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Abstract Functional connectivity (FC) analyses of individuals with autism spectrum disorder16

(ASD) have established robust alterations of brain connectivity at the group level. Yet, the17

translation of these imaging findings into robust markers of individual risk is hampered by the18

extensive heterogeneity among ASD individuals. Here, we report an FC endophenotype that19

confers a greater than 7-fold risk increase of ASD diagnosis, yet is still identified in an estimated 120

in 200 individuals in the general population. By focusing on a subset of individuals with ASD and21

highly predictive FC alterations, we achieved a greater than 3-fold increase in risk over previous22

predictive models. The identified FC risk endophenotype was characterized by underconnectivity23

of transmodal brain networks and generalized to independent data. Our results demonstrate the24

ability of a highly targeted prediction model to meaningfully decompose part of the25

heterogeneity of the autism spectrum. The identified FC signature may help better delineate the26

multitude of etiological pathways and behavioural symptoms that challenge our understanding27

of the autism spectrum.28

29

Introduction30

Background31

Autism spectrum disorder (ASD) is a neurodevelopmental disorder diagnosed in more than 1% of32

children (Bai et al., 2019) that is defined by impairments of social interaction and repetitive be-33

haviour (American Psychiatric Association. and DSM-5 Task Force., 2013), and has been linked to34

alterations of brain organization (Holiga et al., 2019) and genetics (Grove et al., 2019). A core goal35

of clinical neuroscience is to understand the neurobiological etiology of this complex and hetero-36

geneous disorder (Lombardo et al., 2019) by identifying reliable neurobiological endophenotypes37

that confer a high risk of the disorder and are sufficiently common to be investigated in large cohort38
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studies. To date, existing genetic risk markers of ASD are either extremely rare (e.g. monogenic39

disorders, de la Torre-Ubieta et al., 2016) or convey only a very low individual risk of the disorder40

(e.g. common genetic risk factors, Sanders et al., 2015). Current neuroimaging based efforts to41

identify brain based endophenotypes that can predict ASD (Abraham et al., 2017; Heinsfeld et al.,42

2018) have limited accuracy, likely due to the extensive heterogeneity of the disorder (Lombardo43

et al., 2019; Jacob et al., 2019, see also Figure 2). Although it may not currently be possible to44

identify a single brain based risk marker that is highly predictive of an ASD diagnosis in any autistic45

individual, wemay be able to do so for a subset of autistic individuals. Transductive conformal pre-46

diction (TCP, Vapnik, 1998; Vovk et al., 2005) is a promising statistical framework for this purpose,47

that has been successfully applied to predict the clinical status of depressed patients from neu-48

roimaging data, previously (Nouretdinov et al., 2011). TCP explicitly computes the confidence with49

which a clinical label (i.e. ASD or neurotypical control, NTC) can be predicted for each individual,50

and we can use this estimate to limit ourmodel to predict only those individuals for whomwe have51

very high confidence of their ASD diagnosis. Our main goal is to apply TCP to identify resting-state52

functional Magnetic Resonance Imaging (fMRI) based ASD-endophenotypes associated with high53

risk and relatively high prevalence.54

Genetic risk markers of ASD55

ASD is a highly heritable disorder and to date, the best established ASD risk factors are genetic56

markers. A recent multi-national study of more than 2 million individuals estimated the heritabil-57

ity of ASD at 80% (Bai et al., 2019). Both common (e.g. Single-nucleotide polymorphism, SNP,58

Grove et al., 2019) and rare genetic variants (e.g. recurrent Copy-number variant, CNV, Sanders59

et al., 2019) have been shown to contribute to the genetic etiology of ASD (Geschwind and State,60

2015). Several monogenic syndromes have also been associated with a very high risk of autism-61

like symptoms (i.e. in more than 30% of individuals with the syndrome), but these disorders are62

exceedingly rare in the general population, typically detected in fewer than 0.01% of individuals63

(de la Torre-Ubieta et al., 2016). By comparison, ASD is diagnosed relatively frequently in about64

1% of individuals in the general population (Bai et al., 2019). Only five common genetic variants65

(found inmore than 5%of the general population) have recently been robustly associatedwith ASD66

through genome-wide association studies (Grove et al., 2019). However, each of these common67

variants increase the odds of an ASD diagnosis only minimally in carriers compared to non-carriers68

(i.e. the Odds Ratio is approximately 1.2 or close to equal, see Equation 8). Nevertheless, common69

genetic variants are thought to account for a large part of genetic ASD liability, with estimates rang-70

ing between 20% (Robinson et al., 2016) and 50% (Gaugler et al., 2014). In between the rare, high71

risk monogenic disorders and the common, but low risk genetic variants, sits a gap of knowledge72

that has been labeled the “missing heritability” (Manolio et al., 2009;Maher, 2008). The very large73

sample sizes necessary (Khera et al., 2018) to robustly identify the likely polygenic interaction ef-74

fects (O’Connor et al., 2019) pose a challenging limitation that makes the identification of common,75

high risk genetic factors of ASD difficult.76

Neuroimaging based risk markers of ASD77

Functional magnetic resonance imaging (fMRI) measures the functional connectivity (FC) between78

brain regions and has been shown to be sensitive to changes in the functional brain organiza-79

tion in ASD (Castellanos et al., 2013; Holiga et al., 2019). Recent work has therefore used high-80

dimensional FC measures to predict the clinical ASD diagnosis of individuals (Abraham et al., 2017;81

Heinsfeld et al., 2018; Yahata et al., 2016). These models make a prediction for every individual82

in a data set and seek to optimize the accuracy of all predictions. That is, they give equal impor-83

tance to correctly identifying an individual with ASD (sensitivity, see Equation 1) and to correctly not84

identifying a NTC individual (specificity, see Equation 2). As a consequence, predictions by these85

models typically have balanced sensitivity and specificity. When such a model is applied to an un-86

selected general population sample, where only very few individuals will truly have ASD (i.e. 1 —87
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2%), the ability of the model to correctly identify unaffected individuals as not having the condition88

(specificity) becomes more important. For example, if 20 individuals in a sample of 1000 have ASD89

(i.e. 980 are healthy), then a model with 70% sensitivity and 70% specificity will correctly identify90

14 ASD individuals (20 x sensitivity of 0.7) and correctly not identify 686 healthy individuals (980 x91

specificity of 0.7). The model will however also incorrectly identify 294 healthy individuals as ASD92

patients (980 ∗ (1 − 0.7)). This means that only 14 out of 308 (or 4%) individuals identified by the93

model will truly have ASD. This value is also called the positive predictive value (PPV) of the model94

and depends on the prevalence of the predicted disorder in the sample (see Methods and Equa-95

tion 3). The PPV thus reflects the risk of the disorder that a prediction by the model confers for an96

individual. In the above example, the PPV is only twice as large as the baseline risk of someone97

we know nothing about (i.e. the prevalence of the disorder in the sample). Recent FC based ASD98

classification models report sensitivity and specificity estimates that translate to low PPVs of 2.4%99

to 2.2% in the general population (Abraham et al., 2017; Heinsfeld et al., 2018).100

Transductive conformal prediction101

Performance metrics such as accuracy, sensitivity, and specificity provide us with some measures102

regarding the confidence that we can place on the quality of the predictions made by a model, on103

average, across all observed samples from either a testing or training data set. But what we are104

particularly interested in is the amount of confidence that we can place in the specific clinical la-105

bel predicted for each individual. This is akin to the difference between the usual confidence and106

prediction intervals (Kümmel et al., 2018). Whereas themodel in the above example identifies hun-107

dreds of individuals as ASD patients, maybe for some of the individuals, the degree of “confidence”108

of the label is more limited, based on the idiosyncrasies of the individual. We may decide that we109

only want to take a closer look at those individuals for whom the model is very confident of their110

ASD diagnosis. Conformal prediction is a statistical framework to make explicit the level of confi-111

dence that an analyst may have regarding the classification of any particular individual (Vovk et al.,112

2005). Given an individual that we want to classify as either neurotypical or ASD, the conformal113

predictor asks: “how unusual would this individual be, if they were a neurotypical individual?” and114

“how unusual would it be, if they were an individual with ASD?”. The predictor then answers each115

of these questions by comparing the individual to known neurotypical individuals and to known116

individuals with ASD, respectively. In this way, we will compute two “unusualness” scores for the117

individual, one for each of the two possible label classes. More technical introductory accounts of118

the conformal prediction logic can be found in articles such as Gammerman and Vovk (2007), and119

Shafer and Vovk (2008).120

Objectives121

Here we aim to identify FC signatures of ASD that are substantially more common than rare mono-122

genic disorders and carry substantially higher individual risk than current imaging based models123

of ASD. We hypothesize that by limiting predictions to the most confident cases, we will identify124

subsets of ASD individuals who share very predictive, high risk FC signatures. We further hypoth-125

esize that the FC of different brain networks may give rise to distinct high risk FC signatures. Our126

objectives are thus to:127

1. Identify sets of brain networks with FC profiles highly predictive of ASD diagnosis.128

2. Evaluate the identified high risk profiles on an independent dataset, and estimate their preva-129

lence and positive predictive value in the general population.130

3. Characterize the connectivity and symptom phenotype of the individuals identified by the131

high risk FC profiles.132
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Results133

We investigated whether the seed-based FC maps of 18 functional brain networks could be used134

to predict ASD diagnosis with high PPV in a subset of individuals. To do so, we estimated how135

conformal the FC of a new, unclassified individual was compared to individuals with a known ASD136

diagnosis or NTC. These estimates of conformality then allowed us to make a prediction of ASD137

diagnosis only for those individuals for whom we had very high confidence that their FC was very138

atypical for NTC (NTC conformal score < 5%) and not very atypical for ASD (ASD conformal score >139

5%). We identified the groups of brain networks that gave rise to the predictions with the highest140

PPV across bootstrap samples of the discovery data and then tested the generalizability of these141

predictions in an independent replication dataset.142

Individual networks do not predict ASD with high PPV143

We first evaluated the PPV of conformal ASD diagnosis predictions made with high confidence,144

based on the FC of each of the 18 brain networks. To do so, we computed the median PPV of high145

confidence conformal predictions for each brain network across 100 bootstrap samples (bootstrap146

PPV) of the discovery data. The bootstrap PPV of high confidence conformal ASD diagnosis predic-147

tions ranged from 56% (orbitofrontal network) to 66% (frontoparietal network) and was 63% on148

average across all networks. That is, among the individuals predicted with high confidence to have149

an ASD diagnosis, 63% on average did have an ASD diagnosis. As expected, the predictions were150

made with high specificity (91% on average across all networks) and low sensitivity (16% across all151

networks). That is, on average, 91% of NTC individuals were correctly not predicted to have an ASD152

diagnosis, and 16% of ASD individuals were correctly predicted to have an ASD diagnosis. Figure 1153

shows an overview of the bootstrap PPV across networks. We thus showed that high confidence154

predictions of ASD diagnosis made by individual brain networks did not lead to predictions with155

high PPV.156

Functionally similar brain networks predict correlated conformal scores157

We investigated whether groups of brain networks existed that gave rise to similar conformal pre-158

dictions of ASD diagnosis and could be combined to achieve more accurate group predictions. To159

do so, we computed the correlation between the ASD conformal scores predicted by the individual160

brain network predictors and applied hierarchical agglomerative clustering to derive 7 groups of161

networks with correlated conformal scores:162

• group 1 was a single network group of the fronto-parietal network163

• group 2 combined limbic and temporal networks (orbito-frontal cortex, inferior temporal sul-164

cus, lateral default mode network, and amygdala-hippocampal complex)165

• group 3 was a single network group containing the basal ganglia network166

• group 4 combined sub-components of the default mode network (anterior-, and posterior-167

medial defaultmode network, and perigenual anterior cingulate and ventromedial prefrontal168

cortex)169

• group 5 combined unimodal sensory networks (ventral, and dorsal somatomotor network,170

and auditory network)171

• group 6 combined attention networks (medial ventral, and lateral ventral attention network,172

and fronto parietal task control network)173

• group 7 combined visual networks (medial-, lateral-, and downstream visual network).174

We thus showed that functionally similar brain networks tended to give rise to correlated conformal175

predictions of ASD diagnosis.176

We combined the conformal scores predicted by brain networks within each group to generate177

high confidence group predictions of ASD diagnosis and evaluated them over 100 random boot-178

strap samples (seeMethods for detailed explanation of the process of combining conformal scores179

and the corresponding adjustment of the conformal score thresholds). The average bootstrap PPV180
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Figure 1. Combining network predictors with correlated conformal scores results in higher predictionperformance. Conformal predictions based on individual networks (left column) were not associated withhigh PPV (c). The predicted ASD conformal scores were correlated between networks (b) and were used tocluster networks into 7 combined predictors (middle column). Clusters predominantly broke down alongboundaries of large scale functional brain networks (a). Networks with correlated conformal predictions werefurther clustered into two large ensemble predictors (right column), that combined predominantly unimodal(blue) and transmodal (orange) brain networks respectively (a, right column). Predictions of the ensemble ofmore transmodal networks (orange) gave rise to a high risk signature (HRS) that predicted ASD with high PPV(c, top).
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across all groups of networks was 64% with high specificity (90%) and low sensitivity (17%). The181

bootstrap PPV of groups of networks was generally close to that of the average bootstrap accuracy182

across the individual networks within them:183

• PPVgroup4 = 69.7% compared to an average PPV = 61.1% of the individual networks184

• PPVgroup4 = 69.2% compared to PPV group4_networks = 64.8%185

• PPVgroup5 = 64.8% vs PPV group5_networks = 63.7%186

• PPVgroup6 = 59.0% vs PPVgroup6_networks = 65.4%187

• PPVgroup7 = 63.4% vs PPV group7_networks = 61.9%188

Conformal scores for the two single network groups (group 1 and 3) were adjusted identically to189

those of the multi-network groups, which resulted in altered bootstrap PPV estimates:190

• PPVgroup1 = 61.4% vs PPVFP _network = 63.8%191

• PPVgroup3 = 60.6% vs PPVbasal_ganglia = 63.9%192

We thus show that groups of brain networks with correlated conformal scores predicted ASD diag-193

nosis with only marginally higher PPV than individual brain networks.194

Ensemble of transmodal networks forms high risk ASD signature195

We further combined brain networks with correlated conformal scores into two large ensemble196

predictors and investigated whether they gave rise to distinct high risk signatures of ASD diagnosis.197

The first ensemble combined conformal scores of the nine more transmodal brain networks from198

groups 1 (fronto-parietal), 2 (limbic), 3 (basal ganglia), and 4 (default mode network). The second199

ensemble combined conformal scores of the remaining nine more unimodal brain networks from200

group 5 (sensorimotor), group 6 (attention), and group 7 (visual). We evaluated the predictions201

of these two ensemble models across 100 random bootstrap samples. The bootstrap PPV of the202

combined conformal scores in ensemble 1 was 88.7%, considerably higher than the average of the203

corresponding group predictors (62.9%). The bootstrap PPV in ensemble 2 was 72.0%, compared204

to the average PPV of the corresponding group predictors of 64.6%. Ensemble 1 predicted ASD205

diagnosis with higher specificity (99.5%) and lower sensitivity (4.9%) than ensemble 2 (specificity206

97.1%, sensitivity 7.4%). Combining all brain networks into a whole brain model did not improve207

the PPV (average bootstrap PPV 76.6%). Based on these findings, we chose to further investigate208

the high PPV signature of ensemble 1 in the independent replication data set. We thus show that209

combining correlated conformal predictions of individual brain networks into ensemble predictors210

gave rise to a single FC based high risk signature (HRS) of ASD diagnosis.211

High risk ASD signature generalizes to independent data212

We explored the performance of the HRS of ensemble 1 in an independent replication sample to213

determine its generalizability. For each individual in the replication sample, we thus computed the214

conformal scores for the ASD and NTC label with respect to the individuals in the discovery sam-215

ple. The HRS identified 10 individuals from 6 different imaging sites (USM_1: 3, GU_1: 3, NYU_1:216

1, SDSU_1: 1, IP_1: 1, KKI_1: 1) in the replication sample, and of those, 9 did have an ASD diag-217

nosis. The PPV of the HRS of ensemble 1 was thus 90% in the replication sample, close to the218

average bootstrap PPV of 88.7% in the discovery sample. Specificity and sensitivity of the predic-219

tions were also similar to those estimated in the discovery sample: specificity = 99.5% (discovery:220

99.5%), sensitivity = 4.2% (discovery: 4.9%). Predictions of the ensemble 2 model in the replication221

sample likewise performed similarly to bootstrap estimates in the discovery sample: PPV = 62.5%222

(discovery: 72.0%), specificity = 95.8% (discovery: 97.1%), sensitivity = 7.1% (discovery: 7.4%). We223

thus show that the high risk ASD signature identified in the discovery dataset generalized to an224

independent validation dataset with similar predictive performance.225
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Figure 2. HRS is more common than genetic risk markers and confers higher risk than traditional imagingmodels. a) Monogenic syndromes (green rhombs) and recurrent Copy Number Variants (pink triangles)confer high risk of ASD diagnosis (vertical axis), but are rare (horizontal axis). ASD related single nucleotidepolymorphisms (yellow triangles) are very common, but confer negligible risk of ASD. Current imaging basedpredictive models (pink circles) identify large portions of the general population with low risk of ASD. The highrisk ASD signature (orange, black outline) identifies a small portion of the general population with elevatedrisk of ASD diagnosis, concordant with the estimated performance in the discovery data (orange plus signs).b) The Dice coefficient (Equation 9) reflects the degree of overlap between individuals identified by a riskmarker and the true ASD population. Rare genetic risk factors (green rhombs and pink triangles) with highPPV identify a small subset of ASD individuals and thus have low Dice coefficients. Common ASD relatedgenetic variants (yellow triangles) identify large portions of the general population but with low PPV and thusalso have low Dice coefficients. The HRS shows Dice coefficients that are comparable but higher than those ofexisting imaging models, reflecting the large increase in PPV over these models and the lower sensitivity.
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High risk ASD signature translates to 7-fold risk increase in general population226

The discovery and replication samples were balanced to have equal numbers of individuals with227

ASD and NTC labels (i.e. the prevalence of ASD in our samples was 50%) in order to facilitate train-228

ing and evaluation of the predictive models. However, the prevalence of ASD in an unselected229

population is estimated to be much lower (i.e. about 1 individual with ASD for 89 NTCs). The HRS230

correctly identified 4.2% of individuals with ASD in the sample (sensitivity) and incorrectly identi-231

fied 0.5% of individuals with NTC (1 - specificity or false positive rate) in the sample. If the number232

of individuals with NTC considerably exceeds the number of individuals with ASD, the rate of indi-233

viduals correctly identified by the model (accuracy), therefore also changes. To estimate the per-234

formance of the high risk signature in an unselected population, we thus computed the expected235

accuracy for a prevalence of ASD of 1/90 or 1.11%. In this context, the HRS correctly identified236

0.046% of the population (4.2% sensitivity 1.11% individuals with ASD) and incorrectly identified237

0.49% of the population (0.5% false positive rate ∗ 98.89% individuals without ASD or with NTC).238

Therefore the ratio of correctly identified individuals to all identified individuals (i.e. the PPV) was239

0.046%∕(0.046% + 0.49%) or 8.545%. An individual in the general population identified by the HRS240

thus had an estimated risk of ASD of 8.5% or a 7.7 fold increase in risk over the baseline risk in241

this population. We thus show that the high risk ASD signature conferred an estimated 7.7 fold242

increase in individual risk over the baseline.243

High risk ASD signature identifies individuals with severe symptoms244

We next investigated the symptom characteristics of the individuals who were identified by the245

HRS model. To that end, we reported their ADOS severity measures and compared them to those246

of unselected individuals from the same clinical category. Because only 10 individuals were iden-247

tified by the HRS model, these results are exploratory and we limited ourselves to reporting only248

descriptivemeasures. Calibrated ADOS severity scores (ADOS-CSS) would have been the preferred249

measure to interpret symptom severity because of their standardized range (from 1: least severe250

symptoms to 10: most severe symptoms), and because of their comparability across ADOS mod-251

ules and across different ages. However, ADOS-CSS were only available for 3 identified individuals.252

Using a previously published technique we therefore computed proxy ADOS-CSS based on the253

available data (see Methods for details). We reported these closely approximated (r = 0.94) proxy254

ADOS-CSS together with the ADOS raw total scores.255

Themedian of proxy ADOS-CSS was higher among the nine identified individuals with ASD (me-256

dian = 9, interquartile range = 4— 9) than among the remaining individuals with ASDwhowere not257

identified by the HRS model (median = 6, interquartile range = 5 — 8). The single NTC individual258

identified by the model had a higher proxy ADOS-CSS of 3 than the remaining NTC individuals who259

were not identified by the HRS model (median = 1, interquartile range = 1 — 1). The same com-260

parison using raw ADOS total scores revealed an analogous finding: the median of raw ADOS total261

scores was higher among the nine identified ASD individuals (median = 15, interquartile range =262

13— 17) than among the remaining unidentified ASD individuals (median = 10, interquartile range263

= 8 — 13.25). Accordingly, the single identified NTC individual had a higher raw ADOS total score264

of 7 than the remaining unidentified NTC individuals (median = 1, interquartile range = 0 — 2).265

Figure 3 shows both the proxy ADOS-CSS and the raw ADOS total scores of the identified individu-266

als compared to those of unidentified individuals with the same diagnostic class. Our exploratory267

findings thus indicate that the identified individuals showed particularly severe symptoms for their268

diagnostic class.269

High risk signature characterized by underconnectivity270

To identify the FC pattern of the individuals detected by theHRSmodel, we investigated the average271

residual connectivity maps of the identified individuals for the nine brain networks contributing to272

the HRS signature. Figure 3b shows the average residual connectivity maps of the nine networks.273

The average residual FC maps from all nine brain networks are characterized by pervasive under-274
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Figure 3. The HRS identifies individuals with severe symptoms and pervasive underconnectivity. a) Individualsidentified by the high risk signature (circles with orange outline) have high proxy calibrated ADOS severityscores (left plot) and high raw ADOS total scores (right plot) compared to the average of their respectivediagnostic category. Box-plots are based on individuals not identified by the HRS. b) The identified individualsshare a pattern of distributed below average functional connectivity of the nine networks driving the high risksignature (the networks are denoted by name and coloured outline on their respective connectivity maps).
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Figure 4. The conformal predictions are not driven by nuisance covariates. a) The distribution of correlationsof ASD conformal scores predicted by individual networks (left) and the two ensemble models (right) withhead motion (black) and age (grey) are shown across 100 bootstrap samples. Circles represent the mediancorrelation score across bootstrap samples, vertical lines span the 5th to 25th percentile (lower bar) and 75thto 95th percentile (upper bar) of correlation scores respectively. All median correlation scores are close tozero and enclose zero within the 90% confidence interval.
Figure 4–Figure supplement 1. Predictions by the HRS exceed the PPV of those by a simple baseline model.
The distribution of PPV estimates across 100 bootstrap samples is denoted by violin plots for each model
Figure 4–Figure supplement 2. The impact of different levels of ASD prevalence in the data are shown for
different metrics that are commonly used to evaluate prediction models. In balanced samples (black verti-
cal line) that are commonly used to train models, traditional models (pink lines) that balance sensitivity and
specificity achieve high accuracy. However, predictions by traditional models confer lower individual risk (PPV),
particularly for low ASD prevalence, close to the baseline rate in the general population (grey lines)

connectivity with respect to the rest of the discovery sample. We thus show that the FC signatures275

of individuals identified by the HRS model were characterized by wide-spread underconnectivity276

of the nine involved brain networks with respect to the sample average.277

Conformal prediction not driven by nuisance covariates278

To ensure that the conformal scores used to make the high confidence prediction were not driven279

by known sources of nuisance variance, we computed the Pearson’s correlation coefficient of ASD280

conformal scoreswith age andheadmotion across bootstrap samples in the discovery sample. Our281

results show that for all individual network predictors, the 90 % confidence interval of correlation282

coefficients with age and head motion included zero (see Figure 4), and the median correlation283

coefficients were close to zero (age: network average r = –0.01, range: –0.03 — 0.03; head motion:284

network average r = -0.0027, range: –0.022—0.02). The ASD conformal scores of the two ensemble285

predictors similarly show median correlation estimates close to zero with age (rens1 = –0.01; rens2286

= 0.01) and head motion (rens1 = 0.01; rens2 = –0.005) and the 90% confidence intervals of either287

correlation included zero (see Figure 4). We thus conclude that the estimatedASD conformal scores288

were not driven substantially by nuisance covariates.289

Conformal prediction performance exceeds baseline model290

To determine if our FC based predictive signature performed better than a simple baseline model,291

we repeated the conformal prediction procedure using an individual’s age and in scanner head292

motion as input features. Following the same procedure described above, we then use the trans-293

ductive conformal prediction approach to predict an ASD diagnosis only for those individuals in294

whom the model had high confidence. Our results show that such a baseline model did not pre-295
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dict ASD diagnosis with high confidence for any individuals in 90% of bootstrap samples (i.e. the296

sensitivity and PPV is zero). Among the 10% of bootstrap samples where the baseline model did297

make predictions, they were of high specificity (median = 100%) and low sensitivity (median = 7.9%)298

but low PPV (median = 50.5%, see Figure Supplement 1). We thus show that the FC based network299

predictors performed better than a simple baseline model.300

Discussion301

This work aimed to identify imaging risk endophenotypes of ASD that are both commonly found in302

the general population and confer a high risk of the disorder. We used a transductive conformal303

prediction approach to identify only those individuals for whom the ASD diagnosis could be pre-304

dicted with high confidence on the basis of functional connectivity (FC). Our results showed that305

the combined predictions of nine brain networks gave rise to a single high risk FC-signature that306

identified individuals with severe symptoms and pervasive underconnectivity in an independent307

validation dataset. This FC-signature confers a more than 7-fold increased risk of ASD diagnosis in308

the general population where it is identified in an estimated 1 in 200 individuals, compared to a309

baseline ASD prevalence of 1 in 90 individuals. The risk conferred by our FC-signature constitutes310

a more than 3 and a half fold increase over current neuroimaging prediction models of ASD.311

Model performance312

The multi-network risk FC-signature we have identified here confers a positive predictive value313

(PPV) of 8.5%, more than 7 times higher than the baseline risk of ASD diagnosis in the general314

population (1 in 90 ≈ 1.11%). This PPV is also more than a 3.5 fold larger than previously published315

imaging based predictionmodels for ASD. We achieved this considerable increase in individual risk316

by changing the goal of our predictionmodel. Whereas previousmodels havemade predictions for317

all individuals in heterogeneous case-control populations, we limited predictions to only a subset of318

individuals for whomourmodel has very high confidence in an ASD diagnosis. Although ourmodel319

made only few predictions, those predictions carry a much higher risk of an ASD diagnosis for the320

identified individuals. The result is a prediction with a much higher specificity (99.5% compared321

to 72.3% and 63% for traditional approaches, Heinsfeld et al., 2018; Abraham et al., 2017) and322

much lower sensitivity (4.2%, compared to 61% and 74% respectively). It is thus important to point323

out that here we have not proposed a better prediction learning model, but rather addressed a324

different objective. It is reasonable to assume that the conformal prediction approach would lead325

to predictions with similarly high specificity when applied to previously published imaging models.326

In the general population, our high risk signature is estimated to be identified in about 1 in 200327

individuals. It is thus approximately two orders of magnitude less common than ASD-related SNPs328

(Grove et al., 2019), that confer negligible individual risk, and about two orders of magnitude more329

common than rare monogenic syndromes (de la Torre-Ubieta et al., 2016), that confer very high330

risk of ASD (see Figure 2). To the best of our knowledge, there are no other imaging or genetic331

risk signatures of autism that confer a comparable amount of individual risk and are still relatively332

common. Polygenic risk signatures of similar prevalence and risk have been identified recently for333

some common diseases (Khera et al., 2018) and may be identified in the future for ASD (Martin334

et al., 2018). However, the comparatively low number of identified common variants for ASD (i.e.335

only 5 ASD specific SNPs have been robustly identified to date, Grove et al., 2019, compared to336

108 that have been identified for schizophrenia, Schizophrenia Working Group of the Psychiatric337

Genomics Consortium 2014) and themassive sample sizes required to robustly estimate polygenic338

risk (e.g. approximately two orders of magnitude larger than those used in this study) currently339

constitute important obstacles for these potential discoveries.340

The high risk signature is mainly driven by transmodal brain networks341

Individually, the 18 brain networks did not predict ASD with high PPV. By clustering networks with342

correlated conformal scores and combining their predictions, we identified two equally sized sets343

11 of 23

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2020. ; https://doi.org/10.1101/2020.06.01.127688doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.01.127688
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to eLife

of brain networks. The first one gave rise to the high risk ASD FC-signature and involved predom-344

inantly transmodal networks in the default mode and fronto parietal network, but also of subcor-345

tical areas (Alves et al., 2019). This is consistent with previous FC-based prediction models of ASD346

that found the most predictive functional connections to involve transmodal areas such as the347

temporal parietal junction and areas of the fronto-parietal control network (Abraham et al., 2017),348

connections within the cingulo-opercular network (Yahata et al., 2016) and of supramarginal, mid-349

dle temporal, and cingulate gyri (Heinsfeld et al., 2018). FC alterations of transmodal networks350

have also been consistently reported in the ASD case-control literature (Monk et al., 2009; Holiga351

et al., 2019; Just et al., 2007), in particular in regions of the default mode network (Washington352

et al., 2014; Assaf et al., 2010).353

The second ensemble, that did not predict ASD with high PPV, predominantly consisted of uni-354

modal networks in the visual, auditory, and somatosensory cortices involved in sensory processing,355

but also the ventral attention network. Although FC of primary sensory brain regions was previ-356

ously found to be less predictive of ASD diagnosis than that of transmodal regions (Heinsfeld et al.,357

2018), there is extensive evidence of ASD related FC alterations in unimodal areas (Oldehinkel et al.,358

2019). Why then do we observe this difference in predictive performance between the two ensem-359

bles?360

The distinction between the FC of unimodal and transmodal networks is a very robust and361

well established finding (Raichle et al., 2001; Fox et al., 2005; Buckner and DiNicola, 2019) that is362

also reflected in their opposing FC alterations in ASD. Whereas transmodal regions were found to363

be reproducibly over-connected in ASD, unimodal regions were found to be reproducibly under-364

connected in a recent multi-center study (Holiga et al., 2019). Transmodal and unimodal brain365

networks were recently shown to lie on opposite ends of a cortical gradient of functional hierar-366

chy (Margulies et al., 2016) that is altered in ASD (Hong et al., 2019), suggesting a dysfunctional367

separation between primary sensory networks and the default mode network. It is thus possible368

that both ensembles capture distinct ASD risk signatures but only one of them could be reliably369

identified in our dataset.370

Individuals identified by the HRS have severe symptoms and functional undercon-371

nectivity372

The high risk FC-signature identified a group of ten individuals from the independent validation373

dataset, and nine of them had a diagnosis of ASD. These individuals tended to also have high374

symptom severity measures. Notably, the one individual identified by the high risk signature who375

did not have an ASD diagnosis did also have unusually severe symptoms compared to other NTC376

individuals. This individual may reflect a broader autism phenotype that extends into the general377

population (Baron-Cohen et al., 2001) and is picked up by our model. It is possible that the high378

risk FC-signature identifies a subtype of ASD patients with particularly severe symptoms. Because379

these individuals are identified due to their strong dissimilarity with NTC, this interpretation would380

be consistent with a view of neurodevelopmental disorders as an extreme deviation from normal381

functioning (Marquand et al., 2019).382

The identified individuals shared a profile of pervasive functional underconnectivity among the383

transmodal networks that gave rise to the high risk FC-signature. Although dysconnectivity of trans-384

modal brain networks, and the default mode network in particular (Monk et al., 2009), have been385

consistently reported in the ASD case-control literature, the direction of these effects has not been386

consistent (Padmanabhan et al., 2017;Hull et al., 2016) andboth over- andunder-connectivity have387

been related to increases in symptom severity (Assaf et al., 2010; Supekar et al., 2013). Notably,388

the profile of transmodal network underconnectivity we have identified here stands in contrast to389

recent case-control findings of reproducible, ASD-related prefrontal and parietal overconnectivity390

in a large, multi-center study (Holiga et al., 2019). These contrasting findings may reflect the inher-391

ent limitations of case-control studies to identify subtypes of FC alterations that are strongly linked392

to ASD. Indeed, recent work on ASD related FC subtypes similarly found a profile of transmodal un-393
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derconnectivity (Tang et al., 2019). Our results are compatible with reports by other imaging based394

predictionmodels of ASD that found underconnectivity between defaultmode network subregions395

to be the most discriminant features for prediction (Abraham et al., 2017; Heinsfeld et al., 2018;396

Yahata et al., 2016).397

Limitations398

These findings have to be interpreted in light of their limitations: Our analyses only included male399

individuals which is a common problem in the field (Khundrakpam et al., 2017; Hong et al., 2019)400

due to the higher frequency with which ASD is diagnosed among male individuals (Lai et al., 2014).401

Recent data curation efforts have therefore started to deliberately includemore female individuals402

(Di Martino et al., 2017; Bedford et al., 2019).403

The behavioural and symptomatic characterization of individuals detected by the high risk sig-404

nature were limited by the inconsistent availability of phenotypic information in our data. A fu-405

ture comprehensive characterization of the high risk signature will have to make use of large scale406

datasets withmore complete phenotyping andwill help better clarify the neurobiologically defined407

subset of at risk individuals in terms of their cognitive and symptom profile.408

Due to the transductive nature of our conformal prediction model, we can only control for409

nuisance covariates that are available both in the reference sample and for the predicted individual.410

We could therefore not regress effects due to recording site from the individual FC data. Despite411

this fact, the high risk ASD signature identified individuals from across different imaging sites with412

high PPV in an independent dataset, suggesting that the identified FC endophenotype is robust to413

site differences (see also Orban et al., 2018).414

We have estimated the general population risk conferred by our high risk signature based on415

its performance in the independent dataset. In line with our expectations, only very few individuals416

were identified. Risk signatures with such a low prevalence are typically validated on much larger417

datasets to ensure the robustness of the performance estimates (Khera et al., 2018). General pop-418

ulation samples of this magnitude that also provide imaging data have recently become available419

(Bycroft et al., 2018) and validating the high risk signature on these data is a natural next step to420

establish robust estimates of the prediction performance of this high risk signature.421

Future directions422

The high risk FC-signature that we have described here provides interesting implications for future423

research. As a cohort of individuals with similar FC alterations at high risk of an ASD diagnosis, our424

signature identifies a potential population of interest to investigate the link between neurobiolog-425

ical aberration, behavioural symptoms and genetic mechanisms. It may thus provide a starting426

point to disentangle the heterogeneous relationships across these levels of research in ASD (Lom-427

bardo et al., 2019). An important next step will be to investigate the stability of this FC signature428

across time (Jacob et al., 2019) and to establish at what point of the developmental trajectory it429

can be differentiated (Emerson et al., 2017). These questions will require large scale longitudinal430

data of at risk individuals, such as the IBIS dataset (Wolff et al., 2012). Finally, investigating this431

high risk ASD signature in other, comorbid (Simonoff et al., 2008) neurodevelopmental disorders432

may help clarify the symptomatic (Grzadzinski et al., 2011), neurobiological (van den Heuvel and433

Sporns, 2019; de Lange et al., 2019), and genetic (Cross-Disorder Group of the Psychiatric Genomics434

Consortium et al., 2013) overlap between these disorders and the autism spectrum.435

Conclusion436

We have identified a functional connectivity endophenotype associated with high risk of ASD that437

can be detected with high positive predictive value in independent data. Decomposing the autism438

spectrum bit by bit in this manner may eventually help us understand the multitude of etiological439

pathways and their extension to the general population.440
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Methods and Materials441

Sample442

All data were sampled from the ABIDE 1 (Di Martino et al., 2014) and ABIDE 2 (Di Martino et al.,443

2017) dataset releases that contain imaging data for ASD patients and NTC. We used the ABIDE444

1 release as a discovery dataset and retained the ABIDE 2 release as an independent validation445

dataset.446

The final discovery dataset consisted of 478 male individuals (Age = 16.67 (6.67), NASD = 239)447

from13 recording sites. From the complete ABIDE 1dataset of 1112 individuals (Age = 17.04 (8.04), NASD =448

539) from 20 imaging sites we excluded 164 female individuals due to strong sex imbalance. Of449

the remaining sample, 557 individuals from 13 imaging sites were successfully preprocessed and450

passed visual quality control (Age = 16.65 (6.75), NASD = 272). In order to control for the effects451

of nuisance covariates in the data without removing variance due to the ASD diagnosis, we then452

matched ASD and NTC individuals on age and head motion within each imaging site by propensity453

score matching without replacement (Rosenbaum and Rubin, 1985).454

The validation dataset consisted of 424 male individuals (Age = 13.66 (5.25), NASD = 212) from455

16 imaging sites. From the complete ABIDE 2 dataset of 1114 individuals (Age = 14.86 (9.16), NASD =456

521) from 19 imaging sites, we excluded 258 female individuals due to the strong sex imbalance457

and to match the sample characteristics of the discovery sample. Of the remaining sample, 587458

(Age = 13.94 (5.9), NASD = 273) from 16 imaging sites were successfully preprocessed and passed459

visual quality control. In line with the sample selection of the discovery sample, we then matched460

ASD and NTC individuals on age and head motion within each imaging site using propensity score461

matching without replacement.462

Clinical diagnosis and severity estimates463

The individuals from the ABIDE 1 and ABIDE 2 samples included in this study were diagnosed with464

ASD by expert clinicians based on either the Autism Diagnostic Observation Schedule (ADOS) (Lord465

et al., 2000; Gotham et al., 2007; Lord et al., 2012) or the Autism Diagnostic Interview - Revised466

(Lord et al., 1994). ADOS total scores are available for 228 (NASD = 196) individuals in the discovery467

sample and 226 (NASD = 209) individuals in the validation sample. Although higher ADOS total468

scores indicate more serious impairments, ADOS raw total scores were not originally intended to469

compare individuals with different ages, or tested with different ADOS modules. For this purpose,470

the original authors provide a standardized method (Gotham et al., 2009) to convert ADOS total471

scores to 10-point calibrated severity scores (10 being the most severe), which are less influenced472

by an individuals’ age and other demographic confounds. However, ADOS-CSS were not available473

for many individuals in the discovery (N = 107, NASD = 91) and validation sample (NASD = 115).474

In order to better contextualize the symptom severity of individuals from different age groups,475

we computed proxy ADOS-CSS scores by using the available ADOS total scores and the published476

conversion table (Moradi et al., 2017). Proxy ADOS-CSS scores were strongly correlated with true477

ADOS-CSS scores in both the discovery (r = 0.90) and the validation (r = 0.94) sample. Proxy ADOS-478

CSS scores could be computed for 221 individuals (NASD = 190) in the discovery and 223 (NASD =479

207) in the validation sample.480

Imaging data preprocessing481

Imaging data from individuals in both the discovery and independent validation sample underwent482

identical preprocessing through the NeuroImaging Analysis Kit (NIAK) version 1.13 (Bellec et al.,483

2011) running inside a Singularity (version 2.6.1) containerized environment (Kurtzer et al., 2017)484

and using an established in-house processing pipeline. In short, functional time series were cor-485

rected for in-scanner head motion and registered to the MNI152 stereotaxic space (Evans et al.,486

1994). Slow time drift signals were modeled on the continuous time series by a discrete cosine487

transformation and removed after censoring of time frames with excessive (> 0.4mm) head mo-488
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tion (Power et al., 2012), together with nuisance covariates of the average white matter, and cere-489

brospinal fluid signals, and the first principal components (accounting for 95% of variance) of the490

six degrees of freedom head motion estimates and their squares (Giove et al., 2009).491

Imaging data quality control492

The preprocessed imaging data were visually quality controlled (QCed) to ensure the quality of the493

data. The QC was performed by a trained rater according to our in-lab standardized QC protocol494

(Benhajali et al., 2019) using a guided QC environment (Urchs et al., 2018). Imaging data were ex-495

cluded from subsequent analyses in cases of failed brain extraction or coregistration to the stereo-496

taxic space, visible motion artifacts, incomplete brain coverage of the field of view, or if fewer than497

50 time frames remained after motion censoring. A large number of individuals from both the498

discovery and the validation dataset were found to have incomplete coverage of the cerebellum.499

In order to retain these otherwise correctly preprocessed individuals, we decided to exclude the500

cerebellum from the FC analyses.501

Functional connectivity estimation502

Seed to voxel FC was estimated for functional brain networks defined in the MIST_20 atlas (Urchs503

et al., 2017). The MIST_20 atlas represents large, spatially distributed subcomponents of canonical504

FC networks. Of the 20 brain networks defined in the MIST_20 atlas, 2 were part of the cerebel-505

lum and were excluded (see above). For each of the remaining 18 brain networks, the average506

within-network time series was correlated with the time series of all non-cerebellar voxels using507

Pearson’s correlation. The FC organization of every individual in the discovery and validation was508

thus described by 18 network to voxel maps.509

High confidence classification510

The transductive conformal classification (TCC) approach (Vovk et al., 2005; Nouretdinov et al.,511

2011), which we have applied here, calculates the degree to which a new datapoint “conforms” to512

already classified data points in some measure of interest. The already classified data points were513

the reference set of ASD and NTC individuals of the discovery dataset, and our measure of interest514

was the FC of the 18 brain networks.515

In contrast to an inductive classification approach, where a statistical model is first learned516

based on the properties of the reference set and then applied to new data, in a transductive clas-517

sification, no model is learned and each new individual is classified directly and separately by com-518

paring it to the properties of each class (ASD and NTC) in the reference set, and choosing the class519

(or classes) itmost conforms to; see Chapelle, et al. (Chapelle et al., 2006) for a treatment regarding520

the difference between inductive and transductive learning. Each unclassified individual therefore521

has to be treated in the exact same way to ensure the independence of each classification.522

Regression of nuisance covariates523

We combined the unclassified individual and the reference sample and removed the group level524

average connectivity and the linear effect of age and head motion from the network FC maps.525

Dimensionality reduction526

Previous works have shown the capacity of FC subtypes to capture disease-related FC variability;527

e.g. (Easson et al., 2019). We therefore identified the 5 subtypes of FC variability across both528

the unclassified individual and the reference sample by hierarchical agglomerative clustering of529

spatially correlated, individual FCmaps. For each individual we then computed the spatial similarity530

with the average FC map of each of the 5 FC subtypes.531

Estimation of conformality and classification532

The individual conformality estimate for either clinical label (i.e., ASD or NTC) was then computed533

similarly to the previous work of Nouretdinov et al. (Nouretdinov et al., 2011). In short, we first534
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assumed an ASD label for each unclassified individual and then fit a logistic regression to predict535

ASD for both the unclassified individual and the reference sample, using the previously estimated536

similarity with FC subtypes as features. To reflect the fact that we wanted the model to make as537

few false positive errors as possible, we weighted the predicted values of ASD individuals by a large538

scaling factor (wASD = 1016). This was in line with the suggestion from the discussion of Nouretdi-539

nov et al. (2011). This forced the prediction model to only be concerned with the identification of540

ASD cases, with high specificity, at the expense of possible identification of NTC individuals. We541

computed the ASD conformal score for each unclassified individual as the percentage of ASD in-542

dividuals in the reference sample with a predicted value equal to or smaller than the one that543

was predicted for that unclassified individual. In other words: if most ASD individuals had larger544

predicted values than the unclassified individual, then the unclassified individual did not conform545

to the ASD cohort and was an unusual ASD case, and thus the ASD conformal score would have546

been small due to the individual not “conforming” to the reference cohort of ASD individuals. An547

analogous process was then repeated to compute the NTC conformal score of the unclassified548

individual.549

We rejected a clinical label (i.e. ASD orNTC) if the corresponding estimated conformal scorewas550

below a critical threshold of 5%. We predicted ASD with high confidence for only those individuals551

who had NTC conformal scores below the critical threshold and ASD conformal scores equal or552

greater than the critical threshold.553

Assessment of prediction performance554

To assess the quality of the classification, we computed the sensitivity and specificity across the555

predicted individuals. The sensitivity of the classification:556

sensitivityASD = TP
ASDTRUE

(1)
reflects the ability of our model to correctly predict ASD (TP) among those individuals who truly557

have ASD (ASDTRUE). Incorrectly predicting an ASD diagnosis for an individual without the diagnosis558

is known as a false positive (FP) error. Our approach tried to minimize the false positive error. The559

specificity of the classification:560

specif icityASD = TN
NTCTRUE

(2)
likewise reflects its ability to correctly not predict ASD (TN) among those individuals who truly do561

not have an ASD diagnosis (NTCTRUE). Incorrectly predicting an ASD individual as "not ASD" is known562

as a false negative (FN) error. The positive predictive value (PPV):563

PPVASD = TP
TP + FP

(3)
is the ratio of correct ASD predictions (TP) among all ASD predictions made by our model. It thus564

reflects the risk of an individual classified as ASD by our model to truly have an ASD diagnosis.565

Our approach aimed to maximize the positive predictive value. The PPV depends on the ratio of566

ASDTRUE among all individuals in our sample. This ratio is known as the prevalence of ASD in the567

sample.568

For an individual who was identified by the model as suspected ASD, the PPVASD provides an569

estimate of the individual probability of a true ASD diagnosis. If the model confers any risk, then570

the risk of ASD is larger for someone identified by the model than for someone not identified by571

the model. This measure is called the risk ratio (RRASD):572

RRASD =
TP∕(TP + FP )
TN∕(TN + FN)

(4)
A similar metric that is independent of the prevalence of the disorder is the Odds ratio (OR). The573

odds of a true ASD diagnosis for a selected individual is the ratio of the probability574

P (ASD|selected) = TP
TP + FP

= PPVASD (5)
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Figure 5. Schematic representation of properties of different ASD risk markers. a) A set of individuals in thepopulation is found to express the risk marker (grey circle) and is thus labeled. Among the set of individualswith ASD in the population (purple circle), some are also labeled by the risk marker (blue region). Riskmarkers differ in the amount of labeled individuals from very few (left column) to very many (right column). b)Different metrics exist to evaluate the performance of the risk marker. The ratio of ASD individuals amongthe labeled individuals (PPV, see Equation 3) can be very high if only a very few individuals are labeled by therisk marker (e.g. in monogenic syndromes with high risk for ASD, left column). However, the degree ofcongruence of ASD and labeled individuals (Dice, see Equation 9) would be very low, because of the largenumber of unlabeled ASD individuals. Conversely, a risk marker that labels very many individuals may capturemore ASD individuals and have a moderately higher Dice coefficient, but would have a very low ratio of ASDto labeled individuals (PPV) and thus confer very low individual risk (e.g. existing imaging based models, rightcolumn). The HRS approach presented here labels fewer individuals than current imaging models but thoseindividuals are more likely to have ASD, resulting in higher PPV and comparable Dice coefficients.
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over the probability575

P (notASD|selected) = FP
TP + FP

(6)
Both can be simplified to576

OddsASD = TP
FP

(7)
Analogous to the risk ratio, the Odds ratio (OR):577

ORASD =
TP∕FP
TN∕FN

(8)
then reflects the ratio of odds of an ASD diagnosis for selected individuals over the odds of ASD578

for unselected individuals.579

For amodel that conveys no information on the ASD diagnosis, the odds of a true ASD diagnosis580

are the same for individuals who are identified by the model and for those who are not identified581

(i.e. the OR is 1).582

An ideal model would correctly classify all individuals with ASD. That is, the set of selected indi-583

viduals and individuals with ASD would be exactly overlapping. In practice, models with high PPV584

(e.g. monogenic risk markers) tend to select only a very small subset of individuals (low sensitiv-585

ity) and models with high sensitivity tend to incorrectly select many individuals without ASD (low586

specificity, see Figure 5). We can thus use the overlap between individuals with ASD and selected587

individuals to determine how close the model is to an optimal tradeoff between sensitivity and588

specificity. The Sørensen–Dice coefficient:589

Dice = 2 ∗ TP
ASDT rue + (TP + FP )

(9)
measures the ratio of correctly selected individuals over the sum of individuals with ASD (ASDT rue)590

and all selected individuals. It thus ranges between 0 (if the two sets are not overlapping) and 1 (if591

the two sets are completely overlapping).592

Bootstrap estimation593

We estimated themodel performance of each brain network predictor through bootstrap subsam-594

pling of the discovery data set. We drew two random bootstrap samples from the discovery data595

set and assigned one to be the reference data set and the other to be the prediction data set. The596

ASD diagnosis of each individual in the prediction data set was then separately predicted based on597

the individuals in the reference data set, following preprocessing, feature extraction and training598

as described above. We repeated this process 100 times for each brain network and computed the599

average performance metrics of each predictor across bootstraps (see, e.g. Efron, 1983, regarding600

bootstrap predictor evaluation methods).601

Combination of correlated conformal predictions602

To identify similarities of conformal predictions between the 18 functional brain networks, we com-603

puted the pairwise correlation of ASD non-conformity on the discovery sample. We then used hi-604

erarchical agglomerative clustering to identify groups of networks with correlated ASD conformal605

score estimates. We selected a 7 and 2 cluster solution based on a visual inspection of the network606

by network correlation matrix. Within each cluster of networks, conformal score estimates (i.e.607

probability estimates of non-conformity with each class label) were combined using the p-value608

averaging methods of (Vovk and Wang, 2012). Specifically, we averaged over the p-values that are609

associated within each network using the squared-meanmerging function, which produces a valid610

aggregate p-value from the combination of any finite number of potentially correlated individual611

p-values. This requirement of validity is important in order to maintain the conformity properties612

when using these cluster-aggregated p-values as inputs in a conformal predictor.613

The aggregation of p-values in the discovery sample was observed to average over the infor-614

mation that are inherent in each of the contributing p-values. As such, less informative network615
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elements tended to decrease the explanatory power of the more informative elements. The over-616

all effect was that the cluster non-conformity threshold tended to be conservative in identifying617

interesting observations, when compared to the same threshold value, applied to individual net-618

works. In order to mitigate against this conservative effect, we used a more liberal threshold for619

cluster-aggregated p-values, than those used for individual networks. That is, we adjusted the620

critical non-conformal threshold to 0.2 from 0.05.621

Validation on the independent dataset622

The HRS identified on the discovery sample was then validated on the independent validation sam-623

ple. To do so, the ASD andNTC non-conformity estimate of each individual in the validation sample624

was computed by using the individuals of the discovery sample as the reference cohort. Each indi-625

vidual in the validation sample was predicted independently after group level nuisance regression626

and dimensionality reduction with respect to the reference sample.627

Estimation of model performance in the general population628

The discovery and validation sample had equal rates of ASD patients andNTC individuals (i.e. 1 ASD629

for each 1 NTC). The prevalence of ASD in the general population is howevermuch lower (1 ASD for630

each 89 NTC). Based on the estimated specificity and sensitivity of our model in the independent631

validation sample, we estimated the positive predictive value (PPVASD) of the HRS in the general632

population.633
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Figure 4–Figure supplement 1. Predictions by the HRS exceed the PPV of those by a simple base-
line model. The distribution of PPV estimates across 100 bootstrap samples is denoted by violin
plots for each model
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Figure 4–Figure supplement 2. The impact of different levels of ASD prevalence in the data are
shown for different metrics that are commonly used to evaluate prediction models. In balanced
samples (black vertical line) that are commonly used to trainmodels, traditional models (pink lines)
that balance sensitivity and specificity achieve high accuracy. However, predictions by traditional
models confer lower individual risk (PPV), particularly for low ASD prevalence, close to the baseline
rate in the general population (grey lines)
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