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Abstract Functional connectivity (FC) analyses of individuals with autism spectrum disorder
(ASD) have established robust alterations of brain connectivity at the group level. Yet, the
translation of these imaging findings into robust markers of individual risk is hampered by the
extensive heterogeneity among ASD individuals. Here, we report an FC endophenotype that
confers a greater than 7-fold risk increase of ASD diagnosis, yet is still identified in an estimated 1
in 200 individuals in the general population. By focusing on a subset of individuals with ASD and
highly predictive FC alterations, we achieved a greater than 3-fold increase in risk over previous
predictive models. The identified FC risk endophenotype was characterized by underconnectivity
of transmodal brain networks and generalized to independent data. Our results demonstrate the
ability of a highly targeted prediction model to meaningfully decompose part of the
heterogeneity of the autism spectrum. The identified FC signature may help better delineate the
multitude of etiological pathways and behavioural symptoms that challenge our understanding
of the autism spectrum.

Introduction

Background

Autism spectrum disorder (ASD) is a neurodevelopmental disorder diagnosed in more than 1% of
children (Bai et al., 2019) that is defined by impairments of social interaction and repetitive be-
haviour (American Psychiatric Association. and DSM-5 Task Force., 2013), and has been linked to
alterations of brain organization (Holiga et al., 2079) and genetics (Grove et al., 2019). A core goal
of clinical neuroscience is to understand the neurobiological etiology of this complex and hetero-
geneous disorder (Lombardo et al., 2019) by identifying reliable neurobiological endophenotypes
that confer a high risk of the disorder and are sufficiently common to be investigated in large cohort
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studies. To date, existing genetic risk markers of ASD are either extremely rare (e.g. monogenic
disorders, de la Torre-Ubieta et al., 2016) or convey only a very low individual risk of the disorder
(e.g. common genetic risk factors, Sanders et al., 2015). Current neuroimaging based efforts to
identify brain based endophenotypes that can predict ASD (Abraham et al., 2017; Heinsfeld et al.,
2018) have limited accuracy, likely due to the extensive heterogeneity of the disorder (Lombardo
et al., 2019; Jacob et al., 2019, see also Figure 2). Although it may not currently be possible to
identify a single brain based risk marker that is highly predictive of an ASD diagnosis in any autistic
individual, we may be able to do so for a subset of autistic individuals. Transductive conformal pre-
diction (TCP, Vapnik, 1998; Vovk et al., 2005) is a promising statistical framework for this purpose,
that has been successfully applied to predict the clinical status of depressed patients from neu-
roimaging data, previously (Nouretdinov et al., 2011). TCP explicitly computes the confidence with
which a clinical label (i.e. ASD or neurotypical control, NTC) can be predicted for each individual,
and we can use this estimate to limit our model to predict only those individuals for whom we have
very high confidence of their ASD diagnosis. Our main goal is to apply TCP to identify resting-state
functional Magnetic Resonance Imaging (fMRI) based ASD-endophenotypes associated with high
risk and relatively high prevalence.

Genetic risk markers of ASD

ASD is a highly heritable disorder and to date, the best established ASD risk factors are genetic
markers. A recent multi-national study of more than 2 million individuals estimated the heritabil-
ity of ASD at 80% (Bai et al., 2079). Both common (e.g. Single-nucleotide polymorphism, SNP,
Grove et al., 20719) and rare genetic variants (e.g. recurrent Copy-number variant, CNV, Sanders
et al., 2019) have been shown to contribute to the genetic etiology of ASD (Geschwind and State,
2015). Several monogenic syndromes have also been associated with a very high risk of autism-
like symptoms (i.e. in more than 30% of individuals with the syndrome), but these disorders are
exceedingly rare in the general population, typically detected in fewer than 0.01% of individuals
(de la Torre-Ubieta et al., 2016). By comparison, ASD is diagnosed relatively frequently in about
1% of individuals in the general population (Bai et al., 2079). Only five common genetic variants
(found in more than 5% of the general population) have recently been robustly associated with ASD
through genome-wide association studies (Grove et al., 2019). However, each of these common
variants increase the odds of an ASD diagnosis only minimally in carriers compared to non-carriers
(i.e. the Odds Ratio is approximately 1.2 or close to equal, see Equation 8). Nevertheless, common
genetic variants are thought to account for a large part of genetic ASD liability, with estimates rang-
ing between 20% (Robinson et al., 2016) and 50% (Gaugler et al., 2014). In between the rare, high
risk monogenic disorders and the common, but low risk genetic variants, sits a gap of knowledge
that has been labeled the “missing heritability” (Manolio et al., 2009; Maher, 2008). The very large
sample sizes necessary (Khera et al., 2018) to robustly identify the likely polygenic interaction ef-
fects (O’Connor et al., 2019) pose a challenging limitation that makes the identification of common,
high risk genetic factors of ASD difficult.

Neuroimaging based risk markers of ASD

Functional magnetic resonance imaging (fMRI) measures the functional connectivity (FC) between
brain regions and has been shown to be sensitive to changes in the functional brain organiza-
tion in ASD (Castellanos et al., 2013; Holiga et al., 2079). Recent work has therefore used high-
dimensional FC measures to predict the clinical ASD diagnosis of individuals (Abraham et al., 2017;
Heinsfeld et al., 2018; Yahata et al., 2016). These models make a prediction for every individual
in a data set and seek to optimize the accuracy of all predictions. That is, they give equal impor-
tance to correctly identifying an individual with ASD (sensitivity, see Equation 1) and to correctly not
identifying a NTC individual (specificity, see Equation 2). As a consequence, predictions by these
models typically have balanced sensitivity and specificity. When such a model is applied to an un-
selected general population sample, where only very few individuals will truly have ASD (i.e. 1 —
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2%), the ability of the model to correctly identify unaffected individuals as not having the condition
(specificity) becomes more important. For example, if 20 individuals in a sample of 1000 have ASD
(i.e. 980 are healthy), then a model with 70% sensitivity and 70% specificity will correctly identify
14 ASD individuals (20 x sensitivity of 0.7) and correctly not identify 686 healthy individuals (980 x
specificity of 0.7). The model will however also incorrectly identify 294 healthy individuals as ASD
patients (980 = (1 — 0.7)). This means that only 14 out of 308 (or 4%) individuals identified by the
model will truly have ASD. This value is also called the positive predictive value (PPV) of the model
and depends on the prevalence of the predicted disorder in the sample (see Methods and Equa-
tion 3). The PPV thus reflects the risk of the disorder that a prediction by the model confers for an
individual. In the above example, the PPV is only twice as large as the baseline risk of someone
we know nothing about (i.e. the prevalence of the disorder in the sample). Recent FC based ASD
classification models report sensitivity and specificity estimates that translate to low PPVs of 2.4%
to 2.2% in the general population (Abraham et al., 2017; Heinsfeld et al., 2018).

Transductive conformal prediction

Performance metrics such as accuracy, sensitivity, and specificity provide us with some measures
regarding the confidence that we can place on the quality of the predictions made by a model, on
average, across all observed samples from either a testing or training data set. But what we are
particularly interested in is the amount of confidence that we can place in the specific clinical la-
bel predicted for each individual. This is akin to the difference between the usual confidence and
prediction intervals (Kiimmel et al., 2018). Whereas the model in the above example identifies hun-
dreds of individuals as ASD patients, maybe for some of the individuals, the degree of “confidence”
of the label is more limited, based on the idiosyncrasies of the individual. We may decide that we
only want to take a closer look at those individuals for whom the model is very confident of their
ASD diagnosis. Conformal prediction is a statistical framework to make explicit the level of confi-
dence that an analyst may have regarding the classification of any particular individual (Vovk et al.,
2005). Given an individual that we want to classify as either neurotypical or ASD, the conformal
predictor asks: “how unusual would this individual be, if they were a neurotypical individual?” and
“how unusual would it be, if they were an individual with ASD?". The predictor then answers each
of these questions by comparing the individual to known neurotypical individuals and to known
individuals with ASD, respectively. In this way, we will compute two “unusualness” scores for the
individual, one for each of the two possible label classes. More technical introductory accounts of
the conformal prediction logic can be found in articles such as Gammerman and Vovk (2007), and
Shafer and Vovk (2008).

Objectives

Here we aim to identify FC signatures of ASD that are substantially more common than rare mono-
genic disorders and carry substantially higher individual risk than current imaging based models
of ASD. We hypothesize that by limiting predictions to the most confident cases, we will identify
subsets of ASD individuals who share very predictive, high risk FC signatures. We further hypoth-
esize that the FC of different brain networks may give rise to distinct high risk FC signatures. Our
objectives are thus to:

1. Identify sets of brain networks with FC profiles highly predictive of ASD diagnosis.

2. Evaluate the identified high risk profiles on an independent dataset, and estimate their preva-
lence and positive predictive value in the general population.

3. Characterize the connectivity and symptom phenotype of the individuals identified by the
high risk FC profiles.
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Results

We investigated whether the seed-based FC maps of 18 functional brain networks could be used
to predict ASD diagnosis with high PPV in a subset of individuals. To do so, we estimated how
conformal the FC of a new, unclassified individual was compared to individuals with a known ASD
diagnosis or NTC. These estimates of conformality then allowed us to make a prediction of ASD
diagnosis only for those individuals for whom we had very high confidence that their FC was very
atypical for NTC (NTC conformal score < 5%) and not very atypical for ASD (ASD conformal score >
5%). We identified the groups of brain networks that gave rise to the predictions with the highest
PPV across bootstrap samples of the discovery data and then tested the generalizability of these
predictions in an independent replication dataset.

Individual networks do not predict ASD with high PPV

We first evaluated the PPV of conformal ASD diagnosis predictions made with high confidence,
based on the FC of each of the 18 brain networks. To do so, we computed the median PPV of high
confidence conformal predictions for each brain network across 100 bootstrap samples (bootstrap
PPV) of the discovery data. The bootstrap PPV of high confidence conformal ASD diagnosis predic-
tions ranged from 56% (orbitofrontal network) to 66% (frontoparietal network) and was 63% on
average across all networks. That is, among the individuals predicted with high confidence to have
an ASD diagnosis, 63% on average did have an ASD diagnosis. As expected, the predictions were
made with high specificity (91% on average across all networks) and low sensitivity (16% across all
networks). That is, on average, 91% of NTC individuals were correctly not predicted to have an ASD
diagnosis, and 16% of ASD individuals were correctly predicted to have an ASD diagnosis. Figure 1
shows an overview of the bootstrap PPV across networks. We thus showed that high confidence
predictions of ASD diagnosis made by individual brain networks did not lead to predictions with
high PPV.

Functionally similar brain networks predict correlated conformal scores

We investigated whether groups of brain networks existed that gave rise to similar conformal pre-
dictions of ASD diagnosis and could be combined to achieve more accurate group predictions. To
do so, we computed the correlation between the ASD conformal scores predicted by the individual
brain network predictors and applied hierarchical agglomerative clustering to derive 7 groups of
networks with correlated conformal scores:

+ group 1 was a single network group of the fronto-parietal network

+ group 2 combined limbic and temporal networks (orbito-frontal cortex, inferior temporal sul-
cus, lateral default mode network, and amygdala-hippocampal complex)

+ group 3 was a single network group containing the basal ganglia network

+ group 4 combined sub-components of the default mode network (anterior-, and posterior-
medial default mode network, and perigenual anterior cingulate and ventromedial prefrontal
cortex)

+ group 5 combined unimodal sensory networks (ventral, and dorsal somatomotor network,
and auditory network)

+ group 6 combined attention networks (medial ventral, and lateral ventral attention network,
and fronto parietal task control network)

+ group 7 combined visual networks (medial-, lateral-, and downstream visual network).

We thus showed that functionally similar brain networks tended to give rise to correlated conformal
predictions of ASD diagnosis.

We combined the conformal scores predicted by brain networks within each group to generate
high confidence group predictions of ASD diagnosis and evaluated them over 100 random boot-
strap samples (see Methods for detailed explanation of the process of combining conformal scores
and the corresponding adjustment of the conformal score thresholds). The average bootstrap PPV
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Figure 1. Combining network predictors with correlated conformal scores results in higher prediction
performance. Conformal predictions based on individual networks (left column) were not associated with
high PPV (c). The predicted ASD conformal scores were correlated between networks (b) and were used to
cluster networks into 7 combined predictors (middle column). Clusters predominantly broke down along
boundaries of large scale functional brain networks (a). Networks with correlated conformal predictions were
further clustered into two large ensemble predictors (right column), that combined predominantly unimodal
(blue) and transmodal (orange) brain networks respectively (a, right column). Predictions of the ensemble of
more transmodal networks (orange) gave rise to a high risk signature (HRS) that predicted ASD with high PPV
(c, top).
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across all groups of networks was 64% with high specificity (90%) and low sensitivity (17%). The
bootstrap PPV of groups of networks was generally close to that of the average bootstrap accuracy
across the individual networks within them:

* PPV,,.. =69.7% compared to an average PPV = 61.1% of the individual networks

group:
* PPV, = 69.2% compared to PPV = 64.8%

group4_networks

© PPV, s =648% VS PPV s worss = 63.7%
* PPI/group6 - 590% Vs PPI/group6 networks — = 65.4%
¢ PPV, 1 = 634%VNS PPV i networks = 01.9%

Conformal scores for the two single network groups (group 1 and 3) were adjusted identically to
those of the multi-network groups, which resulted in altered bootstrap PPV estimates:

* PPV, ., =614%Vs PPV,

group FP_network — 638%
* PPV,,5 = 60.6% VS PPV, yungiia = 63.9%

group

We thus show that groups of brain networks with correlated conformal scores predicted ASD diag-
nosis with only marginally higher PPV than individual brain networks.

Ensemble of transmodal networks forms high risk ASD signature

We further combined brain networks with correlated conformal scores into two large ensemble
predictors and investigated whether they gave rise to distinct high risk signatures of ASD diagnosis.
The first ensemble combined conformal scores of the nine more transmodal brain networks from
groups 1 (fronto-parietal), 2 (limbic), 3 (basal ganglia), and 4 (default mode network). The second
ensemble combined conformal scores of the remaining nine more unimodal brain networks from
group 5 (sensorimotor), group 6 (attention), and group 7 (visual). We evaluated the predictions
of these two ensemble models across 100 random bootstrap samples. The bootstrap PPV of the
combined conformal scores in ensemble 1 was 88.7%, considerably higher than the average of the
corresponding group predictors (62.9%). The bootstrap PPV in ensemble 2 was 72.0%, compared
to the average PPV of the corresponding group predictors of 64.6%. Ensemble 1 predicted ASD
diagnosis with higher specificity (99.5%) and lower sensitivity (4.9%) than ensemble 2 (specificity
97.1%, sensitivity 7.4%). Combining all brain networks into a whole brain model did not improve
the PPV (average bootstrap PPV 76.6%). Based on these findings, we chose to further investigate
the high PPV signature of ensemble 1 in the independent replication data set. We thus show that
combining correlated conformal predictions of individual brain networks into ensemble predictors
gave rise to a single FC based high risk signature (HRS) of ASD diagnosis.

High risk ASD signature generalizes to independent data

We explored the performance of the HRS of ensemble 1 in an independent replication sample to
determine its generalizability. For each individual in the replication sample, we thus computed the
conformal scores for the ASD and NTC label with respect to the individuals in the discovery sam-
ple. The HRS identified 10 individuals from 6 different imaging sites (USM_1: 3, GU_1: 3, NYU_1:
1, SDSU_1: 1, IP_1: 1, KKI_1: 1) in the replication sample, and of those, 9 did have an ASD diag-
nosis. The PPV of the HRS of ensemble 1 was thus 90% in the replication sample, close to the
average bootstrap PPV of 88.7% in the discovery sample. Specificity and sensitivity of the predic-
tions were also similar to those estimated in the discovery sample: specificity = 99.5% (discovery:
99.5%), sensitivity = 4.2% (discovery: 4.9%). Predictions of the ensemble 2 model in the replication
sample likewise performed similarly to bootstrap estimates in the discovery sample: PPV = 62.5%
(discovery: 72.0%), specificity = 95.8% (discovery: 97.1%), sensitivity = 7.1% (discovery: 7.4%). We
thus show that the high risk ASD signature identified in the discovery dataset generalized to an
independent validation dataset with similar predictive performance.
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Figure 2. HRS is more common than genetic risk markers and confers higher risk than traditional imaging
models. a) Monogenic syndromes (green rhombs) and recurrent Copy Number Variants (pink triangles)
confer high risk of ASD diagnosis (vertical axis), but are rare (horizontal axis). ASD related single nucleotide
polymorphisms (yellow triangles) are very common, but confer negligible risk of ASD. Current imaging based
predictive models (pink circles) identify large portions of the general population with low risk of ASD. The high
risk ASD signature (orange, black outline) identifies a small portion of the general population with elevated
risk of ASD diagnosis, concordant with the estimated performance in the discovery data (orange plus signs).
b) The Dice coefficient (Equation 9) reflects the degree of overlap between individuals identified by a risk
marker and the true ASD population. Rare genetic risk factors (green rhombs and pink triangles) with high
PPV identify a small subset of ASD individuals and thus have low Dice coefficients. Common ASD related
genetic variants (yellow triangles) identify large portions of the general population but with low PPV and thus
also have low Dice coefficients. The HRS shows Dice coefficients that are comparable but higher than those of
existing imaging models, reflecting the large increase in PPV over these models and the lower sensitivity.
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High risk ASD signature translates to 7-fold risk increase in general population
The discovery and replication samples were balanced to have equal numbers of individuals with
ASD and NTC labels (i.e. the prevalence of ASD in our samples was 50%) in order to facilitate train-
ing and evaluation of the predictive models. However, the prevalence of ASD in an unselected
population is estimated to be much lower (i.e. about 1 individual with ASD for 89 NTCs). The HRS
correctly identified 4.2% of individuals with ASD in the sample (sensitivity) and incorrectly identi-
fied 0.5% of individuals with NTC (1 - specificity or false positive rate) in the sample. If the number
of individuals with NTC considerably exceeds the number of individuals with ASD, the rate of indi-
viduals correctly identified by the model (accuracy), therefore also changes. To estimate the per-
formance of the high risk signature in an unselected population, we thus computed the expected
accuracy for a prevalence of ASD of 1/90 or 1.11%. In this context, the HRS correctly identified
0.046% of the population (4.2% sensitivity 1.11% individuals with ASD) and incorrectly identified
0.49% of the population (0.5% false positive rate x 98.89% individuals without ASD or with NTC).
Therefore the ratio of correctly identified individuals to all identified individuals (i.e. the PPV) was
0.046%/(0.046% + 0.49%) or 8.545%. An individual in the general population identified by the HRS
thus had an estimated risk of ASD of 8.5% or a 7.7 fold increase in risk over the baseline risk in
this population. We thus show that the high risk ASD signature conferred an estimated 7.7 fold
increase in individual risk over the baseline.

High risk ASD signature identifies individuals with severe symptoms

We next investigated the symptom characteristics of the individuals who were identified by the
HRS model. To that end, we reported their ADOS severity measures and compared them to those
of unselected individuals from the same clinical category. Because only 10 individuals were iden-
tified by the HRS model, these results are exploratory and we limited ourselves to reporting only
descriptive measures. Calibrated ADOS severity scores (ADOS-CSS) would have been the preferred
measure to interpret symptom severity because of their standardized range (from 1: least severe
symptoms to 10: most severe symptoms), and because of their comparability across ADOS mod-
ules and across different ages. However, ADOS-CSS were only available for 3 identified individuals.
Using a previously published technique we therefore computed proxy ADOS-CSS based on the
available data (see Methods for details). We reported these closely approximated (r = 0.94) proxy
ADOS-CSS together with the ADOS raw total scores.

The median of proxy ADOS-CSS was higher among the nine identified individuals with ASD (me-
dian =9, interquartile range = 4 — 9) than among the remaining individuals with ASD who were not
identified by the HRS model (median = 6, interquartile range = 5 — 8). The single NTC individual
identified by the model had a higher proxy ADOS-CSS of 3 than the remaining NTC individuals who
were not identified by the HRS model (median = 1, interquartile range = 1 — 1). The same com-
parison using raw ADOS total scores revealed an analogous finding: the median of raw ADOS total
scores was higher among the nine identified ASD individuals (median = 15, interquartile range =
13 — 17) than among the remaining unidentified ASD individuals (median = 10, interquartile range
=8 — 13.25). Accordingly, the single identified NTC individual had a higher raw ADOS total score
of 7 than the remaining unidentified NTC individuals (median = 1, interquartile range = 0 — 2).
Figure 3 shows both the proxy ADOS-CSS and the raw ADOS total scores of the identified individu-
als compared to those of unidentified individuals with the same diagnostic class. Our exploratory
findings thus indicate that the identified individuals showed particularly severe symptoms for their
diagnostic class.

High risk signature characterized by underconnectivity

To identify the FC pattern of the individuals detected by the HRS model, we investigated the average
residual connectivity maps of the identified individuals for the nine brain networks contributing to
the HRS signature. Figure 3b shows the average residual connectivity maps of the nine networks.
The average residual FC maps from all nine brain networks are characterized by pervasive under-
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share a pattern of distributed below average functional connectivity of the nine networks driving the high risk
signature (the networks are denoted by name and coloured outline on their respective connectivity maps).
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Figure 4. The conformal predictions are not driven by nuisance covariates. a) The distribution of correlations
of ASD conformal scores predicted by individual networks (left) and the two ensemble models (right) with
head motion (black) and age (grey) are shown across 100 bootstrap samples. Circles represent the median
correlation score across bootstrap samples, vertical lines span the 5th to 25th percentile (lower bar) and 75th
to 95th percentile (upper bar) of correlation scores respectively. All median correlation scores are close to
zero and enclose zero within the 90% confidence interval.

Figure 4-Figure supplement 1. Predictions by the HRS exceed the PPV of those by a simple baseline model.
The distribution of PPV estimates across 100 bootstrap samples is denoted by violin plots for each model
Figure 4-Figure supplement 2. The impact of different levels of ASD prevalence in the data are shown for
different metrics that are commonly used to evaluate prediction models. In balanced samples (black verti-
cal line) that are commonly used to train models, traditional models (pink lines) that balance sensitivity and
specificity achieve high accuracy. However, predictions by traditional models confer lower individual risk (PPV),
particularly for low ASD prevalence, close to the baseline rate in the general population (grey lines)

connectivity with respect to the rest of the discovery sample. We thus show that the FC signatures
of individuals identified by the HRS model were characterized by wide-spread underconnectivity
of the nine involved brain networks with respect to the sample average.

Conformal prediction not driven by nuisance covariates

To ensure that the conformal scores used to make the high confidence prediction were not driven
by known sources of nuisance variance, we computed the Pearson'’s correlation coefficient of ASD
conformal scores with age and head motion across bootstrap samples in the discovery sample. Our
results show that for all individual network predictors, the 90 % confidence interval of correlation
coefficients with age and head motion included zero (see Figure 4), and the median correlation
coefficients were close to zero (age: network average r = -0.01, range: -0.03 — 0.03; head motion:
network average r =-0.0027, range: -0.022 — 0.02). The ASD conformal scores of the two ensemble
predictors similarly show median correlation estimates close to zero with age (rone; = -0.01; renes
= 0.01) and head motion (reps; = 0.01; rene, = -0.005) and the 90% confidence intervals of either
correlationincluded zero (see Figure 4). We thus conclude that the estimated ASD conformal scores
were not driven substantially by nuisance covariates.

Conformal prediction performance exceeds baseline model

To determine if our FC based predictive signature performed better than a simple baseline model,
we repeated the conformal prediction procedure using an individual's age and in scanner head
motion as input features. Following the same procedure described above, we then use the trans-
ductive conformal prediction approach to predict an ASD diagnosis only for those individuals in
whom the model had high confidence. Our results show that such a baseline model did not pre-
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dict ASD diagnosis with high confidence for any individuals in 90% of bootstrap samples (i.e. the
sensitivity and PPV is zero). Among the 10% of bootstrap samples where the baseline model did
make predictions, they were of high specificity (median = 100%) and low sensitivity (median = 7.9%)
but low PPV (median = 50.5%, see Figure Supplement 1). We thus show that the FC based network
predictors performed better than a simple baseline model.

Discussion

This work aimed to identify imaging risk endophenotypes of ASD that are both commonly found in
the general population and confer a high risk of the disorder. We used a transductive conformal
prediction approach to identify only those individuals for whom the ASD diagnosis could be pre-
dicted with high confidence on the basis of functional connectivity (FC). Our results showed that
the combined predictions of nine brain networks gave rise to a single high risk FC-signature that
identified individuals with severe symptoms and pervasive underconnectivity in an independent
validation dataset. This FC-signature confers a more than 7-fold increased risk of ASD diagnosis in
the general population where it is identified in an estimated 1 in 200 individuals, compared to a
baseline ASD prevalence of 1 in 90 individuals. The risk conferred by our FC-signature constitutes
a more than 3 and a half fold increase over current neuroimaging prediction models of ASD.

Model performance
The multi-network risk FC-signature we have identified here confers a positive predictive value
(PPV) of 8.5%, more than 7 times higher than the baseline risk of ASD diagnosis in the general
population (1in 90 ~ 1.11%). This PPV is also more than a 3.5 fold larger than previously published
imaging based prediction models for ASD. We achieved this considerable increase in individual risk
by changing the goal of our prediction model. Whereas previous models have made predictions for
allindividuals in heterogeneous case-control populations, we limited predictions to only a subset of
individuals for whom our model has very high confidence in an ASD diagnosis. Although our model
made only few predictions, those predictions carry a much higher risk of an ASD diagnosis for the
identified individuals. The result is a prediction with a much higher specificity (99.5% compared
to 72.3% and 63% for traditional approaches, Heinsfeld et al., 2018; Abraham et al., 2017) and
much lower sensitivity (4.2%, compared to 61% and 74% respectively). It is thus important to point
out that here we have not proposed a better prediction learning model, but rather addressed a
different objective. It is reasonable to assume that the conformal prediction approach would lead
to predictions with similarly high specificity when applied to previously published imaging models.
In the general population, our high risk signature is estimated to be identified in about 1 in 200
individuals. It is thus approximately two orders of magnitude less common than ASD-related SNPs
(Grove et al., 2019), that confer negligible individual risk, and about two orders of magnitude more
common than rare monogenic syndromes (de la Torre-Ubieta et al., 2016), that confer very high
risk of ASD (see Figure 2). To the best of our knowledge, there are no other imaging or genetic
risk signatures of autism that confer a comparable amount of individual risk and are still relatively
common. Polygenic risk signatures of similar prevalence and risk have been identified recently for
some common diseases (Khera et al., 2018) and may be identified in the future for ASD (Martin
et al., 2018). However, the comparatively low number of identified common variants for ASD (i.e.
only 5 ASD specific SNPs have been robustly identified to date, Grove et al., 2019, compared to
108 that have been identified for schizophrenia, Schizophrenia Working Group of the Psychiatric
Genomics Consortium 20714) and the massive sample sizes required to robustly estimate polygenic
risk (e.g. approximately two orders of magnitude larger than those used in this study) currently
constitute important obstacles for these potential discoveries.

The high risk signature is mainly driven by transmodal brain networks
Individually, the 18 brain networks did not predict ASD with high PPV. By clustering networks with
correlated conformal scores and combining their predictions, we identified two equally sized sets
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of brain networks. The first one gave rise to the high risk ASD FC-signature and involved predom-
inantly transmodal networks in the default mode and fronto parietal network, but also of subcor-
tical areas (Alves et al., 2079). This is consistent with previous FC-based prediction models of ASD
that found the most predictive functional connections to involve transmodal areas such as the
temporal parietal junction and areas of the fronto-parietal control network (Abraham et al., 2017),
connections within the cingulo-opercular network (Yahata et al., 2016) and of supramarginal, mid-
dle temporal, and cingulate gyri (Heinsfeld et al., 2018). FC alterations of transmodal networks
have also been consistently reported in the ASD case-control literature (Monk et al., 2009; Holiga
et al., 2019; Just et al., 2007), in particular in regions of the default mode network (Washington
et al., 2014; Assaf et al., 2010).

The second ensemble, that did not predict ASD with high PPV, predominantly consisted of uni-
modal networks in the visual, auditory, and somatosensory cortices involved in sensory processing,
but also the ventral attention network. Although FC of primary sensory brain regions was previ-
ously found to be less predictive of ASD diagnosis than that of transmodal regions (Heinsfeld et al.,
2018), there is extensive evidence of ASD related FC alterations in unimodal areas (O/dehinkel et al.,
2019). Why then do we observe this difference in predictive performance between the two ensem-
bles?

The distinction between the FC of unimodal and transmodal networks is a very robust and
well established finding (Raichle et al., 2007; Fox et al., 2005; Buckner and DiNicola, 2019) that is
also reflected in their opposing FC alterations in ASD. Whereas transmodal regions were found to
be reproducibly over-connected in ASD, unimodal regions were found to be reproducibly under-
connected in a recent multi-center study (Holiga et al., 2019). Transmodal and unimodal brain
networks were recently shown to lie on opposite ends of a cortical gradient of functional hierar-
chy (Margulies et al., 2016) that is altered in ASD (Hong et al., 2019), suggesting a dysfunctional
separation between primary sensory networks and the default mode network. It is thus possible
that both ensembles capture distinct ASD risk signatures but only one of them could be reliably
identified in our dataset.

Individuals identified by the HRS have severe symptoms and functional undercon-
nectivity

The high risk FC-signature identified a group of ten individuals from the independent validation
dataset, and nine of them had a diagnosis of ASD. These individuals tended to also have high
symptom severity measures. Notably, the one individual identified by the high risk signature who
did not have an ASD diagnosis did also have unusually severe symptoms compared to other NTC
individuals. This individual may reflect a broader autism phenotype that extends into the general
population (Baron-Cohen et al., 2007) and is picked up by our model. It is possible that the high
risk FC-signature identifies a subtype of ASD patients with particularly severe symptoms. Because
these individuals are identified due to their strong dissimilarity with NTC, this interpretation would
be consistent with a view of neurodevelopmental disorders as an extreme deviation from normal
functioning (Marquand et al., 2019).

The identified individuals shared a profile of pervasive functional underconnectivity among the
transmodal networks that gave rise to the high risk FC-signature. Although dysconnectivity of trans-
modal brain networks, and the default mode network in particular (Monk et al., 2009), have been
consistently reported in the ASD case-control literature, the direction of these effects has not been
consistent(Padmanabhan et al., 2017; Hull et al., 2016) and both over- and under-connectivity have
been related to increases in symptom severity (Assaf et al., 2010; Supekar et al., 2013). Notably,
the profile of transmodal network underconnectivity we have identified here stands in contrast to
recent case-control findings of reproducible, ASD-related prefrontal and parietal overconnectivity
in a large, multi-center study (Holiga et al., 20719). These contrasting findings may reflect the inher-
ent limitations of case-control studies to identify subtypes of FC alterations that are strongly linked
to ASD. Indeed, recent work on ASD related FC subtypes similarly found a profile of transmodal un-
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derconnectivity (Tang et al., 2079). Our results are compatible with reports by other imaging based
prediction models of ASD that found underconnectivity between default mode network subregions
to be the most discriminant features for prediction (Abraham et al., 2017; Heinsfeld et al., 2018;
Yahata et al., 2016).

Limitations

These findings have to be interpreted in light of their limitations: Our analyses only included male
individuals which is a common problem in the field (Khundrakpam et al., 2017; Hong et al., 2019)
due to the higher frequency with which ASD is diagnosed among male individuals (Lai et al., 2014).
Recent data curation efforts have therefore started to deliberately include more female individuals
(Di Martino et al., 2017; Bedford et al., 2019).

The behavioural and symptomatic characterization of individuals detected by the high risk sig-
nature were limited by the inconsistent availability of phenotypic information in our data. A fu-
ture comprehensive characterization of the high risk signature will have to make use of large scale
datasets with more complete phenotyping and will help better clarify the neurobiologically defined
subset of at risk individuals in terms of their cognitive and symptom profile.

Due to the transductive nature of our conformal prediction model, we can only control for
nuisance covariates that are available both in the reference sample and for the predicted individual.
We could therefore not regress effects due to recording site from the individual FC data. Despite
this fact, the high risk ASD signature identified individuals from across different imaging sites with
high PPV in an independent dataset, suggesting that the identified FC endophenotype is robust to
site differences (see also Orban et al., 2018).

We have estimated the general population risk conferred by our high risk signature based on
its performance in the independent dataset. In line with our expectations, only very few individuals
were identified. Risk signatures with such a low prevalence are typically validated on much larger
datasets to ensure the robustness of the performance estimates (Khera et al., 2018). General pop-
ulation samples of this magnitude that also provide imaging data have recently become available
(Bycroft et al., 2018) and validating the high risk signature on these data is a natural next step to
establish robust estimates of the prediction performance of this high risk signature.

Future directions

The high risk FC-signature that we have described here provides interesting implications for future
research. As a cohort of individuals with similar FC alterations at high risk of an ASD diagnosis, our
signature identifies a potential population of interest to investigate the link between neurobiolog-
ical aberration, behavioural symptoms and genetic mechanisms. It may thus provide a starting
point to disentangle the heterogeneous relationships across these levels of research in ASD (Lom-
bardo et al., 2019). An important next step will be to investigate the stability of this FC signature
across time (Jacob et al., 2019) and to establish at what point of the developmental trajectory it
can be differentiated (Emerson et al., 2017). These questions will require large scale longitudinal
data of at risk individuals, such as the IBIS dataset (Wolff et al., 2012). Finally, investigating this
high risk ASD signature in other, comorbid (Simonoff et al., 2008) neurodevelopmental disorders
may help clarify the symptomatic (Grzadzinski et al., 2011), neurobiological (van den Heuvel and
Sporns, 2019; de Lange et al., 2019), and genetic (Cross-Disorder Group of the Psychiatric Genomics
Consortium et al., 2013) overlap between these disorders and the autism spectrum.

Conclusion

We have identified a functional connectivity endophenotype associated with high risk of ASD that
can be detected with high positive predictive value in independent data. Decomposing the autism
spectrum bit by bit in this manner may eventually help us understand the multitude of etiological
pathways and their extension to the general population.
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«: Methods and Materials

w2 Sample

a3 All data were sampled from the ABIDE 1 (Di Martino et al., 2014) and ABIDE 2 (Di Martino et al.,
aaa 2017) dataset releases that contain imaging data for ASD patients and NTC. We used the ABIDE
a5 1 release as a discovery dataset and retained the ABIDE 2 release as an independent validation
as  dataset.

aa7 The final discovery dataset consisted of 478 male individuals (Age = 16.67 (6.67), N ,qp = 239)
aas from 13 recordingsites. From the complete ABIDE 1 dataset of 1112 individuals (Age = 17.04 (8.04), N ,5p =
a0 539) from 20 imaging sites we excluded 164 female individuals due to strong sex imbalance. Of
a0 the remaining sample, 557 individuals from 13 imaging sites were successfully preprocessed and
es1 passed visual quality control (Age = 16.65 (6.75), N, s, = 272). In order to control for the effects
ss2  Of nuisance covariates in the data without removing variance due to the ASD diagnosis, we then
a3 matched ASD and NTC individuals on age and head motion within each imaging site by propensity
ssa  Score matching without replacement (Rosenbaum and Rubin, 1985).

455 The validation dataset consisted of 424 male individuals (Age = 13.66 (5.25), N .55, = 212) from
ss6  16imaging sites. From the complete ABIDE 2 dataset of 1114 individuals (Age = 14.86 (9.16), N ,p =
a7 521) from 19 imaging sites, we excluded 258 female individuals due to the strong sex imbalance
sss  and to match the sample characteristics of the discovery sample. Of the remaining sample, 587
a0 (Age = 13.94 (5.9), N, = 273) from 16 imaging sites were successfully preprocessed and passed
a0 Visual quality control. In line with the sample selection of the discovery sample, we then matched
w1 ASD and NTC individuals on age and head motion within each imaging site using propensity score
w2 matching without replacement.

«.3 Clinical diagnosis and severity estimates

sa Theindividuals from the ABIDE 1 and ABIDE 2 samples included in this study were diagnosed with
a5 ASD by expert clinicians based on either the Autism Diagnostic Observation Schedule (ADOS) (Lord
w6 et al., 2000; Gotham et al., 2007; Lord et al., 2012) or the Autism Diagnostic Interview - Revised
a7 (Lord et al., 1994). ADOS total scores are available for 228 (N 5, = 196) individuals in the discovery
s sample and 226 (N4, = 209) individuals in the validation sample. Although higher ADOS total
a0 Scores indicate more serious impairments, ADOS raw total scores were not originally intended to
470 compare individuals with different ages, or tested with different ADOS modules. For this purpose,
ar1 the original authors provide a standardized method (Gotham et al., 2009) to convert ADOS total
472 scores to 10-point calibrated severity scores (10 being the most severe), which are less influenced
a3 by an individuals’ age and other demographic confounds. However, ADOS-CSS were not available
a7a  for many individuals in the discovery (N = 107, N5, = 91) and validation sample (N,g, = 115).
475 In order to better contextualize the symptom severity of individuals from different age groups,
476 We computed proxy ADOS-CSS scores by using the available ADOS total scores and the published
477 Conversion table (Moradi et al., 2017). Proxy ADOS-CSS scores were strongly correlated with true
ars ADOS-CSS scores in both the discovery (r = 0.90) and the validation (r = 0.94) sample. Proxy ADOS-
aze  CSS scores could be computed for 221 individuals (N4, = 190) in the discovery and 223 (N ,5p =
a0 207) in the validation sample.

1 Imaging data preprocessing

42 Imaging data from individuals in both the discovery and independent validation sample underwent
«s3 identical preprocessing through the Neurolmaging Analysis Kit (NIAK) version 1.13 (Bellec et al.,
asa  20717) running inside a Singularity (version 2.6.1) containerized environment (Kurtzer et al., 2017)
«ss  and using an established in-house processing pipeline. In short, functional time series were cor-
a6 rected for in-scanner head motion and registered to the MNI152 stereotaxic space (Evans et al.,
a7 1994). Slow time drift signals were modeled on the continuous time series by a discrete cosine
sss  transformation and removed after censoring of time frames with excessive (> 0.4mm) head mo-
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tion (Power et al., 2012), together with nuisance covariates of the average white matter, and cere-
brospinal fluid signals, and the first principal components (accounting for 95% of variance) of the
six degrees of freedom head motion estimates and their squares (Giove et al., 2009).

Imaging data quality control

The preprocessed imaging data were visually quality controlled (QCed) to ensure the quality of the
data. The QC was performed by a trained rater according to our in-lab standardized QC protocol
(Benhajali et al., 2019) using a guided QC environment (Urchs et al., 2018). Imaging data were ex-
cluded from subsequent analyses in cases of failed brain extraction or coregistration to the stereo-
taxic space, visible motion artifacts, incomplete brain coverage of the field of view, or if fewer than
50 time frames remained after motion censoring. A large number of individuals from both the
discovery and the validation dataset were found to have incomplete coverage of the cerebellum.
In order to retain these otherwise correctly preprocessed individuals, we decided to exclude the
cerebellum from the FC analyses.

Functional connectivity estimation

Seed to voxel FC was estimated for functional brain networks defined in the MIST_20 atlas (Urchs
et al., 2017). The MIST_20 atlas represents large, spatially distributed subcomponents of canonical
FC networks. Of the 20 brain networks defined in the MIST_20 atlas, 2 were part of the cerebel-
lum and were excluded (see above). For each of the remaining 18 brain networks, the average
within-network time series was correlated with the time series of all non-cerebellar voxels using
Pearson’s correlation. The FC organization of every individual in the discovery and validation was
thus described by 18 network to voxel maps.

High confidence classification

The transductive conformal classification (TCC) approach (Vovk et al., 2005; Nouretdinov et al.,
20117), which we have applied here, calculates the degree to which a new datapoint “conforms” to
already classified data points in some measure of interest. The already classified data points were
the reference set of ASD and NTC individuals of the discovery dataset, and our measure of interest
was the FC of the 18 brain networks.

In contrast to an inductive classification approach, where a statistical model is first learned
based on the properties of the reference set and then applied to new data, in a transductive clas-
sification, no model is learned and each new individual is classified directly and separately by com-
paring it to the properties of each class (ASD and NTC) in the reference set, and choosing the class
(or classes) it most conforms to; see Chapelle, et al. (Chapelle et al., 2006) for a treatment regarding
the difference between inductive and transductive learning. Each unclassified individual therefore
has to be treated in the exact same way to ensure the independence of each classification.

Regression of nuisance covariates
We combined the unclassified individual and the reference sample and removed the group level
average connectivity and the linear effect of age and head motion from the network FC maps.

Dimensionality reduction

Previous works have shown the capacity of FC subtypes to capture disease-related FC variability;
e.g. (Easson et al., 2079). We therefore identified the 5 subtypes of FC variability across both
the unclassified individual and the reference sample by hierarchical agglomerative clustering of
spatially correlated, individual FC maps. For each individual we then computed the spatial similarity
with the average FC map of each of the 5 FC subtypes.

Estimation of conformality and classification
The individual conformality estimate for either clinical label (i.e., ASD or NTC) was then computed
similarly to the previous work of Nouretdinov et al. (Nouretdinov et al., 2011). In short, we first
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assumed an ASD label for each unclassified individual and then fit a logistic regression to predict
ASD for both the unclassified individual and the reference sample, using the previously estimated
similarity with FC subtypes as features. To reflect the fact that we wanted the model to make as
few false positive errors as possible, we weighted the predicted values of ASD individuals by a large
scaling factor (w,s, = 10'®). This was in line with the suggestion from the discussion of Nouretdi-
nov et al. (2011). This forced the prediction model to only be concerned with the identification of
ASD cases, with high specificity, at the expense of possible identification of NTC individuals. We
computed the ASD conformal score for each unclassified individual as the percentage of ASD in-
dividuals in the reference sample with a predicted value equal to or smaller than the one that
was predicted for that unclassified individual. In other words: if most ASD individuals had larger
predicted values than the unclassified individual, then the unclassified individual did not conform
to the ASD cohort and was an unusual ASD case, and thus the ASD conformal score would have
been small due to the individual not “conforming” to the reference cohort of ASD individuals. An
analogous process was then repeated to compute the NTC conformal score of the unclassified
individual.

We rejected a clinical label (i.e. ASD or NTC) if the corresponding estimated conformal score was
below a critical threshold of 5%. We predicted ASD with high confidence for only those individuals
who had NTC conformal scores below the critical threshold and ASD conformal scores equal or
greater than the critical threshold.

Assessment of prediction performance
To assess the quality of the classification, we computed the sensitivity and specificity across the
predicted individuals. The sensitivity of the classification:

TP

Sensitivity ;op = 5D (WD)
TRUE

reflects the ability of our model to correctly predict ASD (TP) among those individuals who truly
have ASD (ASDqg.e)- Incorrectly predicting an ASD diagnosis for an individual without the diagnosis
is known as a false positive (FP) error. Our approach tried to minimize the false positive error. The

specificity of the classification:
TN

specificity,op = NTC, 2)
likewise reflects its ability to correctly not predict ASD (TN) among those individuals who truly do
not have an ASD diagnosis (NTCgye)- Incorrectly predicting an ASD individual as "not ASD" is known
as a false negative (FN) error. The positive predictive value (PPV):
TPy TP ®)
is the ratio of correct ASD predictions (TP) among all ASD predictions made by our model. It thus
reflects the risk of an individual classified as ASD by our model to truly have an ASD diagnosis.
Our approach aimed to maximize the positive predictive value. The PPV depends on the ratio of
ASDqrue @among all individuals in our sample. This ratio is known as the prevalence of ASD in the
sample.

For an individual who was identified by the model as suspected ASD, the PPV,q, provides an
estimate of the individual probability of a true ASD diagnosis. If the model confers any risk, then
the risk of ASD is larger for someone identified by the model than for someone not identified by
the model. This measure is called the risk ratio (RR,sp):
TP/(TP + FP)
TN/(TN +FN)
A similar metric that is independent of the prevalence of the disorder is the Odds ratio (OR). The
odds of a true ASD diagnosis for a selected individual is the ratio of the probability

PPV,sp =

RR, ¢ = (4)

TP

P(ASD|selected) = —————
TP+ FP

= PPV,sp (5)
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Figure 5. Schematic representation of properties of different ASD risk markers. a) A set of individuals in the
population is found to express the risk marker (grey circle) and is thus labeled. Among the set of individuals
with ASD in the population (purple circle), some are also labeled by the risk marker (blue region). Risk
markers differ in the amount of labeled individuals from very few (left column) to very many (right column). b)
Different metrics exist to evaluate the performance of the risk marker. The ratio of ASD individuals among
the labeled individuals (PPV, see Equation 3) can be very high if only a very few individuals are labeled by the
risk marker (e.g. in monogenic syndromes with high risk for ASD, left column). However, the degree of
congruence of ASD and labeled individuals (Dice, see Equation 9) would be very low, because of the large
number of unlabeled ASD individuals. Conversely, a risk marker that labels very many individuals may capture
more ASD individuals and have a moderately higher Dice coefficient, but would have a very low ratio of ASD
to labeled individuals (PPV) and thus confer very low individual risk (e.g. existing imaging based models, right
column). The HRS approach presented here labels fewer individuals than current imaging models but those
individuals are more likely to have ASD, resulting in higher PPV and comparable Dice coefficients.
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over the probability

P(notASD|selected) = __FP (6)
TP+ FP
Both can be simplified to
Odds p = LL )
ASD — FP
Analogous to the risk ratio, the Odds ratio (OR):
TP/FP

OR,sp = —TN/FN (8)

then reflects the ratio of odds of an ASD diagnosis for selected individuals over the odds of ASD
for unselected individuals.

For a model that conveys no information on the ASD diagnosis, the odds of a true ASD diagnosis
are the same for individuals who are identified by the model and for those who are not identified
(i.e. the ORis 1).

An ideal model would correctly classify all individuals with ASD. That is, the set of selected indi-
viduals and individuals with ASD would be exactly overlapping. In practice, models with high PPV
(e.g. monogenic risk markers) tend to select only a very small subset of individuals (low sensitiv-
ity) and models with high sensitivity tend to incorrectly select many individuals without ASD (low
specificity, see Figure 5). We can thus use the overlap between individuals with ASD and selected
individuals to determine how close the model is to an optimal tradeoff between sensitivity and
specificity. The Serensen-Dice coefficient:

2%xTP
Dice = 9
= ASD,,.+(TP+FP) ©

measures the ratio of correctly selected individuals over the sum of individuals with ASD (AS D;,,..)
and all selected individuals. It thus ranges between 0 (if the two sets are not overlapping) and 1 (if
the two sets are completely overlapping).

Bootstrap estimation

We estimated the model performance of each brain network predictor through bootstrap subsam-
pling of the discovery data set. We drew two random bootstrap samples from the discovery data
set and assigned one to be the reference data set and the other to be the prediction data set. The
ASD diagnosis of each individual in the prediction data set was then separately predicted based on
the individuals in the reference data set, following preprocessing, feature extraction and training
as described above. We repeated this process 100 times for each brain network and computed the
average performance metrics of each predictor across bootstraps (see, e.g. Efron, 1983, regarding
bootstrap predictor evaluation methods).

Combination of correlated conformal predictions
To identify similarities of conformal predictions between the 18 functional brain networks, we com-
puted the pairwise correlation of ASD non-conformity on the discovery sample. We then used hi-
erarchical agglomerative clustering to identify groups of networks with correlated ASD conformal
score estimates. We selected a 7 and 2 cluster solution based on a visual inspection of the network
by network correlation matrix. Within each cluster of networks, conformal score estimates (i.e.
probability estimates of non-conformity with each class label) were combined using the p-value
averaging methods of (Vovk and Wang, 2012). Specifically, we averaged over the p-values that are
associated within each network using the squared-mean merging function, which produces a valid
aggregate p-value from the combination of any finite number of potentially correlated individual
p-values. This requirement of validity is important in order to maintain the conformity properties
when using these cluster-aggregated p-values as inputs in a conformal predictor.

The aggregation of p-values in the discovery sample was observed to average over the infor-
mation that are inherent in each of the contributing p-values. As such, less informative network
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elements tended to decrease the explanatory power of the more informative elements. The over-
all effect was that the cluster non-conformity threshold tended to be conservative in identifying
interesting observations, when compared to the same threshold value, applied to individual net-
works. In order to mitigate against this conservative effect, we used a more liberal threshold for
cluster-aggregated p-values, than those used for individual networks. That is, we adjusted the
critical non-conformal threshold to 0.2 from 0.05.

Validation on the independent dataset

The HRS identified on the discovery sample was then validated on the independent validation sam-
ple. To do so, the ASD and NTC non-conformity estimate of each individual in the validation sample
was computed by using the individuals of the discovery sample as the reference cohort. Each indi-
vidual in the validation sample was predicted independently after group level nuisance regression
and dimensionality reduction with respect to the reference sample.

Estimation of model performance in the general population

The discovery and validation sample had equal rates of ASD patients and NTC individuals (i.e. 1 ASD
for each 1 NTC). The prevalence of ASD in the general population is however much lower (1 ASD for
each 89 NTC). Based on the estimated specificity and sensitivity of our model in the independent
validation sample, we estimated the positive predictive value (PPV,s,) of the HRS in the general
population.
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Figure 4-Figure supplement 1. Predictions by the HRS exceed the PPV of those by a simple base-
line model. The distribution of PPV estimates across 100 bootstrap samples is denoted by violin
plots for each model
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Figure 4-Figure supplement 2. The impact of different levels of ASD prevalence in the data are
shown for different metrics that are commonly used to evaluate prediction models. In balanced
samples (black vertical line) that are commonly used to train models, traditional models (pink lines)
that balance sensitivity and specificity achieve high accuracy. However, predictions by traditional
models confer lower individual risk (PPV), particularly for low ASD prevalence, close to the baseline
rate in the general population (grey lines)
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