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Abstract 
Spatial technologies that query the location of cells in tissues at single-cell resolution are 
gaining popularity and are likely to become commonplace. The resulting data includes the X, 
Y coordinates of millions of cells, cell phenotypes and marker or gene expression levels. 
However, to date, the tools for the analysis of this data are largely underdeveloped, making 
us severely underpowered in our ability to extract quantifiable information. We have 
developed SPIAT (Spatial Image Analysis of Tissues), an R package with a suite of data 
processing, quality control, visualization, data handling and data analysis tools. SPIAT includes 
our novel algorithms for the identification of cell clusters, cell margins and cell gradients, the 
calculation of neighbourhood proportions, and algorithms for the prediction of cell 
phenotypes. SPIAT also includes speedy implementations of the calculation of cell distances 
and detection of cell communities. This version of SPIAT is directly compatible with Opal 
multiplex immunohistochemistry images analysed through the HALO and InForm analysis 
software, but its intuitive implementation allows use with a diversity of platforms. We expect 
SPIAT to become a user-friendly and speedy go-to package for the spatial analysis of cells in 
tissues.  
 
SPIAT is available on Github: https://github.com/cancer-evolution/SPIAT 

 

Introduction 
Recent technological advances in spatial technologies in the last 2-3 years, such as in multiplex 
immunohistochemistry, microscopy and spatial transcriptomics, provide detailed spatial 
information at single-cell resolution, moving the field into the quantitative arena. A popular 
application of these spatial technologies has been in the study of the tumour 
microenvironment. Immune cells in the tumour area have been found to display distinct 
distribution patterns linked with survival in a number of solid tumours (1, 2). For example, 
control of tumour growth by the immune system is linked to high levels of lymphocytes in 
close proximity to tumour cells (immune infiltration), whereas immune cells in the periphery 
of the tumour are considered to be excluded. The first profile has been linked to better 
prognosis (3), and studies have shown a link between response to immune checkpoint 
inhibitors and high levels of lymphocytes in the tumour invasive margin and tertiary lymphoid 
structures (4-7). This has resulted in a great appetite for the study of the spatial patterns of 
cells in the microenvironment, even beyond immune cells. 
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The new OpalTM multiplex immunohistochemistry staining protocol allows the use of 6-8 
markers simultaneously on a single slide followed by imaging on the Perkin Elmer VectraTM 
quantitative imaging system. It has gained significant popularity due to its applicability to 
formalin fixed paraffin embedded tissue sections, allowing the examination of samples taken 
in a clinical setting. The imaging system records the fluorescence emission for each marker, 
and each cell is assigned an X,Y coordinate of its location in the tissue, effectively providing 
single-cell resolution. The fluorescence emission maps of individual markers are then 
combined to yield the location and phenotype of cells, along with marker intensity. 
 
Currently, studies into spatial tissue analysis have been devoted to extracting information 
from raw microscopy images. Machine learning is commonly used to perform cell 
segmentation (identifying cells in an image), and tissue segmentation (differentiating stromal 
and tumour regions in the image). Next, cell phenotyping is performed based on marker 
intensity (e.g. CD3 for T cells) or a combination of markers (e.g. CD3 and CD4 for helper T 
cells). It is not atypical to have from a few thousand to several million cells in an image, 
resulting in large amounts of big data. Unfortunately, once this information has been 
extracted, the methods for the downstream analysis and interpretation of these data are 
rudimentary, resulting in their underutilization.  
 
To date, most approaches tackling this issue determine the density of cells within the tumour 
area or measure the Euclidean distances of all cells against all cells, identifying populations 
that are closest to tumour cells (8). However, these analytical approaches leave most of the 
information contained in these images unquantified and unexplored, limiting the questions 
that can be asked and the reducing the possibility of new discoveries. More advanced studies 
investigating the patterns of clustering of immune cells revealed a tight link with prognosis, 
tumour type and response to immunotherapy (1, 2, 9), indicating a largely untapped source 
for novel biological insights.  
 
We have developed the R package SPIAT for the Spatial Image Analysis of Cells in Tissues. 
SPIAT includes a broad range of methods that allow (1) reading in Opal multiplex 
immunohistochemistry images processed with the two most popular Opal software 
(InFormTM or HALOTM) and quality control, (2) multiple approaches for the visualization of the 
distribution of cells, either by phenotype, marker intensity levels, and surface plots, (3) 
metrics for the calculation of mixing of cell phenotypes, (4) identification of cell clusters or 
communities of cells, (5) identification of cell gradients and (6) cell phenotype predictions.   
 

Methods and workflow 
Input to SPIAT 
An overview diagram of SPIAT is available in Figure 1. Our current version includes over 26 
functions. The input to SPIAT are the cell IDs, X, Y coordinates, marker intensities and cell 
phenotypes (which markers where positive in each cell). Images must have been cell 
segmented previously, and cells phenotyped using HALO or InForm software, although SPIAT 
offers the option of calling phenotypes based on marker levels and marker combinations. We 
have tested SPIAT successfully with images of up to ~1 million cells, but implementations of 
the algorithms were made to optimise speed, so there is currently no upper limit. Our input 
function (format_image_to_sce) reads in the format from HALO and InForm software, but 
these formats are relatively generic, and users can reformat their files to match one of these 
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and then input to SPIAT. Users are also required to input the columns of markers of interest 
and the location where the marker is expected to be located (nucleus, cytoplasm or 
membrane).  
 
The base object for SPIAT is SingleCellExperiment, which is designed for single-cell gene 
expression data. Here the marker intensities are treated as gene expression levels, and the 
cell coordinates and categorical phenotypes (if available) as additional metadata. For ease of 
use, we designed the package so most functions are independent of each other, and start 
from the SingleCellExperiment object (Figure 1). We also implemented image_splitter, which 
allows splitting images into sections defined by the user. This is recommended in the case of 
large images, or images where there are two independent tissue sections. 
 
Quality control of images 
Since cell phenotypes are defined by combination of markers, low cell segmentation quality, 
antibody ‘bleeding’ from one cell to another or inadequate marker thresholding, can lead to 
the assignment of erroneous cell phenotypes. Cells might be identified as being positive for a 
biologically unfeasible combination of markers (for example, cells positive for a tumour 
marker and an immune marker, such as CD3). Therefore, SPIAT allows the user to manually 
input which phenotypes they would like to keep or exclude (select_phenotypes).  
 
Alternatively, we also implemented a shuffling strategy to determine how likely it is to obtain 
a particular combination of markers by chance (marker_permutation). Here, we create a null 
distribution by permuting the marker labels of cells, and calculate the empirical p-value of 
whether an image is enriched or depleted in a particular combination of markers. This is 
meant to provide guidance to the users of which combination is likely to occur by chance (e.g. 
because there are high numbers of cells positive for particular marker), but it is not absolute, 
and users are highly encouraged to review the results. 
 
We also implemented a function that plots the marker intensities of cells identified as being 
positive or negative for a given phenotype (marker_expression_boxplot). Cells positive for a 
marker should have higher levels of the marker. Since HALO and InForm use machine learning 
to determine positive cells, and not a strict threshold, some positive cells will have low marker 
intensity, and vice versa. However, an unclear separation of marker intensities between 
positive and negative cells would suggest incorrect phenotyping or unreliable phenotyping 
due to background noise. 
 
Finally, SPIAT calculates the proportion of cells of each phenotype 
(calculate_cell_proportions), which can be visualized as barplots (plot_cell_percentages). 
 
Visualization of tissues 
SPIAT has multiple options for visualization of cells in the tissues: 

- plot_cell_categories: Dot plots, where each dot corresponds to a cell and cells are 
coloured by phenotype. One plot summarizes all markers and cell types. 

- plot_marker_level_heatmap: For large images, there is also the option of ‘blurring’ the 
image, where the image is split into multiple small areas, and marker intensities are 
averaged within each.  
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- plot_cell_marker_levels: Here the intensity of each marker can be visualized 
individually, which can be used to check for an uneven staining or high background 
intensity. 

- marker_surface_plot: Plots the level of markers as a 3D surface plot. To stack the 
surface plots of multiple markers in a single plot we have implemented 
marker_surface_plot_stack. This allows the identification of co-occurring and 
mutually exclusive markers. 

 
Distances between cell types 
SPIAT implements a number of functions for the calculation of Euclidean distances between 
cells. First, we can compare the locations of two phenotypes (phenotype A and phenotype B) 
by identifying the closest cell of phenotype B to each of the cells of phenotype A. This creates 
a distribution of minimum distances between phenotypes A and B 
(calculate_all_distances_between_phenotypes), which can be visualized as a violin plot 
(plot_cell_distances_violin). Visualization of this distribution often reveals whether pairs of 
cells are evenly spaced across the image, or whether there are clusters of pairs of phenotypes. 
As a summary statistic, SPIAT also calculates the mean, median and standard deviation of 
each combination of phenotypes (calculate_summary_distances_between_phenotypes), 
with visualization of cell distances as a heatmap (plot_distance_heatmap).  
 
Detections of cell clusters and communities 
One of the main recurrent questions in the analysis of the spatial distribution of cells in the 
microenvironment is the presence or absence of aggregates of a particular phenotype or 
combination of phenotype. In SPIAT, we make the distinction of two types of cell aggregates. 
The first are “clusters”, which are cell aggregates composed of non-tumour cells, often by 
immune cells. For the detection of clusters, identify_cell_clusters only considers cell 
phenotypes of interest defined by the user (e.g. clusters of CD4+ cells). Euclidean distances 
between cells are calculated, and pairs of cells with a distance less than a threshold are 
considered to be ‘interacting’, with the rest being ‘non-interacting’. Hierarchical clustering is 
then used to separate the clusters. 
 
While we recommend users to test out different thresholds and then visualise the clustering 
results, we also offer the average_minimum_distance function, which calculates the average 
minimum distance between all cells in an image to use as a reference or starting point. 
 
The second type of cell aggregates are “communities”, as previously defined (9). Here, 
communities correspond to micro-niches or micro-ecosystems of cells that are geographically 
located close to each other (identify_cell_communities). The main distinction between 
clusters and communities is that the algorithm for the detection of communities does not 
take into account cell phenotype. Therefore, communities often consist of a combination of 
different cell types, including tumour cells. PhenoGraph (10) is used as the clustering 
algorithm to detect communities.  
 
SPIAT also includes the plot_composition_heatmap function, which allows visualization of the 
cell composition of clusters or communities. This allows discerning whether there are regions 
of heterotypic cell-cell interactions, or whether the image is highly structured with poor cell 
mixing. 
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Mixing scores 
SPIAT includes calculation of cell mixing scores, which was originally defined as the number 
of immune-tumor interactions divided by the number of immune-immune interactions (2). 
We have generalized this score to allow calculation of any two cell phenotypes defined by the 
user. 
 
Identification bordering cells 
A common question that arises in the study of the tumour microenvironment is whether 
immune cells are close to the tumour margin, or how does the density of a particular cell type 
differ between the tumour and stromal areas. A first step in answering this question is the 
identification of cells that separate two distinct tissue areas (e.g. tumour area vs. stromal 
area). This tissue segmentation process often relies on machine learning or manual 
delineation of the borders in HALO or InForm, which are either coarse and/or time-
consuming, rely on user intervention and often result in poor resolution. In SPIAT we 
developed an algorithm (identify_bordering_cells) to automatically detect bordering cells, 
with only 5 parameters: reference_marker (reference area to be identified, i.e. tumour 
marker), noise_radius, radius, lower_bound and upper_bound. The algorithm is as follows: 

1. We select reference_marker cells surrounded by other reference_marker cells: We 
first identify reference_marker cells with other reference_marker cells within 
noise_radius. 

2. We select non-reference cells surrounded by other non-reference cells: Only keep 
non-reference cells with non-reference cells within noise_radius. 

3. We identify bordering cells as those tumour cells surrounded by a certain percentage 
of stromal cells: We combine the cells identified in (1) and (2) and identify all 
neighbouring cells within radius. We then calculate the percentage of stromal cells in 
the neighbourhood of each tumour cell, and mark those tumour cells with a 
percentage of stromal cells within the lower_bound and upper_bound as bordering 
cells. 

 
The identified bordering cells can then be used as a reference for calculation of distances to 
other cell types. Note that while here we use tumour cells as an example for reference cell, 
the same can be applied to any cell type. 
 
Identifying gradients of cells 
One of the main questions in the spatial analysis of cells in tissues is whether a particular cell 
type is close to or interacting with another, and this is used as a benchmark to compare groups 
of images (e.g. primary vs. metastatic). For example, in the study of recognition of tumour 
cells by the immune system, a main question is whether cytotoxic T cells are close to tumour 
cells, or whether PDL1+ cells are aggregated in the tumour area.  
 
A common solution is the calculation of the average minimum distance of tumour cells to 
immune cells, or vice versa. In this case, the minimum distance between an immune cell and 
a tumour cell is calculated, and then the processed is repeated for all immune cells. This result 
is then averaged, or the distributions are compared between images using a Wilcoxon test or 
similar. A major drawback of this naïve approach is that the total number of cells is not 
considered – even with no preferential attraction of immune cells to tumour cells, a large 
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number of cells will result in smaller minimum distances, resulting in false positive results. In 
summary, these naïve metrics do not take into account the actual spatial distribution of cells. 
 
In SPIAT we address this challenge using the concept of gradients. If there is a true aggregation 
or attraction of cell phenotype A to cell phenotype B, then we would see higher levels of 
marker A closer to cells of phenotype B, with this value decreasing the further we move away 
from cells of phenotype B. This concept of gradients also allows the identification of repulsion 
between cell types, such that if we see that marker A intensities are lower when close to cells 
of phenotype B, but increase as we move away, then we can say that there is likely to be a 
process of repulsion. This concept is implemented in SPIAT in the plot_average_expression 
function, with the average_marker_expression_within_radius being the helper function for 
the calculation of the marker level within a specified radius.  
 
Calculation of neighbourhood proportions 
SPIAT also offers an additional alternative to characterising cell aggregation, which is the 
calculation of the neighbourhood proportion (percentage_of_cells_within_radius). Here, we 
define the proportion of a target cell type within the neighbourhood of a reference cell type 
within a defined radius. This algorithm is inspired by previous work (8), but in that case the 
average proportion of all cells in an image was used. Here, we perform the calculation for 
each cell, and thus we take into account differences in spatial distribution. With our method, 
spatial structures can be identified by pinpointing cells with high neighbourhood proportions 
of the target cell type. 
 
Of note, percentage_of_cells_within_radius can be used for the detection of gradients 
instead of average_marker_expression_within_radius, however we recommend using the 
latter given its implementation allows a speedier analysis, and it does not depend on cell 
phenotyping as it uses marker intensities. 
 
Prediction of phenotypes based on marker levels 
One of the main applications of InForm and HALO is for cell phenotyping. Here, the user 
selects ~10 cells that are visually ‘positive’ for a particular marker, which are then used as a 
training set to phenotype the rest to the cells. However, this is usually an iterative process, 
whereby the user often needs to recalibrate the model by further selecting more cells and so 
forth. As a result, cell phenotyping is often time-consuming. In SPIAT we have implemented 
algorithms for the automatic phenotyping of cells based on marker intensities 
(predict_phenotypes) that do not require user intervention or the manual setting of 
thresholds.  
 
Conceptually, our base algorithm assumes that most cells in an image are not positive for the 
particular marker of interest. With this assumption, we can estimate the background levels 
of the marker based on the distribution of marker intensities. We have observed that in most 
cases, marker levels follow a Beta (or Beta-like) distribution skewed to the left with a long 
right tail. With the assumption that most cells are negative for the marker, cells in this right 
tail are marked as being positive. The cutoff is selected as the inflection point of the 
distribution as it flattens. We have also accounted for cases where there is a weak antibody 
signal, and the distribution might resemble a normal distribution, or where there is a bimodal 
distribution, and only cells after the second peak should be considered.  
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In cases where the cells to be phenotyped are likely to represent most of the cells in the 
image, for example tumour cells in a tumour-dense tissue, we have added an additional step 
to our base algorithm. Here, we first phenotype cells based on non-tumour markers 
(baseline_markers) (for example, immune markers). This population of cells is used to 
determine the distribution of background levels of the tumour marker. Subsequently, we 
select the 0.95 quantile of the tumour marker in this population as a putative threshold 
(threshold 1). We empirically determine the inflection point of the distribution of tumour 
markers using our base algorithm (threshold 2). Finally, we use whichever of the thresholds 
is greater as a cutoff for positive and negative cells.  
 
SPIAT includes the marker_prediction_plot function, which plots the predicted cell 
phenotypes and the ones obtained using HALO or InForm, for comparison. Of note, this 
algorithm does not take into account cell shape or size, so if these are required for 
phenotyping, manual phenotyping with HALO or InForm is encouraged. 
 

Results 
To showcase the power of SPIAT in characterising the spatial distribution of cells in tissues, 
we include results from 4 test images generated with Opal multiplex immunohistochemistry 
(Figure 2). One corresponds to a primary melanoma image analysed on the HALO system 
(Figure 2a), while the others correspond to prostate cancer images with distinct pathologies 
analysed on InForm: one with highly glandular composition of tumour regions (Figure 2b), 
another with more diffused distribution (Figure 2c), and one with a clear tumour margin and 
little immune infiltration (Figure 2d). We used the SOX10 and AMACR markers for melanoma 
and prostate cancer cells, respectively. Immune markers were DAPI, CD3, CD4, CD8, PDL1 and 
CD103 for the melanoma image, and DAPI, CD3, CD4, CD8, FOXP3 and PDL1 for the prostate 
cancer images. 
 
After reading in the images and converting them to the single-cell experiment object, we next 
perfomed quality control of the images. We compared the intensity of each marker in cells 
phenotyped as positive or negative for the CD4 marker. Cells positively phenotyped were 
found to have higher CD4 marker intensities (Figure 3a), consistent with an adequate 
phenotyping. Note that some negative cells had high marker intensities. This is because the 
phenotyping method used by InForm and HALO do not solely use marker intensities for 
thresholding, but also cell shape, nucleus size, etc. However, the general trend of higher 
marker intensities in positive cells should be fulfilled. 
 
The calculation of the proportion of cells in images revealed that the vast majority of cells 
were tumour cells, and with few immune cells, as shown in example Figure 3b. There was a 
small proportion of cells that appeared to have a biologically impossible combination of 
markers (e.g. AMACR+ and CD4+), which were excluded from further downstream analyses. 
While the combination of markers of interest was known a priori, random shuffling of markers 
with marker_permutation revealed the implausible combinations as being depleted, flagging 
them for consideration. 
 
We next made a visual inspection of the images to assess staining quality and its potential 
implications for cell phenotyping. The three 2D visualization options in SPIAT allowed a quick 
visual assessment of patterns of immune infiltration and potential confounders (Figure 4). 
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CD4+ and CD8+ cells were more common in the melanoma image (Figure 4a,e,i), although 
high levels of CD4 background (Figure 4i) might have been a potential confounder in the 
phenotyping of CD4+ cells. In contrast, the proportion of immune cells is much lower in the 
prostate images (Figure 4 b-d, f-h, j-l), and staining of the CD4+ was much cleaner. Marker 
intensities were also be explored using 3D surface plots, as shown in Figure 5. Here, we can 
clearly see that high levels of SOX10+ (tumour) cells did not co-occur with the CD4+ immune 
cell marker, but rather were found in between areas of high SOX10 intensity. SPIAT also 
detected tumour borders, both in clear and challenging images (Figure 6). 
 
The calculation of the average minimum distance between all cell types revealed vastly 
different configurations between prostate cancer images (Figure 7). In the case of the image 
in Figure 2c, tumour cells were closely interacting with CD3+CD4+ and CD3+CD8+ cells (Figure 
7a), suggesting higher levels of tumour-immune interaction. In contrast, the average 
minimum distance was much greater in Figure 7b (corresponding to the image in Figure 2d) 
suggesting immune exclusion. A similar analysis was performed looking at the distribution of 
minimum distances (Figure 8). Here, CD3+CD4+ closely interacting with the tumour were 
identified in the first image (Figure 8a), while this group of cells was not found in the latter 
(Figure 8b).  
 
We next investigated whether we could detect clusters of immune cells, and whether there 
was co-occurrence of immune and tumour cells in communities (Figure 9). Here, we define 
clusters as being composed of a particular cell phenotype or combination of phenotypes 
selected a priori by the user. In this example we selected to detect clusters of CD3+CD4+ and 
CD3+CD8+ cells in our prostate cancer images (Figure 9a-c). In contrast, communities refer to 
aggregates of cells identified solely by their location in the image, regardless of phenotype, 
as can be observed in (Figure 9d-f).  
 
Investigation into the composition of clusters and communities provided insights into how 
diverse cell types are aggregated in the tissues shown in Figure 2c and Figure 2d. While most 
clusters of the image in Figure 2c were composed of a mixture of CD3+CD4+ and CD3+CD8+ 
cells, a subset were dominated by either cell type (Figure 10a). All communities were 
composed of a mixture of tumour and immune cells, suggesting immune infiltration across 
the entire image (Figure 10b). Interestingly, PDL1+ and FOXP3+ cells (Tregs) were found to 
co-occur in communities with the highest levels of CD3+CD4+ cells (Figure 10c). In the case of 
the image of Figure 2d, while most clusters have similar proportions of CD3+CD4+ and 
CD3+CD8+ cells (Figure 10d), there was a clear distinction of tumour and immune 
communities, with no mixing (Figure 10e).  
 
These results are consistent with those obtained the mixing scores of these images. The 
mixing score CD4+ and tumour cells of the image of Figure 2c was 0.022, while for the image 
of Figure 2d it was 0.00095, suggesting higher levels of tumor-immune cell mixing in the 
former (Figures 10b and 10e). 
 
To characterize the interaction of immune cells across our images, we performed gradient 
analysis with SPIAT. We investigated the intensity of the CD4 marker at different radii from 
from CD8+ cells . We found that the intensity of CD4 in cells surrounding CD8+ cells was low 
in the melanoma image, but that this intensity increased as the distance to CD8+ cells 
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increased (Figure 11a). This suggested that CD4+ and CD8+ cells are likely forming their own 
separate clusters, which can be qualitatively perceived in Figure 2a. In contrast, for the 3 
prostate cancer images, higher levels of CD8 were observed in cells closely interacting with 
CD4+ cells (Figure 11b-d) but these levels decreased at larger radii. This suggested a higher 
level of mixing of CD4+ and CD8+ cells in these images. 
 
Finally, we tested the ability of SPIAT to automatically phenotype tumour cells based on 
marker intensities. We found that the spatial distribution of automatically phenotyped 
tumour cells resembled that with the phenotypes obtained using HALO and InForm (Figure 
12). For the melanoma image, the number of true positive cells was 127,750 and true negative 
cells was 93,233, with only 3,198 false positives and no false negatives. For the prostate 
image, there were 5,441 true positive cells and 1,194 true negative cells, with only 79 false 
positives and 157 false negatives.  
 

Conclusion 
SPIAT provides a broad range of tools for the spatial analysis of cells in tissues. While we have 
focused on the study of the tumour microenvironment, its application can be extended to 
other studies investigating the spatial distribution of cells in tissues. SPIAT continues to be in 
development, where we plan to further extend the number of metrics to characterize 
individual images, as well as include statistical tests to compare images.  
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Figure 1. Overview diagram of functions in SPIAT 
 
 
 
 
 

 
 
Figure 2. Opal multiplex immunohistochemistry images from (a) primary melanoma, (b-d) 
primary prostate cancer. In (a), red corresponds to the tumour area. The prostate tumor 
marker, AMACR, is shown in blue in (b), and purple in (c) and (d). Other colours correspond 
to immune cells. 
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Figure 3. Basic quality control metrics of images. (a) Boxplots of the CD4 marker level of the 
prostate cancer tissue shown in Figure 2b. Cells positive or negative for a marker were defined 
in InForm. Cells marked as positive for a marker should have higher intensity levels for that 
marker, as shown here for CD4. (b) Percentage of each cell phenotype in the prostate cancer 
tissue shown in Figure 2b. P=positive. N=Negative. 
 
 

 
 
Figure 4. Visualizations available in SPIAT. (a-d) Plot generated with plot_cell_categories of 
each of the melanoma (a) and prostate tissues (b-d). Grey= Tumour cells, Red=CD3+CD4+ cells 
Blue=CD3+CD8+ cells, Orange=CD103+ cells in the melanoma tissue and PDL1+ cells in 
prostate cancer tissues. (e-h) Same images as above, but plotting the tumour SOX10 marker 
in melanoma (e) or the tumour AMACR marker in prostate cancer (f-h) with 
plot_marker_level_heatmap. Red colouring represents the tumour cells, white the immune 
cells. (i-l) Plots of the CD4 intensities. There are higher background levels of CD4 in the 
melanoma (i) than in the prostate tissues (j-l). Darker colours indicate stronger marker 
intensity. 
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Figure 5. Surface plots of the SOX10 (a) and CD4 (b) markers in the melanoma tissue. Panel 
(c) shows how SOX10 and CD4 are mutually exclusive (valleys and mountains are opposite).  
 
 

 
 
Figure 6. Bordering cells. (a-c) Bordering cells of the tissues in Figure 2b, 2c and 2d, 
respectively. 
 
 
 

 
Figure 7. Average minimum cell distances between pairs of cell phenotypes. Panel (a) 
corresponds to Figure 2c, while panel (b) corresponds to Figure 2d. In (a) tumor (AMACR+) 
cells are closely interacting with CD3+CD4+ cells, whereas in (b) they are distant.  
 
 
 

a b c

a cb

N
e
a
re

st
 c

e
ll

 t
o

 C
O

I

Cell of interest (COI) Cell of interest (COI)

N
e
a
re

st
 c

e
ll

 t
o

 C
O

I

a b

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.28.122614doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.28.122614
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

 
 
Figure 8. Average minimum cell distances between pairs of cell phenotypes. Panel (a) 
corresponds to Figure 2c, while panel (b) corresponds to Figure 2d. In (a) tumor (AMACR+) 
some cells are closely interacting with CD3+CD4+ cells, whereas in (b) most are distant.  
 
 

 
Figure 9. Cell clusters and communities in prostate cancer tissues. (a-c) Clusters of CD3+CD4+ 
and CD3+CD8+ cells. Each colour corresponds to a distinct cluster. Grey cells correspond to 
‘free’, un-clustered cells. (d-f) Cell communities detected using all cells. Each colour 
corresponds to a community. Tissues correspond to Figures 2b-d. 
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Figure 10. Cluster and community composition. (a) Cluster composition of tissue in Figure 2c. 
While most clusters are composed of a mixture of CD3+CD4+ and CD3+CD8+ cells, a subset 
are dominated by either. (b) Community composition of tissue in Figure 2c. All communities 
have a combination of tumour (AMACR+) and immune cells. (c) Same heatmap shown in panel 
(b), but without the AMACR marker. PDL1+ and FOXP3+ cells tend to appear in communities 
with high levels of CD3+CD4+ cells. (d) Cluster composition of tissue in Figure 2d. The vast 
majority of clusters include a mix of CD3+CD4+ and CD3+CD8+ cells. (e) Community 
composition of tissue in Figure 2d. There is a clear separation between communities with 
AMACR+ cells and those without. 
 
 
 

 
Figure 11. Average intensity of CD4 at various radii from CD8+ cells. (a-d) Panels correspond 
to those in Figure 2. In melanoma (a) the level of CD4 increases further from CD8+ cells due 
to segregation of CD4 and CD8 cells, whereas in the prostate cancer tissues (b-d) there is 
mixing of both cell types. 
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Figure 12. Prediction of tumour markers based on marker intensities. (a) SOX10+ cells as 
defined by HALO in melanoma tissue in Figure 2a. (b) Predicted SOX10+ cells using SPIAT. (c) 
AMACR+ cells in tissue of Figure 2c defined by InForm. (d) Predicted AMACR+ cells using 
SPIAT. Tumour cells are in red, other cells are in grey. 
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