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ABSTRACT 

PURPOSE: Methylation of the O6-Methylguanine-DNA Methyltransferase (MGMT) promoter 

results in epigenetic silencing of the MGMT enzyme and confers an improved prognosis and 

treatment response in gliomas.  The purpose of this study was to develop a deep-learning network 

for determining the methylation status of the MGMT Promoter in gliomas using T2-w magnetic 

resonance images only.  

METHODS: Brain MRI and corresponding genomic information were obtained for 247 subjects 

from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA).  163 subjects 

had a methylated MGMT promoter.  A T2-w image only network (MGMT-net) was developed to 

determine MGMT promoter methylation status and simultaneous single label tumor segmentation. 

The network was trained using 3D-Dense-UNets. Three-fold cross-validation was performed to 

generalize the networks’ performance. Dice-scores were computed to determine tumor 

segmentation accuracy.   

RESULTS: MGMT-net demonstrated a mean cross validation accuracy of 94.73% across the 3 

folds (95.12%, 93.98%, and 95.12%, standard dev=0.66) in predicting MGMT methylation status 

with a sensitivity and specificity of 96.31% ±0.04 and 91.66% ±2.06, respectively and a mean 

AUC of 0.93 ±0.01. The whole tumor segmentation mean Dice-score was 0.82 ± 0.008.  

CONCLUSION: We demonstrate high classification accuracy in predicting the methylation status 

of the MGMT promoter using only T2-w MR images that surpasses the sensitivity, specificity, and 

accuracy of invasive histological methods such as pyrosequencing, methylation-specific PCR, and 

immunofluorescence methods. This represents an important milestone toward using MRI to 

predict glioma histology, prognosis, and response to treatment. 
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INTRODUCTION 

 O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation is a molecular 

biomarker of gliomas that has prognostic and therapeutic implications. Unlike isocitrate 

dehydrogenase (IDH) mutations and 1p/19q co-deletions, MGMT promoter methylation is an 

epigenetic event. Epigenetic events are functionally relevant but do not involve a change in the 

nucleotide sequence. Therefore, while MGMT promoter methylation is an important prognostic 

marker, it does not define a distinct subset of gliomas. MGMT is a DNA repair enzyme that 

protects normal and glioma cells from alkylating chemotherapeutic agents. The methylation of the 

MGMT promoter is an example of epigenetic silencing which results in loss of function of the 

MGMT enzyme and its protective effect on glioma cells. The survival benefit incurred by MGMT 

promoter methylation in patients treated with temozolomide (TMZ) was determined in 2005.1 

Subsequent work by Stupp et al. has shown that in patients who received both radiation and 

temozolomide, MGMT promoter methylation improved median survival as compared to patients 

with unmethylated gliomas (21.7 months vs 12.7 months).2,3 Long-term follow-up from that initial 

study has further substantiated the survival benefit.2,3 As a result, determining MGMT promoter 

methylation status is an important step in predicting survival and determining treatment.  

 

Currently, the only reliable way to determine MGMT promoter methylation status requires 

analysis of glioma tissue obtained either via an invasive brain biopsy or following open surgical 

resection. Surgical procedures carry the risk of neurologic injury and complications. Therefore, 

considerable attention has been dedicated to developing non-invasive, image-based diagnostic 

methods to determine MGMT promoter methylation status. A meta-analysis of MRI features 

demonstrated that glioblastomas with methylated MGMT promoters were associated with less 
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edema, high apparent diffusion coefficient (ADC), and low perfusion. However, the summary 

sensitivity and specificity of these clinical features was only 79% and 78% respectively.4 Recent 

advances in deep-learning methods have not only made non-invasive, image-based molecular 

profiling possible but also highly accurate. Our group has previously demonstrated highly-

accurate, MRI-based, voxel-wise deep-learning networks for determining IDH-classification and 

1p/19q co-deletion status using only T2-w MR images.5,6 The benefits of using T2-w images are 

that they are routinely acquired, they can be obtained quickly, and high quality T2-w images can 

even be obtained in the setting of motion degradation. Because MGMT promoter methylation in 

gliomas is such an important biomarker, the purpose of this study was to develop a highly accurate, 

fully automated deep-learning 3D network for MGMT promoter methylation status determination 

using T2-w images only.  

  

MATERIAL & METHODS 

Data and Pre-processing 

Multi-parametric MR Images of brain glioma patients were obtained from the TCIA (The 

Cancer Imaging Archive) database.7,8 The genomic information was obtained from both TCGA 

(the cancer genome atlas) and TCIA databases.7,9,10 Subject datasets were screened for the 

availability of pre-operative MR images, T2-w images and known MGMT promoter status. The 

final dataset of 247 subjects included 163 methylated cases and 84 unmethylated cases. TCGA 

subject IDs, MGMT status, and tumor grade are listed in Table 1 of the supplementary data.  

  

Tumor masks for 179 subjects were available through previous expert segmentation.5,11,12 

Tumor masks for the remaining 68 subjects were generated by our previously trained 3D-IDH 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2020. ; https://doi.org/10.1101/2020.05.30.124230doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.30.124230
http://creativecommons.org/licenses/by/4.0/


 

 

5 

 

network.5 These tumor masks were used as ground truth for tumor segmentation in the training 

step. Ground truth whole tumor masks for methylated and unmethylated MGMT promoter type 

were labelled with 1s & 2s respectively (Figure 1). Data preprocessing steps included (a) ANTs 

affine co-registration13 to the SR124 T2 template14, (b) skull stripping using the Brain Extraction 

Tool (BET)15 from FSL15-18, (c) Removing RF inhomogeneity using N4BiasCorrection19, and (d) 

normalizing intensity to zero-mean and unit variance. The pre-processing took less than 5 minutes 

per dataset.  

 

Network Details 

Transfer learning for MGMT promoter status determination was implemented using our 

previously trained 3D-IDH network.5 The decoder part of the network was fine-tuned for a voxel-

wise dual-class segmentation of the whole tumor with Classes 1 and 2, representing methylated & 

Figure 1: Ground truth whole tumor masks. Red voxels represent methylated MGMT promoter status (values 

of 1) and blue voxels represent unmethylated MGMT promoter status (values of 2). The ground truth labels 

have the same MGMT promoter status for all voxels in each tumor. 
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unmethylated MGMT promoter type, respectively. The network architecture is shown in Figure 

2B. A detailed schematic of the network is provided in the supplemental material section. 

 

Network Implementation and Cross-validation  

To generalize the network’s performance, a 3-fold cross-validation was performed. The 

dataset of 247 subjects was randomly shuffled and distributed it into 3 groups (approximately 82 

subjects for each group). Group 1 had 82 subjects (54 methylated, 28 unmethylated), Group 2 had 

Figure 2: (A) MGMT-net overview. Voxel-wise classification of MGMT promoter status is performed to 

create 2 volumes (methylated and unmethylated MGMT promoter). Volumes are combined using dual 

volume fusion to eliminate false positives and generate a tumor segmentation volume. Majority voting 
across voxels is used to determine the overall MGMT promoter status. (B) Network architecture for MGMT-

net. 3D-Dense-UNets were employed with 7 dense blocks, 3 transition down blocks, and 3 transition up 

blocks. 
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83 subjects (55 methylated, 28 unmethylated), and Group 3 had 82 subjects (54 methylated, 28 

unmethylated). The 3 groups were alternated between training, in-training validation and held-out 

testing groups such that, each fold of the cross-validation was a new training phase based on a 

unique combination of the 3 groups. The network uses the in-training validation dataset to evaluate 

its learning after each training round and update model parameters to improve performance. 

However, the network performance is only reported on the held-out testing group for each fold as 

it is never seen by the network.  The group membership for each cross-validation fold is listed in 

Table 1 of the supplementary data.  

 

Seventy-five percent overlapping patches were extracted from the training and in-training 

validation subjects. To prevent the problem of data leakage, no patch from the same subject was 

mixed with the training, in-training validation or testing datasets.20,21 Data augmentation steps 

included horizontal & vertical flipping, random & translational rotation, addition of salt & pepper 

noise, addition of Gaussian noise, and projective transformation. Additional data augmentation 

steps included, down-sampling images by 50% and 25% (reducing the voxel resolution to 2mm3 

and 4mm3). This provided a total of approximately 300,000 patches for training and 300,000 

patches for in-training validation for each fold. The networks were implemented using 

Tensorflow22 backend engine, Keras23 python package, and an Adaptive Moment Estimation 

optimizer (Adam).24 The initial learning rate was set to 10-5 with a batch size of 15 and maximal 

iterations of 100.  

 

MGMT-net outputs two segmentation volumes (V1 and V2), which are combined to 

generate the voxel-wise prediction of methylated & unmethylated MGMT promoter tumor voxels, 
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respectively. The two volumes are fused and the largest connected component (3D-connected 

component algorithm in MATLAB(R)) is obtained as the single tumor segmentation map. Majority 

voting over the voxel-wise classes of methylated or unmethylated type provided a single MGMT 

promoter classification for each subject. Tesla V100s, P100, P40 and K80 NVIDIA-GPUs were 

used to implement the networks. This MGMT promoter determination process is fully automated, 

and a tumor segmentation map is a natural output of the voxel-wise classification approach. 

 

Statistical Analysis  

Statistical analysis of the network’s performance was performed in MATLAB(R) and R. 

Network accuracies were evaluated using majority voting (i.e. voxel-wise cutoff of 50%). The 

accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value 

(NPV) of the model for each fold of the cross-validation procedure were calculated using this 

threshold. Receiver Operating Characteristic (ROC) curves for each fold were generated 

separately. Dice-scores were calculated to evaluate the tumor segmentation performance of the 

networks. The Dice-score calculates the spatial overlap between the ground truth segmentation 

and the network segmentation. 

 

RESULTS  

The network achieved a mean cross-validation testing accuracy of 94.73% across the 3 

folds (95.12%, 93.98%, and 95.12%, standard dev=0.66). Mean cross-validation sensitivity, 

specificity, PPV, NPV and AUC for MGMT-net was 96.31% ±0.04, 91.66% ±2.06, 95.74% ±0.95, 

92.76% ±0.15 and 0.93 ±0.03 respectively. The mean cross-validation Dice-score for tumor 

segmentation was 0.82 ± 0.008. The network misclassified 4 cases for fold one, 5 cases for fold 
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two, and 4 cases for fold three (13 total out of 247 subjects).  Six subjects were misclassified as 

unmethylated, and 7 as methylated.    

Table 1: Cross-validation results 

Fold Description MGMT-net 

Fold Number % Accuracy AUC Dice-score 

Fold 1 95.12 0.9574 0.8140 

Fold 2 93.98 0.8978 0.8165 

Fold 3 95.12 0.9390 0.8291 

AVERAGE 94.73 +/- 0.66 0.93 +/- 0.03 0.82 +/- 0.008 

 

ROC analysis  

The ROC curves for each cross-validation fold for the network is provided in Figure 3.  

The network demonstrated very good performance with high sensitivities and specificities 

Figure 3: ROC analysis for MGMT-net.  Separate curves are plotted for each cross-validation fold 

along with corresponding AUC value. 
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Voxel-wise classification 

The network is a voxel-wise classifier with the tumor segmentation map being a natural 

output.  Figures 4A and 4B show examples of the voxel-wise classification for a methylated, and 

unmethylated MGMT promoter type respectively. The volume fusion procedure was effective in 

removing false positives and improving the dice-scores by approximately 6%.  We also computed 

the voxel-wise accuracy for the network.  The mean voxel-wise accuracies were 81.68% ±0.02 for 

methylated type and 70.83% ±0.04 for unmethylated type. 

  

 

 

 

Figure 4: (A) Example of voxel-wise segmentation for a tumor with a methylated MGMT promoter. Native 

T2-w image (a). Ground truth segmentation (b). Network output after DVF (dual volume fusion) (c). Red 
voxels correspond to MGMT methylated class and blue voxels correspond to MGMT unmethylated class.  

(B) Example of voxel-wise segmentation for a tumor with an unmethylated MGMT promoter. The sharp 
borders visible between methylated and unmethylated type result from the patch-wise classification 

approach. 
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Training and segmentation times  

Fine-tuning the network took approximately one week. The trained network took 

approximately three minutes to segment the whole tumor and determine the MGMT status for each 

subject. 

 

DISCUSSION 

We developed a fully-automated, highly accurate, deep-learning network for determining 

the methylation status of the MGMT promoter that outperforms previously reported algorithms.25-

27 Our network is able to determine MGMT promoter methylation status from T2-w images alone. 

This obviates failure from image acquisition artifacts and makes clinical translation 

straightforward because T2-w images are routinely obtained as part of standard clinical brain MRI. 

Previous approaches have required multi-contrast input which can be compromised due to patient 

motion from lengthier examination times, and the need for gadolinium contrast.  Obviating the 

need of intravenous contrast makes our algorithm applicable to patients with contrast allergies and 

renal failure. When compared to previously published algorithms, our methodology is fully 

automated and utilizes minimal preprocessing. The time required for MGMT-net to segment the 

whole tumor and predict the MGMT promoter methylation status for one subject is approximately 

3 minutes on a K80 or P40 NVIDA-GPU. 

 

The higher performance achieved by our network compared to previous image-based 

classification studies can be explained by several factors. The dense connections in our 3D network 

architecture are easier to train, carry information from the previous layers to the following layers, 

and can reduce over-fitting.28,29 3D networks also interpolate between slices to maintain inter-slice 
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information more accurately. The Dual Volume Fusion (DVF) post-processing step improved the 

dice-scores by approximately 6% by eliminating extraneous voxels not connected to the tumor. 

Our approach also uses voxel-wise classifiers and provides a classification for each voxel in the 

image. This provides a simultaneous single-label tumor segmentation. The cross validation single 

label whole tumor segmentation performance for the MGMT network provided excellent Dice-

scores of 0.82 +/- 0.008. 

 

The ability to determine MGMT promoter methylation status based on MR images alone 

is clinically significant because it helps determine whether the glioma will be susceptible to 

temozolomide (TMZ). Alkylating agents such as TMZ, damage DNA by methylating the oxygen 

at position 6 of the guanine nucleotide (O6-methylguanine). The process by which many DNA 

repair enzymes remove O6-methylguanine, results in DNA breaks culminating in cell death. 

However, MGMT works differently by restoring the normal guanine residue and rescuing the 

glioma cell. Therefore, MGMT activity leads to resistance to therapy. Methylation of the MGMT 

promoter leads to inactivation of MGMT and loss of resistance of glioma cells to alkylating agents. 

The MGMT protein is encoded on the long arm of chromosome 10 at position 26 (10q26). 

Transcription of the MGMT gene is regulated by several promoters.29  

 

Although incompletely understood, at least nine specific regions within the promoter’s 

gene determine whether a cell will express or not express MGMT.29 However, some regions have 

been shown to be more important for loss of MGMT expression.30 In the clinical setting, methods 

for determining MGMT methylation focus on these regions in the promoter’s gene. The four most 

prevalent methods to detect MGMT methylation are: immunohistochemistry (IHC), 
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pyrosequencing (PYR), quantitative methylation-specific PCR (qMSP), and methylation-specific 

PCR (MSP). PYR is considered the theoretical “gold-standard” but is not readily available, and 

although it is quantitative, there is no agreement on what “cut-off” values to use when determining 

MGMT promoter methylation status.30 Therefore, although it is not quantitative, MSP is the most 

widely used method.31 Additionally, most centers perform MGMT methylation detection on 

formalin-fixed or paraffin embedded tissue specimens. These methods have several limitations. 

Evaluating multiple different methylation sites is technically challenging on a single tissue 

specimen.31 Tumor heterogeneity poses a substantial limitation for these methods because 

sampling-bias can lead to inaccurate determinations. The presence of hemorrhage, necrosis, or 

nonmalignant cells contaminate the specimen31. Therefore, some institutions mandate that at least 

50% of the sample to be analyzed contains tumor cells. Prior to PCR, several tissue processing 

steps are required. Bisulfite treatment is the most critical step because it will produce the modified 

DNA that will be used for PCR; however, it also degrades the amount of DNA available and 

incomplete treatments can lead to false-positive results.31 The reported sensitivity and specificity 

of MSP is 91% and 75% respectively, while the reported sensitivity and specificity of PYR is 78% 

and 90%.32  

 

Our non-invasive, MRI based deep learning algorithm outperformed these methods with a 

sensitivity and specificity of 96.3% and 91.6% respectively. The overall determination of MGMT 

promoter methylation status is based on the majority of voxels in the tumor. Given the variability 

in the cut-off values for pyrosequencing-based detection, we performed a Youden’s statistical 

index analysis to determine if the optimal cut-off for our deep learning algorithm was different 
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than majority voting (>50%). The analysis demonstrated that maximum accuracy, sensitivity, 

specificity, PPV, and NPV were obtained at an optimal cut-off of 50%, the same as majority voting.  

 

Our algorithm was trained on ground-truth obtained from the TCGA database. The TCGA 

uses Infinium assays to determine MGMT promoter methylation status.32-34 Infinium assays are an 

immunofluorescence method that uses next generation high-throughput microchip arrays and 

probes. While these methods have been reported to be more sensitive and specific than the most 

widely available clinical assays, these methods require pre-existing probes to detect specific 

methylation sites.34 The sensitivity and specificity values change depending on the probe and 

analytical model used to interpret the results.34 The sensitivities for the best probes range from 

87.5-90.6% while the specificity is 94.4%.34 The overall accuracy of these probes with an 

optimized analytical model ranges from 91.24%-93.6%.34 Tissue based methods for determining 

MGMT promoter methylation status remain a complex, multi-step process that is susceptible to 

failure and inaccuracy even after an adequate tissue sample has been obtained. Therefore, the 

ability to determine MGMT promoter methylation status on the basis of routine T2-w images alone 

is highly desirable. Additionally, because our algorithm was trained and evaluated on the multi-

institutional TCIA database it is a better representative of algorithm robustness, real-world 

performance and potential clinical utilization than previously reported methods.25  

 

The algorithm misclassified 13 cases: six subjects were misclassified as unmethylated and 

7 as methylated. Despite these misclassifications, our network achieved a mean cross-validation 

testing accuracy of 94.73% which is higher than for the MSP, PYT, and Infinium assays.34 While 

these tissue based methods require an invasive procedure and subsequent tissue processing for at 
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least 48 hours, our deep learning algorithm can segment the entire glioma and determine MGMT 

promoter methylation status in 3 minutes. The deep learning algorithm can also be fine-tuned to 

variations in institutional MRI scanners, while other tissue-based methods currently lacks 

standardization as mentioned above.  

 

The limitations of our study are that deep learning studies require large amounts of data 

and the relative number of subjects with MGMT promoter methylation is small in the TCGA 

database. Additionally, acquisition parameters and imaging vendor platforms vary across imaging 

centers that contribute data. Despite these caveats our algorithm demonstrated high accuracy in 

determining MGMT promoter methylation status. 

 

CONCLUSION 

We demonstrate high accuracy in determining MGMT promoter methylation status using 

only T2-w MR images. This represents an important milestone toward using MRI to predict glioma 

histology, prognosis, and appropriate treatment. 
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