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Abstract

Motivation: Single-cell proteomics technologies, such as mass cytometry, have enabled characterization of cell-to-
cell variation and cell populations at a single cell resolution. These large amounts of data, however, require dedicated,
interactive tools for translating the data into knowledge.

Results: We present a comprehensive, interactive method called Cyto to streamline analysis of large-scale cytometry
data. Cyto is a workflow-based open-source solution that automatizes the use of of state-of-the-art single-cell analysis
methods with interactive visualization. We show the utility of Cyto by applying it to mass cytometry data from peripheral
blood and high-grade serous ovarian cancer (HGSOC) samples. Our results show that Cyto is able to reliably capture
the immune cell sub-populations from peripheral blood as well as cellular compositions of unique immune- and cancer
cell subpopulations in HGSOC tumor and ascites samples.

Availability: The method is available as a Docker container at https://hub.docker.com/r/anduril/cyto and the user
guide and source code are available at https://bitbucket.org/anduril-dev/cyto

Contact: sampsa.hautaniemi@ helsinki.fi

Supplementary information: Supplementary material is available and FCS files are hosted at
flowrepository.org/id/FR-FCM-Z2LW

1 Introduction

Single-cell technologies such as Cytometry by Time-Of-Flight (CyTOF),
multiplexed imaging, or single cell RNA sequencing have enabled
characterizating tumor-microenvironment compositions and cell populations
at a single-cell resolution (Galli et al., 2019). However, currently the pace at
which insight is extracted from massive single-cell data sets remains the same
as with the previous low-throughput technologies (Brodin, 2018). Common
CyTOF analysis steps have steadily reached a quasi-standard workflow that
involves manual gating with FlowJo™ or other 2D scatter plot tools followed
by dimensionality reduction with t-SNE (Van Der Maaten and Hinton, 2008)
and unsupervised clustering. Typically these analyses are executed with
different software or platforms, which maes the resutls prone to errors and

biases. Meanwhile, each new experiment requires a new set of custom scripts
to fit the analysis needs, and new computational methods and algorithms are
being developed at a fast rate (Qiu, 2017; Angerer et al., 2016; Hollt et al.,
2016). The most comprehensive semiautomatic workflow available is
CytoBank (Kotecha et al., 2010), a commercially available service that allows
the users to load the data to a cloud and perform analyses without the need for
advanced technical skills. Open-source alternatives have been developed to
make analysis accessible . For example, Cytofkit (Chen et al., 2016),
integrate methods available only within the R ecosystem and no
parallelization support due to R limitations, which is suboptimal when
analyzing very large data sets. Other, more complex solutions, such as
Cytosplore (van Unen et al., 2017) and CYT (Amir et al., 2013), allow for
only one method for each step of the analysis, one transformation type, one
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sampling approach, one clustering algorithm, and one dimensionality
reduction method. Furtheremore, none of these software does not support
iterative analysis, which is required for rapidly testing hypotheses and ideas
during analysis. Iterative analysis is recognized as a key requirement for
workflow languages (Almeida, 2010), and it is particularly important in the
analysis of mass cytometry data as the data sets are complex and require
testing different parameter settings, algorithms, etc. in an iterative and
interactive fashion. We have designed and implemented an analysis software
Cyto that enables interactive analysis and meets the need for accessibility to
and reporting of reproducible methods.

We demonstrate the utility of Cyto with two CyTOF datasets. Firstly, we
use control data from peripheral blood mononuclear cells (PBMC) (Van Unen
et al,, 2016) to demonstrate fast quality assessment of the data and
recapitulation of the previous findings in only two iterations of analysis.
Secondly, we applied Cyto on a dataset from high-grade serous ovarian
cancer (HGSOC). By applying Cyto on this dataset, we were able to rapidly
measure abundance of cell types, and single-out specific tumor cell
populations facilitating biological discovery and clinical interpretation of
high dimensional single-cell cytometry data.

2 System and Methods
Cyto is built on top of the workflow framework Anduril 2 (Cervera et al.,
2019), a language-agnostic framework that enables rapid integration of new
and old methods as building blocks.

2.1 Cyto modules
2.1.1 Graphical user interface

The user interface was developed as a light Flask application server within a
Docker container. Docker avoids dependency installation and versioning
issues, and therefore eases compatibility between researchers. The application
handles data upload and download and saves user configuration changes. All
projects are saved locally in the user’s computer in case Docker is restarted.

2.1.2 Interactive results browser

To make Cyfo modular, the user-data interaction was implemented as a
separate web application built with Python dashboards, a powerful framework
that supports interactive Plotly components. The choice of visualization
strategies are based on those reported in relevant publications, particularly in
Nowicka et al., 2017.

2.1.3 Cytometry analysis pipeline

The analysis pipeline is shown in Supplementary Figure S1. Briefly,
integration of cytometry specific methods was achieved through development
of new Anduril components built with MATLAB®, R, Python, Java, or Bash
scripts, depending on the programming language of the original
implementation of each method. A list of the currently integrated methods for
data processing, clustering, 2D embedding, and building dashboard are listed
in Supplementary Table S1.

2.2 Materials and methods for peripheral blood case
study

2.2.1 Data acquisition of peripheral blood myeloid cells

We downloaded the mass cytometry FCS files from (Van Unen et al., 2016)
and selected the control (Ctrl) samples (n=14) to recapitulate the PBMC cell
subtypes. No preprocessing of the data was required before the Cyto analysis.

2.2.2 Cyto analysis of data quality

We selected the channels used in (Van Unen et al., 2016). The complete
dataset contained 48,611,486 cells, of which we randomly subsampled to
300,000 cells and transformed all selected channels with an arcsinh
transformation (cofactor 5). The parameters and their values are listed in
Supplementary File S1. Multidimensional scaling (MDS) and non-
redundancy scores (NRS) visualization within Cyfo Dash report were used to
identify outlier samples.

2.2.3 Cyto recapitulation of cell types

After excluding the outlier samples 52 CtrlAdultS PBMC and
53_CtrlAdult6_ PBMC we ran Cyto analysis (Supplementary File S2) on the
remaining 12 Ctrl samples. This dataset contained 41,779,615 cells which
were randomly downsampled to 300,000 cells. The same parameters as in the
previous iteration were used but clustering was done with FlowSOM
algorithm (k=18) and dimensionality reduction by tSNE (»=10,000;
perplexity=20; theta=0.3). The cell type labels used and prior knowledge of
marker expression profiles are described in (Van Unen et al., 2016).

2.3 Materials and methods for case study HGSOC
case study

2.3.1 Data acquisition of High-Grade Serous Ovarian Cancer

Tissue and ascites specimens were collected from 15 consented patients
(Supplementary Table S2) at the Department of Obstetrics and Gynecology,
Turku University Central Hospital. Samples were analysed with CyTOF 1
mass cytometer (DVS Sciences Fluidigm). The antibody panel was manually
curated with focus on markers of cell populations that compose the tumor
compartment and less attention to the microenvironment (Supplementary
Table S2). For further details about sample preparation and CyTOF assay see
Supplementary Methods.

2.3.2 Tumor compartment identification with Cyto

The FCS files and the CSV file with clinical annotations were uploaded to
Cyto and processed as shown in Supplementary File S3. 300,000 cells were
randomly sampled from a total of 65,331,333 cells in the complete dataset.
After the cyto run with signal transformation /loglp, sample-wise mean
centering, clustering with Phenograph (4=200), and dimensionality reduction
by UMAP (n=10,000, min-dist=0.1, knn=90). we associate cell types to each
cluster based on the expression of canonical cell type markers (Supplementary
Figure S5). The clustering results were downloaded from Cyto to label the
clusters and compare global cell type abundances. To maximize the number
of tumor cells we ran a second iteration of analysis using a density-biased
downsampling while keeping all other parameters unchanged (Supplementary
Figure S6). The resulting CSV file was filtered in AWK to keep only the
tumor cells for the next iteration.

2.3.3 Tumor cell population analysis

All tumor cells were used with no preprocessing (setting none). We applied
all clustering methods to show the different effect of complex cell populations
that do not follow a clear lineage on clustering results, each analysis is
detailed with the method name within the configuration file Supplementary
File S4.
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Fig 1. Workflow for cytometry analyses. (A) Diagram of steps showing cytometry analysis as an iterative process and how our framework enables knowledge discovery. (B)
Schematic of the analysis environment to enable multi-system compatibility. On top screenshots of the data importer and the results browser as the two separate python applications.

3 Results

Cyto is an open-source application that enables running cytometry analysis
pipelines that integrate state-of-the-art tools with reliable reporting and
reproducibility as shown in Figure 1. Importantly, the interactive visualization
of the results removes the need for many iterations of editing the common
analysis scripts and improving interpretation time over traditional static
visualization methods (Dix and Ellis, 1998).

3.1 Software architecture supports reproducibility and
accessibility requirements

The design of Cyto was driven by both the need of iterative analysis
characteristic to the high dimensional cytometry field and the requirement for
easily reporting of methods and parameters used in each step of an analysis,
which are critical for reproducibility. With this in mind, we developed
Anduril components to integrate the most popular cytometry tools into fully
customizable analysis pipelines (https://bitbucket.org/anduril-dev/cytometry
and https://bitbucket.org/anduril-dev/tools).

Our cytometry analysis pipeline includes tools from different fields and in

different languages that are wrapped into modular units, called components,
which are interchangeable and reusable throughout the pipeline development
process. To enable rapid changes to the choice of components and to support
non-bioinformaticians to interact with CyTOF datasets, we built a lightweight
user interface that runs a generalizable Anduril pipeline (Supplementary
Figure S1). This is achieved with two web-based Python applications: the first
one is the data importer where the user defines their analysis parameters,
while the second one is the results browser to enable interactive data
visualization through Plotly figures. Finally, to simplify installation
requirements and thus enhance accesibility, we packaged this system into an
interactive Docker containter which can run on most operating systems. To
our knowledge, Cyto is the first open-source solution that features access to
multiple cytometry tools with a low learning threshold for non-
bioinfomaticians.

3.1.1 Mass cytometry data analysis with Cyto

On a general scale, Cyto follows a common CyTOF workflow (Figure 1A and
Supplementary Figure S1), however, each step enables agile and fast
iterations. The preprocessing components are a critical step of a CyTOF
pipeline. An arcsinh transformation is usually applied and it works well in
many experiments, however, it may truncate high values to an artificial
maximum. For this reason, users may choose also logarithmic or quadratic
scaling. Other important parts of the preprocessing implemented in new
components are quality assessment, normalization, gating, and filtering
components. By generalizing these steps in the Cyto pipeline instead of
running multiple independent scripts or manual analysis, the user has a
comprehensive log of methods tested, and complete control of the
preprocessing steps without having to code all the logic that is already
included in each component.

Because of the flexibility to adapt new tools as components to this bundle,
Cyto supports dimensionality reduction and unsupervised clustering methods,
along with new tools that can be included when available. The third popular
toolbox contains lineage inference methods; we integrated them to produce
an output that can be further analysed with any component or visualized with
the interactive visualization components. The interactive visualization
components transform data into plotly objects to be used either locally in the
user’s browser or included in a Dash application, as demonstrated in the Cyzo
method. Lastly, Anduril counts with a large fools bundle with components for
statistical analysis, CSV file manipulations, and machine learning analysis,
all of which are fully compatible with our cytometry components.

3.1.2 Cyto design enables customized analysis steps

Figure 1A depicts worfklow for a standard cytometry analysis project. First,
the user sets the input data and parameters for the analysis in the data
importer. Different types of research questions require different settings.
Questions about population abundance can analyze all cells or a random
sample, while detection and identification of rare cell populations requires a
density-biased sample as implemented in SPADE package (Qiu et al., 2011)
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Fig 2. Easy outlier detection and characterization. (A) MDS plot shows sample
53 _CtrlAdult6. PBMC separate from the other Ctrl samples. (B) Non-redundancy
scores visualization; sample 53_CtrlAdult6_ PBMC has highest NRS on marker CD14,
and sample 52_CtrlAdult5 PBMC shows lowest for 18 out of 30 markers.

to preserve smaller populations. Commonly used clustering algorithms in the
field are tailored for different research setups (Weber and Robinson, 2016).
Algorithms based on a k-nearest neighbors approach are suitable for samples
where the expression of markers varies smoothly, e.g. are expected to belong
to an evolving. On the other hand, samples with distant subpopulations will
benefit from a more fragmented clustering method, like k-means. Thus, it is
important to support the use of the right tool for the right question, not just
the easiest to use. Second, the user saves the settings. At the moment of saving
these options, Cyfo validates the inputs and creates a new execution folder,
which is used to archive the configuration, to support reproducibility, and to
store the intermediate results, to support re-running only necessary steps on
following iterations. Third, starting the analysis will launch the cytometry
analysis pipeline and build the results browser. Upon completion of the
analysis, the browser will enable the user to build new hypotheses and make
informed decisions for the next iterations. The browser helps interacting with
high dimensional data and multiple results effectively, from assessing signal
quality and sample selection quality to examining individual or groups of cell
populations. In the data importer, we can also download the results as a table
that includes all preprocessed data and clustering results, and the results
browser can also be downloaded to be hosted on a web server as supporting
material for complex publication results.

The presented cytometry components can also be integrated into Anduril
pipelines independently of our proposed analysis pipeline within the Cyto
system. Independent pipelines are specially useful for laboratories with highly
specific research questions that cannot be addressed within the Cyto system
but benefit from some of the steps. The modular design of our method enables
other researchers to follow this design for specialized needs (Figure 1B and
Supplementary Figure S1).
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Fig 3. Recapitulation of cell types in the 12 PBMC samples using tSNE (n=30,000,
perplexity=90, theta=0.4) colored by the combined cluster labels produced by
FlowSOM.

3.2 Case study |: Peripheral Blood Myeloid Cells
dataset

3.2.1 Interactive browser enables outlier detection

The results browser generates summary figures to assess data quality. Multi-
dimensional scaling visualization of the average expresion on each sample
(Figure 2A) highlights sample 53_CtriAdult6_ PBMC as an outlier at the
general level. While visualization of Non-Redundancy Scores (Figure 2B),
identifies also sample 52 CtriAdult5 PBMC due to artifactually low signal,
seen as lowest NRS for more than 50% of the antibodies. Further assessment
of outlier samples is possible by exploring the profiles of cell populations
predominant in the outlier population (Supplementary Figure S2). In this
analysis, sample 353 CtrlAdult6_ PBMC shows over-representation of
myeloid cells, possibly caused by preanalytical conditions. Sample
52_CtrlAdult5_PBMC shows a very low Simpson’s diversity index (0.34)
compared with the rest of the samples (u=0.67; 6=0.003) (Supplementary
Figure S3). By creating a new analysis from the data importer, we were able
to rapidly discard poor quality samples and repeat the analysis with the same
settings.

3.2.2 Cyto recapitulates cell-type identification from PBMCs

We set out to test the performance of Cyfo in detecting immune cell
populations from the PBMC dataset. By using density-biased sampling, we
quickly recapitulate the cell types present in these samples in line with the
authors of the data. Figure 3 shows the results from Cyfo manually colored by
the cell type classification for each cell. Visual separation of some cell types
can be further explored by intensity tSNEs and lineage trees (Supplementary
Figure S4). Interactive visualization of relevant markers shows slight
differences in expression within the same cell type. Additionally, the lineages
presented as the minimum spanning trees can be applied to the result of any
clustering algorithm. Cyto analysis workflow herein reliably identifies


https://doi.org/10.1101/2020.05.28.120527
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.28.120527; this version posted May 30, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Casado et al.

CD117+ CD44+ CA125+ cells
4 C,UT,_S CD8- T cells
2 .
CD8+ T cells
Y N
2o i,
<
>
=)
Myeloid cel
CDY0- Stromal cells wmms
-4
Tumor cells
Cluster-7
-4 -2 0 2 4
B UMAP1
0.8 ® Primary
A Interval
4-: W Progression
E .
@ 06
£ Sample type
8
o ‘ Ascites
5. =
umor
=04
4
8
b
c
'& 0.2 .
o .
: =T
oof ==
& & & s
N N A A o
06& \,@o QQ," d
S R & &

Fig 4. First iteration on high-grade serous ovarian cancer data. (A) Screenshot of all cells
from 15 HGSOC samples from different therapy time-points and different tissue sites,
Phenograph labels (colors) were computed with 300,000 cells randomly sampled and
k=450. (B) Summary of proportions of cell types identified by Phenograph for each
sample annotated with sample type and tissue type

biological cell populations from PBMC facilitating biological interpretation
of CyTOF data.

3.3 Case study II: Cancer cell populations on
HGSOC

To assess the performance of Cyfo in enabling clinical interpretation we next
performed an iterative analysis on a dataset of 15 clinical samples (Table S2)
from HGSOC patients at (primary),
chemotherapy (interval) or at tumor progression. In this analysis Cyto also

diagnosis after neoadjuvant
takes advantage of a detailed clinical metadata to assist variable association
in the results browser.

Phenograph successfully detects main immune, stromal and tumoral cells
(Figure 4A and Supplementary Figure S5). The immune compartment is the
largest; we annotated the clusters to be CD8+ T-cells, CD8- CD3+ likely
CD4+T-cells, and CD45+ T-cell marker negative likely Myeloid-lineage
inflammatory cells. The stromal compartment is divided into CD90 positive
and negative stromal cells, with the negative cells showing closer similarity
to the tumor cells. The tumor compartment, identified as Cluster-7 is
characterized by high expression of EpCAM, MUCI, E-Cadherin and
CA125, and low expression of pan-leucocyte marker CD45. Abundance
difference (Figure 4B) show ascites samples (n=10) have more myeloid cells,
and less tumor and stromal cells than solid tumor samples, while no apparent
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Fig 5. Screenshots of Cyfo analysis of only tumor cell populations. (A) Minimum
Spanning Trees (MST) by Sample time summarizes the expression of CA125(B)

Simpson's diversity index by Sample time. (C) CD24 expression across MST nodes
grouped by time from sample to next progression.

differences were observed on T-cell abundance. Interestingly, Cluster-6
shows expression for stemness markers CD117 and CD44, the tumor markers
CD125, HE4 and EpCAM, and is negative for the immune and stromal
markers, presenting as a potential cancer stem cell population.

A second iteration of Cyto analysis, in which we focused on the tumor
cells (Figure 5 and Supplementary Figure S7), shows the integration of
clinical annotations with a tumor subpopulation profiling analysis. The
intermediate run that shows the detection of the tumor cells is shown in Figure
S6. Minimum spanning tree (MST) representation of the detected clusters
present distinct tumor population abundance in Primary, Interval, and
Progression time of sampling. Furthermore, Cluster-6 on the MST shows
higher Ki67 and more abundant in Primary and Interval samples. Cluster-2
shows highest E-Cadherin and is dominant in Interval samples, and
progression samples have larger representation of Cluster-10, which are cells
enriched for MUC1 and CD147, and are low on ERK1-2 signaling.

A Cyto visualization of Simpson’s diversity index highlights also that
Progression samples have the lowest heterogeneity. Interestingly, collapsing
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the MST by time from sample to the next progression we see a clear enrich-
ment of a stemness marker CD24 in samples with shorter time to progression.

4 Conclusion

Rapid advances in single-cell technologies produce larger and more complex
data than ever before. Complex analyses increase the difficulty of reporting
reproducible results, while accessibility to and usability of highly specialized
tools drive the choice of algorithms in the analysis. A standard one-way
analysis workflow is sufficient on low-dimensional data but a more
exploratory research requires an iterative approach. We propose to level the
usability of different tools and to ease reproducibility of analysis by
integrating tools using a workflow paradigm design. First, by including
popular cytometry methods as Anduril components available, less
experienced bioinformaticians can easily build customized analysis
workflows. Second, we present a generalized analysis pipeline that covers
cytometry questions from detection of rare cells to differential abundance
analysis, and from general sample profiling to deeper analysis of single cell
populations. Third, by making this pipeline accessible as a Docker container
with a user-friendly interface, non-bioinformaticians are able to perform
complex single-cell analyses regardless of their experience level on software
maintenance. Fourth, a side-effect of utilizing Docker for accessibilty
includes the potential to run it remotely on a server.

To our knowledge Cyro is the first cytometry tool with a workflow paradigm
design. Many R packages (Simpson, 2019; Spidlen. et al., 2019; Finak, Greg
et al., 2014) have enabled compatibility with the popular flowCore package
(Ellis et al., 2019), and including them in our cytometry components allowes
users to execute them as part of larger pipelines on computing clusters if
necessary.

Additionally, this study demonstrates the key features of Cyto on a public,
well-known dataset, as well as on a new independent cohort. Here we are able
to identify and characterize cell population changes before and after
chemotherapy, as well as at the time of progression. Ascites samples are
valuable but underutilized due to the large number of non-tumor cells. Our
analysis characterized the composition of there herein used ascites samples
and the iterative analysis feature in Cyto enabled focusing on tumor cells
without manual setting of thresholds for each sample. This allowed us to
compare tumor cell phenotypes between clinical settings, suggesting that
HGSOC tumors at relapse are characerized by higher heterogeneity and
enriched stemness; an interesting hypothesis for further studies.

In summary, this work presents Cyto, which is an open-source, accessible
and customizable cytometry analysis method that takes advantage of
workflow engines and enables easy integration of existing tools. Cyto offers
two levels for technical and non-technical users. Further, to our knowledge
this study presents the first CyTOF experiments on comparison of
chemotherapy naive and heavily treated relapse samples from HGSOC .
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1 Supplementary methods

1.1 Data acquisition of High-Grade Serous Ovarian Cancer

1.1.1 Sample dissociation and preparation

Ovarian cancer primary cells were isolated from ascites and tumor tissues. Ascites was centrifuged at 3.0 G for 15 min, followed by gradient
centrifugation with Histopaque-1077 to discard the contaminating blood cells from the sample. Tissues were cut in to approximately 1 mm pieces
and dissociated over night with 1:75 dilution of 10x Collagenase/hyaluronidase in warm DMEM-F12 media (Stem Cell technologies, Cambridge,
UK). Cells were isolated by filtering the sample with 100pm and 70 pm meshes followed by Histopaque-1077 centrifugation to discard
contaminating blood cells and cell debris.

1.1.2 Antibody preparation for mass cytometry

The antibodies (Supplementary Table S2) were purchased already conjugated with metal isotopes from Fluidigm when available. Otherwise,
purified carrier-free antibodies were purchased from other vendors (Biolegend, R&D System and BD Biosciences) and then conjugated with
metal isotopes using the Maxpar antibody conjugation kit (Fluidigm) following the manufacturer’s instructions. In-house conjugated antibodies
were quantified and diluted in PBS antibody stabilization solution (CANDOR Biosciences) to 0.1-0.4 mg/ml and stored at +4°C. CD166, CD133
and cleaved-PARP were purchased conjugated with fluorochromes and detected with anti-fluorochromes metal tagged antibodies (145Nd-PE,
176Yb-APC and 160Gd-FITC respectively) in a secondary staining step. Antibodies have been initially tested by flow cytometry followed by a
titration at mass cytometer using cell lines to set the working concentration.
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1.1.3 Cell processing and antibody staining

The isolated cells were washed with 1x PBS, centrifuged, suspended in to warm DMEM-F12 medium and stained with 1 pM 103Rhodium- DNA
Intercalator (Fluidigm). Unstained cells were acquired as control sample to detect the background signals. After 15 min incubation at 37°C, cells
were washed with Cell Staining Medium (CSM) [PBS, 0.5% BSA (Sigma Aldrich), 0.02 % NaN3 (Sigma Aldrich)] and fixed with 1.6%
paraformaldehyde (Electron Microscopy Sciences) for 10 min at room temperature. Samples were washed twice with CSM and shipped at +4°C
to the Istituto Superiore di Sanita, Roma, Italy. Upon arrival the cells were counted and around 2-3 million were pelleted, washed with CSM and
incubated with Fc-blocker (Biolegend) for 10 minutes at RT to counteract the antibody binding to FC-receptors. Cellular staining with antibodies
was performed according to the manufacturer’s protocol (Fluidigm) consisting of several staining steps interspersed with permeabilization
treatments moving from gentlest to strongest conditions. In the first step, cells were resuspended in 100 pl of a mix of CSM and metal-conjugated
antibodies specific for surface antigens, incubated for 30 minutes at RT and washed twice in CSM. In a second step the cells were permeabilized
with 1ml of CSM supplemented with 0.3% Saponin (Sigma Aldrich) (CSM-S) for 30 minutes at +4°C and then stained with an antibody cocktail
specific for intracellular antigens, for 45 minutes at RT and washed twice with CSM-S. The third step consisted in a stronger permeabilization
of the cell pellet with 1 ml of ice cold methanol (Sigma Aldrich) per 0.5x10° cells for 10 minutes at 4°C. Cells were then washed twice in CSM
and stained with 100 pl of a further antibody mix toward phosphoproteins and transcription factors, for 60 minutes at RT in CSM. After washing
with CSM, the cells were stained with 125 nM 191/193Iridium-DNA Intercalator (Fluidigm), in PBS/PFA 1.6% for 20 minutes at RT (or
overnight at 4), for cell events recognition during data acquisition, and then washed twice with CSM and once with MilliQ water.

1.1.4 CyTOF assay and data preprocessing

Before acquisition, cells were counted and diluted at 2x10° cells/ml in MilliQ water with 1/10 of volume of EQ™ Four Element Calibration
Beads (Fluidigm) and filtered through a 35um nylon mesh before acquisition. Data from each sample were pre-processed with CyTOF software
version 6.7.1014 to normalize signals and minimize instrument performance variation during acquisition (lower convolution threshold of 200,
event length between 10 and 75 and with a rate of 500 cells/sec). FCS files were processed with FlowJo software (FlowJo LLC) to export bead-
normalized single-viable cells based on gating performed on cell length and DNA intercalators signals (191/193Iridium and 103Rhodium).
Because each sample was processed at the time of acquisition to conserve signal quality, the header of the raw FCS files were matched in R.
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2 Supplementary tables

Table S1. Methods and tools available within the Anduril pipeline integrated in Cyto.

Category Method/Tool
Density-biased sampling

P . Random down sampling
reprocessin .
p 4 Data tranformation

Sample-wise normalization

Phenograph

FlowSOM

Clustering FlowMeans

XShift

K-means

tSNE

UMAP

MDS

Build Data Dashboard NRS

Minimum Spanning trees

2D Embedding

Table S3. Sample cohort included in this study. Age, stage, tissue, number of patients, number of total cells acquired from each, survival,

treatment.

Sample file Patient code  Age at diagnosis  Histological grade  Treatment phase  Tissue site  PFI months ~ OS months
EOCI_r2A4sc.fes EOC1 71 1c Recurrence Ascites 6 21.9
EOC2_rAsc2.fes EOC2 39 IVB Recurrence Ascites 13.1 31.86
EOC3_pAsc.fes EOC3 77 IVB Primary Ascites 16.79 34.7
EOC4_iAsc.fes Interval Ascites

— EOC4 60 1Ic 2.1 >38
EOC4_pAsc.fcs Primary Ascites
EOCS5_iOme.fcs EOC5 67 1c Interval Omentum 9.2 30.76
EOCG6_pAsc2.fes EOC6 68 IVB Interval Ascites 2.3 14.63
EOC7_iAsc.fes Interval Ascites
EOC7_iMes.fcs EOC7 75 1c Interval Mesentery 6.9 >38
EOC7_pAsc.fcs Primary Ascites
EOCS8_pAsc.fcs Primary Ascites

— EOC8 54 IVA 5.8 29.7
EOC8_pOme.fcs Primary Omentum
EOC9_pAsc.fcs EOC9 62 1c Primary Ascites 3.5 17.9
EOC10_iOme.fcs EOC10 72 IVA Interval Omentum 2.7 19.17
EOC11_iOme.fcs EOC11 73 IVA Interval Omentum 2.1 >25
EOC12_pAsc.fes EOC12 78 IVA Primary Ascites 12.9 >24
EOC13_pAsc.fes EOC13 60 1c Primary Ascites >19 >24
EOC14_pAsc.fes EOC14 67 1c Primary Ascites 9.6 >22
EOCI15_r2A4sc.fes EOC15 64 1c Recurrence Ascites 5.7 28.17
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Table S2. Antibodies used for in-house CyTOF data.

Metal Final Concentra-

Cat No Tag Target Clone Vendor tion (ug/100l) Dilution
31410068 141Pr EpCAM 9C4 Fluidigm N.A 1:50
31430018 143Nd CD117 104D2 Fluidigm N.A 1:50

MAB56091 144Nd CA125 986811 R&D 1.2 -
559263/3145006B  145Nd  CDI166-PE 3A6/PE001 BD/Fluidigm N.A 1:30/1:50
31470158 147Sm ALDH 44/ALDH Fluidigm N.A 1:50

304045 149Sm CD45 HI30 Biolegend 0,6 -

561469 151Eu Sox2 030-678 BD 1.2 -
3152005A 152Sm  pAkt [S473] D9E Fluidigm N.A 1:50
3153021B 153Eu CSD;:;E;?“ 691534 Fluidigm N.A 1:75
31540038 154Sm CD3 UCHTI Fluidigm N.A 1:75

355602 155Gd MUCI1 16A Biolegend 0.7 -
31560228 156Gd CD147 HIM6 Fluidigm N.A 1:75
3158021A 158Gd  E-Cadherin 24E10 Fluidigm N.A 1:50
31590298 159Tb PD-L1 29E.2A3 Fluidigm N.A 1:50

558576/3160011B  160Gd Cleaved F21-852/FIT22 BD/Fluidigm N.A 1:30-1:50
PARP-FITC
31610098 161Dy CDY0 SE10 Fluidigm N.A 1:75
31620158 162Dy CD8a RPA-T8 Fluidigm N.A 1:75
MAB6274 164Dy HE4 676013 R&D 0.9 -

350802 165Ho N-Cadherin 8Cl11 Biolegend 0.9 -

550314 166Er CD146 P1HI2 BD 1.2 -
3171010A 167Er [”11")21:;)122{12/024] D13.14.4E Fluidigm N.A 1:50
31680078 168Er Ki-67 B36 Fluidigm N.A 1:50
31690048 169Tm CD24 MLS5 Fluidigm N.A 1:50
3172014B 172Yb PD-L2 24F.10C12 Fluidigm N.A 1:50
31740208 174Yb PD-1 EH12.2H7 Fluidigm N.A 1:50
3175009A 175Lu [323135?323 6] N7-548 Fluidigm N.A 1:50

130-090- Miltenyi/Flui-

176Yb CD133-APC AC133/APC003

826/3176007B digm N.A 1:30-1:50
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3 Supplementary figures
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Figure S1. Detailed workflow of the Anduril workflow used in Cyto.
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Figure S2. (A) Sample representation within the dominant cluster from the outlier sample 53_CtrlAdul6_PBMC. (B) Marker signal distribution within this cluster.
The highest expressing markers are CD14, CD11c,CD38,and CD11b.
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Figure S3. Simpson’s diversity index identifies sample 52_CtrlAdult5_PBMC (in Cyan) as an outlier based on the number of clusters represented within the sample
and the relative abundance of each of the clusters.
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Sample labels
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Figure S4. Expression profiles of the PBMC cell types without the two outlier samples. The sample labels indicate that a batch
effect is not dominant. Visualization of the dataset as tSNE or as MST shows the expression and relationships of the populations

shown in Figure 3.
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Figure S5. Expression distribution of each marker within the cell clusters selected in Figure 4. The lasso selection tool in the results browser allows to explore the

expression profiles interactively.
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Figure S6. Identification of the tumor compartment using density-based sampling option. (A) UMAP of the density-based sampled dataset with the tumor cells highlighted with a
dashed line. (B) Expression profile of each cluster. Tumor cells are highlighted with a dashed line and further filtered for the tumor cell analysis.
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Figure S7. Tumor cell clustering with focus on Cluster-10 and Cluster-6 (highlighted in cyan) (A) Marker expression and hierarchical clustering of the
subpopulations. (B) Population abundance across the samples.
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