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Abstract

We have developed an efficient and reproducible pipeline for the discovery of genetic variants affecting

splicing (sQTLs), based on an approach that captures the intrinsically multivariate nature of this phe-

nomenon. We employed it to analyze the multi-tissue transcriptome GTEx dataset, generating a com-

prehensive catalogue of sQTLs in the human genome. A core set of these sQTLs is shared across multiple

tissues. Downstream analyses of this catalogue contribute to the understanding of the mechanisms un-

derlying splicing regulation. We found that sQTLs often target the global splicing pattern of genes, rather

than individual splicing events. Many of them also affect gene expression, but not always of the same gene,

potentially uncovering regulatory loci that act on different genes through different mechanisms. sQTLs tend

to be preferentially located in introns that are post-transcriptionally spliced, which would act as hotspots for

splicing regulation. While many variants affect splicing patterns by directly altering the sequence of splice

sites, many more modify the binding of RNA-binding proteins (RBPs) to target sequences within the tran-

scripts. Genetic variants affecting splicing can have a phenotypic impact comparable or even stronger than

variants affecting expression, with those that alter RBP binding playing a prominent role in disease.
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Introduction1

Alternative splicing (AS) is the process through which multiple transcript isoforms are produced from a2

single gene1. It is a key mechanism that increases functional complexity in higher eukaryotes2. Often, its3

alteration leads to pathological conditions3. AS is subject to a tight regulation, usually tissue-, cell type- or4

condition-specific, that involves a wide range of cis and trans regulatory elements4,5. Since AS is generally5

coupled with transcription, transcription factors and chromatin structure also play a role in its regulation6.6

In recent years, transcriptome profiling of large cohorts of genotyped individuals by RNA-seq has al-7

lowed the identification of genetic variants affecting AS, i.e. splicing quantitative trait loci or sQTLs7–12.8

sQTL analyses in a variety of experimental settings have helped to gain insight into the mechanisms un-9

derlying GWAS associations for a number of traits, such as adipose-related traits13, Alzheimer’s disease10,10

schizophrenia9 or breast cancer14, among others. sQTLs might actually contribute to complex traits and11

diseases at a similar or even larger degree than variants affecting gene expression15.12

The vast majority of methods commonly used for sQTL mapping treat splicing as a univariate pheno-13

type. They assess association between genetic variants and the abundance of individual transcripts7,16, or14

the splicing of individual exons9,17 or introns12,15. However, this approach ignores the strongly correlated15

structure of AS measurements (e.g. at constant gene expression level, higher levels of a splicing isoform16

correspond necessarily to lower levels of other isoforms). In contrast, we propose an approach that takes17

into account the intrinsically multivariate nature of alternative splicing: variants are tested for association18

with a vector of AS phenotypes, such as the relative abundances of the transcript isoforms of a gene or the19

intron excision ratios of an intron cluster obtained by LeafCutter18.20

Based on this approach, we have developed a pipeline for efficient and reproducible sQTL mapping.21

We have employed it to leverage the multi-tissue transcriptome data generated by the Genotype-Tissue Ex-22

pression (GTEx) Consortium, producing a comprehensive catalogue of genetic variants affecting splicing23

in the human genome. Downstream analyses of this catalogue uncover a number of relevant features re-24

garding splicing regulation. Thus, consistent with the multivariate nature of splicing, we have observed that25

sQTLs tend to involve multiple splicing events. A substantial fraction of sQTLs also affects gene expression,26

a reflection of the intimate relationship between splicing and transcription. We have found, however, many27

cases in which the sQTL affects the expression of a gene other than the sQTL target. In these cases, the28

pleiotropic effect of the regulatory locus is not mediated by the interplay between the splicing and transcrip-29

tion processes, but it is exerted through different mechanisms, acting upon different genes that otherwise30

may not appear to be directly interacting. We have also found that sQTLs tend to be preferentially located31

in introns that are post-transcriptionally spliced: these introns would be consequently acting as hotspots32

for splicing regulation. While many variants affect splicing patterns by directly altering the sequence of33

splice sites, many more modify the binding of RNA-binding proteins (RBPs) to target sequences within34

the transcripts. We have observed that sQTLs often impact GWAS traits and diseases more than variants35

affecting only gene expression, confirming earlier reports which suggest that splicing mutations underlie36

many hereditary diseases15,19. For many conditions, GWAS associations are particularly strong for sQTLs37
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altering RBP binding sites.38

Results39

Identification of cis splicing QTLs across GTEx tissues40

For sQTL mapping, we developed sQTLseekeR2, a software based on sQTLseekeR20, which identi-41

fies genetic variants associated with changes in the relative abundances of the transcript isoforms of a42

given gene. sQTLseekeR uses the Hellinger distance to estimate the variability of isoform abundances43

across observations, and Anderson’s method21,22, a non-parametric analogue to multivariate analysis44

of variance, to assess the significance of the associations (see Methods and Supplementary Note 1).45

Among other enhancements, sQTLseekeR2 improves the accuracy and speed of the p value calcula-46

tion, and allows to account for additional covariates before testing for association with the genotype,47

while maintaining the multivariate statistical test in sQTLseekeR. It also implements a multiple testing48

correction scheme that empirically characterizes, for each gene, the distribution of p values expected un-49

der the null hypothesis of no association (see Methods and Supplementary Note 1). To ensure highly50

parallel, portable and reproducible sQTL mapping, we embedded sQTLseekeR2 in a Nextflow23 (plus51

Docker, https://www.docker.com/) computational workflow named sqtlseeker2-nf, available at52

https://github.com/dgarrimar/sqtlseeker2-nf.53

Here we extensively analyze the sQTLs identified by sqtlseeker2-nf, using the expression and54

genotype data produced by the GTEx Consortium. For most of the analyses, we employed isoform quan-55

tifications obtained from the V7 release (dbGaP accession phs000424.v7.p2), corresponding to 10,36156

samples from 53 tissues of 620 deceased donors. 48 tissues with sample size ≥ 70 were selected for sQTL57

analyses. We tested variants in a cis window defined as the gene body plus 5 Kb upstream and down-58

stream the gene boundaries. In addition, to demonstrate that the statistical framework of sQTLseekeR259

is not restricted to the analysis of transcript abundances, but it can leverage other splicing-related multi-60

variate phenotypes, we have also computed the sQTLs based on the intron excision ratios obtained by61

LeafCutter18 from the GTEx RNA-seq data (Supplementary Note 2). Finally, we also provide the sQTLs62

identified by sqtlseeker2-nf in GTEx V8 (Supplementary Note 3), which can be compared to the sQTLs63

produced by the GTEx Consortium in an upcoming publication12.64

At a 0.05 false discovery rate (FDR), we found in GTEx V7 a total of 210,485 cis sQTLs affecting 6,96365

genes (6,685 protein coding genes and 278 long intergenic non-coding RNAs, lincRNAs). On average,66

per tissue, we identified 1,158 sGenes (Table S1). 44% and 34% of all tested protein coding genes and67

lincRNAs, respectively, were found to be sGenes. In an analogous experimental setting, the GTEx Con-68

sortium reported genetic variants affecting expression (expression QTLs, eQTLs) for 95% and 71% of all69

tested protein coding genes and lincRNAs, respectively24. To illustrate the nature of the sQTLs identified70

with sqtlseeker2-nf, in Fig. 1 we show the example of the SNP rs2295682, an sQTL for the gene71

RBM23 shared across 46 tissues, with larger effect in brain subregions such as cortex. The SNP strongly72
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Figure 1
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Figure 1

sQTL example. a) Relative abundances of the three most expressed isoforms in the brain cortex from

the gene RBM23 (chr14:23,369,854-23,388,393, reverse strand, RBM23-001, RBM23-002 and RBM23-

003, all protein coding), for each genotype group at the rs2295682 locus (chr14:23,374,862, G/A in the

reverse strand). RBM23 encodes for an RNA-binding protein that may be itself involved in splicing. The

least abundant isoforms are grouped in Others. The number of individuals in each genotype group is

shown between parentheses. Individuals that are homozygous for the reference allele (GG) at the SNP

locus, express preferentially RBM23-002 (blue), while they barely express RBM23-003 (red). In contrast,

AA homozygous express preferentially RBM23-003 (red). Heterozygous individuals exhibit intermediate

abundances. RBM23-001 (green) has similar levels in the three genotype groups. b) Exonic structure

of the isoforms and location of exons 5, 6 and 7 (highlighted area). Compared to RBM23-001 (green),

RBM23-002 (blue) lacks exon 6, and RBM23-003 (red), exons 4 and 6. c) Sashimi plot (corresponding to

the highlighted area in b) displaying the mean exon inclusion of exon 6 of RBM23 across all brain cortex

samples of each genotype group at rs2295682, obtained by ggsashimi84. The dashed line marks the

location of the SNP. The number of reads supporting exon skipping increases with the number of copies

of the alternative allele A, matching the changes observed in isoform abundances. This allele has been

previously associated with increased skipping of exon 685.
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affects the relative abundances of the AS isoforms of the target gene, the dominant isoform depending on73

the genotype at the sQTL.74

As expected, the number of sGenes over the number of tested genes grows with the tissue sample size75

(r2 = 0.91). This is explained by the gain of power to detect sQTLs as the number of samples increases76

(Fig. 2a). No signs of saturation are observed. Some tissues, such as skeletal muscle or whole blood (with77

less sQTLs than expected) and testis (with more sQTLs than expected) escape the general trend. This was78

also observed for eQTLs24. The cell type heterogeneity of the tissue, estimated using xCell25, does not79

seem to have a large impact on sQTL discovery compared to the tissue sample size (the partial correlation80

between the number of sGenes over the number of tested genes and the estimated cell type heterogeneity,81

controlling for the tissue sample size, is 0.23, p value 0.11, see Methods).82

sQTL effect sizes, measured as the absolute maximum difference (MD) in adjusted transcript relative83

expression between genotype groups (see Methods), are generally low to moderate (MD from 0.05 to84

0.20). Nevertheless, around 20% of sQTLs account for large effects (MD ≥ 0.20). As one would expect,85

the median effect size detected across tissues drops substantially with increasing sample sizes (Fig. S1),86

given that larger sample sizes allow the detection of smaller effects. Fig. 2b represents sQTL effect87

sizes (MD values) vs p values, together with the distribution of the former, for tibial artery (n = 388) and88

hypothalamus (n = 108).89

GO enrichment analysis of sGenes shows a wide variety of biological processes, including cellular90

transport, immune response, mitochondrial functions and, interestingly, RNA processing (Fig. S2a). This91

might suggest some mechanism of splicing autoregulation, as it has been previously described26. In con-92

trast, tested genes without sQTLs are enriched in functions related to signaling and, especially, develop-93

ment (Fig. S2b). This resembles the behaviour reported for genes without eQTLs24, as it does the fact that94

genes without sQTLs are less expressed than sGenes in all tissues (Wilcoxon Rank-Sum test p value <95

10−16).96

The sQTLs found here are highly replicated in other studies. We compared them with those obtained97

in the Blueprint Project27 for three major human blood cell types (CD14+ monocytes, CD16+ neutrophils,98

and naive CD4+ T cells, see Methods). The majority of GTEx sQTLs replicate at 5% FDR (from π1 = 0.8099

in brain subregions to π1 = 0.96 in whole blood). As expected, whole blood displays the highest sQTL100

replication rate (Fig. S3).101

We characterized the types of alternative splicing (AS) events associated with sQTLs (see Methods,102

Fig. S4a). Note that here we also account for other relevant sources of transcript diversity, such as alter-103

native transcription initiation and termination28. sQTLs generally involve multiple events (on average 2.63).104

Around 34% of sQTLs are related to at least one AS event involving internal exons and/or introns. Among105

them, exon skipping is the most frequent simple event (7% to 10% of all events). In addition, 58% of sQTLs106

are associated with events affecting first/last exons and untranslated regions (UTRs). The landscape of107

AS events associated with sQTLs is very similar across tissues. However, brain subregions present some108

particularities when compared to non-brain tissues, such as a larger proportion of exon skipping events109
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Figure 2
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Figure 2

Overall results, heteropleiotropy and sQTL sharing across tissues. a) Proportion of sGenes (over

tested genes) per tissue (y-axis) with respect to the tissue sample size (x-axis). Tissue color codes are

shown in Table S1. b) For two tissues with markedly different sample sizes, such as tibial artery (upper

panel, 388 samples) and hypothalamus (lower panel, 108 samples), we display the effect sizes (MD val-

ues, x-axis) of significant sQTLs vs the −log10 of their association p value with the target sGene (y-axis).

The density of points is shown, together with the sQTL effect size distribution. Note that MD for sQTLs

is bounded to [0.05, 1] (see Methods). c) Example of an heteropleiotropic locus. The SNP rs8046859

(chr16:71,892,531, C/T), an sQTL for the gene ATXN1L (chr16:71,879,894-71,919,171, forward strand) in

Nerve Tibial, but not in Muscle Skeletal. The SNP is not an eQTL for ATXN1 in any of the two tissues. In

contrast, the SNP is an eQTL for the gene IST1 (chr16:71,879,899-71,962,913, forward strand) in Muscle

Skeletal, but not in Nerve Tibial. The SNP is not an sQTL for IST1 in any of the two tissues. In the left

panel, the dots represent the −log10 p values of association with the expression (green) and splicing (red)

of the two genes in the two tissues, for variants in a 20Kb window centered at rs8046859 (the −log10 p

values corresponding to rs8046859 are highlighted by a diamond). The transparency of the dots depends

on the −log10 p value. The significance level for each molecular trait, gene and tissue is shown as a

colored, dashed horizontal line. When this line is not present, the gene-level p value is above the 0.05

FDR threshold and hence no variant is significantly associated with this molecular trait in this tissue (see

Methods). The shaded area represents the position of a H3K27ac ChIP-seq peak (see below). The right

panel shows the fold-change signal of the H3K27ac histone mark with respect to the input across ENTEx

donors in Nerve Tibial and Muscle Skeletal, in the same genomic region of the left panel. The solid line and

coloured area correspond to the mean signal and its standard error across 4 ENTEx donors, respectively.

The location of the SNP and the overlapping ChIP-seq peak (intersection of the peaks in the 4 donors) are

also displayed. d) Heatmap of sQTL sharing across GTEx tissues. Sharing estimates (see Methods) range

from 0 (low sharing, blue) to 1 (high sharing, red). In addition, hierarchical clustering of the tissues based

on sQTL sharing is displayed, together with the tissue sample sizes and tissue specificity estimates.
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and a smaller proportion of complex events involving the 3’ gene terminus (see Fig. S4b,c for details).110

We found that 52% of the identified sQTLs are also eQTLs for the same gene and tissue, although the111

top sQTL coincides with the top eQTL only in 3% of the cases. This relatively large overlap, which departs112

from that reported in some previous studies15, matches what was observed for sQTLseekeR sQTLs in the113

GTEx pilot29. This is partially due to our sQTLs being able to involve transcriptional termini, in addition to114

canonical splicing events. It also indicates a substantial degree of co-regulation of gene expression and115

splicing, either at the level of transcription (e.g. variants that impact transcription and thus, splicing), or at116

the level of transcript stability (e.g. variants that affect splicing, and as a consequence, transcript stability117

and gene expression).118

We focused on a set of 148,618 variants that were tested for association with both the expression119

and splicing of two genes (i.e. g1 and g2) or more, in at least two tissues, and identified 6,552 cases120

in which the variant is only sQTL for gene g1, but not for gene g2, in one tissue, and it is only eQTL for121

gene g2, but not for gene g1, in a different tissue (Fig. S5a). These cases uncover regulatory loci in122

the genome that, either through the same causal variant or through different causal variants in linkage123

disequilibrium (LD), have different effects on different genes through likely different molecular mechanisms.124

We term this phenomenon heteropleiotropy. We found evidence supporting the dual regulatory behaviour of125

heteropleiotropic loci. We identified the ChIP-seq peaks corresponding to six histone modifications from the126

ENTEx Project overlapping the heteropleiotropic variants above (see Methods). We hypothesized that loci127

with different regulatory effects (i.e. splicing and expression) in different tissues would be differently marked128

by histone modifications in these tissues. Indeed, we observed histone modification changes in 24% of the129

heteropleiotropic variants (Table S2), compared to 19% of non-heteropleiotropic variants (Fisher’s exact130

test test p value 0.045, see Methods). Regardless of the underlying causal structure, heteropleiotropic131

loci would uncover genomic regions that allow the coordinated regulation of different processes and affect132

different genes which otherwise do not appear to interact directly with each other. While further work is133

required to establish the relevance and generality of this phenomenon, figures 2c and S5b show some134

potentially interesting examples.135

sQTLs are highly shared across tissues136

The large number of tissues available in GTEx allowed us to evaluate tissue sharing and specificity of137

sQTLs. For every pair of tissues, we selected variant-gene pairs tested in both and found significant in at138

least one, and computed the Pearson correlation (r) between their effect sizes (MD values). Hierarchical139

clustering based on these correlations grouped tissues with similar sQTL sharing patterns (Fig. 2d). A140

comparable clustering was obtained when using the more stringent Jaccard index (Fig. S6). Brain sub-141

regions cluster together and apart from the rest of the tissues, which form a second major cluster. We142

observe a high degree of sQTL sharing within each of the two groups (r̄ = 0.80 and 0.78, respectively),143

but lower between them (r̄ = 0.64). The same pattern was depicted for eQTLs in GTEx24. We further144

estimated tissue specificity as st = 1−r̄t, where r̄t is the mean correlation between a given tissue t and the145
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others (tissue specificity estimates shown in Fig. 2d). On average, brain sQTLs are more tissue-specific146

than non-brain sQTLs (s̄t = 0.31 vs 0.25, Wilcoxon Rank-Sum test p value 9.32 · 10−5). Other tissues with147

relatively high tissue-specific sQTLs include testis (0.37), skeletal muscle (0.33) or liver (0.32).148

sQTLs with large effects are more shared than those with smaller effects (Fig. S7a). As with eQTLs24,149

the detection of sQTLs with small effects requires larger sample sizes, thus sQTLs in tissues with small150

sample sizes tend to be more shared, while sQTLs identified in tissues with large sample sizes tend to be151

more tissue-specific (Fig. S7b). To rule out an effect of the sample size in the patterns of sQTL sharing,152

we downsampled the original dataset to 100, 200 and 300 samples per tissue, and evaluated again sQTL153

sharing. We found that the patterns of sQTL sharing above are replicated independently of the sample size154

(Fig. S8).155

To capture more complex sharing patterns, we further designed a geometric approach that compares156

changes in the whole splicing phenotype due to sQTLs between tissues (see Methods and Fig. S9a).157

The derived tissue dendrogram (Fig. S9b) displayed high similarity with the ones generated by simpler158

approaches (i.e. based on MD values and Jaccard index), and also with the one obtained using multivariate159

adaptive shrinkage30 on LeafCutter sQTLs from GTEx V812 (Fig. S9c). This strongly supports the160

robustness of the sQTL sharing patterns observed.161

sGenes are also markedly shared: 66% of genes tested in all tissues are sGenes in at least two tis-162

sues. To identify tissue-specific sGenes, we computed τs, a variation of the τ index31 based on sGene163

significance. We also employed the standard τ to determine the tissue specificity of sGene expression164

(see Methods). We found 469 genes under strong tissue-specific splicing regulation (highly tissue-specific165

sGenes), 81 of which did not display tissue-specific expression (Table S3). GO enrichment of these genes166

(universe: all sGenes) identified biological processes related to RNA processing and its regulation (three167

out of all five significant terms at FDR < 0.1: RNA splicing via transesterification reactions, regulation of168

RNA splicing, regulation of mRNA processing) suggesting again some mechanism of splicing autoregula-169

tion26.170

sQTLs are enriched in functional elements of the genome related to splicing and in high-171

impact variants172

To shed light on the mechanisms through which sQTLs may impact splicing, we built a comprehensive func-173

tional annotation of the human genome (see Methods). Overall, we observed a high density of functional174

elements in the proximity of sQTLs (Fig. S10). We next evaluated the enrichment of sQTLs in every func-175

tional category, with respect to a null distribution of similar variants not associated with splicing (Fisher’s176

exact test, FDR < 0.05). The top enrichments are summarized in Fig. 3a (the complete list, together with177

the statistical significance associated with each enrichment, is shown in Fig. S11).178

As one would expect from bona fide variants affecting splicing, sQTLs are strongly enriched in splice179

sites (donors: OR = 12.98, adj. p value < 10−16; acceptors: OR = 12.23, adj. p value 1.22 · 10−15). They180

also display enrichments in exons, transcription factor (both activator and repressor) binding sites, RNA181
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Figure 3
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Figure 3

Functional enrichment and distribution of sQTLs. a) Top enrichments of sQTLs in functional anno-

tations. The height of the bars represents the odds-ratio (OR) of the observed number of sQTLs to the

expected number of variants that are not sQTLs overlapping a given annotation (see Methods): Variant Ef-

fect Predictor (VEP) categories (red) and impact (orange), ENCODE RNA-binding proteins (RBPs) eCLIP

peaks (green), exons of GENCODE v19 protein coding and lincRNA genes (yellow), Ensembl Regulatory

Build elements (blue) and GWAS catalog hits (purple). All these enrichments are significant at FDR < 0.05

and have OR confidence intervals not overlapping the range [1/1.50, 1.50]. b) Distribution of the mean pro-

portion of sQTLs along the gene bodies of sGenes, their upstream and downstream regions, introns and

exons. The red dashed line represents the expected distribution under a uniform model (see Methods).
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binding protein (RBP) binding sites, including several relevant splicing factors and spliceosomal compo-182

nents, and RNA Pol II sites. sQTLs tend to fall in open chromatin regions and show enrichments for several183

chromatin marks, particularly for H3K36me3 (OR = 2.85, adj. p value < 10−16). H3K27me3 regions, in184

contrast, are depleted of sQTLs (OR = 0.63, adj. p value < 10−16). sQTLs display large enrichments in185

predicted protein loss-of-function consequences (stop-gained, frameshift, VEP high impact variants, LOF-186

TEE high-confidence loss-of function variants (HC-LoF)) and potentially deleterious variants (according to187

Polyphen32 and SIFT33 scores). In addition, we found an enrichment in variants in high LD (r2 ≥ 0.80) with188

GWAS hits (OR = 2.08, adj. p value < 10−16). When performing stratified enrichments (see Methods), we189

found that large effect size sQTLs are more enriched in high impact variants, splice sites and GWAS hits,190

while small effect size sQTLs show larger enrichments in RBP binding sites, TFBS and open chromatin191

regions (Fig. S12).192

In contrast to eQTLs, which tend to cluster around transcription start sites (TSS)7,24, we found sQTLs193

preferentially located towards transcription termination sites (TTS) (Fig. 3b), as previously observed15.194

In addition, while exonic sQTLs are uniformly distributed, intronic sQTLs are biased towards splice sites.195

Overall, sQTLs are closer to splice sites than non-sQTLs (Wilcoxon Rank-Sum test p value < 10−16, Fig.196

S13).197

sQTLs affect splice site strength and RNA-binding protein (RBP) binding198

Enrichments in functional annotations (Fig. 3a) suggested several mechanisms through which sQTLs may199

affect splicing. One of them is the modification of splice site strength. Thus, for each variant within the200

sequence of an annotated splice site, we scored the site considering the reference and the alternative201

allele, using position weight matrices (see Methods). Overall, when compared to non-sQTL variants, a202

larger fraction of sQTLs modifies splice site strength (63% vs 49%, OR = 1.79, Fisher’s exact test p value203

< 10−16). The absolute difference in splice site strength is also larger for sQTLs (Wilcoxon Rank-Sum test204

p value 1.98 · 10−7), and increases with the sQTL effect size (Fig. 4a).205

Another mechanism through which sQTLs may affect splicing is the modification of RNA-binding protein206

(RBP) binding sites. To investigate it, we used eCLIP peaks of 114 RBPs available for HepG2 and K562207

cell lines from the ENCODE project34. We employed a k-mer-based machine learning approach, which208

has been shown to outperform PWMs to identify transcription factor binding sites35 and provides a unique209

framework to assess the impact of genetic variants on the binding36. First we trained, for each RBP, a210

gapped k-mer support vector machine (gkm-SVM)37 on the sequences of high-confidence eCLIP peaks.211

79 RBPs with a mean cross-validation ROC AUC ≥ 0.8 were kept. Then, we estimated the impact of all212

variants (whether sQTLs or not) overlapping the eCLIP peaks of each of these RBPs via the deltaSVM213

metric36, which measures the difference in predictive potential between the variant alleles (see Methods).214

To ensure the robustness of our results, we further restricted the analysis to RBPs with at least 30 sQTLs215

among the top 5% variants most predictive of the binding of the RBP at either allele, resulting in a final set216

of 32 RBPs (see Methods).217
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Figure 4

Impact of sQTLs on splice sites and RBP binding sites. a) Distribution of the absolute change in

splice site strength for sQTLs with low, moderate and high effect sizes (MD value). b) Distribution of

the absolute deltaSVM value (|deltaSVM|) of sQTLs and non-sQTLs, for RBPs with significantly different

mean |deltaSVM| between sQTLs and non-sQTLs (FDR < 0.1). c) Modification of the binding sites of

the RBPs RBFOX2 (left) and PRPF8 (right) by SNPs rs4959783 (chr6:3,260,093, G/A, |deltaSVM| = 2.48)

and rs9876026 (chr3:11,849,807, T/G in the reverse strand, |deltaSVM| = 4.77), respectively. The lines

represent the gkm-SVM scores of all possible (overlapping) 10-mers in a 100bp window around the SNP.

Those corresponding to the 10-mers overlapping the SNP are colored according to the allele. SNP positions

are marked with a dashed line. The grey area includes the 90% middle gkm-SVM scores of 10-mers not

overlapping the variant. The relative location of the predicted RBP motifs and the corresponding sequence

logos are also displayed. In the logos, the SNP position is marked with an asterisk.
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At FDR < 0.1, differences in |deltaSVM| between sQTLs and non-sQTLs were found significant for218

12 RBPs (Fig 4b, the corresponding gkm-SVM ROC curves and motif logos shown in figures S14 and219

S15, respectively). Notably, for 11 of these proteins the |deltaSVM| values are larger for sQTLs than for220

non-sQTLs, as expected from variants regulating splicing. In addition, three of them (PPIG, SF3B4 and221

PRPF8) are among the top 10 RBPs whose binding sites are more enriched in sQTLs (Fig. 3a). In Fig. 4c,222

we show examples of the impact of the SNPs rs4959783 and rs9876026, which are sQTLs for the genes223

PSMG4 and TAMM41 (see also Fig. S16) and disrupt the binding sites of the RBPs RBFOX2 and PRPF8,224

respectively.225

We further investigated whether allele-specific RBP binding (ASB) was occurring specifically at sQTLs.226

We obtained a set of ASB variants identified in the ENCODE eCLIP dataset using BEAPR (Binding Estima-227

tion of Allele-specific Protein-RNA interaction)38 and overlapped them with our sQTLs (see Methods). We228

found that sQTLs were highly enriched in ASB variants, when compared to non-sQTLs, across all RBPs229

(OR = 2.30, Fisher’s exact test p value < 10−16). When considering individual RBPs, at FDR < 0.05 we230

found a significant enrichment of sQTLs among ASB variants for 22 of them (Fig. S17), including 7 of231

the ones identified above with larger |deltaSVM| values for sQTLs. Altogether, these results suggest that232

sQTLs may affect splicing through allele-specific binding of RBPs.233

Overall, the effect sizes (MD) of sQTLs in splice sites are larger than those of sQTLs overlapping RBP234

eCLIP peaks (Wilcoxon Rank-Sum test p value 1.98 · 10−7, Fig. S18), although the proportion of sQTLs in235

splice sites is much smaller (1.5% vs 8.3% out of all sQTLs). Often, both mechanisms may co-occur, as236

many RBPs bind near splice sites. This is the case of PRPF8, which binds specifically to the sequence of237

splice donors39. Indeed, the SNP rs9876026 (Fig. 4c), which modifies |deltaSVM| and has been identified238

as an allele-specific binding SNP for PRPF8 by BEAPR, also disrupts a donor splice site.239

sQTLs are preferentially located on post-transcriptionally spliced introns240

Although splicing generally occurs co-transcriptionally (most introns are spliced prior to transcription ter-241

mination and polyadenylation), there is a group of transcripts, often alternatively spliced, that tend to be242

processed more slowly, even post-transcriptionally40. We evaluated the role of genetic variants in the reg-243

ulation of co- and post-transcriptional splicing (here referred to as cs and ps, respectively). In order to244

identify cs and ps introns, we determined the degree of splicing completion of annotated introns in nuclear245

and cytosolic RNA-seq data available for 13 cell lines from the ENCODE project (see Methods). We fo-246

cused on a subset of introns consistently classified as either cs or ps in at least 10 of the analyzed cell lines247

(14,699 and 6,419 introns, respectively).248

We observe a higher variant density in ps introns than in cs introns (4.38 vs 3.34 variants/Kb, differently249

distributed along the intron, Fig. S19a). The proportion of variants that are sQTLs in ps introns is larger than250

in cs introns (9.2% compared to 6.6%, OR = 1.47, Fisher’s exact test p value < 10−16). This enrichment251

is stronger when considering sQTLs that are not eQTLs for the same gene and tissue (OR = 1.67, p value252

< 10−16). Furthermore, sQTLs in ps introns display a substantial enrichment, with respect to sQTLs in253
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cs introns, in RBPs and Pol II binding sites, and less markedly, in histone marks such as H3K36me3 and254

H3K4me3, open chromatin regions and TFBS (Fig. S19b). The proportion of sQTLs overlapping splice255

sites and GWAS hits is not significantly different between the two types of introns.256

These results suggest that splicing regulation occurs preferentially at ps introns. This is expected, since257

these introns are retained longer within the primary transcript, offering more opportunities for regulation258

through the interaction with RBPs and other factors, including chromatin-related ones.259

sQTLs help to gain insight into disease and complex traits260

To explore the relevance of regulatory variation affecting splicing in disease and complex traits, we as-261

sessed the overlap between GTEx sQTLs and the GWAS Catalog (https://www.ebi.ac.uk/gwas/),262

extended to include variants in high LD (r2 ≥ 0.80) with the GWAS hits. sQTLs display a substantial en-263

richment, when compared to non-sQTLs, in variants associated with a wide variety of GWAS traits and264

diseases (median OR = 3.23). Among the diseases with the largest sQTL enrichment, we find many for265

which alternative splicing has been previously related to their pathophysiology (Table S4). We integrated266

the enrichment information with estimates of semantic similarity between individual GWAS terms, com-267

puted from the Experimental Factor Ontology (EFO)41. Then, we applied multidimensional scaling (MDS)268

to summarize and represent the results (see Methods). This allowed us to identify the major phenotype269

groups related to sQTLs. Trait measurements (right-hand side of the MDS plot) and diseases (left-hand270

side) are the two main groups of enriched GWAS terms observed (Fig. 5a). Within the latter, we identify271

subgroups corresponding to cancer, autoimmune diseases and other disorders (neurological, cardiovascu-272

lar, metabolic, etc.).273

We also compiled genome-wide GWAS summary statistics for a subset of enriched traits representative274

of the observed clusters: asthma42, breast cancer43, coronary artery disease44, heart rate45, height46, LDL275

cholesterol levels47, rheumatoid arthritis48 and schizophrenia49. Overall, sQTLs show stronger GWAS276

associations than non-sQTL variants (Fig. S20). We further characterized the contribution to the disease277

phenotype of variants affecting splicing and variants affecting exclusively gene expression using fgwas50
278

(see Methods). For most of the traits analyzed, including asthma, breast cancer, coronary artery disease,279

heart rate, height and rheumatoid arthritis, we observe stronger effects among variants affecting splicing280

than among variants affecting only gene expression (Fig. 5b), suggesting that alterations in splicing play281

a relevant role in the molecular mechanisms underlying these traits. A few others, such as LDL levels282

or schizophrenia, display the opposite behaviour, pointing to a predominant effect of alterations in gene283

expression in the disease phenotype.284

In addition, we observe that GWAS variants are especially enriched among sQTLs located in splice285

sites (OR = 2.66, Fisher’s exact test p value 1.02 · 10−9) or within RBP binding sites (OR = 1.78, Fisher’s286

exact test p value < 10−16). In particular, some of the traits and diseases with available summary statis-287

tics analyzed display stronger GWAS associations for sQTLs in RBP binding sites than for other sQTLs.288

Notably, this behaviour seems trait/disease and RBP-specific (Fig. S21).289
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Figure 5
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Figure 5

sQTLs and GWAS. a) Multidimensional scaling-based representation of the semantic dissimilarities be-

tween GWAS traits and diseases whose associated variants are enriched among sQTLs with respect to

non-sQTLs (FDR < 0.05). Each GWAS term is represented by a dot, whose size corresponds to the en-

richment odds-ratio (OR), and the color to the Experimental Factor Ontology (EFO) parent category the

term belongs to. GWAS terms that lie close to each other are semantically similar. Eight representative

traits with available summary statistics are highlighted. To help visualization, only the labels for the non-

redundant, confidently and highly enriched terms are displayed (p value < 10−8, lower bound of the 95%

confidence interval (CI) for the OR estimate > 1.5, width of the 95% CI for the OR estimate below the

median). b) Maximum likelihood estimates and 95% CIs for the GWAS association effect size of variants

affecting splicing (S) and expression, but not splicing (E), for eight traits and diseases. c) Quantile-quantile

plot of p values for association with asthma in Demenais et al.42 for sQTLs (black dots), eQTLs without

effects on splicing (blue), and variants with effects neither on expression nor on splicing (grey). Solid lines

and coloured areas represent means and 95% CIs across 10,000 random samplings, respectively. The

identity line is shown in red. d) p values for association with asthma in Demenais et al.42 (left y-axis) of

variants in the region chr17:38,010,000-38,130,000, around the GSDMB gene (highlighted). The larger

dots correspond to variants identified as sQTLs for the GSDMB gene in the lung. Linkage disequilibrium

patterns (color-coded) and recombination rates are also displayed. The lower panels represent the location

of RNA-binding protein (RBP) eCLIP peaks, H3K36me3 marked-regions and other GWAS-catalog associa-

tions with asthma (shown as arrows). The highlighted variant (rs2305480) is in perfect LD with rs11078928,

previously shown to have an impact in GSDMB splicing54.
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An interesting example of how sQTL mapping can help to gain insight into the mechanisms underlying290

GWAS associations is the case of asthma and the gene gasdermin b (GSDMB). Asthma displays the291

largest effect size for sQTL variants (β = 2.32, Fig. 5b), and stronger associations for sQTLs than for292

variants affecting only gene expression, or variants affecting neither expression nor splicing (Fig. 5c).293

Indeed we identified over 850 sQTLs co-localizing with known asthma loci, affecting the splicing patterns of294

genes related to immunity, including interleukins and immune cell’s receptors (IL13, TLSP, IL1RL1, TLR1),295

major histocompatibility complex components (HLA-DQA1, HLA-DQB1) or interferon-activated transcription296

factors (IRF1). However we also found other genes, such as GSDMB, with a priori less clear roles in the297

pathophysiology of the disease.298

The GSDMB locus (17q21) has been consistently identified as a contributor to genetic susceptibility to299

asthma42 and other autoimmune diseases, such as type 1 diabetes51, ulcerative colitis52 or rheumatoid300

arthritis53. Although its exact function is unknown, GSDMB is highly expressed in human bronchial ep-301

ithelial cells in asthma54,55, and it is known that overexpression of the human GSDMB transgene in mice302

induces an asthma phenotype55. In addition, the lipid-binding N-terminal domain of GSDMB and other303

gasdermins causes pyroptotic cell death56, potentially leading to the release of inflammatory molecules304

that trigger the asthma pathophysiology.305

GSDMB is a sGene in 39 GTEx tissues, including lung (sGene FDR 1.42 · 10−10, median MD 0.22).306

Indeed, sQTLs for GSDMB are among the top associated variants with asthma in Demenais et al.42 (Fig.307

5d). Allele C of the splice acceptor variant rs11078928 (chr17:38064469, T/C) has been shown to lead to308

the skipping of exon 6, which encodes 13 amino acids in the N-terminal domain, disrupting its pyroptotic309

activity54. While the major allele (T) is associated with a higher incidence of asthma, the C allele confers310

a lower asthma risk54. We have identified rs11078928 as an sQTL for GSDMB, whose alternative allele311

C precisely promotes expression of isoforms GSDMB-001 and GSDMB-002 (exon 6 skipping) vs isoform312

GSDMB-003 (exon 6 inclusion) (Fig. S22).313

Discussion314

Using the unprecedented resource generated by the GTEx Consortium, we have obtained and analyzed315

a comprehensive set of genetic variants in the human genome affecting transcript isoform abundances316

(splicing QTLs, sQTLs). Unlike most methods for sQTL detection, we use a multivariate approach that317

monitors global changes in the relative abundances of a gene’s transcript isoforms, rather than targeting318

specific splicing events. Leveraging the correlated structure of isoform abundances is likely to result in319

increased power for sQTL mapping. Indeed, our approach has demonstrated the ability to detect sQTLs320

associated with complex splicing events that often escape univariate approaches20. In addition, we show321

that our method is not restricted to the analysis of transcript abundances, but can also accommodate322

other AS phenotypes, such as LeafCutter intron excision ratios18. A comparison of the resulting sQTLs323

obtained employing the two types of input data highlights the complementarity between global and local324
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views of alternative splicing, especially regarding the types of splicing events identified20,29.325

We have surveyed a large collection of tissues. Our analyses show that sQTLs tend to be highly shared,326

suggesting that there is a core set of variants that are involved in the regulation of splicing independently327

of the tissue or cell type. This has also been recently reported by the GTEx Consortium12. Among genes328

whose splicing is regulated by genetic variants (i.e. sGenes), there is a consistent enrichment of functions329

related to RNA processing, maybe reflecting splicing autoregulation. Indeed, several positive and negative330

autoregulation and cross-regulation mechanisms, such as coupling to nonsense-mediated decay, have331

been proposed for a large number of splicing factors26.332

Overall, we found fewer genes regulated at splicing than at expression level. This is in line with re-333

cent reports12, and with the smaller contribution of splicing, compared to gene expression, to the global334

variability in transcript abundances across tissues and individuals57,58. Many variants, however, seem to335

be involved simultaneously in the regulation of both processes. This is not surprising, given that there is336

a substantial interplay between the molecular mechanisms underlying splicing and transcription, and be-337

cause splicing often takes place co-transcriptionally6. In addition, variants altering splicing can affect RNA338

stability and, consequently, gene expression59.339

In this regard, we have observed that introns that are spliced post-transcriptionally (ps) tend to be more340

enriched in sQTLs than introns that are spliced co-transcriptionally (cs). This is somehow expected, as ps341

introns are retained longer within the primary transcript, offering more opportunities for regulation. Consis-342

tent with this, sQTLs in ps introns display a larger enrichment, compared to sQTLs in cs introns, in RBP343

binding sites, but also in Pol II binding sites and histone marks. We note that chromatin-related features344

play a prominent role in co-transcriptional splicing, often through the regulation of transcription6. However,345

not-fully spliced but already 3’-end mature transcripts are present in the fraction of RNA attached to chro-346

matin60,61. In this context, interactions between chromatin-side features and not-fully spliced transcripts347

can occur post-transcriptionally. Indeed, similar enrichments have been reported for exons that are spliced348

more slowly40. Overall, it seems that post-transcriptionally spliced introns play a larger role in splicing349

regulation that introns quickly spliced during transcription.350

In addition to variants that are sQTLs and eQTLs for the same gene, we have found many variants that351

are sQTLs for a gene and eQTLs for a different one. In order to rule out indirect regulatory effects (e.g.352

when the variant directly affects the expression -splicing- of one gene, and the product of this gene directly353

affects the splicing -expression- of the other gene), we considered each effect (splicing or expression)354

occurring in different tissues, likely underestimating the number of such variants. Since our multivariate ap-355

proach is not compatible with currently available co-localization methods (see below), we cannot distinguish356

the cases in which the two effects are indeed caused by the same variant or by two different variants in357

LD. Regardless of the underlying causal structure, these variants uncover regulatory loci, which we termed358

heteropleiotropic, that would be involved in the coordinated regulation, through different mechanisms, of359

different genes which otherwise do not appear to directly interact. Thus, heteropleiotropic loci could re-360

veal regulatory relationships between genes that may not be easily captured by co-expression or splicing361
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networks, highlighting the complexity of the gene regulation program in eukaryotes. While further work is362

required to establish the relevance and generality of this phenomenon, we believe that we have identified363

a number of convincing examples.364

Our study also helps to understand the molecular mechanisms through which genetic variants impact365

splicing. Two such mechanisms appear to be the most relevant. On the one hand, direct impact on donor366

and acceptor splice sites. On the other hand, modification of binding sites of a wide variety of transcriptional367

regulators, especially RNA-binding proteins (RBPs), which are major players in RNA processing, transport368

and stability5,62. While the latter seems to occur in a larger number of cases, the former often leads to369

stronger effects on splicing. However, in many cases both mechanisms are likely to cooperate, given that370

RBPs often bind near splice sites.371

Finally, our work provides new insights into the relationship between genetic variation, splicing and372

phenotypic traits. Specifically, we found that sQTLs are enriched in variants associated with a number of373

complex traits and diseases, some of them previously reported9,10,14,15. sQTLs display stronger GWAS as-374

sociations than variants not associated with splicing and, for some traits, even larger effects than variants375

affecting exclusively gene expression. This grants splicing a key role in mediating the impact of genetic376

variation in human phenotypes15. Because gene expression is the main driver of biological function, we377

hypothesize that genetic variants affecting expression are likely to have a much larger biological impact378

than those affecting splicing: often, they could be lethal during development. In contrast, genetic variants379

affecting splicing may have subtler effects, therefore being better tolerated and leading more frequently380

to observable phenotypes. That genetic variants affecting splicing may underlay most human hereditary381

diseases has already been pointed out19. Especially relevant seems the implication of sQTLs in the mech-382

anisms underlying autoimmune diseases, also supported by the overrepresentation of immune functions383

among sGenes. Actually, sQTLs have been recently proposed as relevant players in human immune re-384

sponse and its evolution16. In addition, sQTLs altering RBP binding seem to play a prominent role in385

disease. Indeed, the relevance of RBPs in human disorders has been often remarked62.386

A more detailed analysis of the relationship between sQTLs and GWAS variants could be achieved by387

the usage of statistical methods to assess co-localization63–65, and subsequent fine-mapping of the sQTL388

candidates66–68 to assign causal probabilities. However, currently available methods are not directly ap-389

plicable within our multivariate, non-parametric framework. In addition, recent works have demonstrated390

the utility of in silico splicing predictors to identify pathogenic variants affecting splicing, especially in the391

case of Mendelian disorders69–71. These methods provide a complementary view to RNA-seq-based ap-392

proaches that measure splicing changes associated with genetic variants, such as sQTLseekeR2. Indeed,393

while the former target rare variants in the vicinity of splice sites with strong phenotypic effects, the latter394

focus on common regulatory variation, not restricted to the splice region nor necessarily pathogenic. Fur-395

thermore, the ability of pathogenicity predictors to account for features such as evolutionary conservation396

or exon importance provides valuable information about the relevance of individual alleles71, which may397

help prioritizing sQTLs in clinical settings.398
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Our implementation of an enhanced pipeline for sQTL mapping based on sQTLseekeR2, Nextflow and399

Docker will help sQTL discovery in multiple datasets, across different platforms, in a highly parallel and400

reproducible manner. Here we have employed it to identify sQTLs in the GTEx dataset. The extensive401

catalogue of sQTLs generated constitutes a highly valuable resource for the field. As our initial analyses402

already show, this resource will contribute to the understanding of the mechanisms underlying alternative403

splicing regulation and its implication in phenotypic traits, including disease risk.404

Data availability

All the data employed in this study is publicly available. GTEx data was obtained from dbGaP (www.

ncbi.nlm.nih.gov/gap/, accessions phs000424.v7.p2 and phs000424.v8.p2). ENCODE and ENTEx

data was obtained from the ENCODE Portal (www.encodeproject.org, accession numbers provided

in Supplementary Tables S5-7). The sQTL catalogue generated is available at https://public-docs.

crg.es/rguigo/Data/dgarrido/sQTLs.GarridoMartin_etal.tar.gz.

Code availability

Our pipeline for sQTL mapping is publicly available at https://github.com/dgarrimar/sqtlseeker2-nf.

Detailed information about the software can be found in Methods and Supplementary Note 1.
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Methods1

GTEx data2

Transcript expression (transcripts per million, TPM) and variant calls (SNPs and short indels) were obtained3

from the V7 release of the Genotype-Tissue Expression (GTEx) Project (dbGaP accession phs000424.v7.p2).4

These correspond to 10,361 samples from 620 deceased donors with both RNA-seq in up to 53 tis-5

sues and Whole Genome Sequencing (WGS) data available. Metadata at donor and sample level and6

variant annotations (Ensembl’s Variant Effect Predictor, VEP, v83 (http://www.ensembl.org/info/7

docs/tools/vep) with the Loss-Of-Function Transcript Effect Estimator extension, LOFTEE, (https:8

//github.com/konradjk/loftee)) were also retrieved. In GTEx V7, RNA-seq reads are aligned to9

the human reference genome (build hg19/GRCh37) using STAR72 v2.4.2a, based on the GENCODE v1910

annotation (https://www.gencodegenes.org/human/release_19.html). Transcript-level quantifi-11

cations are obtained with RSEM73 v1.2.22. WGS reads are aligned with BWA-MEM (http://bio-bwa.12

sourceforge.net) after base quality score recalibration and local realignment at known indels us-13

ing Picard (http://broadinstitute.github.io/picard). Joint variant calling across all samples14

is performed using GATK’s HaplotypeCaller v3.4 (https://software.broadinstitute.org/gatk/15

documentation/tooldocs). Further details on GTEx data preprocessing and QC pipelines can be16

found on the GTEx Portal (https://gtexportal.org).17

sQTL mapping18

Gene, transcript and variant filtering19

48 tissues with sample size n ≥ 70 were selected for cis sQTL mapping. The cis window was defined as the20

gene body plus 5 Kb upstream and downstream the gene boundaries. We considered genes expressed21

≥ 1 TPM in at least 80% of the samples (samples with lower gene expression were removed from the22

analysis of the gene), with at least two isoforms and a minimum isoform expression of 0.1 TPM (transcripts23

with lower expression in all samples were removed). These filters correspond to the default parameters of24

sQTLseekeR2. We analyzed only biallelic SNPs and short indels (autosomal + X) with MAF ≥ 0.01 and25

at least 10 samples per observed genotype group. In total, 3,588,609 variants and 16,010 genes (15,19526

protein-coding, 815 lincRNA) were analyzed.27

Covariate selection28

To evaluate the impact of known technical and biological covariates at sample and donor level in expression29

data, we regressed the first ten principal components (PCs) of the gene expression per tissue onto each30

available covariate, determining the percentage of variance explained (R2
adj). We selected donor ischemic31

time, gender and age, as well as sample RIN (RNA integrity number) as the most relevant covariates. We32

also included the first three genotype PCs (obtained from dbGap and computed as described in [24]), to33
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control for population (i.e. ancestry) effects, and the genotyping platform employed (Illumina HiSeq 2000 or34

HiSeq X). Selected covariates were regressed out from the relative abundances of each gene’s transcript35

isoforms by sQTLseekeR2 before testing for association with the genotype.36

Software37

For sQTL mapping we employed sQTLseekeR2 v1.0.0, an enhanced version (see also Supplementary38

Note 1) of the sQTLseekeR R package20, which identifies genetic variants that are associated with multi-39

variate changes in the relative abundances of a gene’s transcript isoforms (i.e. splicing ratios). sQTLseekeR240

was embedded in sqtlseeker2-nf, a highly parallel, portable and reproducible pipeline for sQTL map-41

ping developed using Nextflow23, a framework for computational workflows, and Docker container technol-42

ogy. sQTLseekeR2 and sqtlseeker2-nf are available at https://github.com/dgarrimar.43

Details on significance assessment44

We performed cis sQTL mapping on each tissue. Nominal p values were obtained using the function45

sqtl.seeker. To correct for the fact that multiple genetic variants in LD were tested per gene, an adaptive46

permutation scheme was applied (implemented in the function sqtl.seeker.p). A Benjamini-Hochberg47

false discovery rate (FDR) threshold of 0.05 was selected to identify sGenes. To retrieve all significant48

variant-gene pairs, we employed a procedure identical to the one described in [24] for expression QTLs49

(implemented in the function sqtls.p). See Supplementary Note 1 for details. In addition, as our test50

statistic is sensitive to the heterogeneity of the splicing ratios’ variability among genotype groups, a multi-51

variate homoscedasticity test74 was also performed for each gene-variant pair. Pairs failing this test (FDR52

across all nominal tests > 0.05) were still assessed for significance and taken into account for multiple53

testing correction, but they were not reported as significant sQTLs.54

Cell type heterogeneity55

We employed xCell25 to estimate the enrichment of 64 reference cell types from the bulk expression profile56

of each GTEx sample. We applied the xCellAnalysis function in the xCell R package to the full gene57

expression TPM matrix (56,205 genes × 11,688 samples), in order to maximize tissue heterogeneity. We58

then applied the τ index31 (see also section sQTL sharing) to median xCell enrichments across samples59

per tissue. The cell type heterogeneity of a tissue was estimated as 1−τ . While these results should be60

interpreted with caution, as xCell is not a deconvolution method, but an enrichment method, they were61

generally biologically meaningful. For example, the most homogeneous tissues included brain subregions62

or transformed fibroblasts, and the most heterogeneous, spleen or whole blood. To determine the impact of63

the cell type heterogeneity of a tissue on sQTL discovery, we computed the partial correlation between the64

number of sGenes over the number of tested genes and the estimated cell type heterogeneity (i.e. 1−τ ),65

controlling for the tissue sample size.66
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sQTL effect size67

We used the absolute maximum difference (MD) in mean adjusted transcript relative expression between68

genotype groups as a measure of the size of the effect. MD takes values in the interval [0, 1]. In practice,69

usual MD values belong to [0.01, 0.4]. As a general rule, we considered MD values < 0.1 as small effect70

sizes, MD values between 0.1 and 0.2 as moderate effect sizes and MD values greater than 0.2 as large71

effect sizes. sQTLs with MD values below 0.05 were not taken into account for further analyses (default in72

sQTLseekeR2).73

GO enrichment of sGenes74

For each tissue, we obtained the corresponding set of sGenes, and performed hypergeometric tests to75

assess Gene Ontology (GO) Biological Process (BP) term over-representation, selecting as gene universe76

all the tested genes. We set a FDR threshold of 0.1 to identify significantly enriched terms. Similarly, we77

selected genes that were not sGenes in any tissue, and performed a hypergeometric test to assess GO BP78

term over-representation in this set (FDR< 0.1, universe: all tested genes). Then, we employed REVIGO75
79

(http://revigo.irb.hr/, with parameters: allowed similarity = 0.9, database = H. sapiens, semantic80

metric = SimRel) to remove highly redundant terms and generate semantic similarity-based GO term81

representations for sGenes and non-sGenes.82

sQTL replication83

To assess replication of GTEx sQTLs, we examined the p values for matched variant-gene pairs identified84

as splicing QTLs by sQTLseekeR for three immune cell types (CD14+ monocytes, CD16+ neutrophils, and85

naive CD4+ T cells) in the Blueprint Project (BP)27. Both studies have large differences in RNA sources86

(tissues in GTEx vs cell types in Blueprint), library preparation (unstranded polyA+ vs stranded Ribo-Zero),87

sequencing strategy (e.g. paired-end vs single-end in monocytes and neutrophils) and data processing88

pipelines (e.g. different transcript quantification software). π1 statistics, that provide an estimate of the89

proportion of true positives76, were computed for each pair GTEx tissue/BP celltype. A final replication rate90

for each GTEx tissue was calculated as the average π1 value across the three BP cell types.91

Alternative splicing events associated with sQTLs92

To determine the nature of the splicing events related to sQTLs we selected, for each sQTL, the two93

isoforms of the target sGene that changed the most (in opposite directions) across genotypes. Then, we94

compared the exonic structure of both transcripts using the function classify.events of sQTLseekeR,95

which extends the classification proposed in AStalavista77. We considered the same event categories96

depicted in Monlong et al.20: exon skipping, alternative 5’ and 3’ splice sites, intron retention, mutually97

exclusive exons, alternative first and last exons, alternative 5’ and 3’ UTR, tandem 5’ and 3’ UTRs, complex98

splicing events (complex combinations of events affecting internal exons) and complex 5’/3’ events (complex99
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combinations of events affecting 5’/3’ termini). Some of these events are not explicitly involving splicing, but100

alternative transcription initiation and termination sites. Note that each transcript pair, and therefore each101

sQTL, can be associated with more than one event.102

Heteropleiotropy and ENTEx histone modification analysis103

Given a genetic variant v and a pair of genes (i.e. g1 and g2) and tissues (i.e. t1 and t2), we consider104

v heteropleiotropic with effects in different tissues if i) v is an sQTL -but not an eQTL- for gene g1 in105

tissue t1, ii) v is an eQTL -but not an sQTL- for gene g2 in tissue t2, iii) v is neither an sQTL nor an106

eQTL for gene g2 in tissue t1 and iv) v is neither an sQTL nor an eQTL for gene g1 in tissue t2. Out107

of 148,618 variants tested for association with both the expression and splicing of at least two genes in108

at least two tissues, we identified 6,552 heteropleiotropic cases. In order to evaluate whether changes109

at epigenetic level were occuring at these positions, we obtained ChIP-seq peaks corresponding to six110

histone modifications (H3K27ac, H3K4me1, H3K4me3, H3K36me3, H3K27me3 and H3K9me3) from the111

ENTEx data collection of the ENCODE Project78,79 (https://www.encodeproject.org/, accessed112

2019-10-04, accession numbers provided in Table S5). ENTEx is a joint effort between GTEx and ENCODE113

consortia to deeply profile overlapping tissues from the same four donors (two male, two female) using114

shared technologies. The two tissues of interest were available for at least 3 out of 4 ENTEx donors115

for 2,855 heteropleiotropic variants. By overlapping these with the ChIP-seq peaks in the corresponding116

tissues, we identified 699 cases where one or more histone marks present in a tissue were absent in the117

other (in at least 3 donors). We compared this number with the one obtained for variants v′ affecting both118

the splicing and expression of the two genes (g1 and g2) in the two tissues (t1 and t2), using Fisher’s exact119

test for significance assessment.120

sQTL sharing121

For every pair of tissues, we selected variant-gene pairs tested in both and found significant in at least122

one. We computed Pearson correlation (r) between their effect sizes (MD values). Tissue specificity was123

estimated as st = 1−r̄t, where r̄t is the mean correlation between a given tissue t and the others. To124

determine the robustness of the observed sharing patterns with changes in the sample size, we randomly125

downsampled every original tissue dataset once to 100, 200 and 300 samples, ran our sQTL mapping126

pipeline again and re-evaluated the sharing patterns. Alternatively, we computed the Jaccard index on127

the sets of variant-gene pairs identified in every pair of tissues. In this case, tissue specificity estimates128

corresponded to 1−j̄t, where j̄t is the mean Jaccard index between a given tissue t and the others.129

We further compared these approaches with a third strategy, aimed at evaluating the changes in the130

whole splicing phenotype due to sQTLs between different tissues, rather than relying on MD values or sQTL131

presence/absence. This allows more flexibility, likely resulting in an increased ability to capture complex132

sharing patterns. In short, we focused on variant-gene pairs tested in all tissues and found significant in133

at least one. For every tissue ti, variant-gene pair j ∈ {1 . . . p}, and genotype group k ∈ {0, 1, 2}, we134
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computed the centroid of the adjusted (square root transformed, covariate corrected) splicing ratios, ctijk.135

Then, we obtained:136

d(t1, t2) =
1

p

p∑
j=1

2∑
k=0

‖ct1jk − ct2jk‖

where d measures the distance between any two tissues (t1 and t2) in terms of sQTL sharing, as the137

mean (across variant-gene pairs) of the sum (across genotype groups) of the Euclidean distance between138

centroids (‖x‖ represents the Euclidean norm of vector x). Small values of d correspond to large sQTL139

sharing, and vice versa (Fig. S9a illustrates the behaviour of d for a single variant-gene pair evaluated in 4140

tissues). A distance matrix built upon d values was then employed as input for hierarchical clustering.141

To compare the tissue clusters obtained using different approaches we computed Baker’s Gamma142

(Γ), a metric of similarity between two dendrograms given by the rank correlation between the stages at143

which pairs of objects combine in each of the two trees80. Γ ranges from -1 to 1, with values close to 1144

corresponding to high similarity between both dendrograms. To assess the significance of this similarity,145

we performed a permutation test (shuffling the labels of one tree 10,000 times, keeping tree topologies146

constant). We also employed Baker’s Gamma to compare our trees with the one obtained using mashR30 for147

LeafCutter sQTLs in GTEx V812, available at https://github.com/broadinstitute/gtex-v8.148

Of note, we employed pairwise approaches to study sQTL sharing, rather than methods to analyze QTL149

sharing jointly across tissues (such as mashR, to cite an example), given that the latter, to the best of our150

knowledge, cannot be applied in our multivariate, non-parametric setting.151

In addition, for each sGene tested in all tissues and found significant in at least one, we determined152

tissue specificity of the sGene expression, using the τ index31:153

τ =

n∑
t=1

(1− x̂t)

n− 1
; x̂t =

xt
max
1≤t≤n

(xt)

where xt is the expression of the gene in tissue t and n the number of tissues. τ takes values between154

0 (i.e. genes equally expressed in all tissues) and 1 (i.e. tissue-specific genes). We calculated τ using155

median gene expression across tissues. In addition, to assess tissue specificity of splicing regulation, we156

computed a variation of τ , τs, where xt was the −log10(FDR) of the sGene in tissue t. For sGenes in the157

top 20 percentile of the distribution of τs values, and the bottom 20 percentile of the distribution of τ values,158

we evaluated GO BP term over-representation (hypergeometric test, FDR < 0.1, universe: all sGenes).159

Functional enrichment of sQTLs160

ChIP-seq peaks (transcription factor binding sites, histone marks) and open-chromatin regions were ob-161

tained from the Ensembl Regulation dataset (ftp://ftp.ensembl.org/pub/grch37/release-86/162

regulation/homo_sapiens). eCLIP peaks in HepG2 and/or K562 cell lines for 114 RNA-binding pro-163

teins (RBPs)34 were obtained from the ENCODE Project78,79 (https://www.encodeproject.org, see164

19

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.29.123703doi: bioRxiv preprint 

https://github.com/broadinstitute/gtex-v8
ftp://ftp.ensembl.org/pub/grch37/release-86/regulation/homo_sapiens
ftp://ftp.ensembl.org/pub/grch37/release-86/regulation/homo_sapiens
ftp://ftp.ensembl.org/pub/grch37/release-86/regulation/homo_sapiens
https://www.encodeproject.org
https://doi.org/10.1101/2020.05.29.123703
http://creativecommons.org/licenses/by-nc-nd/4.0/


section Splice site strength and sQTL impact on RBP binding sites for details). Disease and complex-trait165

associated variants were retrieved from the GWAS catalog (https://www.ebi.ac.uk/gwas, accessed166

2018-09-18), extended to GTEx variants in high linkage disequilibrium (r2 > 0.8) with the GWAS hits.167

Protein coding and lincRNA exons were derived from the GENCODE v19 annotation. The coordinates of168

these functional elements were overlapped with all the tested variants (either sQTLs or not) to obtain a169

functional annotation per variant. The functional consequences of each variant (stop-gained, frameshift,170

etc.), computed by the Variant Effect Predictor (VEP, http://www.ensembl.org/info/docs/tools/171

vep), were obtained from dbGap (accession phs000424.v7.p2). Note that the VEP leverages the En-172

sembl Variation dataset, which contains data from a wide variety of sources (https://www.ensembl.173

org/info/genome/variation/species/sources_documentation.html). From the VEP result174

we also identified variants with HIGH impact or in the categories probably damaging (PolyPhen, http:175

//genetics.bwh.harvard.edu/pph2), deleterious (SIFT, https://sift.bii.a-star.edu.sg),176

pathogenic (ClinVar, https://www.ncbi.nlm.nih.gov/clinvar) and high-confidence loss-of-function177

(LOFTEE, https://github.com/konradjk/loftee).178

The top 10 most significant sQTLs per gene and tissue were compared to a null distribution of 1000179

sets of randomly sampled variants not associated with splicing (FDR > 0.05, non-sQTLs), with the same180

size of the sQTL set. The top 10 were selected to ensure the coverage of the less common annotations.181

Non-sQTLs were matched to sQTLs in terms of relative location within the gene and minor allele frequency182

(MAF). Specifically, we selected non-sQTLs so that they were located in the same bins (see section sQTL183

location) within the genes for which they were not sQTLs, as sQTLs within the genes for which they were184

sQTLs, and had MAFs equal to the sQTLs’ MAFs +/- 0.02. The enrichment was calculated as the odds185

ratio (OR) of the frequency of a certain annotation among sQTLs to the mean frequency of the same186

annotation across the 1000 non-sQTLs sets. To ensure enrichment reliability, we filtered out annotations187

with a mean frequency across the non-sQTLs sets lower than 5. The significance of each enrichment188

was assessed using a Fisher’s exact test. p values were corrected for false discovery rate, selecting a189

threshold of FDR < 0.05. Enrichments in a subset of relevant features, such as high impact/potentially190

damaging variants, splice sites, GWAS hits, exons, TFBS (all TFs pooled together), RBP binding sites (all191

RBPs pooled together), Pol II binding sites, HK36me3 and open chromatin regions, were also carried out192

separately for high effect size (MD ≥ 0.2) and low effect size sQTLs (MD < 0.1).193

sQTL location194

We divided every sGene body into 20 bins of equal size and assigned each sQTL to the corresponding bin195

according to its location. The number of bins (20) was selected in order to provide a good balance between196

granularity and bin size. We computed the mean proportion of sQTLs (with respect to the total number of197

sQTLs for the gene) on each bin. An identical procedure was applied to exons, introns, downstream and198

upstream regions. In each case, to ensure a minimum bin size, we filtered out the 20% shortest regions.199

Under the null hypothesis of no preference in location, a uniform distribution for the mean proportion of200
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sQTLs across bins was expected.201

Splice site strength and sQTL impact on RBP binding sites202

To estimate the impact of genetic variants on splice sites, for each variant (either sQTL or not) within the203

sequence of an annotated splice site we scored the site considering the reference and the alternative al-204

lele, using position weight matrices (PWMs) built upon human splice sites81. High scores corresponded to205

common/strong splice sites, while low scores corresponded to rare/weak sites, probably leading to less ef-206

ficient splicing. Then we estimated the change in splice site strength as the absolute value of the difference207

between alternative and reference scores.208

To estimate the impact of genetic variants on RBP binding sites, we obtained eCLIP peaks in HepG2 and209

K562 cell lines for 114 RBPs34 from the ENCODE Project78,79 (https://www.encodeproject.org/,210

accessed 2018-04-16, accession numbers provided in Table S6). For each RBP, we selected the peaks211

significant at FDR < 0.01 and with a fold-change (FC) with respect to the mock input ≥ 2. We further212

required a minimum overlap between replicates (50% of the length of the union of a given pair of peaks).213

This constituted our positive set of RBP-binding sequences. We generated an equally-sized negative set214

of matched (in terms of GC content, length and repeats) sequences, not overlapping eCLIP peaks from215

the same RBP. We combined both sets of sequences to build our training set. To achieve feasible memory216

usage and running times, we limited the size of the training set to 30,000 sequences.217

We then trained a gapped k-mer support vector machine (gkm-SVM)37 with default parameters (word218

length l = 10, informative columns k = 6), as recommended for our training set size range36. Other219

choices of l and k barely changed the overall performance (Fig. S23). The option addRC (add reverse220

complementary) was set to FALSE as we were working with RNA sequences. The classification perfor-221

mance was evaluated using a 5-fold cross-validation. 79 RBPs with a mean cross-validation area under222

the Receiver Operating Characteristic curve (ROC AUC) ≥ 0.8 were kept. To predict the impact of variants223

in RBP binding, for all the variants overlapping the eCLIP peaks (FDR < 0.01, FC ≥ 2) of a given RBP, we224

computed the deltaSVM metric36. The gkmSVM assigns a weight to each possible 10-mer, quantifying its225

contribution to the prediction of RBP binding. Each variant is given a score computed as the sum of the226

weights of the 10-mers overlapping it (10-mer SVM scores were used as a proxy for weights). deltaSVM227

computes the difference between the score of the alternative and the reference allele, quantifying their228

difference in predictive potential. Here we used the minor and the major allele instead of the alternative229

and the reference allele, respectively.230

We focused on the most predictive variants of the binding of each RBP (score of the variant at ei-231

ther allele among the 5% highest scores for this RBP). This was done to target those variants lying232

on sequences likely to be highly relevant for RBP binding (i.e. potential binding sites). To ensure the233

robustness of our results, we further required at least 30 sQTLs with deltaSVM values per RBP, re-234

sulting in a final set of 32 RBPs. Of these, for 12 RBPs with significantly different |deltaSVM| values235

between sQTLs and non-sQTLs (Wilcoxon Rank-Sum test, FDR < 0.1), we obtained the 100 highest-236
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scoring 10-mers, aligned them using mafft v7.407 (high accuracy mode L-INS-1)82, removed the columns237

of the alignment with more than 50% of gaps and built sequence logos using WebLogo standalone v3.6.0238

(http://weblogo.threeplusone.com/).239

To evaluate allele-specific RBP binding (ASB), we obtained the ASB variants identified in the same240

eCLIP dataset using BEAPR (Binding Estimation of Allele-specific Protein-RNA interaction), available from241

Yang et al.38. In short, BEAPR is a method to identify ASB events in protein-RNA interactions from eCLIP242

data. It accounts for crosslinking-induced sequence propensity and variability between replicates, outper-243

forming commonly used count-based approaches. We only considered ASB variants for which the same244

alleles had been genotyped in GTEx. We focused on sQTLs, non-sQTLs and ASB variants overlapping245

eCLIP peaks (FDR < 0.01, FC ≥ 2) for any of the 114 RBPs of interest in HepG2 and/or K562 cell lines.246

We assessed the significance of the difference in the proportion of sQTLs and non-sQTLs overlapping ASB247

variants across RBPs using Fisher’s exact test. We also performed this analysis separately for each RBP,248

using false discovery rate for multiple testing correction (FDR < 0.05).249

co- and post- transcriptional splicing250

We obtained RNA-seq data from nuclear and cytoplasmic fractions (2 replicates/fraction) corresponding251

to 13 cell lines available from the ENCODE project78,79 (https://www.encodeproject.org/, ac-252

cessed 2018-05-25, accession numbers provided in Table S7). A nextflow implementation of the Inte-253

grative Pipeline for Splicing Analyses (IPSA), developed in house (https://github.com/guigolab/254

ipsa-nf), was employed to determine the number of reads supporting splicing completion and splicing255

incompletion, for each intron annotated in GENCODE v19. We excluded from this analysis introns that256

overlapped either exons or non-identical introns in terms of chromosome, start and end positions. To as-257

sess the significance of the difference in the proportion of reads supporting splicing completion between258

nuclear and cytoplasmic compartments we employed Fisher’s exact test. False discovery rate was em-259

ployed for multiple testing correction (FDR < 0.05). Introns with significantly larger proportions of reads260

supporting splicing completion in the cytoplasm were classified as post-transcriptionally spliced (here re-261

ferred to as ps). Introns that did not pass the FDR threshold were labelled as either unprocessed (i.e. intron262

retention events) or co-transcriptionally spliced (here referred to as cs), depending on the degree of splicing263

completion in both cellular compartments. We focused on introns consistently classified as either ps or cs264

in at least 10 of the analyzed cell lines. We computed variant density (number of variants per Kb of intron)265

at 10 bins of equal size along both types of introns (10 was selected to ensure that enough variants were266

present in each bin). We also assessed the enrichment in functional elements of sQTLs in ps introns with267

respect to sQTLs in cs using Fisher’s exact test. False discovery rate was employed for multiple testing268

correction (FDR < 0.05).269
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GWAS analyses270

We downloaded the GWAS catalog, including the Experimental Factor Ontology (EFO) annotations for271

the GWAS terms (https://www.ebi.ac.uk/gwas, accessed 2018-09-18). We used LiftOver (https:272

//genome.ucsc.edu/cgi-bin/hgLiftOver) to convert variant coordinates from hg38 to hg19 and273

PLINK v1.90b6.2 (https://www.cog-genomics.org/plink2) to extend the catalog to the variants in274

high linkage disequilibrium (r2 ≥ 0.8) with the GWAS hits. The sQTL enrichment was calculated as the275

odds ratio (OR) of the frequency of GWAS variants among sQTLs to the mean frequency of GWAS vari-276

ants across 1000 matched non-sQTL sets (see section Functional enrichment of sQTLs). In parallel, we277

obtained the complete EFO ontology (https://www.ebi.ac.uk/efo/) in Open Biomedical Ontologies278

(OBO) format. For the GWAS terms with an OR > 1, we used the ontologySimilarity R package83 to279

compute the pairwise semantic similarity (method = resnik ) between the enriched GWAS terms, and built280

a similarity matrix, S. From it, we derived a distance matrix, D, as max(S) − S, and performed multidi-281

mensional scaling (MDS). This is an analogous strategy to the one employed in REVIGO75 to visualize GO282

terms.283

We further compiled genome-wide GWAS summary statistics for 8 traits representative of the clus-284

ters observed in the MDS representation: asthma42, breast cancer43, coronary artery disease44, heart285

rate45, height46, LDL cholesterol levels47, rheumatoid arthritis48 and schizophrenia49. In each case, we286

employed fgwas50 v0.3.6 (https://github.com/joepickrell/fgwas, default parameters, except287

for window size set to 2500bp to ensure convergence) to obtain the maximum likelihood estimate and288

95% confidence interval for the association effect size, both for i) sQTLs (variants affecting splicing, inde-289

pendently of their effect on expression), and ii) variants affecting expression, but not splicing (GTEx V7290

eQTLs tested also in our setting and not identified as sQTLs). To display the regional GWAS associa-291

tion results for the GSDMB locus we employed LocusZoom standalone v1.4 (https://github.com/292

statgen/locuszoom-standalone).293
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84. Garrido-Martı́n, D., Palumbo, E., Guigó, R. & Breschi, A. ggsashimi: Sashimi plot revised for browser-

and annotation-independent splicing visualization. PLOS Computational Biology 14, e1006360 (2018).

85. Hull, J. et al. Identification of Common Genetic Variation That Modulates Alternative Splicing. PLOS

Genetics 3, e99 (2007).

Acknowledgements

We thank the donors and their families for their generous gifts of organ donation for transplantation and

tissue donations for the GTEx research study. We thank Manuel Muñoz, Emilio Palumbo, Aliaksei Ho-
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