

1 Reproducible functional connectivity 2 endophenotype confers high risk of 3 ASD diagnosis in a subset of 4 individuals

5 **Sebastian GW. Urchs^{1,2*}, Hien Duy Nguyen³, Clara Moreau^{2,4}, Christian
6 Dansereau², Angela Tam², Alan C. Evans¹, Pierre Bellec^{2*}**

*For correspondence:

sebastian.urchs@mail.mcgill.ca
(FMS); pierre.bellec@criugm.qc.ca
(FS)

7 ¹Montreal Neurological Institute and Hospital, McGill University, 3801 Rue de
8 l'Université, QC H3A 2B4, Montreal, Canada; ²Centre de Recherche de l'Institut
9 Universitaire de Gériatrie de Montréal, 4565 Queen Mary Rd, QC H3W 1W5, Montreal,
10 Canada; ³Department of Mathematics and Statistics, La Trobe University, Plenty Rd &
11 Kingsbury Dr, VIC 3086, Bundoora, Australia; ³Centre de Recherche de l'Institut
12 Universitaire en Santé Mentale de Montréal, 7401 Rue Hochelaga, QC H1N 3M5,
13 Montreal, Canada; ⁴Sainte Justine Research Center, University of Montreal, 3175
14 Chemin de la Côte-Sainte-Catherine, QC H3T 1C5, Montreal, Canada

15

16 **Abstract** Functional connectivity (FC) analyses of individuals with autism spectrum disorder
17 (ASD) have established robust alterations of brain connectivity at the group level. Yet, the
18 translation of these imaging findings into robust markers of individual risk is hampered by the
19 extensive heterogeneity among ASD individuals. Here, we report an FC endophenotype that
20 confers a greater than 7-fold risk increase of ASD diagnosis, yet is still identified in an estimated 1
21 in 200 individuals in the general population. By focusing on a subset of individuals with ASD and
22 highly predictive FC alterations, we achieved a greater than 3-fold increase in risk over previous
23 predictive models. The identified FC risk endophenotype was characterized by underconnectivity
24 of transmodal brain networks and generalized to independent data. Our results demonstrate the
25 ability of a highly targeted prediction model to meaningfully decompose part of the
26 heterogeneity of the autism spectrum. The identified FC signature may help better delineate the
27 multitude of etiological pathways and behavioural symptoms that challenge our understanding
28 of the autism spectrum.

29

30 **Introduction**

31 **Background**

32 Autism spectrum disorder (ASD) is a neurodevelopmental disorder diagnosed in more than 1% of
33 children (Bai *et al.*, 2019) that is defined by impairments of social interaction and repetitive be-
34 haviour (American Psychiatric Association. and DSM-5 Task Force., 2013), and has been linked to
35 alterations of brain organization (Holiga *et al.*, 2019) and genetics (Grove *et al.*, 2019). A core goal
36 of clinical neuroscience is to understand the neurobiological etiology of this complex and hetero-
37 geneous disorder (Lombardo *et al.*, 2019) by identifying reliable neurobiological endophenotypes
38 that confer a high risk of the disorder and are sufficiently common to be investigated in large cohort

39 studies. To date, existing genetic risk markers of ASD are either extremely rare (e.g. monogenic
40 disorders, *de la Torre-Ubieta et al., 2016*) or convey only a very low individual risk of the disorder
41 (e.g. common genetic risk factors, *Sanders et al., 2015*). Current neuroimaging based efforts to
42 identify brain based endophenotypes that can predict ASD (*Abraham et al., 2017; Heinsfeld et al.,*
43 *2018*) have limited accuracy, likely due to the extensive heterogeneity of the disorder (*Lombardo*
44 *et al., 2019; Jacob et al., 2019*, see also *Figure 2*). Although it may not currently be possible to
45 identify a single brain based risk marker that is highly predictive of an ASD diagnosis in any autistic
46 individual, we may be able to do so for a subset of autistic individuals. Transductive conformal pre-
47 diction (TCP, *Vapnik, 1998; Vovk et al., 2005*) is a promising statistical framework for this purpose,
48 that has been successfully applied to predict the clinical status of depressed patients from neu-
49 roimaging data, previously (*Nouretdinov et al., 2011*). TCP explicitly computes the confidence with
50 which a clinical label (i.e. ASD or neurotypical control, NTC) can be predicted for each individual,
51 and we can use this estimate to limit our model to predict only those individuals for whom we have
52 very high confidence of their ASD diagnosis. Our main goal is to apply TCP to identify resting-state
53 functional Magnetic Resonance Imaging (fMRI) based ASD-endophenotypes associated with high
54 risk and relatively high prevalence.

55 **Genetic risk markers of ASD**

56 ASD is a highly heritable disorder and to date, the best established ASD risk factors are genetic
57 markers. A recent multi-national study of more than 2 million individuals estimated the heritabil-
58 ity of ASD at 80% (*Bai et al., 2019*). Both common (e.g. Single-nucleotide polymorphism, SNP,
59 *Grove et al., 2019*) and rare genetic variants (e.g. recurrent Copy-number variant, CNV, *Sanders*
60 *et al., 2019*) have been shown to contribute to the genetic etiology of ASD (*Geschwind and State,*
61 *2015*). Several monogenic syndromes have also been associated with a very high risk of autism-
62 like symptoms (i.e. in more than 30% of individuals with the syndrome), but these disorders are
63 exceedingly rare in the general population, typically detected in fewer than 0.01% of individuals
64 (*de la Torre-Ubieta et al., 2016*). By comparison, ASD is diagnosed relatively frequently in about
65 1% of individuals in the general population (*Bai et al., 2019*). Only five common genetic variants
66 (found in more than 5% of the general population) have recently been robustly associated with ASD
67 through genome-wide association studies (*Grove et al., 2019*). However, each of these common
68 variants increase the odds of an ASD diagnosis only minimally in carriers compared to non-carriers
69 (i.e. the Odds Ratio is approximately 1.2 or close to equal, see *Equation 8*). Nevertheless, common
70 genetic variants are thought to account for a large part of genetic ASD liability, with estimates rang-
71 ing between 20% (*Robinson et al., 2016*) and 50% (*Gaugler et al., 2014*). In between the rare, high
72 risk monogenic disorders and the common, but low risk genetic variants, sits a gap of knowledge
73 that has been labeled the “missing heritability” (*Manolio et al., 2009; Maher, 2008*). The very large
74 sample sizes necessary (*Khera et al., 2018*) to robustly identify the likely polygenic interaction ef-
75 fects (*O’Connor et al., 2019*) pose a challenging limitation that makes the identification of common,
76 high risk genetic factors of ASD difficult.

77 **Neuroimaging based risk markers of ASD**

78 Functional magnetic resonance imaging (fMRI) measures the functional connectivity (FC) between
79 brain regions and has been shown to be sensitive to changes in the functional brain organiza-
80 tion in ASD (*Castellanos et al., 2013; Holiga et al., 2019*). Recent work has therefore used high-
81 dimensional FC measures to predict the clinical ASD diagnosis of individuals (*Abraham et al., 2017;*
82 *Heinsfeld et al., 2018; Yahata et al., 2016*). These models make a prediction for every individual
83 in a data set and seek to optimize the accuracy of all predictions. That is, they give equal impor-
84 tance to correctly identifying an individual with ASD (sensitivity, see *Equation 1*) and to correctly not
85 identifying a NTC individual (specificity, see *Equation 2*). As a consequence, predictions by these
86 models typically have balanced sensitivity and specificity. When such a model is applied to an un-
87 selected general population sample, where only very few individuals will truly have ASD (i.e. 1 —

88 2%), the ability of the model to correctly identify unaffected individuals as not having the condition
89 (specificity) becomes more important. For example, if 20 individuals in a sample of 1000 have ASD
90 (i.e. 980 are healthy), then a model with 70% sensitivity and 70% specificity will correctly identify
91 14 ASD individuals ($20 \times$ sensitivity of 0.7) and correctly not identify 686 healthy individuals (980 \times
92 specificity of 0.7). The model will however also incorrectly identify 294 healthy individuals as ASD
93 patients ($980 * (1 - 0.7)$). This means that only 14 out of 308 (or 4%) individuals identified by the
94 model will truly have ASD. This value is also called the positive predictive value (PPV) of the model
95 and depends on the prevalence of the predicted disorder in the sample (see Methods and **Equation 3**). The PPV thus reflects the risk of the disorder that a prediction by the model confers for an
96 individual. In the above example, the PPV is only twice as large as the baseline risk of someone
97 we know nothing about (i.e. the prevalence of the disorder in the sample). Recent FC based ASD
98 classification models report sensitivity and specificity estimates that translate to low PPVs of 2.4%
99 to 2.2% in the general population (*Abraham et al., 2017; Heinsfeld et al., 2018*).

101 **Transductive conformal prediction**

102 Performance metrics such as accuracy, sensitivity, and specificity provide us with some measures
103 regarding the confidence that we can place on the quality of the predictions made by a model, on
104 average, across all observed samples from either a testing or training data set. But what we are
105 particularly interested in is the amount of confidence that we can place in the specific clinical la-
106 bel predicted for each individual. This is akin to the difference between the usual confidence and
107 prediction intervals (*Kümmel et al., 2018*). Whereas the model in the above example identifies hun-
108 dreds of individuals as ASD patients, maybe for some of the individuals, the degree of "confidence"
109 of the label is more limited, based on the idiosyncrasies of the individual. We may decide that we
110 only want to take a closer look at those individuals for whom the model is very confident of their
111 ASD diagnosis. Conformal prediction is a statistical framework to make explicit the level of confi-
112 dence that an analyst may have regarding the classification of any particular individual (*Vovk et al.,*
113 **2005**). Given an individual that we want to classify as either neurotypical or ASD, the conformal
114 predictor asks: "how unusual would this individual be, if they were a neurotypical individual?" and
115 "how unusual would it be, if they were an individual with ASD?". The predictor then answers each
116 of these questions by comparing the individual to known neurotypical individuals and to known
117 individuals with ASD, respectively. In this way, we will compute two "unusualness" scores for the
118 individual, one for each of the two possible label classes. More technical introductory accounts of
119 the conformal prediction logic can be found in articles such as *Gammerman and Vovk (2007)*, and
120 *Shafer and Vovk (2008)*.

121 **Objectives**

122 Here we aim to identify FC signatures of ASD that are substantially more common than rare mono-
123 genic disorders and carry substantially higher individual risk than current imaging based models
124 of ASD. We hypothesize that by limiting predictions to the most confident cases, we will identify
125 subsets of ASD individuals who share very predictive, high risk FC signatures. We further hypo-
126 thesize that the FC of different brain networks may give rise to distinct high risk FC signatures. Our
127 objectives are thus to:

- 128 1. Identify sets of brain networks with FC profiles highly predictive of ASD diagnosis.
- 129 2. Evaluate the identified high risk profiles on an independent dataset, and estimate their preva-
130 lence and positive predictive value in the general population.
- 131 3. Characterize the connectivity and symptom phenotype of the individuals identified by the
132 high risk FC profiles.

133 Results

134 We investigated whether the seed-based FC maps of 18 functional brain networks could be used
135 to predict ASD diagnosis with high PPV in a subset of individuals. To do so, we estimated how
136 conformal the FC of a new, unclassified individual was compared to individuals with a known ASD
137 diagnosis or NTC. These estimates of conformality then allowed us to make a prediction of ASD
138 diagnosis only for those individuals for whom we had very high confidence that their FC was very
139 atypical for NTC (NTC conformal score < 5%) and not very atypical for ASD (ASD conformal score >
140 5%). We identified the groups of brain networks that gave rise to the predictions with the highest
141 PPV across bootstrap samples of the discovery data and then tested the generalizability of these
142 predictions in an independent replication dataset.

143 Individual networks do not predict ASD with high PPV

144 We first evaluated the PPV of conformal ASD diagnosis predictions made with high confidence,
145 based on the FC of each of the 18 brain networks. To do so, we computed the median PPV of high
146 confidence conformal predictions for each brain network across 100 bootstrap samples (bootstrap
147 PPV) of the discovery data. The bootstrap PPV of high confidence conformal ASD diagnosis predic-
148 tions ranged from 56% (orbitofrontal network) to 66% (frontoparietal network) and was 63% on
149 average across all networks. That is, among the individuals predicted with high confidence to have
150 an ASD diagnosis, 63% on average did have an ASD diagnosis. As expected, the predictions were
151 made with high specificity (91% on average across all networks) and low sensitivity (16% across all
152 networks). That is, on average, 91% of NTC individuals were correctly not predicted to have an ASD
153 diagnosis, and 16% of ASD individuals were correctly predicted to have an ASD diagnosis. *Figure 1*
154 shows an overview of the bootstrap PPV across networks. We thus showed that high confidence
155 predictions of ASD diagnosis made by individual brain networks did not lead to predictions with
156 high PPV.

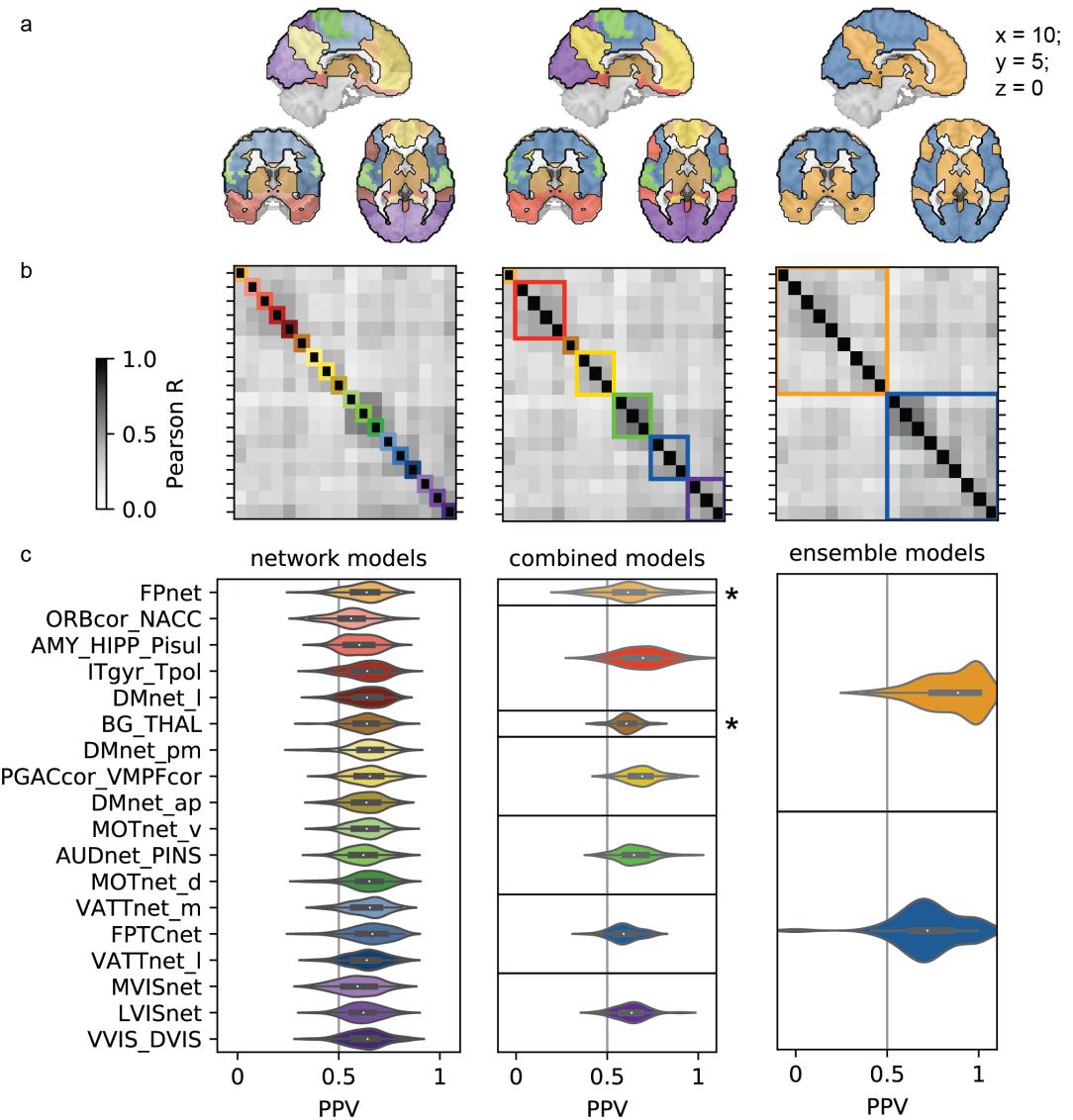
157 Functionally similar brain networks predict correlated conformal scores

158 We investigated whether groups of brain networks existed that gave rise to similar conformal pre-
159 dictions of ASD diagnosis and could be combined to achieve more accurate group predictions. To
160 do so, we computed the correlation between the ASD conformal scores predicted by the individual
161 brain network predictors and applied hierarchical agglomerative clustering to derive 7 groups of
162 networks with correlated conformal scores:

- 163 • group 1 was a single network group of the fronto-parietal network
- 164 • group 2 combined limbic and temporal networks (orbito-frontal cortex, inferior temporal sul-
165 cus, lateral default mode network, and amygdala-hippocampal complex)
- 166 • group 3 was a single network group containing the basal ganglia network
- 167 • group 4 combined sub-components of the default mode network (anterior-, and posterior-
168 medial default mode network, and perigenual anterior cingulate and ventromedial prefrontal
169 cortex)
- 170 • group 5 combined unimodal sensory networks (ventral, and dorsal somatomotor network,
171 and auditory network)
- 172 • group 6 combined attention networks (medial ventral, and lateral ventral attention network,
173 and fronto parietal task control network)
- 174 • group 7 combined visual networks (medial-, lateral-, and downstream visual network).

175 We thus showed that functionally similar brain networks tended to give rise to correlated conformal
176 predictions of ASD diagnosis.

177 We combined the conformal scores predicted by brain networks within each group to generate
178 high confidence group predictions of ASD diagnosis and evaluated them over 100 random boot-
179 strap samples (see Methods for detailed explanation of the process of combining conformal scores
180 and the corresponding adjustment of the conformal score thresholds). The average bootstrap PPV



* conformal score thresholds were adjusted for all combined models

Figure 1. Combining network predictors with correlated conformal scores results in higher prediction performance. Conformal predictions based on individual networks (left column) were not associated with high PPV (c). The predicted ASD conformal scores were correlated between networks (b) and were used to cluster networks into 7 combined predictors (middle column). Clusters predominantly broke down along boundaries of large scale functional brain networks (a). Networks with correlated conformal predictions were further clustered into two large ensemble predictors (right column), that combined predominantly unimodal (blue) and transmodal (orange) brain networks respectively (a, right column). Predictions of the ensemble of more transmodal networks (orange) gave rise to a high risk signature (HRS) that predicted ASD with high PPV (c, top).

181 across all groups of networks was 64% with high specificity (90%) and low sensitivity (17%). The
182 bootstrap PPV of groups of networks was generally close to that of the average bootstrap accuracy
183 across the individual networks within them:

- 184 • $PPV_{group4} = 69.7\%$ compared to an average $\overline{PPV} = 61.1\%$ of the individual networks
- 185 • $PPV_{group4} = 69.2\%$ compared to $\overline{PPV}_{group4_networks} = 64.8\%$
- 186 • $PPV_{group5} = 64.8\%$ vs $\overline{PPV}_{group5_networks} = 63.7\%$
- 187 • $PPV_{group6} = 59.0\%$ vs $\overline{PPV}_{group6_networks} = 65.4\%$
- 188 • $PPV_{group7} = 63.4\%$ vs $\overline{PPV}_{group7_networks} = 61.9\%$

189 Conformal scores for the two single network groups (group 1 and 3) were adjusted identically to
190 those of the multi-network groups, which resulted in altered bootstrap PPV estimates:

- 191 • $PPV_{group1} = 61.4\%$ vs $PPV_{FP_network} = 63.8\%$
- 192 • $PPV_{group3} = 60.6\%$ vs $PPV_{basal_ganglia} = 63.9\%$

193 We thus show that groups of brain networks with correlated conformal scores predicted ASD diag-
194 nosis with only marginally higher PPV than individual brain networks.

195 **Ensemble of transmodal networks forms high risk ASD signature**

196 We further combined brain networks with correlated conformal scores into two large ensemble
197 predictors and investigated whether they gave rise to distinct high risk signatures of ASD diagnosis.
198 The first ensemble combined conformal scores of the nine more transmodal brain networks from
199 groups 1 (fronto-parietal), 2 (limbic), 3 (basal ganglia), and 4 (default mode network). The second
200 ensemble combined conformal scores of the remaining nine more unimodal brain networks from
201 group 5 (sensorimotor), group 6 (attention), and group 7 (visual). We evaluated the predictions
202 of these two ensemble models across 100 random bootstrap samples. The bootstrap PPV of the
203 combined conformal scores in ensemble 1 was 88.7%, considerably higher than the average of the
204 corresponding group predictors (62.9%). The bootstrap PPV in ensemble 2 was 72.0%, compared
205 to the average PPV of the corresponding group predictors of 64.6%. Ensemble 1 predicted ASD
206 diagnosis with higher specificity (99.5%) and lower sensitivity (4.9%) than ensemble 2 (specificity
207 97.1%, sensitivity 7.4%). Combining all brain networks into a whole brain model did not improve
208 the PPV (average bootstrap PPV 76.6%). Based on these findings, we chose to further investigate
209 the high PPV signature of ensemble 1 in the independent replication data set. We thus show that
210 combining correlated conformal predictions of individual brain networks into ensemble predictors
211 gave rise to a single FC based high risk signature (HRS) of ASD diagnosis.

212 **High risk ASD signature generalizes to independent data**

213 We explored the performance of the HRS of ensemble 1 in an independent replication sample to
214 determine its generalizability. For each individual in the replication sample, we thus computed the
215 conformal scores for the ASD and NTC label with respect to the individuals in the discovery sam-
216 ple. The HRS identified 10 individuals from 6 different imaging sites (USM_1: 3, GU_1: 3, NYU_1:
217 1, SDSU_1: 1, IP_1: 1, KKI_1: 1) in the replication sample, and of those, 9 did have an ASD diag-
218 nosis. The PPV of the HRS of ensemble 1 was thus 90% in the replication sample, close to the
219 average bootstrap PPV of 88.7% in the discovery sample. Specificity and sensitivity of the predic-
220 tions were also similar to those estimated in the discovery sample: specificity = 99.5% (discovery:
221 99.5%), sensitivity = 4.2% (discovery: 4.9%). Predictions of the ensemble 2 model in the replication
222 sample likewise performed similarly to bootstrap estimates in the discovery sample: PPV = 62.5%
223 (discovery: 72.0%), specificity = 95.8% (discovery: 97.1%), sensitivity = 7.1% (discovery: 7.4%). We
224 thus show that the high risk ASD signature identified in the discovery dataset generalized to an
225 independent validation dataset with similar predictive performance.

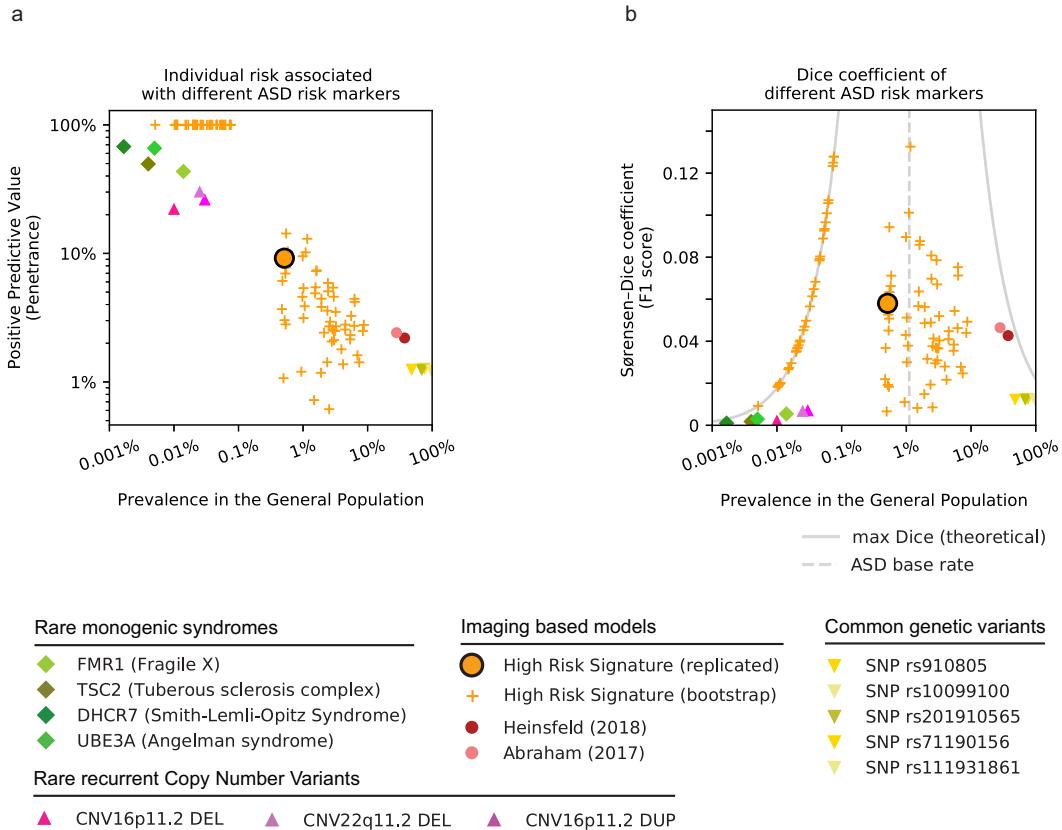


Figure 2. HRS is more common than genetic risk markers and confers higher risk than traditional imaging models. a) Monogenic syndromes (green rhombs) and recurrent Copy Number Variants (pink triangles) confer high risk of ASD diagnosis (vertical axis), but are rare (horizontal axis). ASD related single nucleotide polymorphisms (yellow triangles) are very common, but confer negligible risk of ASD. Current imaging based predictive models (pink circles) identify large portions of the general population with low risk of ASD. The high risk ASD signature (orange, black outline) identifies a small portion of the general population with elevated risk of ASD diagnosis, concordant with the estimated performance in the discovery data (orange plus signs). b) The Dice coefficient ([Equation 9](#)) reflects the degree of overlap between individuals identified by a risk marker and the true ASD population. Rare genetic risk factors (green rhombs and pink triangles) with high PPV identify a small subset of ASD individuals and thus have low Dice coefficients. Common ASD related genetic variants (yellow triangles) identify large portions of the general population but with low PPV and thus also have low Dice coefficients. The HRS shows Dice coefficients that are comparable but higher than those of existing imaging models, reflecting the large increase in PPV over these models and the lower sensitivity.

226 High risk ASD signature translates to 7-fold risk increase in general population

227 The discovery and replication samples were balanced to have equal numbers of individuals with
228 ASD and NTC labels (i.e. the prevalence of ASD in our samples was 50%) in order to facilitate train-
229 ing and evaluation of the predictive models. However, the prevalence of ASD in an unselected
230 population is estimated to be much lower (i.e. about 1 individual with ASD for 89 NTCs). The HRS
231 correctly identified 4.2% of individuals with ASD in the sample (sensitivity) and incorrectly identi-
232 fied 0.5% of individuals with NTC (1 - specificity or false positive rate) in the sample. If the number
233 of individuals with NTC considerably exceeds the number of individuals with ASD, the rate of indi-
234 viduals correctly identified by the model (accuracy), therefore also changes. To estimate the per-
235 formance of the high risk signature in an unselected population, we thus computed the expected
236 accuracy for a prevalence of ASD of 1/90 or 1.11%. In this context, the HRS correctly identified
237 0.046% of the population (4.2% sensitivity 1.11% individuals with ASD) and incorrectly identified
238 0.49% of the population (0.5% false positive rate * 98.89% individuals without ASD or with NTC).
239 Therefore the ratio of correctly identified individuals to all identified individuals (i.e. the PPV) was
240 $0.046\% / (0.046\% + 0.49\%)$ or 8.545%. An individual in the general population identified by the HRS
241 thus had an estimated risk of ASD of 8.5% or a 7.7 fold increase in risk over the baseline risk in
242 this population. We thus show that the high risk ASD signature conferred an estimated 7.7 fold
243 increase in individual risk over the baseline.

244 High risk ASD signature identifies individuals with severe symptoms

245 We next investigated the symptom characteristics of the individuals who were identified by the
246 HRS model. To that end, we reported their ADOS severity measures and compared them to those
247 of unselected individuals from the same clinical category. Because only 10 individuals were iden-
248 tified by the HRS model, these results are exploratory and we limited ourselves to reporting only
249 descriptive measures. Calibrated ADOS severity scores (ADOS-CSS) would have been the preferred
250 measure to interpret symptom severity because of their standardized range (from 1: least severe
251 symptoms to 10: most severe symptoms), and because of their comparability across ADOS mod-
252 ules and across different ages. However, ADOS-CSS were only available for 3 identified individuals.
253 Using a previously published technique we therefore computed proxy ADOS-CSS based on the
254 available data (see Methods for details). We reported these closely approximated ($r = 0.94$) proxy
255 ADOS-CSS together with the ADOS raw total scores.

256 The median of proxy ADOS-CSS was higher among the nine identified individuals with ASD (me-
257 dian = 9, interquartile range = 4 — 9) than among the remaining individuals with ASD who were not
258 identified by the HRS model (median = 6, interquartile range = 5 — 8). The single NTC individual
259 identified by the model had a higher proxy ADOS-CSS of 3 than the remaining NTC individuals who
260 were not identified by the HRS model (median = 1, interquartile range = 1 — 1). The same com-
261 parison using raw ADOS total scores revealed an analogous finding: the median of raw ADOS total
262 scores was higher among the nine identified ASD individuals (median = 15, interquartile range =
263 13 — 17) than among the remaining unidentified ASD individuals (median = 10, interquartile range
264 = 8 — 13.25). Accordingly, the single identified NTC individual had a higher raw ADOS total score
265 of 7 than the remaining unidentified NTC individuals (median = 1, interquartile range = 0 — 2).
266 *Figure 3* shows both the proxy ADOS-CSS and the raw ADOS total scores of the identified individu-
267 als compared to those of unidentified individuals with the same diagnostic class. Our exploratory
268 findings thus indicate that the identified individuals showed particularly severe symptoms for their
269 diagnostic class.

270 High risk signature characterized by underconnectivity

271 To identify the FC pattern of the individuals detected by the HRS model, we investigated the average
272 residual connectivity maps of the identified individuals for the nine brain networks contributing to
273 the HRS signature. *Figure 3b* shows the average residual connectivity maps of the nine networks.
274 The average residual FC maps from all nine brain networks are characterized by pervasive under-

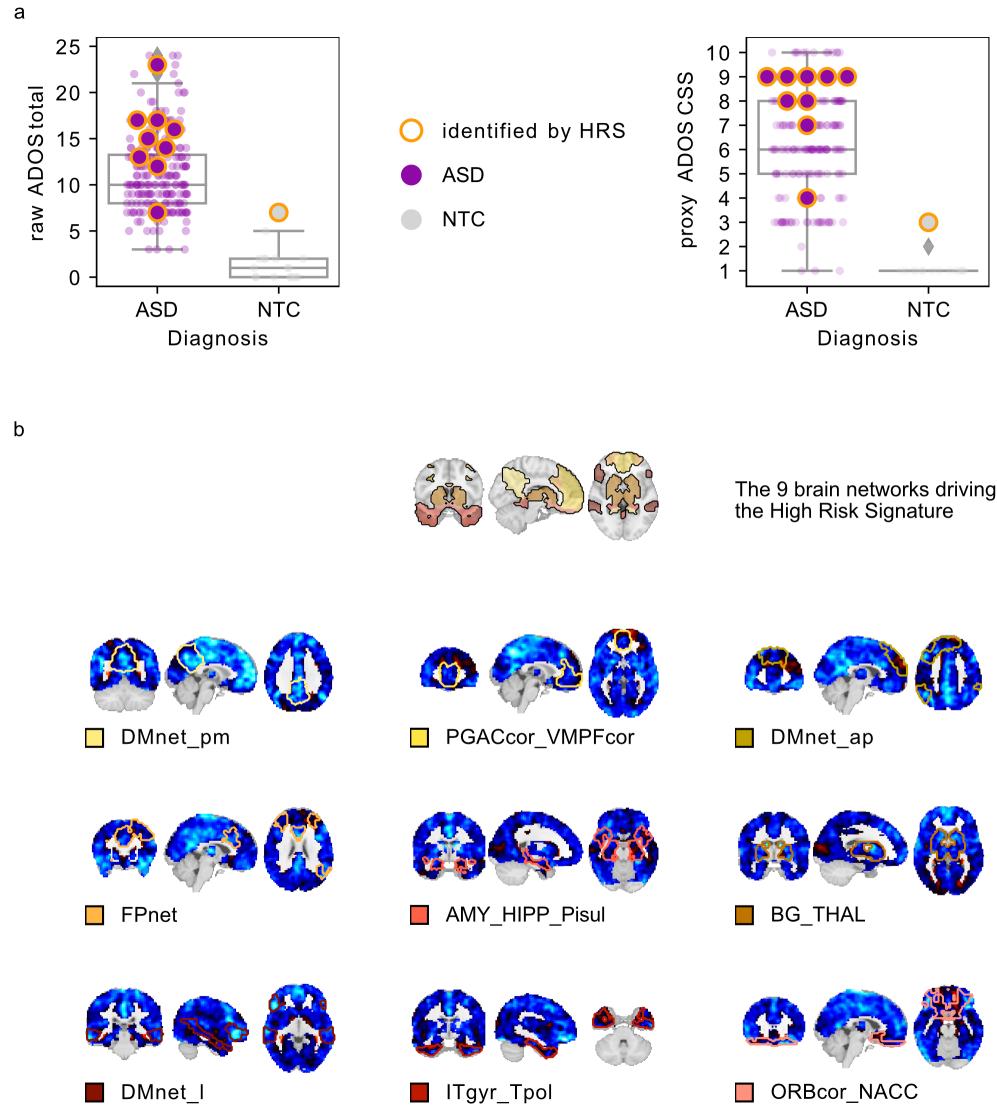


Figure 3. The HRS identifies individuals with severe symptoms and pervasive underconnectivity. a) Individuals identified by the high risk signature (circles with orange outline) have high proxy calibrated ADOS severity scores (left plot) and high raw ADOS total scores (right plot) compared to the average of their respective diagnostic category. Box-plots are based on individuals not identified by the HRS. b) The identified individuals share a pattern of distributed below average functional connectivity of the nine networks driving the high risk signature (the networks are denoted by name and coloured outline on their respective connectivity maps).

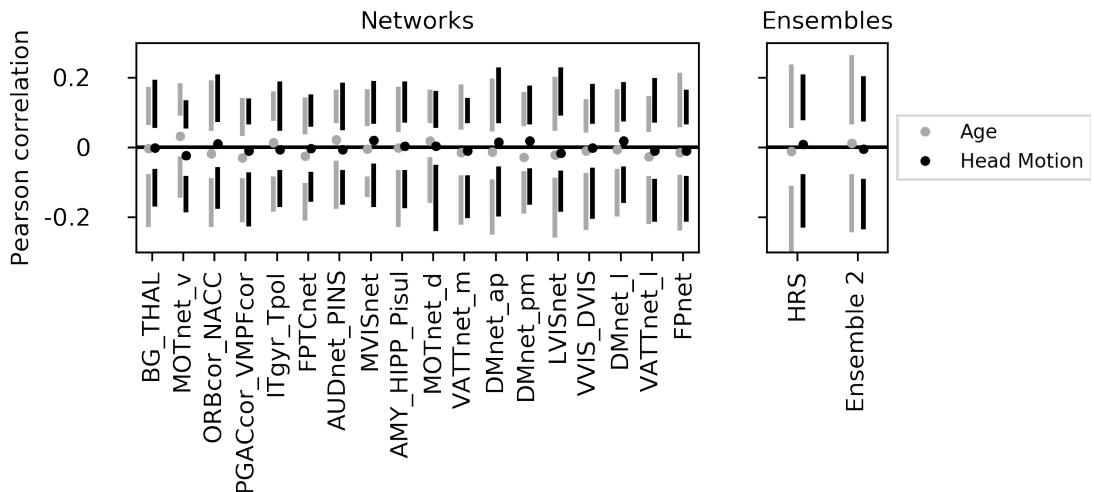


Figure 4. The conformal predictions are not driven by nuisance covariates. a) The distribution of correlations of ASD conformal scores predicted by individual networks (left) and the two ensemble models (right) with head motion (black) and age (grey) are shown across 100 bootstrap samples. Circles represent the median correlation score across bootstrap samples, vertical lines span the 5th to 25th percentile (lower bar) and 75th to 95th percentile (upper bar) of correlation scores respectively. All median correlation scores are close to zero and enclose zero within the 90% confidence interval.

Figure 4-Figure supplement 1. Predictions by the HRS exceed the PPV of those by a simple baseline model. The distribution of PPV estimates across 100 bootstrap samples is denoted by violin plots for each model

Figure 4-Figure supplement 2. The impact of different levels of ASD prevalence in the data are shown for different metrics that are commonly used to evaluate prediction models. In balanced samples (black vertical line) that are commonly used to train models, traditional models (pink lines) that balance sensitivity and specificity achieve high accuracy. However, predictions by traditional models confer lower individual risk (PPV), particularly for low ASD prevalence, close to the baseline rate in the general population (grey lines)

275 connectivity with respect to the rest of the discovery sample. We thus show that the FC signatures
 276 of individuals identified by the HRS model were characterized by wide-spread underconnectivity
 277 of the nine involved brain networks with respect to the sample average.

278 **Conformal prediction not driven by nuisance covariates**

279 To ensure that the conformal scores used to make the high confidence prediction were not driven
 280 by known sources of nuisance variance, we computed the Pearson's correlation coefficient of ASD
 281 conformal scores with age and head motion across bootstrap samples in the discovery sample. Our
 282 results show that for all individual network predictors, the 90 % confidence interval of correlation
 283 coefficients with age and head motion included zero (see **Figure 4**), and the median correlation
 284 coefficients were close to zero (age: network average $r = -0.01$, range: $-0.03 — 0.03$; head motion:
 285 network average $r = -0.0027$, range: $-0.022 — 0.02$). The ASD conformal scores of the two ensemble
 286 predictors similarly show median correlation estimates close to zero with age ($r_{ens1} = -0.01$; r_{ens2}
 287 = 0.01) and head motion ($r_{ens1} = 0.01$; $r_{ens2} = -0.005$) and the 90% confidence intervals of either
 288 correlation included zero (see **Figure 4**). We thus conclude that the estimated ASD conformal scores
 289 were not driven substantially by nuisance covariates.

290 **Conformal prediction performance exceeds baseline model**

291 To determine if our FC based predictive signature performed better than a simple baseline model,
 292 we repeated the conformal prediction procedure using an individual's age and in scanner head
 293 motion as input features. Following the same procedure described above, we then use the trans-
 294 ductive conformal prediction approach to predict an ASD diagnosis only for those individuals in
 295 whom the model had high confidence. Our results show that such a baseline model did not pre-

296 dict ASD diagnosis with high confidence for any individuals in 90% of bootstrap samples (i.e. the
297 sensitivity and PPV is zero). Among the 10% of bootstrap samples where the baseline model did
298 make predictions, they were of high specificity (median = 100%) and low sensitivity (median = 7.9%)
299 but low PPV (median = 50.5%, see **Figure Supplement 1**). We thus show that the FC based network
300 predictors performed better than a simple baseline model.

301 **Discussion**

302 This work aimed to identify imaging risk endophenotypes of ASD that are both commonly found in
303 the general population and confer a high risk of the disorder. We used a transductive conformal
304 prediction approach to identify only those individuals for whom the ASD diagnosis could be pre-
305 dicted with high confidence on the basis of functional connectivity (FC). Our results showed that
306 the combined predictions of nine brain networks gave rise to a single high risk FC-signature that
307 identified individuals with severe symptoms and pervasive underconnectivity in an independent
308 validation dataset. This FC-signature confers a more than 7-fold increased risk of ASD diagnosis in
309 the general population where it is identified in an estimated 1 in 200 individuals, compared to a
310 baseline ASD prevalence of 1 in 90 individuals. The risk conferred by our FC-signature constitutes
311 a more than 3 and a half fold increase over current neuroimaging prediction models of ASD.

312 **Model performance**

313 The multi-network risk FC-signature we have identified here confers a positive predictive value
314 (PPV) of 8.5%, more than 7 times higher than the baseline risk of ASD diagnosis in the general
315 population (1 in 90 \approx 1.11%). This PPV is also more than a 3.5 fold larger than previously published
316 imaging based prediction models for ASD. We achieved this considerable increase in individual risk
317 by changing the goal of our prediction model. Whereas previous models have made predictions for
318 all individuals in heterogeneous case-control populations, we limited predictions to only a subset of
319 individuals for whom our model has very high confidence in an ASD diagnosis. Although our model
320 made only few predictions, those predictions carry a much higher risk of an ASD diagnosis for the
321 identified individuals. The result is a prediction with a much higher specificity (99.5% compared
322 to 72.3% and 63% for traditional approaches, *Heinsfeld et al., 2018; Abraham et al., 2017*) and
323 much lower sensitivity (4.2%, compared to 61% and 74% respectively). It is thus important to point
324 out that here we have not proposed a better prediction learning model, but rather addressed a
325 different objective. It is reasonable to assume that the conformal prediction approach would lead
326 to predictions with similarly high specificity when applied to previously published imaging models.

327 In the general population, our high risk signature is estimated to be identified in about 1 in 200
328 individuals. It is thus approximately two orders of magnitude less common than ASD-related SNPs
329 (*Grove et al., 2019*), that confer negligible individual risk, and about two orders of magnitude more
330 common than rare monogenic syndromes (*de la Torre-Ubieta et al., 2016*), that confer very high
331 risk of ASD (see **Figure 2**). To the best of our knowledge, there are no other imaging or genetic
332 risk signatures of autism that confer a comparable amount of individual risk and are still relatively
333 common. Polygenic risk signatures of similar prevalence and risk have been identified recently for
334 some common diseases (*Khera et al., 2018*) and may be identified in the future for ASD (*Martin
335 et al., 2018*). However, the comparatively low number of identified common variants for ASD (i.e.
336 only 5 ASD specific SNPs have been robustly identified to date, *Grove et al., 2019*, compared to
337 108 that have been identified for schizophrenia, *Schizophrenia Working Group of the Psychiatric
338 Genomics Consortium 2014*) and the massive sample sizes required to robustly estimate polygenic
339 risk (e.g. approximately two orders of magnitude larger than those used in this study) currently
340 constitute important obstacles for these potential discoveries.

341 **The high risk signature is mainly driven by transmodal brain networks**

342 Individually, the 18 brain networks did not predict ASD with high PPV. By clustering networks with
343 correlated conformal scores and combining their predictions, we identified two equally sized sets

344 of brain networks. The first one gave rise to the high risk ASD FC-signature and involved predom-
345 inantly transmodal networks in the default mode and fronto parietal network, but also of subcor-
346 tical areas (*Alves et al., 2019*). This is consistent with previous FC-based prediction models of ASD
347 that found the most predictive functional connections to involve transmodal areas such as the
348 temporal parietal junction and areas of the fronto-parietal control network (*Abraham et al., 2017*),
349 connections within the cingulo-opercular network (*Yahata et al., 2016*) and of supramarginal, mid-
350 temporal, and cingulate gyri (*Heinsfeld et al., 2018*). FC alterations of transmodal networks
351 have also been consistently reported in the ASD case-control literature (*Monk et al., 2009; Holiga
352 et al., 2019; Just et al., 2007*), in particular in regions of the default mode network (*Washington
353 et al., 2014; Assaf et al., 2010*).

354 The second ensemble, that did not predict ASD with high PPV, predominantly consisted of uni-
355 modal networks in the visual, auditory, and somatosensory cortices involved in sensory processing,
356 but also the ventral attention network. Although FC of primary sensory brain regions was previ-
357 ously found to be less predictive of ASD diagnosis than that of transmodal regions (*Heinsfeld et al.,
358 2018*), there is extensive evidence of ASD related FC alterations in unimodal areas (*Oldehinkel et al.,
359 2019*). Why then do we observe this difference in predictive performance between the two ensem-
360 bles?

361 The distinction between the FC of unimodal and transmodal networks is a very robust and
362 well established finding (*Raichle et al., 2001; Fox et al., 2005; Buckner and DiNicola, 2019*) that is
363 also reflected in their opposing FC alterations in ASD. Whereas transmodal regions were found to
364 be reproducibly over-connected in ASD, unimodal regions were found to be reproducibly under-
365 connected in a recent multi-center study (*Holiga et al., 2019*). Transmodal and unimodal brain
366 networks were recently shown to lie on opposite ends of a cortical gradient of functional hierar-
367 chy (*Margulies et al., 2016*) that is altered in ASD (*Hong et al., 2019*), suggesting a dysfunctional
368 separation between primary sensory networks and the default mode network. It is thus possible
369 that both ensembles capture distinct ASD risk signatures but only one of them could be reliably
370 identified in our dataset.

371 **Individuals identified by the HRS have severe symptoms and functional undercon- 372 nectivity**

373 The high risk FC-signature identified a group of ten individuals from the independent validation
374 dataset, and nine of them had a diagnosis of ASD. These individuals tended to also have high
375 symptom severity measures. Notably, the one individual identified by the high risk signature who
376 did not have an ASD diagnosis did also have unusually severe symptoms compared to other NTC
377 individuals. This individual may reflect a broader autism phenotype that extends into the general
378 population (*Baron-Cohen et al., 2001*) and is picked up by our model. It is possible that the high
379 risk FC-signature identifies a subtype of ASD patients with particularly severe symptoms. Because
380 these individuals are identified due to their strong dissimilarity with NTC, this interpretation would
381 be consistent with a view of neurodevelopmental disorders as an extreme deviation from normal
382 functioning (*Marquand et al., 2019*).

383 The identified individuals shared a profile of pervasive functional underconnectivity among the
384 transmodal networks that gave rise to the high risk FC-signature. Although dysconnectivity of trans-
385 modal brain networks, and the default mode network in particular (*Monk et al., 2009*), have been
386 consistently reported in the ASD case-control literature, the direction of these effects has not been
387 consistent (*Padmanabhan et al., 2017; Hull et al., 2016*) and both over- and under-connectivity have
388 been related to increases in symptom severity (*Assaf et al., 2010; Sukekar et al., 2013*). Notably,
389 the profile of transmodal network underconnectivity we have identified here stands in contrast to
390 recent case-control findings of reproducible, ASD-related prefrontal and parietal overconnectivity
391 in a large, multi-center study (*Holiga et al., 2019*). These contrasting findings may reflect the inher-
392 ent limitations of case-control studies to identify subtypes of FC alterations that are strongly linked
393 to ASD. Indeed, recent work on ASD related FC subtypes similarly found a profile of transmodal un-

394 derconnectivity (*Tang et al., 2019*). Our results are compatible with reports by other imaging based
395 prediction models of ASD that found underconnectivity between default mode network subregions
396 to be the most discriminant features for prediction (*Abraham et al., 2017; Heinsfeld et al., 2018;*
397 *Yahata et al., 2016*).

398 **Limitations**

399 These findings have to be interpreted in light of their limitations: Our analyses only included male
400 individuals which is a common problem in the field (*Khundrakpam et al., 2017; Hong et al., 2019*)
401 due to the higher frequency with which ASD is diagnosed among male individuals (*Lai et al., 2014*).
402 Recent data curation efforts have therefore started to deliberately include more female individuals
403 (*Di Martino et al., 2017; Bedford et al., 2019*).

404 The behavioural and symptomatic characterization of individuals detected by the high risk sig-
405 nature were limited by the inconsistent availability of phenotypic information in our data. A fu-
406 ture comprehensive characterization of the high risk signature will have to make use of large scale
407 datasets with more complete phenotyping and will help better clarify the neurobiologically defined
408 subset of at risk individuals in terms of their cognitive and symptom profile.

409 Due to the transductive nature of our conformal prediction model, we can only control for
410 nuisance covariates that are available both in the reference sample and for the predicted individual.
411 We could therefore not regress effects due to recording site from the individual FC data. Despite
412 this fact, the high risk ASD signature identified individuals from across different imaging sites with
413 high PPV in an independent dataset, suggesting that the identified FC endophenotype is robust to
414 site differences (see also *Orban et al., 2018*).

415 We have estimated the general population risk conferred by our high risk signature based on
416 its performance in the independent dataset. In line with our expectations, only very few individuals
417 were identified. Risk signatures with such a low prevalence are typically validated on much larger
418 datasets to ensure the robustness of the performance estimates (*Khera et al., 2018*). General pop-
419 ulation samples of this magnitude that also provide imaging data have recently become available
420 (*Bycroft et al., 2018*) and validating the high risk signature on these data is a natural next step to
421 establish robust estimates of the prediction performance of this high risk signature.

422 **Future directions**

423 The high risk FC-signature that we have described here provides interesting implications for future
424 research. As a cohort of individuals with similar FC alterations at high risk of an ASD diagnosis, our
425 signature identifies a potential population of interest to investigate the link between neurobiolog-
426 ical aberration, behavioural symptoms and genetic mechanisms. It may thus provide a starting
427 point to disentangle the heterogeneous relationships across these levels of research in ASD (*Lom-
428 bardo et al., 2019*). An important next step will be to investigate the stability of this FC signature
429 across time (*Jacob et al., 2019*) and to establish at what point of the developmental trajectory it
430 can be differentiated (*Emerson et al., 2017*). These questions will require large scale longitudinal
431 data of at risk individuals, such as the IBIS dataset (*Wolff et al., 2012*). Finally, investigating this
432 high risk ASD signature in other, comorbid (*Simonoff et al., 2008*) neurodevelopmental disorders
433 may help clarify the symptomatic (*Grzadzinski et al., 2011*), neurobiological (*van den Heuvel and
434 Sporns, 2019; de Lange et al., 2019*), and genetic (*Cross-Disorder Group of the Psychiatric Genomics
435 Consortium et al., 2013*) overlap between these disorders and the autism spectrum.

436 **Conclusion**

437 We have identified a functional connectivity endophenotype associated with high risk of ASD that
438 can be detected with high positive predictive value in independent data. Decomposing the autism
439 spectrum bit by bit in this manner may eventually help us understand the multitude of etiological
440 pathways and their extension to the general population.

441 Methods and Materials

442 Sample

443 All data were sampled from the ABIDE 1 (*Di Martino et al., 2014*) and ABIDE 2 (*Di Martino et al., 2017*) dataset releases that contain imaging data for ASD patients and NTC. We used the ABIDE
444 1 release as a discovery dataset and retained the ABIDE 2 release as an independent validation
445 dataset.

446 The final discovery dataset consisted of 478 male individuals ($Age = 16.67$ (6.67), $N_{ASD} = 239$)
447 from 13 recording sites. From the complete ABIDE 1 dataset of 1112 individuals ($Age = 17.04$ (8.04), $N_{ASD} =$
448 539) from 20 imaging sites we excluded 164 female individuals due to strong sex imbalance. Of
449 the remaining sample, 557 individuals from 13 imaging sites were successfully preprocessed and
450 passed visual quality control ($Age = 16.65$ (6.75), $N_{ASD} = 272$). In order to control for the effects
451 of nuisance covariates in the data without removing variance due to the ASD diagnosis, we then
452 matched ASD and NTC individuals on age and head motion within each imaging site by propensity
453 score matching without replacement (*Rosenbaum and Rubin, 1985*).

454 The validation dataset consisted of 424 male individuals ($Age = 13.66$ (5.25), $N_{ASD} = 212$) from
455 16 imaging sites. From the complete ABIDE 2 dataset of 1114 individuals ($Age = 14.86$ (9.16), $N_{ASD} =$
456 521) from 19 imaging sites, we excluded 258 female individuals due to the strong sex imbalance
457 and to match the sample characteristics of the discovery sample. Of the remaining sample, 587
458 ($Age = 13.94$ (5.9), $N_{ASD} = 273$) from 16 imaging sites were successfully preprocessed and passed
459 visual quality control. In line with the sample selection of the discovery sample, we then matched
460 ASD and NTC individuals on age and head motion within each imaging site using propensity score
461 matching without replacement.

462 Clinical diagnosis and severity estimates

463 The individuals from the ABIDE 1 and ABIDE 2 samples included in this study were diagnosed with
464 ASD by expert clinicians based on either the Autism Diagnostic Observation Schedule (ADOS) (*Lord*
465 *et al., 2000; Gotham et al., 2007; Lord et al., 2012*) or the Autism Diagnostic Interview - Revised
466 (*Lord et al., 1994*). ADOS total scores are available for 228 ($N_{ASD} = 196$) individuals in the discovery
467 sample and 226 ($N_{ASD} = 209$) individuals in the validation sample. Although higher ADOS total
468 scores indicate more serious impairments, ADOS raw total scores were not originally intended to
469 compare individuals with different ages, or tested with different ADOS modules. For this purpose,
470 the original authors provide a standardized method (*Gotham et al., 2009*) to convert ADOS total
471 scores to 10-point calibrated severity scores (10 being the most severe), which are less influenced
472 by an individuals' age and other demographic confounds. However, ADOS-CSS were not available
473 for many individuals in the discovery ($N = 107$, $N_{ASD} = 91$) and validation sample ($N_{ASD} = 115$).
474 In order to better contextualize the symptom severity of individuals from different age groups,
475 we computed proxy ADOS-CSS scores by using the available ADOS total scores and the published
476 conversion table (*Moradi et al., 2017*). Proxy ADOS-CSS scores were strongly correlated with true
477 ADOS-CSS scores in both the discovery ($r = 0.90$) and the validation ($r = 0.94$) sample. Proxy ADOS-
478 CSS scores could be computed for 221 individuals ($N_{ASD} = 190$) in the discovery and 223 ($N_{ASD} =$
479 207) in the validation sample.

480 Imaging data preprocessing

481 Imaging data from individuals in both the discovery and independent validation sample underwent
482 identical preprocessing through the NeuroImaging Analysis Kit (NIAK) version 1.13 (*Bellec et al.,*
483 *2011*) running inside a Singularity (version 2.6.1) containerized environment (*Kurtzer et al., 2017*)
484 and using an established in-house processing pipeline. In short, functional time series were
485 corrected for in-scanner head motion and registered to the MNI152 stereotaxic space (*Evans et al.,*
486 *1994*). Slow time drift signals were modeled on the continuous time series by a discrete cosine
487 transformation and removed after censoring of time frames with excessive ($> 0.4\text{mm}$) head mo-

489 tion (**Power et al., 2012**), together with nuisance covariates of the average white matter, and cere-
490 brospinal fluid signals, and the first principal components (accounting for 95% of variance) of the
491 six degrees of freedom head motion estimates and their squares (**Giove et al., 2009**).

492 **Imaging data quality control**

493 The preprocessed imaging data were visually quality controlled (QCed) to ensure the quality of the
494 data. The QC was performed by a trained rater according to our in-lab standardized QC protocol
495 (**Benhajali et al., 2019**) using a guided QC environment (**Urchs et al., 2018**). Imaging data were ex-
496 cluded from subsequent analyses in cases of failed brain extraction or coregistration to the stereo-
497 taxic space, visible motion artifacts, incomplete brain coverage of the field of view, or if fewer than
498 50 time frames remained after motion censoring. A large number of individuals from both the
499 discovery and the validation dataset were found to have incomplete coverage of the cerebellum.
500 In order to retain these otherwise correctly preprocessed individuals, we decided to exclude the
501 cerebellum from the FC analyses.

502 **Functional connectivity estimation**

503 Seed to voxel FC was estimated for functional brain networks defined in the MIST_20 atlas (**Urchs**
504 **et al., 2017**). The MIST_20 atlas represents large, spatially distributed subcomponents of canonical
505 FC networks. Of the 20 brain networks defined in the MIST_20 atlas, 2 were part of the cerebel-
506 lum and were excluded (see above). For each of the remaining 18 brain networks, the average
507 within-network time series was correlated with the time series of all non-cerebellar voxels using
508 Pearson's correlation. The FC organization of every individual in the discovery and validation was
509 thus described by 18 network to voxel maps.

510 **High confidence classification**

511 The transductive conformal classification (TCC) approach (**Vovk et al., 2005; Nouretdinov et al.,**
512 **2011**), which we have applied here, calculates the degree to which a new datapoint "conforms" to
513 already classified data points in some measure of interest. The already classified data points were
514 the reference set of ASD and NTC individuals of the discovery dataset, and our measure of interest
515 was the FC of the 18 brain networks.

516 In contrast to an inductive classification approach, where a statistical model is first learned
517 based on the properties of the reference set and then applied to new data, in a transductive clas-
518 sification, no model is learned and each new individual is classified directly and separately by com-
519 paring it to the properties of each class (ASD and NTC) in the reference set, and choosing the class
520 (or classes) it most conforms to; see Chapelle, et al. (**Chapelle et al., 2006**) for a treatment regarding
521 the difference between inductive and transductive learning. Each unclassified individual therefore
522 has to be treated in the exact same way to ensure the independence of each classification.

523 **Regression of nuisance covariates**

524 We combined the unclassified individual and the reference sample and removed the group level
525 average connectivity and the linear effect of age and head motion from the network FC maps.

526 **Dimensionality reduction**

527 Previous works have shown the capacity of FC subtypes to capture disease-related FC variability;
528 e.g. (**Easson et al., 2019**). We therefore identified the 5 subtypes of FC variability across both
529 the unclassified individual and the reference sample by hierarchical agglomerative clustering of
530 spatially correlated, individual FC maps. For each individual we then computed the spatial similarity
531 with the average FC map of each of the 5 FC subtypes.

532 **Estimation of conformality and classification**

533 The individual conformality estimate for either clinical label (i.e., ASD or NTC) was then computed
534 similarly to the previous work of Nouretdinov et al. (**Nouretdinov et al., 2011**). In short, we first

535 assumed an ASD label for each unclassified individual and then fit a logistic regression to predict
536 ASD for both the unclassified individual and the reference sample, using the previously estimated
537 similarity with FC subtypes as features. To reflect the fact that we wanted the model to make as
538 few false positive errors as possible, we weighted the predicted values of ASD individuals by a large
539 scaling factor ($w_{ASD} = 10^{16}$). This was in line with the suggestion from the discussion of **Nouretdi-**
540 **nov et al. (2011)**. This forced the prediction model to only be concerned with the identification of
541 ASD cases, with high specificity, at the expense of possible identification of NTC individuals. We
542 computed the ASD conformal score for each unclassified individual as the percentage of ASD in-
543 dividuals in the reference sample with a predicted value equal to or smaller than the one that
544 was predicted for that unclassified individual. In other words: if most ASD individuals had larger
545 predicted values than the unclassified individual, then the unclassified individual did not conform
546 to the ASD cohort and was an unusual ASD case, and thus the ASD conformal score would have
547 been small due to the individual not "conforming" to the reference cohort of ASD individuals. An
548 analogous process was then repeated to compute the NTC conformal score of the unclassified
549 individual.

550 We rejected a clinical label (i.e. ASD or NTC) if the corresponding estimated conformal score was
551 below a critical threshold of 5%. We predicted ASD with high confidence for only those individuals
552 who had NTC conformal scores below the critical threshold and ASD conformal scores equal or
553 greater than the critical threshold.

554 **Assessment of prediction performance**

555 To assess the quality of the classification, we computed the sensitivity and specificity across the
556 predicted individuals. The sensitivity of the classification:

$$sensitivity_{ASD} = \frac{TP}{ASD_{TRUE}} \quad (1)$$

557 reflects the ability of our model to correctly predict ASD (TP) among those individuals who truly
558 have ASD (ASD_{TRUE}). Incorrectly predicting an ASD diagnosis for an individual without the diagnosis
559 is known as a false positive (FP) error. Our approach tried to minimize the false positive error. The
560 specificity of the classification:

$$specificity_{ASD} = \frac{TN}{NTC_{TRUE}} \quad (2)$$

561 likewise reflects its ability to correctly not predict ASD (TN) among those individuals who truly do
562 not have an ASD diagnosis (NTC_{TRUE}). Incorrectly predicting an ASD individual as "not ASD" is known
563 as a false negative (FN) error. The positive predictive value (PPV):

$$PPV_{ASD} = \frac{TP}{TP + FP} \quad (3)$$

564 is the ratio of correct ASD predictions (TP) among all ASD predictions made by our model. It thus
565 reflects the risk of an individual classified as ASD by our model to truly have an ASD diagnosis.
566 Our approach aimed to maximize the positive predictive value. The PPV depends on the ratio of
567 ASD_{TRUE} among all individuals in our sample. This ratio is known as the prevalence of ASD in the
568 sample.

569 For an individual who was identified by the model as suspected ASD, the PPV_{ASD} provides an
570 estimate of the individual probability of a true ASD diagnosis. If the model confers any risk, then
571 the risk of ASD is larger for someone identified by the model than for someone not identified by
572 the model. This measure is called the risk ratio (RR_{ASD}):

$$RR_{ASD} = \frac{TP/(TP + FP)}{TN/(TN + FN)} \quad (4)$$

573 A similar metric that is independent of the prevalence of the disorder is the Odds ratio (OR). The
574 odds of a true ASD diagnosis for a selected individual is the ratio of the probability

$$P(ASD|selected) = \frac{TP}{TP + FP} = PPV_{ASD} \quad (5)$$

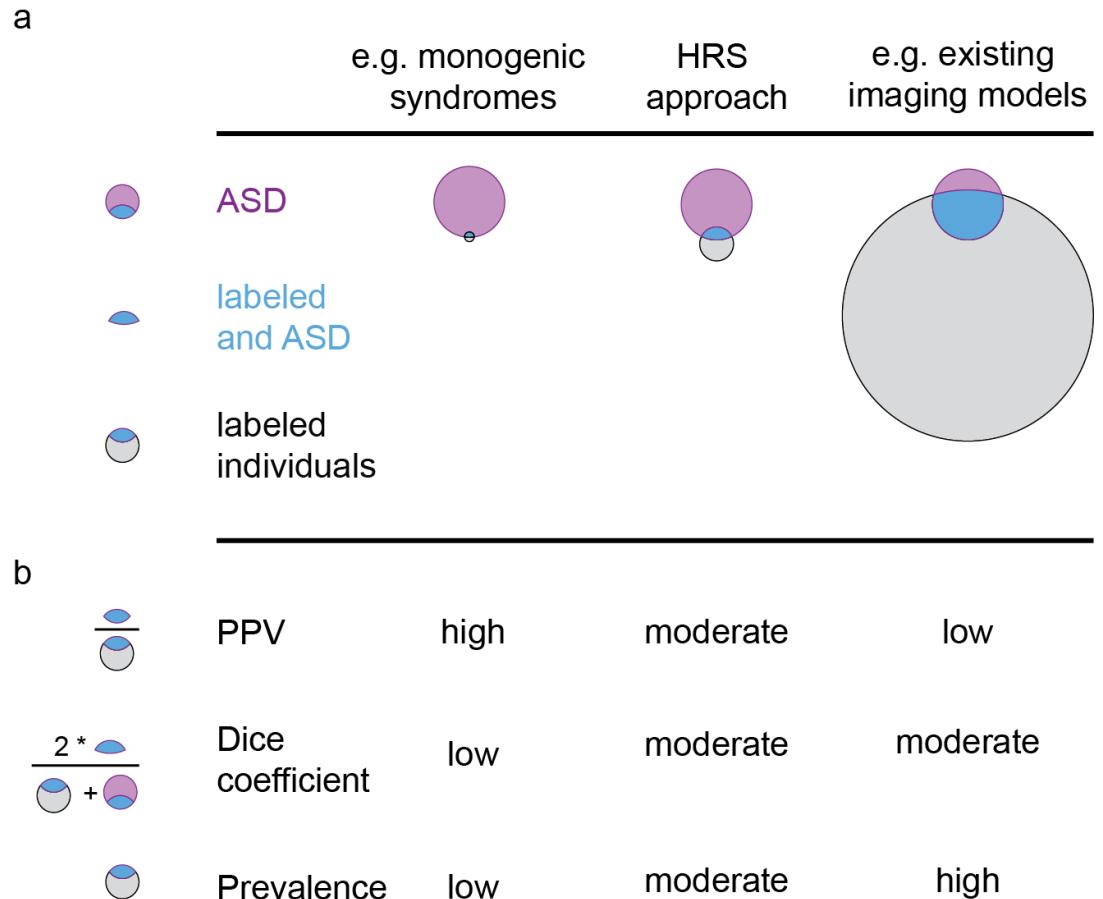


Figure 5. Schematic representation of properties of different ASD risk markers. a) A set of individuals in the population is found to express the risk marker (grey circle) and is thus labeled. Among the set of individuals with ASD in the population (purple circle), some are also labeled by the risk marker (blue region). Risk markers differ in the amount of labeled individuals from very few (left column) to very many (right column). b) Different metrics exist to evaluate the performance of the risk marker. The ratio of ASD individuals among the labeled individuals (PPV, see *Equation 3*) can be very high if only a very few individuals are labeled by the risk marker (e.g. in monogenic syndromes with high risk for ASD, left column). However, the degree of congruence of ASD and labeled individuals (Dice, see *Equation 9*) would be very low, because of the large number of unlabeled ASD individuals. Conversely, a risk marker that labels very many individuals may capture more ASD individuals and have a moderately higher Dice coefficient, but would have a very low ratio of ASD to labeled individuals (PPV) and thus confer very low individual risk (e.g. existing imaging based models, right column). The HRS approach presented here labels fewer individuals than current imaging models but those individuals are more likely to have ASD, resulting in higher PPV and comparable Dice coefficients.

575 over the probability

$$P(\text{notASD}|\text{selected}) = \frac{FP}{TP + FP} \quad (6)$$

576 Both can be simplified to

$$Odds_{ASD} = \frac{TP}{FP} \quad (7)$$

577 Analogous to the risk ratio, the Odds ratio (OR):

$$OR_{ASD} = \frac{TP/FP}{TN/FN} \quad (8)$$

578 then reflects the ratio of odds of an ASD diagnosis for selected individuals over the odds of ASD
579 for unselected individuals.

580 For a model that conveys no information on the ASD diagnosis, the odds of a true ASD diagnosis
581 are the same for individuals who are identified by the model and for those who are not identified
582 (i.e. the OR is 1).

583 An ideal model would correctly classify all individuals with ASD. That is, the set of selected indi-
584 viduals and individuals with ASD would be exactly overlapping. In practice, models with high PPV
585 (e.g. monogenic risk markers) tend to select only a very small subset of individuals (low sensitiv-
586 ity) and models with high sensitivity tend to incorrectly select many individuals without ASD (low
587 specificity, see *Figure 5*). We can thus use the overlap between individuals with ASD and selected
588 individuals to determine how close the model is to an optimal tradeoff between sensitivity and
589 specificity. The Sørensen–Dice coefficient:

$$Dice = \frac{2 * TP}{ASD_{True} + (TP + FP)} \quad (9)$$

590 measures the ratio of correctly selected individuals over the sum of individuals with ASD (ASD_{True})
591 and all selected individuals. It thus ranges between 0 (if the two sets are not overlapping) and 1 (if
592 the two sets are completely overlapping).

593 **Bootstrap estimation**

594 We estimated the model performance of each brain network predictor through bootstrap subsam-
595 pling of the discovery data set. We drew two random bootstrap samples from the discovery data
596 set and assigned one to be the reference data set and the other to be the prediction data set. The
597 ASD diagnosis of each individual in the prediction data set was then separately predicted based on
598 the individuals in the reference data set, following preprocessing, feature extraction and training
599 as described above. We repeated this process 100 times for each brain network and computed the
600 average performance metrics of each predictor across bootstraps (see, e.g. *Efron, 1983*, regarding
601 bootstrap predictor evaluation methods).

602 **Combination of correlated conformal predictions**

603 To identify similarities of conformal predictions between the 18 functional brain networks, we com-
604 puted the pairwise correlation of ASD non-conformity on the discovery sample. We then used hi-
605 erarchical agglomerative clustering to identify groups of networks with correlated ASD conformal
606 score estimates. We selected a 7 and 2 cluster solution based on a visual inspection of the network
607 by network correlation matrix. Within each cluster of networks, conformal score estimates (i.e.
608 probability estimates of non-conformity with each class label) were combined using the p-value
609 averaging methods of (*Vovk and Wang, 2012*). Specifically, we averaged over the p-values that are
610 associated within each network using the squared-mean merging function, which produces a valid
611 aggregate p-value from the combination of any finite number of potentially correlated individual
612 p-values. This requirement of validity is important in order to maintain the conformity properties
613 when using these cluster-aggregated p-values as inputs in a conformal predictor.

614 The aggregation of p-values in the discovery sample was observed to average over the infor-
615 mation that are inherent in each of the contributing p-values. As such, less informative network

616 elements tended to decrease the explanatory power of the more informative elements. The over-
617 all effect was that the cluster non-conformity threshold tended to be conservative in identifying
618 interesting observations, when compared to the same threshold value, applied to individual net-
619 works. In order to mitigate against this conservative effect, we used a more liberal threshold for
620 cluster-aggregated p-values, than those used for individual networks. That is, we adjusted the
621 critical non-conformal threshold to 0.2 from 0.05.

622 **Validation on the independent dataset**

623 The HRS identified on the discovery sample was then validated on the independent validation sam-
624 ple. To do so, the ASD and NTC non-conformity estimate of each individual in the validation sample
625 was computed by using the individuals of the discovery sample as the reference cohort. Each indi-
626 vidual in the validation sample was predicted independently after group level nuisance regression
627 and dimensionality reduction with respect to the reference sample.

628 **Estimation of model performance in the general population**

629 The discovery and validation sample had equal rates of ASD patients and NTC individuals (i.e. 1 ASD
630 for each 1 NTC). The prevalence of ASD in the general population is however much lower (1 ASD for
631 each 89 NTC). Based on the estimated specificity and sensitivity of our model in the independent
632 validation sample, we estimated the positive predictive value (PPV_{ASD}) of the HRS in the general
633 population.

634 **Acknowledgments**

635 This research was supported by computation resources of Calcul Quebec and Compute Canada.
636 We thank Yu Zhang and Gleb Bezgin for helpful discussions. For their feedback on the writing of
637 this manuscript we want to thank Julie Boyle, and Jonas Nitschke. We thank the ABIDE consortium
638 for making publicly available the large datasets that this study was based on.

639 **References**

640 Abraham A, Milham MP, Di Martino A, Craddock RC, Samaras D, Thirion B, Varoquaux G. Deriving reproducible
641 biomarkers from multi-site resting-state data: An Autism-based example. *Neuroimage*. 2017 Feb; 147:736–
642 745.

643 Alves PN, Foulon C, Karolis V, Bzdok D, Margulies DS, Volle E, Thiebaut de Schotten M. An improved neu-
644 roanatomical model of the default-mode network reconciles previous neuroimaging and neuropathological
645 findings. *Communications Biology*. 2019 Oct; 2(1):370.

646 American Psychiatric Association , DSM-5 Task Force . *Diagnostic and Statistical Manual of Mental Disorders: DSM-5*. Washington, D.C.: Amer Psychiatric Pub Incorporated; 2013.

648 Assaf M, Jagannathan K, Calhoun VD, Miller L, Stevens MC, Sahl R, O'Boyle JG, Schultz RT, Pearlson GD. Abnormal
649 functional connectivity of default mode sub-networks in autism spectrum disorder patients. *Neuroimage*.
650 2010 Oct; 53(1):247–256.

651 Bai D, Yip BHK, Windham GC, Sourander A, Francis R, Yoffe R, Glasson E, Mahjani B, Suominen A, Leonard H,
652 Gissler M, Buxbaum JD, Wong K, Schendel D, Kodesh A, Bresnahan M, Levine SZ, Parner ET, Hansen SN,
653 Hultman C, et al. Association of Genetic and Environmental Factors With Autism in a 5-Country Cohort. *JAMA
654 Psychiatry*. 2019 Jul; .

655 Baron-Cohen S, Wheelwright S, Skinner R, Martin J, Clubley E. The autism-spectrum quotient (AQ): evidence
656 from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. *J
657 Autism Dev Disord*. 2001 Feb; 31(1):5–17.

658 Bedford SA, Park MTM, Devenyi GA, Tullo S, Germann J, Patel R, Anagnostou E, Baron-Cohen S, Bullmore ET,
659 Chura LR, Craig MC, Ecker C, Floris DL, Holt RJ, Lenroot R, Lerch JP, Lombardo MV, Murphy DGM, Raznahan
660 A, Ruigrok ANV, et al. Large-scale analyses of the relationship between sex, age and intelligence quotient
661 heterogeneity and cortical morphometry in autism spectrum disorder. *Mol Psychiatry*. 2019 Apr; .

662 **Bellec P**, Carbonell FM, Perlberg V, Lepage C, Lyttelton O, Fonov V, Janke A, Tohka J, Evans AC. A neuroimaging
663 analysis kit for Matlab and Octave. In: *Proceedings of the 17th International Conference on Functional Mapping
664 of the Human Brain*; 2011. p. 2735–2746.

665 **Benhajali Y**, Badhwar A, Spiers H, Urchs S, Armoza J, Ong T, Pérusse D, Bellec P. A standardized protocol for
666 efficient and reliable quality control of brain registration in functional MRI studies; 2019.

667 **Buckner RL**, DiNicola LM. The brain's default network: updated anatomy, physiology and evolving insights.
668 *Nat Rev Neurosci*. 2019 Sep; .

669 **Bycroft C**, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O, O'Connell J,
670 Cortes A, Welsh S, Young A, Effingham M, McVean G, Leslie S, Allen N, Donnelly P, Marchini J. The UK Biobank
671 resource with deep phenotyping and genomic data. *Nature*. 2018 Oct; 562(7726):203–209.

672 **Castellanos FX**, Di Martino A, Craddock RC, Mehta AD, Milham MP. Clinical applications of the functional
673 connectome. *Neuroimage*. 2013 Oct; 80:527–540.

674 **Chapelle O**, Schölkopf B, Zien A. *Semi-supervised Learning*. MIT Press; 2006.

675 **Cross-Disorder Group of the Psychiatric Genomics Consortium**, Lee SH, Ripke S, Neale BM, Faraone SV,
676 Purcell SM, Perlis RH, Mowry BJ, Thapar A, Goddard ME, Witte JS, Absher D, Agartz I, Akil H, Amin F, Andreassen
677 OA, Anjorin A, Anney R, Anttila V, Arking DE, et al. Genetic relationship between five psychiatric disorders
678 estimated from genome-wide SNPs. *Nat Genet*. 2013 Sep; 45(9):984–994.

679 **Di Martino A**, Yan CG, Li Q, Denio E, Castellanos FX, Alaerts K, Anderson JS, Assaf M, Bookheimer SY, Dapretto
680 M, Deen B, Delmonte S, Dinstein I, Ertl-Wagner B, Fair DA, Gallagher L, Kennedy DP, Keown CL, Keysers C,
681 Lainhart JE, et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic
682 brain architecture in autism. *Mol Psychiatry*. 2014 Jun; 19(6):659–667.

683 **Di Martino A**, O'Connor D, Chen B, Alaerts K, Anderson JS, Assaf M, Balsters JH, Baxter L, Beggiato A, Bernaerts S,
684 Blanken LME, Bookheimer SY, Braden BB, Byrge L, Castellanos FX, Dapretto M, Delorme R, Fair DA, Fishman
685 I, Fitzgerald J, et al. Enhancing studies of the connectome in autism using the autism brain imaging data
686 exchange II. *Sci Data*. 2017 Mar; 4:170010.

687 **Easson AK**, Fatima Z, McIntosh AR. Functional connectivity-based subtypes of individuals with and without
688 autism spectrum disorder. *Network Neuroscience*. 2019 Jan; 3(2):344–362.

689 **Efron B**. Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation. *J Am Stat Assoc*.
690 1983 Jun; 78(382):316–331.

691 **Emerson RW**, Adams C, Nishino T, Hazlett HC, Wolff JJ, Zwaigenbaum L, Constantino JN, Shen MD, Swanson
692 MR, Elison JT, Kandala S, Estes AM, Botteron KN, Collins L, Dager SR, Evans AC, Gerig G, Gu H, McKinstry RC,
693 Paterson S, et al. Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at
694 24 months of age. *Sci Transl Med*. 2017 Jun; 9(393).

695 **Evans AC**, Kamber M, Collins DL, MacDonald D. An MRI-Based Probabilistic Atlas of Neuroanatomy. In: *Magnetic
696 Resonance Scanning and Epilepsy* NATO ASI Series, Springer, Boston, MA; 1994.p. 263–274.

697 **Fox MD**, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized
698 into dynamic, anticorrelated functional networks. *Proc Natl Acad Sci U S A*. 2005 Jul; 102(27):9673–9678.

699 **Gammerman A**, Vovk V. Hedging Predictions in Machine Learning. *Comput J*. 2007 Mar; 50(2):151–163.

700 **Gaugler T**, Klei L, Sanders SJ, Bodea CA, Goldberg AP, Lee AB, Mahajan M, Manaa D, Pawitan Y, Reichert J, Ripke
701 S, Sandin S, Sklar P, Svartesson O, Reichenberg A, Hultman CM, Devlin B, Roeder K, Buxbaum JD. Most genetic
702 risk for autism resides with common variation. *Nat Genet*. 2014 Aug; 46(8):881–885.

703 **Geschwind DH**, State MW. Gene hunting in autism spectrum disorder: on the path to precision medicine.
704 *Lancet Neurol*. 2015 Nov; 14(11):1109–1120.

705 **Giove F**, Gili T, Iacobella V, Macaluso E, Maraviglia B. Images-based suppression of unwanted global signals in
706 resting-state functional connectivity studies. *Magn Reson Imaging*. 2009 Oct; 27(8):1058–1064.

707 **Gotham K**, Pickles A, Lord C. Standardizing ADOS scores for a measure of severity in autism spectrum disorders.
708 *J Autism Dev Disord*. 2009 May; 39(5):693–705.

709 **Gotham K**, Risi S, Pickles A, Lord C. The Autism Diagnostic Observation Schedule: revised algorithms for im-
710 proved diagnostic validity. *J Autism Dev Disord*. 2007 Apr; 37(4):613–627.

711 **Grove J**, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, Pallesen J, Agerbo E, Andreassen OA, Anney R,
712 Awashti S, Belliveau R, Bettella F, Buxbaum JD, Bybjerg-Grauholt J, Bækvad-Hansen M, Cerrato F, Chambert
713 K, Christensen JH, Churchhouse C, et al. Identification of common genetic risk variants for autism spectrum
714 disorder. *Nat Genet*. 2019 Mar; 51(3):431–444.

715 **Grzadzinski R**, Di Martino A, Brady E, Mairena MA, O’Neale M, Petkova E, Lord C, Castellanos FX. Examining
716 autistic traits in children with ADHD: does the autism spectrum extend to ADHD? *J Autism Dev Disord*. 2011
717 Sep; 41(9):1178–1191.

718 **Heinsfeld AS**, Franco AR, Craddock RC, Buchweitz A, Meneguzzi F. Identification of autism spectrum disorder
719 using deep learning and the ABIDE dataset. *Neuroimage Clin*. 2018; 17:16–23.

720 **van den Heuvel MP**, Sporns O. A cross-disorder connectome landscape of brain dysconnectivity. *Nat Rev
721 Neurosci*. 2019 May; .

722 **Holiga Š**, Hipp JF, Chatham CH, Garces P, Spooren W, D’Ardhuy XL, Bertolino A, Bouquet C, Buitelaar JK, Bours
723 C, Rausch A, Oldehinkel M, Bouvard M, Amestoy A, Caralp M, Gueguen S, Ly-Le Moal M, Houenou J, Beck-
724 mann CF, Loth E, et al. Patients with autism spectrum disorders display reproducible functional connectivity
725 alterations. *Sci Transl Med*. 2019 Feb; 11(481).

726 **Hong SJ**, de Wael RV, Bethlehem RAI, Lariviere S, Paquola C, Valk SL, Milham MP, Di Martino A, Margulies DS,
727 Smallwood J, Bernhardt BC. Atypical functional connectome hierarchy in autism. *Nat Commun*. 2019 Mar;
728 10(1):1022.

729 **Hull JV**, Jacokes ZJ, Torgerson CM, Irimia A, Van Horn JD. Resting-State Functional Connectivity in Autism Spec-
730 trum Disorders: A Review. *Front Psychiatry*. 2016; 7:205.

731 **Jacob S**, Wolff JJ, Steinbach MS, Doyle CB, Kumar V, Elison JT. Neurodevelopmental heterogeneity and compu-
732 tational approaches for understanding autism. *Transl Psychiatry*. 2019 Feb; 9(1):63.

733 **Just MA**, Cherkassky VL, Keller TA, Kana RK, Minshew NJ. Functional and anatomical cortical underconnectivity
734 in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry.
735 *Cereb Cortex*. 2007 Apr; 17(4):951–961.

736 **Khera AV**, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, Natarajan P, Lander ES, Lubitz SA, Ellinor PT,
737 Kathiresan S. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent
738 to monogenic mutations. *Nat Genet*. 2018 Sep; 50(9):1219–1224.

739 **Khundrakpam BS**, Lewis JD, Kostopoulos P, Carbonell F, Evans AC. Cortical Thickness Abnormalities in Autism
740 Spectrum Disorders Through Late Childhood, Adolescence, and Adulthood: A Large-Scale MRI Study. *Cereb
741 Cortex*. 2017 Mar; 27(3):1721–1731.

742 **Kümmel A**, Bonate PL, Dingemans J, Krause A. Confidence and Prediction Intervals for Pharmacometric Mod-
743 els. *CPT Pharmacometrics Syst Pharmacol*. 2018 Jun; 7(6):360–373.

744 **Kurtzer GM**, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. *PLoS One*. 2017
745 May; 12(5):e0177459.

746 **Lai MC**, Lombardo MV, Baron-Cohen S. Autism. *Lancet*. 2014 Mar; 383(9920):896–910.

747 **de Lange SC**, Scholtens LH, Alzheimer’s Disease Neuroimaging Initiative, van den Berg LH, Boks MP, Bozzali
748 M, Cahn W, Dannlowski U, Durston S, Geuze E, van Haren NEM, Hillegers MH, Koch K, Jurado MÁ, Mancini
749 M, Marqués-Iturria I, Meinert S, Ophoff RA, Reess TJ, Repple J, et al. Shared vulnerability for connectome
750 alterations across psychiatric and neurological brain disorders. *Nat Hum Behav*. 2019 Aug; .

751 **Lombardo MV**, Lai MC, Baron-Cohen S. Big data approaches to decomposing heterogeneity across the autism
752 spectrum. *Mol Psychiatry*. 2019 Jan; .

753 **Lord C**, Rutter M, DiLavore P, Risi S, Gotham K, Bishop S. Autism diagnostic observation schedule–2nd edition
754 (ADOS-2). Los Angeles, CA: Western Psychological Corporation. 2012; .

755 **Lord C**, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview
756 for caregivers of individuals with possible pervasive developmental disorders. *J Autism Dev Disord*. 1994 Oct;
757 24(5):659–685.

758 **Lord C**, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, Pickles A, Rutter M. The Autism Diagnostic
759 Observation Schedule—Generic: A Standard Measure of Social and Communication Deficits Associated with
760 the Spectrum of Autism. *J Autism Dev Disord*. 2000 Jun; 30(3):205–223.

761 **Maher B**. Personal genomes: The case of the missing heritability. *Nature*. 2008 Nov; 456(7218):18–21.

762 **Manolio TA**, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR,
763 Chakravarti A, Cho JH, Guttman AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore
764 AS, Boehnke M, et al. Finding the missing heritability of complex diseases. *Nature*. 2009 Oct; 461(7265):747–
765 753.

766 **Margulies DS**, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G, Bezug G, Eickhoff SB, Castellanos
767 FX, Petrides M, Jefferies E, Smallwood J. Situating the default-mode network along a principal gradient of
768 macroscale cortical organization. *Proc Natl Acad Sci U S A*. 2016 Oct; .

769 **Marquand AF**, Kia SM, Zabihí M, Wolfers T, Buitelaar JK, Beckmann CF. Conceptualizing mental disorders as
770 deviations from normative functioning. *Mol Psychiatry*. 2019 Jun; .

771 **Martin AR**, Daly MJ, Robinson EB, Hyman SE, Neale BM. Predicting Polygenic Risk of Psychiatric Disorders. *Biol
772 Psychiatry*. 2018 Dec; .

773 **Monk CS**, Peltier SJ, Wiggins JL, Weng SJ, Carrasco M, Risi S, Lord C. Abnormalities of intrinsic functional con-
774 nectivity in autism spectrum disorders. *Neuroimage*. 2009 Aug; 47(2):764–772.

775 **Moradi E**, Khundrakpam B, Lewis JD, Evans AC, Tohka J. Predicting symptom severity in autism spectrum
776 disorder based on cortical thickness measures in agglomerative data. *Neuroimage*. 2017 Jan; 144(Pt A):128–
777 141.

778 **Nouretdinov I**, Costafreda SG, Gammerman A, Chervonenkis A, Vovk V, Vapnik V, Fu CHY. Machine learning
779 classification with confidence: application of transductive conformal predictors to MRI-based diagnostic and
780 prognostic markers in depression. *Neuroimage*. 2011 May; 56(2):809–813.

781 **O'Connor LJ**, Schoeck AP, Hormozdiari F, Gazal S, Patterson N, Price AL. Extreme Polygenicity of Complex Traits
782 Is Explained by Negative Selection. *Am J Hum Genet*. 2019 Aug; .

783 **Oldehinkel M**, Mennes M, Marquand A, Charman T, Tillmann J, Ecker C, Dell'Acqua F, Brandeis D, Banaschewski
784 T, Baumeister S, Moessnang C, Baron-Cohen S, Holt R, Bölte S, Durston S, Kundu P, Lombardo MV, Spooren W,
785 Loth E, Murphy DGM, et al. Altered Connectivity Between Cerebellum, Visual, and Sensory-Motor Networks in
786 Autism Spectrum Disorder: Results from the EU-AIMS Longitudinal European Autism Project. *Biol Psychiatry
787 Cogn Neurosci Neuroimaging*. 2019 Mar; 4(3):260–270.

788 **Orban P**, Dansereau C, Desbois L, Mongeau-Pérusse V, Giguère CÉ, Nguyen H, Mendrek A, Stip E, Bellec P.
789 Multisite generalizability of schizophrenia diagnosis classification based on functional brain connectivity.
790 *Schizophr Res*. 2018 Feb; 192:167–171. doi: [10.1016/j.schres.2017.05.027](https://doi.org/10.1016/j.schres.2017.05.027).

791 **Padmanabhan A**, Lynch CJ, Schaefer M, Menon V. The Default Mode Network in Autism. *Biol Psychiatry Cogn
792 Neurosci Neuroimaging*. 2017 Sep; 2(6):476–486.

793 **Power JD**, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional
794 connectivity MRI networks arise from subject motion. *Neuroimage*. 2012 Feb; 59(3):2142–2154.

795 **Raichle ME**, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function.
796 *Proc Natl Acad Sci U S A*. 2001 Jan; 98(2):676–682.

797 **Robinson EB**, St Pourcain B, Anttila V, Kosmicki JA, Bulik-Sullivan B, Grove J, Maller J, Samocha KE, Sanders SJ,
798 Ripke S, Martin J, Hollegaard MV, Werger T, Hougaard DM, iPSYCH-SSI-Broad Autism Group, Neale BM, Evans
799 DM, Skuse D, Mortensen PB, Børglum AD, et al. Genetic risk for autism spectrum disorders and neuropsychiatric
800 variation in the general population. *Nat Genet*. 2016 Mar; .

801 **Rosenbaum PR**, Rubin DB. Constructing a Control Group Using Multivariate Matched Sampling Methods That
802 Incorporate the Propensity Score. *Am Stat*. 1985; 39(1):33–38.

803 **Sanders SJ**, He X, Willsey AJ, Ercan-Sençicek AG, Samocha KE, Cicek AE, Murtha MT, Bal VH, Bishop SL, Dong S,
804 Goldberg AP, Jinlu C, Keaney JF 3rd, Klei L, Mandell JD, Moreno-De-Luca D, Poulton CS, Robinson EB, Smith
805 L, Solli-Nowlan T, et al. Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71
806 Risk Loci. *Neuron*. 2015 Sep; 87(6):1215–1233.

807 Sanders SJ, Sahin M, Hostyk J, Thurm A, Jacquemont S, Avillach P, Douard E, Martin CL, Modi ME, Moreno-De-
808 Luca A, Raznahan A, Anticevic A, Dolmetsch R, Feng G, Geschwind DH, Glahn DC, Goldstein DB, Ledbetter DH,
809 Mulle JG, Pasca SP, et al. A framework for the investigation of rare genetic disorders in neuropsychiatry. *Nat
810 Med.* 2019 Sep; .

811 **Schizophrenia Working Group of the Psychiatric Genomics Consortium.** Biological insights from 108
812 schizophrenia-associated genetic loci. *Nature.* 2014 Jul; 511(7510):421–427.

813 Shafer G, Vovk V. A Tutorial on Conformal Prediction. *J Mach Learn Res.* 2008; 9(Mar):371–421.

814 Simonoff E, Pickles A, Charman T, Chandler S, Loucas T, Baird G. Psychiatric disorders in children with autism
815 spectrum disorders: prevalence, comorbidity, and associated factors in a population-derived sample. *J Am
816 Acad Child Adolesc Psychiatry.* 2008 Aug; 47(8):921–929.

817 Supekard K, Uddin LQ, Khouzam A, Phillips J, Gaillard WD, Kenworthy LE, Yerys BE, Vaidya CJ, Menon V. Brain
818 hyperconnectivity in children with autism and its links to social deficits. *Cell Rep.* 2013 Nov; 5(3):738–747.

819 Tang S, Sun N, Floris DL, Zhang X, Di Martino A, Yeo BTT. Reconciling Dimensional and Categorical Models of
820 Autism Heterogeneity: a Brain Connectomics & Behavioral Study. *Biol Psychiatry.* 2019 Nov; .

821 de la Torre-Ubieta L, Won H, Stein JL, Geschwind DH. Advancing the understanding of autism disease mecha-
822 nisms through genetics. *Nat Med.* 2016 Apr; 22(4):345–361.

823 Urchs S, Armoza J, Benhajali Y, Bellec P, dashqc-fmri - an interactive web dashboard for manual quality control;
824 2018. Sixth Biennial Conference on Resting State and Brain Connectivity.

825 Urchs S, Armoza J, Benhajali Y, St-Aubin J, Orban P, Bellec P. MIST: A multi-resolution parcellation of functional
826 brain networks. *MNI Open Res.* 2017 Dec; 1:3.

827 Vapnik VN. Statistical learning theory. Wiley; 1998.

828 Vovk V, Gammerman A, Shafer G. Algorithmic Learning in a Random World. Springer, Boston, MA; 2005.

829 Vovk V, Wang R. Combining p-values via averaging. . 2012 Dec; .

830 Washington SD, Gordon EM, Brar J, Warburton S, Sawyer AT, Wolfe A, Mease-Ference ER, Girton L, Hailu A,
831 Mbwana J, Gaillard WD, Kalbfleisch ML, VanMeter JW. Dysmaturation of the default mode network in autism.
832 *Hum Brain Mapp.* 2014 Apr; 35(4):1284–1296.

833 Wolff JJ, Gu H, Gerig G, Elison JT, Styner M, Gouttard S, Botteron KN, Dager SR, Dawson G, Estes AM, Evans
834 AC, Hazlett HC, Kostopoulos P, McKinstry RC, Paterson SJ, Schultz RT, Zwaigenbaum L, Piven J, IBIS Network.
835 Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. *Am
836 J Psychiatry.* 2012 Jun; 169(6):589–600.

837 Yahata N, Morimoto J, Hashimoto R, Lisi G, Shibata K, Kawakubo Y, Kuwabara H, Kuroda M, Yamada T, Megumi
838 F, Imamizu H, Náñez JE Sr, Takahashi H, Okamoto Y, Kasai K, Kato N, Sasaki Y, Watanabe T, Kawato M. A small
839 number of abnormal brain connections predicts adult autism spectrum disorder. *Nat Commun.* 2016 Apr;
840 7:11254.

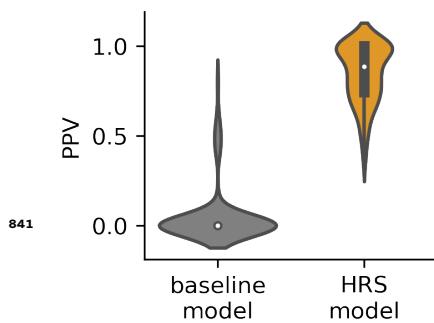


Figure 4-Figure supplement 1. Predictions by the HRS exceed the PPV of those by a simple baseline model. The distribution of PPV estimates across 100 bootstrap samples is denoted by violin plots for each model

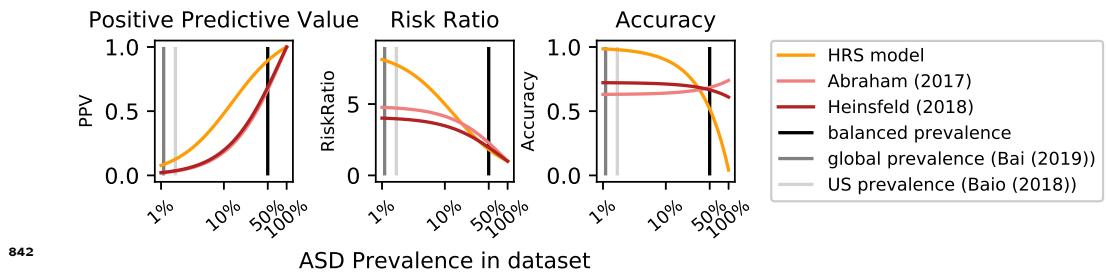


Figure 4-Figure supplement 2. The impact of different levels of ASD prevalence in the data are shown for different metrics that are commonly used to evaluate prediction models. In balanced samples (black vertical line) that are commonly used to train models, traditional models (pink lines) that balance sensitivity and specificity achieve high accuracy. However, predictions by traditional models confer lower individual risk (PPV), particularly for low ASD prevalence, close to the baseline rate in the general population (grey lines)