Chen L-J, Qin X-C, Xu J, Holmes EC, Zhang Y-Z.  
747 2015. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of  
748 negative-sense RNA viruses. *Elife* 4.

749 16. Medd NC, Fellous S, Waldron FM, Xuéreb A, Nakai M, Cross JV, Obbard DJ. 2018. The virome of  
750 *Drosophila suzukii*, an invasive pest of soft fruit. *Virus Evolution* 4.

751 17. Lara Pinto AZ de, Santos de Carvalho M, de Melo FL, Ribeiro ALM, Morais Ribeiro B, Dezengrini  
752 Slhessarenko R. 2017. Novel viruses in salivary glands of mosquitoes from sylvatic Cerrado,  
753 Midwestern Brazil. *PLOS ONE* 12:e0187429.

754 18. Faizah AN, Kobayashi D, Isawa H, Amoa-Bosompem M, Murota K, Higa Y, Futami K, Shimada S,  
755 Kim KS, Itokawa K, Watanabe M, Tsuda Y, Minakawa N, Miura K, Hirayama K, Sawabe K. 2020.  
756 Deciphering the Virome of *Culex vishnui* Subgroup Mosquitoes, the Major Vectors of Japanese  
757 Encephalitis, in Japan. *Viruses* 12:264.

758 19. Boccardo G, Lisa V, Luisoni E, Milne RG. 1987. Cryptic plant viruses. *Adv Virus Res* 32:171–214.

759 20. Ghabrial S, Ochoa W, Baker T, Nibert M. 2008. Partitiviruses: General Features. *Encyclopedia of  
760 Virology* 68–75.

761 21. Roossinck MJ. 2010. Lifestyles of plant viruses. *Philos Trans R Soc Lond, B, Biol Sci* 365:1899–  
762 1905.

763 22. Nibert ML, Ghabrial SA, Maiss E, Lesker T, Vainio EJ, Jiang D, Suzuki N. 2014. Taxonomic  
764 reorganization of family Partitiviridae and other recent progress in partitivirus research. *Virus  
765 Research* 188:128–141.

766 23. Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N. 2015. 50-plus years of fungal viruses.  
767 *Virology* 479–480:356–368.

768 24. Vainio EJ, Chiba S, Ghabrial SA, Maiss E, Roossinck M, Sabanadzovic S, Suzuki N, Xie J, Nibert  
769 M, ICTV Report Consortium. 2018. ICTV Virus Taxonomy Profile: Partitiviridae. *Journal of  
770 General Virology*, 99:17–18.

771 25. Jenkins MC, Higgins J, Abrahante JE, Kniel KE, O'Brien C, Trout J, Lancto CA, Abrahamsen MS,  
772 Fayer R. 2008. Fecundity of *Cryptosporidium parvum* is correlated with intracellular levels of the  
773 viral symbiont CPV. *International Journal for Parasitology* 38:1051–1055.

774 26. Xiao X, Cheng J, Tang J, Fu Y, Jiang D, Baker TS, Ghabrial SA, Xie J. 2014. A Novel Partitivirus  
775 That Confers Hypovirulence on Plant Pathogenic Fungi. *Journal of Virology* 88:10120–10133.

776 27. Zheng L, Zhang M, Chen Q, Zhu M, Zhou E. 2014. A novel mycovirus closely related to viruses in  
777 the genus Alphapartitivirus confers hypovirulence in the phytopathogenic fungus *Rhizoctonia*  
778 *solani*. *Virology* 456–457:220–226.

779 28. Sasaki A, Nakamura H, Suzuki N, Kanematsu S. 2016. Characterization of a new megabirnavirus  
780 that confers hypovirulence with the aid of a co-infecting partitivirus to the host fungus, *Rosellinia*  
781 *necatrix*. *Virus Research* 219:73–82.

782 29. Kamaruzzaman M, He G, Wu M, Zhang J, Yang L, Chen W, Li G. 2019. A Novel Partitivirus in the  
783 Hypovirulent Isolate QT5-19 of the Plant Pathogenic Fungus *Botrytis cinerea*. *Viruses* 11:24.

784 30. Safari M, Ferrari MJ, Roossinck MJ. 2019. Manipulation of Aphid Behavior by a Persistent Plant  
785 Virus. *J Virol* 93:e01781-18.

786 31. Pettersson JH-O, Shi M, Eden J-S, Holmes EC, Hesson JC. 2019. Meta-Transcriptomic Comparison  
787 of the RNA Viromes of the Mosquito Vectors *Culex pipiens* and *Culex torrentium* in Northern  
788 Europe. 11. *Viruses* 11:1033.

789 32. Shi M, White VL, Schlub T, Eden J-S, Hoffmann AA, Holmes EC. 2018. No detectable effect of  
790 *Wolbachia* w Mel on the prevalence and abundance of the RNA virome of *Drosophila*  
791 *melanogaster*. *Proceedings of the Royal Society B: Biological Sciences* 285:20181165.

792 33. Webster CL, Longdon B, Lewis SH, Obbard DJ. 2016. Twenty-Five New Viruses Associated with  
793 the Drosophilidae (Diptera). *Evol Bioinform Online* 12:13–25.

794 34. Mackay TFC, Richards S, Stone EA, Barbadilla A, Ayroles JF, Zhu D, Casillas S, Han Y, Magwire  
795 MM, Cridland JM, Richardson MF, Anholt RRH, Barrón M, Bess C, Blankenburg KP, Carbone  
796 MA, Castellano D, Chaboub L, Duncan L, Harris Z, Javaid M, Jayaseelan JC, Jhangiani SN, Jordan  
797 KW, Lara F, Lawrence F, Lee SL, Librado P, Linheiro RS, Lyman RF, Mackey AJ, Munidasa M,  
798 Muzny DM, Nazareth L, Newsham I, Perales L, Pu L-L, Qu C, Ràmia M, Reid JG, Rollmann SM,  
799 Rozas J, Saada N, Turlapati L, Worley KC, Wu Y-Q, Yamamoto A, Zhu Y, Bergman CM,  
800 Thornton KR, Mittelman D, Gibbs RA. 2012. The *Drosophila melanogaster* Genetic Reference  
801 Panel. *Nature* 482:173–178.

802 35. Vera-Maloof FZ, Saavedra-Rodriguez K, Elizondo-Quiroga AE, Lozano-Fuentes S, Black Iv WC.  
803 2015. Coevolution of the Ile1,016 and Cys1,534 Mutations in the Voltage Gated Sodium Channel  
804 Gene of *Aedes aegypti* in Mexico. *PLoS Negl Trop Dis* 9:e0004263–e0004263.

805 36. Steven Denham, Lars Eisen, Meaghan Beaty, Barry J. Beaty, William C. Black, Karla Saavedra-  
806 Rodriguez. 2015. Two Novel Bioassays to Assess the Effects of Pyrethroid-Treated Netting on  
807 Knockdown-Susceptible Versus Resistant Strains of *Aedes aegypti*. *Journal of the American  
808 Mosquito Control Association* 31:52–62.

809 37. Magalhaes T, Bergren NA, Bennett SL, Borland EM, Hartman DA, Lymperopoulos K, Sayre R,  
810 Borlee BR, Campbell CL, Foy BD, Olson KE, Blair CD, Black W, Kading RC. 2019. Induction of  
811 RNA interference to block Zika virus replication and transmission in the mosquito *Aedes aegypti*.  
812 *Insect Biochemistry and Molecular Biology* 111:103169.

813 38. Clopper CJ, Pearson ES. 1934. THE USE OF CONFIDENCE OR FIDUCIAL LIMITS  
814 ILLUSTRATED IN THE CASE OF THE BINOMIAL. *Biometrika* 26:404–413.

815 39. Zer S, Ryvkin J, Wilner HJ, Zak H, Shmueli A, Shohat-Ophir G. 2016. A Simple Way to Measure  
816 Alterations in Reward-seeking Behavior Using *Drosophila melanogaster*. *J Vis Exp* 54910.

817 40. Cross S, Kapuscinski M, Perino J, Maertens B, Weger-Lucarelli J, Ebel G, Stenglein M. 2018. Co-  
818 Infection Patterns in Individual *Ixodes scapularis* Ticks Reveal Associations between Viral,  
819 Eukaryotic and Bacterial Microorganisms. *Viruses* 10:388.

820 41. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. *J  
821 Mol Biol* 215:403–410.

822 42. Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or  
823 nucleotide sequences. *Bioinformatics* 22:1658–1659.

824 43. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nat Methods* 9:357–  
825 359.

826 44. Katoh K, Standley DM. 2013. MAFFT Multiple Sequence Alignment Software Version 7:  
827 Improvements in Performance and Usability. *Mol Biol Evol* 30:772–780.

828 45. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment  
829 trimming in large-scale phylogenetic analyses. *Bioinformatics* 25:1972–1973.

830 46. Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. 2020. ModelTest-NG: A New  
831 and Scalable Tool for the Selection of DNA and Protein Evolutionary Models. *Mol Biol Evol*  
832 37:291–294.

833 47. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. 2019. RAxML-NG: a fast, scalable and  
834 user-friendly tool for maximum likelihood phylogenetic inference. *Bioinformatics* 35:4453–4455.

835 48. Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. 2017. ggtree: an r package for visualization and  
836 annotation of phylogenetic trees with their covariates and other associated data. *Methods in Ecology  
837 and Evolution* 8:28–36.

838 49. Emery P. 2007. Protein Extraction From *Drosophila* Heads, p. 375–377. *In* Rosato, E (ed.),  
839 *Circadian Rhythms: Methods and Protocols*. Humana Press, Totowa, NJ.

840 50. Stenglein MD, Sanders C, Kistler AL, Ruby JG, Franco JY, Reavill DR, Dunker F, DeRisi JL.  
841 2012. Identification, Characterization, and In Vitro Culture of Highly Divergent Arenaviruses from  
842 Boa Constrictors and Annulated Tree Boas: Candidate Etiological Agents for Snake Inclusion Body  
843 Disease. *mBio* 3.

844 51. Celniker SE, Dillon LAL, Gerstein MB, Gunsalus KC, Henikoff S, Karpen GH, Kellis M, Lai EC,  
845 Lieb JD, MacAlpine DM, Micklem G, Piano F, Snyder M, Stein L, White KP, Waterston RH,  
846 modENCODE Consortium. 2009. Unlocking the secrets of the genome. *Nature* 459:927–930.

847 52. Fleuriet A. 1988. Maintenance of a Hereditary Virus, p. 1–30. *In* Hecht, MK, Wallace, B (eds.),  
848 *Evolutionary Biology: Volume 23*. Springer US, Boston, MA.

849 53. Longdon B, Wilfert L, Obbard DJ, Jiggins FM. 2011. Rhabdoviruses in two species of *Drosophila*:

850 vertical transmission and a recent sweep. *Genetics* 188:141–150.

851 54. Wang D. 2020. 5 challenges in understanding the role of the virome in health and disease. *PLOS*  
852 *Pathogens* 16:e1008318.

853 55. Palmer WH, Medd NC, Beard PM, Obbard DJ. 2018. Isolation of a natural DNA virus of  
854 *Drosophila melanogaster*, and characterisation of host resistance and immune responses. *PLoS*  
855 *Pathog* 14:e1007050.

856 56. Habayeb MS, Ekengren SK, Hultmark D. 2006. Nora virus, a persistent virus in *Drosophila*, defines  
857 a new picorna-like virus family. *J Gen Virol* 87:3045–3051.

858 57. Merkling SH, van Rij RP. 2015. Analysis of resistance and tolerance to virus infection in  
859 *Drosophila*. *Nat Protoc* 10:1084–1097.

860 58. Fine PE. 1975. Vectors and vertical transmission: an epidemiologic perspective. *Ann N Y Acad Sci*  
861 266:173–194.

862 59. Magwire MM, Fabian DK, Schweyen H, Cao C, Longdon B, Bayer F, Jiggins FM. 2012. Genome-  
863 wide association studies reveal a simple genetic basis of resistance to naturally coevolving viruses  
864 in *Drosophila melanogaster*. *PLoS Genet* 8:e1003057.

865 60. Xu J, Cherry S. 2014. Viruses and Antiviral Immunity in *Drosophila*. *Dev Comp Immunol* 42.

866 61. Swevers L, Liu J, Smagghe G. 2018. Defense Mechanisms against Viral Infection in *Drosophila*:  
867 RNAi and Non-RNAi. *Viruses* 10.

868 62. Palmer WH, Varghese FS, van Rij RP. 2018. Natural Variation in Resistance to Virus Infection in  
869 Dipteran Insects. *Viruses* 10.

870 63. Longdon B, Jiggins FM. 2012. Vertically transmitted viral endosymbionts of insects: do sigma  
871 viruses walk alone? *Proc Biol Sci* 279:3889–3898.

872 64. Sansone CL, Cohen J, Yasunaga A, Xu J, Osborn G, Subramanian H, Gold B, Buchon N, Cherry S.  
873 2015. Microbiota-Dependent Priming of Antiviral Intestinal Immunity in *Drosophila*. *Cell Host*  
874 *Microbe* 18:571–581.

875 65. Faria VG, Martins NE, Magalhães S, Paulo TF, Nolte V, Schlötterer C, Sucena É, Teixeira L. 2016.  
876 *Drosophila* Adaptation to Viral Infection through Defensive Symbiont Evolution. *PLOS Genetics*  
877 12:e1006297.

878 66. Ghabrial SA. 1998. Origin, Adaptation and Evolutionary Pathways of Fungal Viruses. *Virus Genes*  
879 16:119–131.

880 67. Varga J, Rinyu E, Kevei É, Tóth B, Kozakiewicz Z. 1998. Double-stranded RNA mycoviruses in  
881 species of *Aspergillus* sections *Circumdati* and *Fumigati*. *Can J Microbiol* 44:569–574.

882 68. Anagnostakis SL, Chen B, Geletka LM, Nuss DL. 1998. Hypovirus Transmission to Ascospore  
883 Progeny by Field-Released Transgenic Hypovirulent Strains of *Cryphonectria* parasitica.

884 Phytopathology® 88:598–604.

885 69. COENEN A, KEVEI F, HOEKSTRA RF. 1997. Factors affecting the spread of double-stranded  
886 RNA viruses in *Aspergillus nidulans*. *Genetical Research* 1997/02/01. 69:1–10.

887 70. Chun SJ, Lee Y-H. 1997. Inheritance of dsRNAs in the rice blast fungus, *Magnaporthe grisea*.  
888 *FEMS Microbiology Letters* 148:159–162.

889 71. Ihrmark K, Johannesson H, Stenström E, Stenlid J. 2002. Transmission of double-stranded RNA in  
890 *Heterobasidion annosum*. *Fungal Genetics and Biology* 36:147–154.

891 72. Ihrmark K, Stenström E, Stenlid J. 2004. Double-stranded RNA transmission through basidiospores of  
892 *Heterobasidion annosum*. *Mycological Research* 108:149–153.

893 73. Sasaki A, Kanematsu S, Onoue M, Oyama Y, Yoshida K. 2006. Infection of *Rosellinia necatrix*  
894 with purified viral particles of a member of Partitiviridae (RnPV1-W8). *Archives of Virology*  
895 151:697–707.

896 74. Kanematsu S, Sasaki A, Onoue M, Oikawa Y, Ito T. 2010. Extending the Fungal Host Range of a  
897 Partitivirus and a Mycoreovirus from *Rosellinia necatrix* by Inoculation of Protoplasts with Virus  
898 Particles. *Phytopathology* 100:922–930.

899 75. Vainio EJ, Hakanpää J, Dai Y-C, Hansen E, Korhonen K, Hantula J. 2011. Species of  
900 *Heterobasidion* host a diverse pool of partitiviruses with global distribution and interspecies  
901 transmission. *Fungal Biology* 115:1234–1243.

902 76. Vainio EJ, Korhonen K, Tuomivirta TT, Hantula J. 2010. A novel putative partitivirus of the  
903 saprotrophic fungus *Heterobasidion ecrustosum* infects pathogenic species of the *Heterobasidion*  
904 *annosum* complex. *Fungal Biology* 114:955–965.

905 77. Filippou C, Garrido-Jurado I, Meyling VN, Quesada-Moraga E, Coutts HAR, Kotta-Loizou I. 2018.  
906 Mycoviral Population Dynamics in Spanish Isolates of the Entomopathogenic Fungus *Beauveria*  
907 *bassiana*. *Viruses* 10.

908 78. Longdon B, Obbard DJ, Jiggins FM. 2010. Sigma viruses from three species of *Drosophila* form a  
909 major new clade in the rhabdovirus phylogeny. *Proc Biol Sci* 277:35–44.

910 79. Szegő A, Enünlü N, Deshmukh SD, Veliceasa D, Hunyadi-Gulyás É, Kühne T, Ilyés P, Potyondi L,  
911 Medzihradzky K, Lukács N. 2010. The genome of Beet cryptic virus 1 shows high homology to  
912 certain cryptoviruses present in phylogenetically distant hosts. *Virus Genes* 40:267–276.

913 80. Ladner JT, Wiley MR, Beitzel B, Auguste AJ, Dupuis AP, Lindquist ME, Sibley SD, Kota KP,  
914 Fetterer D, Eastwood G, Kimmel D, Prieto K, Guzman H, Aliota MT, Reyes D, Brueggemann EE,  
915 John LSt, Hyeroba D, Lauck M, Friedrich TC, O'Connor DH, Gestole MC, Cazares LH, Popov VL,  
916 Castro-Llanos F, Kochel TJ, Kenny T, White B, Ward MD, Loaiza JR, Goldberg TL, Weaver SC,  
917 Kramer LD, Tesh RB, Palacios G. 2016. A multicomponent animal virus isolated from mosquitoes.  
918 *Cell Host Microbe* 20:357–367.

919 81. Williams T, Virto C, Murillo R, Caballero P. 2017. Covert Infection of Insects by Baculoviruses.

Frontiers in Microbiology 8:1337.

82. Agboli E, Leggewie M, Altinli M, Schnettler E. 2019. Mosquito-Specific Viruses-Transmission and Interaction. *Viruses* 11:873.

83. Chen Y, Evans J, Feldlaufer M. 2006. Horizontal and vertical transmission of viruses in the honey bee, *Apis mellifera*. *Journal of Invertebrate Pathology* 92:152–159.

84. Nakashima N, Noda H. 1995. Nonpathogenic *Nilaparvata lugens* Reovirus Is Transmitted to the Brown Planthopper through Rice Plant. *Virology* 207:303–307.

85. Strand MR, Burke GR. 2013. Polydnavirus-wasp associations: evolution, genome organization, and function. *Current Opinion in Virology* 3:587–594.

86. Chen Q, Godfrey K, Liu J, Mao Q, Kuo Y-W, Falk BW. 2019. A Nonstructural Protein Responsible for Viral Spread of a Novel Insect Reovirus Provides a Safe Channel for Biparental Virus Transmission to Progeny. *J Virol* 93:e00702-19.

87. Ferber ML, Ríos AF, Kuhl G, Comendador MA, Louis C. 1997. Infection of the Gonads of the SimES Strain of *Drosophila simulans* by the Hereditary Reovirus DSV. *Journal of Invertebrate Pathology* 70:143–149.

88. Longdon B, Day JP, Schulz N, Leftwich PT, de Jong MA, Breuker CJ, Gibbs M, Obbard DJ, Wilfert L, Smith SCL, McGonigle JE, Houslay TM, Wright LI, Livraghi L, Evans LC, Friend LA, Chapman T, Vontas J, Kambouraki N, Jiggins FM. 2011. Vertically transmitted rhabdoviruses are found across three insect families and have dynamic interactions with their hosts. *Nature Communications* 9:955.

89. Mao Q, Wu W, Liao Z, Li J, Jia D, Zhang X, Chen Q, Chen H, Wei J, Wei T. 2019. Viral pathogens hitchhike with insect sperm for paternal transmission. *Nature Communications* 10:955.

90. Longdon B, Wilfert L, Obbard DJ, Jiggins FM. 2011. Rhabdoviruses in Two Species of *Drosophila*: Vertical Transmission and a Recent Sweep. *Genetics* 188:141.