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Abstract 

The signaling network governing the formation of the primitive streak is well understood in 

mice, but largely unexplored in primates. Advances in single-cell technology and in vitro 

embryo culture have enabled to characterize the major cell populations involved. However, a 

detailed map of this process and insights into its regulatory networks are lacking. Herein, we 

generated a serial single cell atlas of over 30,000 cells spanning peri-implantation to early 

primitive streak stages in non-human primates (NHP) describing the emergence of the primitive 

streak, extraembryonic mesenchyme and amnion. We discovered that ISL1, a gene with a well-

established role in cardiogenesis, controls a gene regulatory network in primate amniotic cells. 

Strikingly, CRISPR/Cas9-targeting of ISL1 resulted in NHP embryos failing to form primitive 

streak. BMP4 was identified as a key signaling pathway in this process. This was confirmed in 

human embryonic stem cell lines, suggesting a conserved function in humans. Notably, no 

viable ISL1 hypomorphic NHP mutant embryos could be recovered after embryo transfer 

confirming the essential requirement of ISL1. This highlights the importance of the amnion as 

a signaling center during primate embryogenesis and demonstrates the potential of in vitro 

primate model systems to investigate the genetics of early human development. 

 

Introduction 

One of the key steps during mammalian early development is the formation of the three primary 

germ layers. This occurs in a complex process termed gastrulation where cells from the 

columnar shaped epiblast undergo epithelial-to-mesenchymal transition and move anteriorly to 

form the primitive streak and the first mesodermal cells [1-3]. Since this step is crucial for 

further development of the embryo, disturbances in this process lead to embryonic lethality. It 

is believed that improper gastrulation occurs frequently in human embryos and accounts for a 

significant proportion of early miscarriages in the human population.  

The tight regulatory network governing this process has been well studied during murine 

embryonic development [1, 4], but is largely elusive in humans. Despite the fact that mouse 

and primate embryos have a similar appearance before the implantation stage, the transcriptome 

already differs in key aspects [5, 6]. After implantation, the differences become more evident. 

Mouse embryos form a cup-like structure, while primate embryos acquire a disk-like shape and 

have a prominent amnion, a structure which is absent in mouse embryos before gastrulation [7, 

8]. Notably, some evidence from in vitro models of early human development suggest that 

amniotic cells could be involved in the signaling network that governs primitive streak 
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formation [9]. Unravelling the pathways that form this regulatory network in primates is key 

for understanding primitive streak formation in humans and for identifying potential causes for 

congenital malformations and early pregnancy loss. Recently, two publications on cynomolgus 

embryogenesis [10, 11] and one publication on human embryogenesis [12] have created a 

framework of post-implantation development in primates and characterized the major cell 

populations involved in gastrulation. However, their interplay and the transcriptional networks 

guiding this essential step remain unknown. 

Here, we created a high-resolution map of the peri-gastrulation development of early NHP 

embryogenesis with a focus on the signaling events leading to the formation of the primitive 

streak. We identified an ISL1-dependent gene regulatory network that is specifically active in 

amnion. Disturbance of this network in NHP embryos by CRIPSR/Cas9-mediated gene-editing 

of ISL1 led to significant downregulation of BMP4 signaling from the amnion and subsequent 

failure to from the primitive streak. We confirmed these findings in a microfluidic-based model 

of amnion-epiblast interactions using ISL1-null human embryonic stem cells suggesting that 

these findings also apply to humans. Taken together, this study shows for the first time that 

signals from the amnion are indispensable for primitive streak formation in primate embryos.  

 

Results  

High-resolution transcriptomic map 

We created a high-resolution transcriptomic map by single cell RNA (scRNA) sequencing of 

11 in vitro cultured cynomolgus macaque embryos at three different time points (Day 10, Day 

12 and Day 14) (Fig. 1A). 7194 cells passing quality control (Fig. S1A-B) were embedded for 

each day separately in low-dimensional space (Fig. 1b and Fig. S2A-B). In line with previous 

results [10, 11], the cells grouped into four main cell types, namely trophoblast, endoderm, 

epiblast with its derivatives and extraembryonic mesenchyme (Fig. 1B-C). Integration of our 

dataset with a published scRNA sequencing dataset of in vivo cynomolgus embryos [13] (Fig. 

1D-E and Fig. S2C) revealed a striking difference in the transcriptomic profile between early 

(Day 10 + E08/E09) and late (Day 12/Day 14 + E13/E14) epiblast, reflecting the transition from 

a naïve to a primed state, which has been suggested before to happen during this time window 

[14]. Indeed, a published gene signature of naïve cells derived from scRNA sequencing analysis 

of in vitro cultured human embryonic stem cells (hESCs) [15], was highly enriched in the early 

epiblast (Fig. 1F), while genes belonging to the primed signature were enriched in the late 

epiblast (Fig. 1F). Aligning cells from the early and late epiblast in pseudotime disclosed a set 
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of differentially regulated genes that formed two distinct clusters based on their expression 

dynamics (Fig. 1G). Genes previously associated with a naïve state [14-16], including DNMT3L, 

KHDC1L, NLRP7, OOEP and DPP4 were significantly downregulated over pseudotime (Fig. 

1H). Notably, a number of those genes belong to the subcortical maternal complex, which is 

crucial for proper early development [17]. In contrast, genes associated with a primed state [16, 

18, 19], including CD24, CRABP2, SFRP1, USP44 and VCAN showed strong upregulation (Fig. 

1H).  This expression pattern was observed in cells from our dataset as well as in cells from the 

in vivo dataset, suggesting that the naïve to primed transition happening in vivo can faithfully 

be recapitulated in in vitro cultured embryos.  

Gene regulatory network of early epiblast 

Taking advantage of our high-resolution scRNA map, we next investigated the sequence of 

appearance of epiblast-derived cell populations. Strikingly, we identified cells expressing 

amnion marker genes ISL1 and TFAP2A [10], although very low in numbers, as early as Day 

10 (Fig. 2A and Fig. S2D). Embryos at this stage also consisted of a large cell population 

expressing genes typical of a mesodermal signature such as MIXL1 and MESP1 (Fig. S2E), 

which were previously annotated as early gastrulating cells [10]. However, in addition to their 

mesodermal signature, these cells show high expression of the transcription factor ETS1 and 

the cell adhesion protein PODXL (Fig. S2F), which mark extraembryonic mesoderm in mice 

[20], while lacking expression of the receptor tyrosin-kinase EPHA4 or the transcription factor 

ZIC3 (Fig. S2G) expressed by murine embryonic mesoderm [20]. Thus, we provide strong 

evidence, that the epiblast-derived mesodermal-like cells present in Day 10 embryos are 

extraembryonic mesoderm, which appear to precede primitive streak formation.  

Extraembryonic mesenchyme, a cell population unique to primates that contributes to a number 

of extraembryonic tissues [7, 13, 21, 22], was first present in Day 12 embryos (Fig. 2A). The 

close proximity of extraembryonic mesoderm and mesenchyme in the UMAP plot (Fig. 2A) as 

well as the expression pattern of PODXL and ETS1 (Fig. S2H), advocate that extraembryonic 

mesoderm contributes to extraembryonic mesenchyme, as was suggested previously [23]. 

However, the large increase in cell number in the extraembryonic mesenchyme over a few days 

suggests, that this cell population might get additional contributions from other parts of the 

embryo, such as the trophoblast. The formation of the primitive streak, marked by expression 

of the transcription factors MESP1 and GSC (anterior) [24, 25], as well as HOXD9 and CDX2 

(posterior) [26] (Fig. 2B and Fig. S2I-J), was observed first at Day 14 (Fig. 2A). Late amniotic 

cells had a distinct expression profile with high expression of the transcription factor ISL1, the 
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Wnt-ligand WNT6 and a subunit of the GABA-receptor GABRP (Fig 2B, Fig. S2K). Transcripts 

of these markers were specifically enriched in amniotic cells across the whole dataset including 

trophoblast, while other markers such as HEY1 were also expressed in subpopulations of the 

trophoblast (Fig. S2L). Cells classified as early amniotic cells expressed amniotic markers in 

addition to marker genes of the posterior primitive streak, such as CDX1 [26] (Fig. 2B, Fig. 

S2M). 

Gene regulatory network (GRN) analysis at Day 14 using SCENIC (Single-cell regulatory 

network inference and clustering) [27] revealed sets of highly specific GRNs (Fig. 2C-D). The  

histone demethylase KDM5B, creating bivalent histone marks during development [28], 

controlled a GRN active in epiblast and all its derivatives, while the pluripotency factor SOX2 

[19] controlled a network specifically active in the epiblast (Fig. 2D). One of the most active 

GRNs in amniotic cells was an ISL1-dependent network (Fig. 2D), suggesting that ISL1 is not 

only a specific marker of the amniotic cell population in primates, but also likely to play a 

functional role in amniotic cells. This finding is in sharp contrast to the mouse, where Isl1 is 

first expressed in cardiac progenitor cells of the lateral plate mesoderm, but absent from the 

early embryo before E7.0 [29, 30].  

ISL1 hypomorphs fail to form primitive streak 

The functional role of ISL1 in primate amniotic cells was investigated by generating ISL1 

hypomorphic mutant NHP embryos through one-cell stage CRISPR/Cas9 injections with 

gRNAs creating a long deletion in the ISL1 locus (Fig. S3C). In vitro cultured hypomorphic 

mutant embryos grew normally up to Day 10 (Fig. 3A and Fig. S3A). From Day 12 onwards 

the mutant embryos progressively lost structure and at Day 14, the embryonic disk was no 

longer distinguishable (Fig. 3A and Fig. S3A).  

Genotyping of the mutant embryos revealed a mosaic pattern with presence of ind/dels of 

different sizes in the targeted region of the ISL1 locus and no alterations in selected off-targets 

from the in-silico prediction [31] (Fig. S3B-C). Interestingly, the frequency of mutations 

resulting in an internally shortened, but functional ISL1 was significantly higher in the 

transcriptome (Fig. S3C). This could be due to nonsense-mediated decay of mutated ISL1 

message or suggest that cells with a complete loss of function of ISL1 are not able to enter an 

amniotic fate. Overall, this resulted in a 50% reduction of functional ISL1 message in 

hypomorphic mutant embryos.  

To gain mechanistic insights, in vitro cultured ISL1 hypomorphic mutant embryos were 

subjected to scRNA-sequencing at the same time points as for the wildtype (Day 10, Day 12, 
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and Day 14). Integrated analysis of 26136 cells passing quality control (Fig. S1A-B) with the 

wildtype dataset revealed the presence of similar populations at Day 10 and Day 12 (Fig. 3B-

C, Fig. S4A-C). However, contribution to the cluster identified as extraembryonic mesoderm 

was reduced in the mutant embryos while amniotic cells were slightly more abundant (Fig. 3B-

C). At Day 14, primitive streak cells were virtually absent from the mutant embryos 

accompanied by a drastic overrepresentation of amniotic cells (Fig. 4B-C). The absence of 

primitive streak in the mutant embryos was confirmed by a loss of expression of primitive streak 

markers EOMES, MIXL1, MESP1, CDX1 and CDX2 [24, 26, 32] across the embryos (Fig. 3D). 

Moreover, cells from the mutant embryos formed an additional cell cluster labeled “abnormal 

amnion” that was void in wildtype (Fig. 3B-C). In this cluster, expression of amniotic marker 

genes such as HEY1 and ISL1 [10] were present, but lower levels of GABRP or TFAP2A [10] 

(Fig. S4D). Instead, high levels of the mesenchymal marker VIM and extracellular matrix genes 

like LUM, COL1A1 or TGFBI were found (Fig. S4E). Late amniotic cells of the mutant embryos 

showed a similar expression pattern indicating an abnormal function of amnion in mutant 

embryos. Differential gene expression analysis of amniotic cells in mutant versus wildtype 

embryos revealed that a high proportion of the significantly downregulated genes in the mutant 

amnion were members of the identified ISL1 regulon (Fig. 3E-F). Among those was BMP4, a 

secreted member of the TGFb-signaling pathway  and a known downstream target of Isl1 in 

mice [33] that is essential for murine mesoderm formation [34] as well as for inducing primitive 

streak like cells from hESCs [32] (Fig. 3F). Taken together, this suggests that BMP4 is secreted 

from the amnion in an ISL1-depentend manner to induce primitive streak formation in the early 

NHP embryo. 

Loss of ISL1 in amnion impairs BMP4 signaling 

To validate this conclusion and to investigate whether these findings also apply to humans, 

ISL1-null hESCs (ISL1-null) harboring the most abundant long deletion in the ISL1 locus found 

in the mutated NHP embryos (Fig. S3C and S5A) were generated and analyzed in vitro [35] 

(Fig. 4A). Amniotic ectoderm-like cells (AMLCs) derived from the ISL1-null showed a 50% 

reduction in ISL1 mRNA (Fig. 4B) and absence of ISL1 protein (Fig. 4C) which was abundantly 

expressed in wildtype hESCs derived AMLCs (Fig. 4C). In concordance with the findings from 

the in vitro cultured NHP embryos, AMLCs derived from the ISL1-null showed higher mRNA 

and protein levels of the amnion markers TFAP2A and GATA3 (Fig. 4D-E). In addition, we 

noticed a slight reduction in WNT6 and a significant reduction in BMP4 expression, suggesting 

a functional deficit in ISL1-null derived AMLCs (Fig. 4F). Indeed, AMLCs derived from the 
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ISL1-null failed to induce mesoderm-like cells (MeLCs) from hESCs shown by a lack of 

Brachyury (BRA) signal (Fig. 4G-H). Notably, BRA expression was similar between ISL1-null 

and wildtype using a directed differentiation protocol towards anterior and posterior primitive 

streak cells [32] (Fig. S5B). This highlights that the failure of mesoderm induction in the ISL1-

null is a non-cell autonomous defect caused by altered signaling from AMLCs.   

The capacity of ISL1-null and wildtype hESCs to self-organize into an embryonic-like sac was 

assessed in a microfluidic system that has been shown to faithfully recapitulate the peri-

implantation development of the epiblast lineages [9]. With a reduced BMP4 dose as compared 

to the protocol used in the original publication, the wildtype cells still showed proper formation 

of embryonic-like sacs, adequate break of symmetry and formation of MeLCs in the epiblast-

like region as shown by strong signals for BRA (Fig. 4I and Fig. S6). ISL1-null cells were 

capable of self-organizing into embryonic-like sacs similar to the wildtype but failed to develop 

further. The epiblast-like cells remained in a columnar shape with high levels of the 

pluripotency factor NANOG and absence of BRA [19] (Fig. 4I), indicating failure to form 

MeLCs similar to the findings observed in the mutant NHP embryos during in vitro culture. 

ISL1 mutant NHP embryos are not viable 

Finally, we investigated whether the observed alterations during embryonic development in the 

ISL1 hypomorphic mutant NHP embryos lead to early embryonic lethality in vivo. The 

pregnancy rate per NHP surrogate mother after transfer of ISL1 mutant embryos was 0% as 

compared to 58.3% with wildtype embryos (Table 1). Transfer of embryos that were targeted 

with injection of only a single gRNA leading to a slightly lower mutation rate resulted in a 

pregnancy rate of 28.6% (Table 1). Strikingly, genotyping of all 4 fetuses from this experiment 

showed an unmodified ISL1 locus on both alleles, highlighting the importance of ISL1 for 

proper early embryonic development. 

 

Discussion  

In this study, we generated a high-resolution developmental roadmap of post-implantation NHP 

embryos and identified the amnion as a key signaling structure essential for initiating 

gastrulation in primates. NHP embryos hypomorphic for the amnion marker ISL1 failed to form 

primitive streak due to a lack of BMP4-signaling and did not give rise to viable offspring, 

demonstrating a novel, primate-specific role of ISL1 in early embryogenesis (Fig. 5). 

It is known that the initiation of primitive streak formation is largely dependent on BMP4-
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signaling, which is provided by the extraembryonic ectoderm in mice [1, 36]. The findings from 

our study suggest that this role is taken over by the amnion during primate embryogenesis. 

Notably, the role of ISL1 acting upstream of BMP4-signaling seems to be a conserved pathway. 

The complete loss of Isl1 in mice leads to embryonic lethality at approximately E10.5 with 

severe cardiac defects accompanied by a strong reduction in Bmp4 [29], suggesting that Bmp4 

is acting downstream of Isl1 in cardiac development. Similar observations were made in mice 

during genital development [37] and embryonic limb formation [38].  

Isl1 has a well-established role in mammalian cardiac development and is expressed in 

multipotent cardiovascular progenitor cells in mice [39-41] and humans [42, 43]. Despite its 

established role in heart development in mice, loss of function variants in the ISL1 locus are 

drastically underrepresented in large human cohorts of congenital heart malformations like the 

Pediatric Cardiac Genomics Consortium (PCGC) [28, 44]. In detail, among the 23,000 alleles 

reported in the PCGC cohort, 112 ISL1 variants have been identified, none of which were 

damaging de novo mutations. We hypothesize that the exceptionally low frequency of 

damaging ISL1 variants reported in this cohort is due to its essential role in initiating primitive 

streak formation. Importantly, we did not observe any pregnancy with an ISL1 hypomorphic 

mutant primate embryo after transferring almost 50 blastocysts in over 15 surrogate NHP 

mothers. This highlights the importance of two intact ISL1 alleles for proper embryonic 

development and suggests that mutations in ISL1 could be a cause for early pregnancy loss in 

humans.  

This study shows that the amnion is a crucial signaling center during early primate 

embryogenesis and demonstrates that in vitro cultured primate embryos are a powerful tool to 

model key steps of early human development. Further advances in the in vitro culture systems 

might enable us to support the embryo longer and to study early organogenesis, including the 

emergence of cardiac progenitor cells in lateral plate mesoderm. This would enrich our 

knowledge on human embryogenesis, help to identify causes for pregnancy loss and congenital 

malformations and, eventually, open the avenue for new therapies.  
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Methods 

Cynomolgus macaque 

Healthy cynomolgus monkeys (Macaca fascicularis), ranging from 5 to 12 years old, were used 

in this study. All animals were housed either at the facility of Yunnan Key Laboratory of 

Primate Biomedical Research in China, or at Astrid Fagræus laboratory in Karolinska Institutet 

in Sweden. Both facilities are accredited by AAALAC international. The ethics and all 

experimental protocols were approved in advance by the Institutional Animal Care and Use 

Committee of LPBR in China (KBI K001115033/01,01) and by the Jordbruksverket in Sweden 

(ethical permit number N277/14). Animals involved in this study were never used for other 

treatments.  

Culture of NHP embryos 

NHP embryos were collected as described in previously publication [45]. In brief, healthy 

female monkeys aged 5-8 years with regular menstrual cycles were selected as oocyte donors. 

Before superovulation, female animals were treated with rhFSH (recombinant human 

follitropin alfa, GONAL-F, Merck Serono) for 8 days, and administrated rhCG (recombinant 

human chorionic gonadotropin alfa, OVIDREL, Merck Serono) on day 9. Oocytes were 

collected by laparoscopic follicular aspiration 32-35 hours after rhCG administration. MII (first 

polar body present) oocytes were performed with intracytoplasmic sperm injection to generate 

zygotes and the fertilization was confirmed by the presence of two pronuclei.  

Zygotes were cultured in embryo culture medium-9 (HECM-9) containing 10% fetal calf serum 

(Hyclone Laboratories) in 37°C incubator supplying 5% CO2 until blastocyst stage. Blastocysts 

were then used for embryo transfer or post-implantation in vitro culture.  

To culture blastocyst beyond implantation stage, we applied an optimized protocol based on 

the human embryo culture protocol from Zernicka-Goetz’s group [46]. Frozen NHP blastocysts 

were thawed right before culturing by using the Thawing Media from Kizatato and cultured in 

blastocyst culture medium for at least 4 hours to recover. Blastocysts were then treated with 

Acidic Tyrode’s solution (Sigma) to remove the Zona pellucida and transferred to an ibiTreat 

8-well μ-plate (Ibidi) with 300 µL of pre-equilibrated in vitro culture medium 1 (IVC1). On the 

second day, 150 µL of IVC1 was carefully removed and 200 µL pre-equilibrated IVC2 was 

added. Blastocyst growth was monitored and medium was changed every two days until 

termination of experiments.  

Culture of NHP embryonic stem cells 
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The in-house generation of NHP embryonic stem cells (ESC) was performed according to an 

established human embryonic stem cell protocol [47]. Briefly, MitC-treated mouse embryonic 

fibroblast (MEF) feeder cells were seeded at a density of 4 x 104 per cm2. Media was changed 

to ESC medium before use. After removing the Zona pellucida the ICSI generated blastocysts 

were seeded on top of the prepared feeder cells and cultured without disturbance for three days 

in CO2 incubator at 37°C. Fresh ESC medium was changed daily until primary ESC colonies 

formed. Colonies were cut into small pieces and passaged on fresh MEF feeder cells with ESC 

medium. Subsequently, ESC colonies were passaged with Collagenase type IV (STEMCELL 

Technologies) and seeded on fresh MEF feeder cells. 

Culture of human embryonic stem cells 

Human embryonic stem cells used in this study include HES-3 human ES cells (ES03, WiCell) 

and H9 human ES cells (WA09, WiCell). Genetic modification of the ISL1 locus to generate 

ISL1-null hESCs was performed on HES-3 cells by applying CRISPR/Cas9 with the same guide 

RNAs used in NHP blastocysts. Two ISL1 knockout cell lines were generated, named 

ISL1_ko_c15 and ISL1_ko_c51, and genotyped (Fig. S3c). All cell lines were authenticated as 

karyotypically normal by Cell Guidance Systems (United Kingdom) (Fig. S5a). Mycoplasma 

contamination test was performed regularly as negative (EZ-PCR Mycoplasma Detection Kit, 

Biological Industries). hESCs were maintained in a standard feeder-free culture system using 

mTeSR1 medium (STEMCELL Technologies) on 1% Matrigel (Corning) or Essential 8 

medium (Thermo Fisher Scientific) on 1% Vitronectin (Thermo Fisher Scientific). Cells were 

passaged every 4-5 days and visually examined during each passage to ensure absence of 

spontaneously differentiation. Work with human embryonic stem cells was carried out 

according to Swedish legislation following the recommendations of the Swedish National 

Council on Medical Ethics. 

NHP embryo transfer and pregnancy diagnosis 

Embryos with high quality were transferred into the oviducts of the matched recipient monkey 

as described in previous study [48]. A total of 27 female monkey recipients with proper 

hormone level of β-estradiol and progesterone were used as surrogate recipients. Each recipient 

received 2-4 blastocysts. The pregnancy was primarily diagnosed by ultrasonography at 2-3 

weeks after embryo transfer. Clinical pregnancy and the number of fetuses were confirmed by 

fetal cardiac activity and the presence of gestation sacs. When terminating pregnancy, caesarean 

section was performed. Tissue from umbilical cord, ear and tail was collected for genotyping. 

Generation of ISL1 hypomorphic mutant NHP embryos 
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NHP zygotes were injected with mix of Cas9 protein and guide RNAs. Intracytoplasmic 

injections were performed with a Nikon microinjection system under standard conditions. The 

embryos were cultured in HECM-9 supplemented with 10% fetal calf serum (Hyclone 

Laboratories) in 37°C incubator supplying 5% CO2. Genetic modified embryos with high 

quality from morula to blastocyst stage were used for further studies. 

Single cell dissociation and RNA sequencing 

NHP embryos at Day 10, Day 12 and Day 14 were washed with PBS and treated with TrypLE 

Express Enzyme (Thermo Fisher Scientific) for 30 minutes at 37℃. After incubation, samples 

were gently dissociated into single cells by mouth pipetting. Single cells were transferred into 

a RNase-free, low-cell-adhesion 1.5 mL tube and centrifuged at 300 ℊ for 5 minutes. 

Supernatant, containing some remaining cells was transferred into a new tube for genotyping. 

The cell pellet was resuspended with 40 µL of PBS containing 2% Bovine Serum Albumin 

(Sigma) in PBS. Cells were loaded into the 10x Genomics Chromium system within 30 minutes 

after dissociation. 10x Genomics v3 libraries were prepared according to the manufacturer’s 

instructions. Libraries were sequenced with a minimum coverage of 30 000 raw reads per cell 

on an Illumina NovaSeq with paired-end sequencing.  

Reads mapping, gene expression counting and correction 

Sequencing data was aligned and quantified by using the Cell Ranger Pipeline v3.1.0 (10x 

Genomics) against the ensemble genome build Macaca_fascicularis_5.0 release 96 [49]. 

Ambient RNA contamination was estimated through the levels of choriogonadotropins 

expression in epiblast (POU5F1 positive) cells and removed from the count matrix using SoupX 

[50]. A gene was retained for analysis if it showed expression in at least 3 cells. Each sample 

was filtered based on expression level of mitochondrial genes (below 7.5%) and number of 

expressed genes. Details on the estimated contamination in each sample, the filtering criteria 

and number of cells retained for the analysis are provided in Fig. S1a.  

Reads mapping and gene expression counting of in vivo dataset 

The raw, archived single cell RNA sequencing data from in vivo cynomolgus embryos [13] was 

downloaded from the GEO database (GSE74767) and processed using TrimGalore v0.6.1. The 

reads passing quality control were aligned against the ensemble genome build 

macaca_fascicularis_5.0 release 96 using STAR v2.5.3 and counted using featureCounts v1.5.2. 

Cells expressing at least 1000 genes were kept for the integration with our dataset. 

Data integration, dimensionality reduction and clustering 
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For analysis of the single cell RNA sequencing data from the wildtype in vitro cultured embryos, 

we integrated the filtered, corrected count matrices of the different batches for each day 

separately using the reciprocal principal component analysis (PCA) approach implemented in 

the Seurat package v3.1.3 [51, 52] based on 30 dimensions and 5000 anchor features. After 

integration, we performed PCA analysis on the integrated data followed by embedding into low 

dimensional space with Uniform Manifold Approximation and Projection (UMAP) as 

implemented in the R-package ‘uwot’. For clustering, the shared Nearest Neighbor (SNN) 

Graph was constructed on the UMAP embedding by calling the FindNeighbors() function 

followed by the identification of clusters using the FindClusters() function, both part of the 

Seurat package. In some samples this clustering approach separated large, homogeneous cell 

groups into small sub-clusters with no distinct biological meaning. In these cases, the clusters 

were re-combined manually and both, the unsupervised and the manually adjusted clustering, 

was reported in the manuscript.  

To integrated the single cell RNA sequencing data from in vivo cynomolgus embryos [13] with 

our dataset we combined the three time points (Day 10, Day 12 and Day 14) from our dataset 

for each batch separately and did the same for the in vivo data from embryonic day 8 (E08), 

E09, E13 and E14 resulting in three separate datasets. Normalization, Scaling and PCA was 

performed separately on each of these datasets after which they were combined using the 

reciprocal PCA approach described above based on 30 dimensions and 2000 anchor features. 

For the analysis of the wildtype and ISL1 hypomorphic mutant embryos the different batches 

were integrated separately for each day by the same reciprocal PCA approach outlined above 

based on 30 dimensions and 5000 anchor features using the wildtype datasets as reference. 

Dimensionality reduction and clustering was performed as described above. 

Differential gene expression analysis  

Mainly due to the differences in cell numbers we observed a significant variation in sequencing 

depth between samples in our dataset (Fig. S1). It has recently been shown, that the effect of 

differences in read depth on differential gene expression analysis can be minimized by using 

regularized negative binomial regression as implemented in the R-package SCtransform [53]. 

Thus, all differential gene expression analysis was performed using a t-test on Pearson residuals 

after SCtransformation of the raw, filtered counts of the integrated Seurat object as 

implemented previously [53]. Gene expression data depicted throughout the manuscript in 

feature plots or violin plots are SCtransformed data. Expression data depicted in heatmaps are 

scaled, log-transformed expression values normalized to the total counts for each cell calculated 
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through running the NormalizeData() function followed by the ScaleData() function from the 

Seurat package.  

Visualization of gene signatures 

Scoring and visualization of gene signatures was performed using the Single Cell Signature 

Explorer v3.1 [54]. Gene signatures were created by identifying orthologues for the genes that 

have been previously described to mark the naïve and primed state of pluripotency in human 

embryonic stem cells [15] in the Macaca fascicularis genome using the according orthologue 

list provided from Ensemble through BioMart [55].  

Pseudotime analysis 

Pseudotime analysis was performed using Monocle3 v0.2 [56-58]. The principal graph was 

learned on the UMAP embedding extracted from the integrated Seurat object. Differentially 

expressed genes were calculated on the raw, filtered count matrix extracted from the integrated 

Seurat object using the Moran’s I test implemented in the graph_test() function from the 

Monocle3 package. The genes were ranked according to their Moran’s I and the top 100 genes 

were selected for display in the heatmap.  

Gene regulatory network analysis 

Gene regulatory network (GRN) analysis was performed using the R-package SCENIC (Single 

Cell rEgulatory Network Inference and Clustering) v1.1.2-2 [27] and the command line 

interface (CLI) of the python implementation pySCENIC. Macaca fascicularis gene IDs were 

converted to homo sapiens gene symbols using the according orthologue list from Ensemble. 

The raw, filtered count matrix extracted from the integrated Seurat object was pre-filtered and 

genes with at least 39 counts, equal to at least 3 UMI counts in 1% of the cells, present in at 

least 13 cells, equal to 1% of the cells, were used as input for the CLI. The human motif 

collection v9 and the cisTarget databases for hg38 were used in the pipeline and downloaded 

from https://resources.aertslab.org/cistarget/. Thresholds used for binarization were derived 

from the AUC values using Hartigan's Dip Test (HDT). After binarization, regulons showing 

activity in at least 1% of the cells were included in the downstream analysis. 

Genotyping 

Genomic DNA was extracted by Phenol-Chloroform method. DNA fragment covering both 

guide RNA target sites were PCR amplified and ligated to TOPO TA cloning vector (Thermo 

Fisher Scientific). At least 50 bacteria clones per sample were picked for Sanger sequencing 

and used to estimate the genomic mutation rate. The transcriptomic mutation rate of ISL1 

hypomorphic mutants was also calculated. cDNA libraries of each scRNA-sequencing sample 
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were used to amplify the ISL1 mRNA fragment covering both guide RNA target sites. PCR 

products were ligated into TOPO TA cloning vector (Thermo Fisher Scientific). At least 50 

clones per cDNA library sample were picked and performed Sanger sequencing.  

Off-target assay 

Cas-OFFinder was applied to search for potential off-target sites with maximal two mismatches 

and two bulges [31]. Among all off-target candidates of both gRNAs, targets located on gene 

exons were selected for test. The DNA fragments of target sites were PCR amplified and the 

sequences were confirmed by Sanger sequencing.  

RNA extraction and quantitative real-time PCR 

Total mRNA was extracted by Direct-zol RNA miniprep kits (Zymo) and reverse transcription 

to cDNA library was prepared by GoScript Reverse Transcriptase (Promega). Quantitative real-

time PCR was performed by PowerUp SYBR Green Master Mix (Thermo Fisher Scientific) on 

ABI 7500Fast machine.  

Transwell assay 

The transwell assay was performed based on previous work by Zheng and colleagues [9]. In 

brief, it was performed on Transwell 12-well plates with permeable polyester membrane inserts 

(0.4 μm, Corning). The membrane inserts were coated with 1% Geltrex diluted in DMEM/F12 

for 1 hour before use. hESCs were collected and re-suspended in culture medium containing 

Y-27632 (10 μM, Tocris), and seeded onto the membrane insert at a density of 3 x 104 cells per 

cm2. Eighteen hours after seeding, culture medium was changed to E6 medium supplemented 

with bFGF (20 ng/mL, R&D System) and BMP4 (50 ng/mL, PeproTech) and cultured for 48 

hours. Undifferentiated hESCs were collected, re-suspended in E6 supplemented with bFGF 

(20 ng/mL) and seeded at a density of 9 x 104 per well on freshly coated 12-well plates. The 

membrane inserts were washed with E6 + bFGF and transferred on top of the re-seeded hESCs. 

Cells were collected after 48 hours for analysis. Two wildtype hESC-lines (HES-3 and H9) and 

two ISL1-null lines were used in this assay. Both of the wildtype cell lines showed comparable 

results, as did the two ISL1-null lines.  

Primitive streak induction from hESCs 

Differentiation of hESCs to primitive streak-like cells was done in chemically defined media 

(CDM) as previously described [32]. In brief, posterior primitive streak was induced by the 

addition of bFGF (20 ng/ml, R&D System), the phosphoinositide 3-kinases (PI3K)-inhibitor 

LY294002 (10 µM, Tocris) and BMP4 (10 ng/ml, PeproTech). Anterior primitive streak was 
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induced with the same factors and, additionally, Activin A (50 ng/ml, PeproTech). After 40h 

cells were harvested. RNA extraction, reverse transcription and quantitative real-time PCR 

were performed as detailed below with 200 ng RNA as input for RT-reaction. All experiments 

were performed in at least biological triplicates.  

Microfluidic assay 

This assay was performed as previously described [35]. Briefly, the microfluidic device is 

fabricated by bonding a PDMS structure layer to a coverslip. Geltrex is diluted to 70% using 

E6 medium and loaded into the central gel channel separated from the side channels by 

trapezoid-shaped supporting posts. Upon gelation, Geltrex matrix would generate concave 

Geltrex pockets between supporting posts for cell seeding. hESCs suspended in mTeSR1 

medium was introduced into the cell loading channel and allowed to settle and cluster in the gel 

pockets. After hESCs cluster formation, mTeSR1 medium was replaced by a basal medium (E6 

and 20 ng/mL bFGF), and 20 ng/mL BMP4 was supplemented only into the cell seeding 

channel. After 18 hours of BMP4 stimulation, the BMP4 medium was replaced by the basal 

medium. The microfluidic devices were fixed at 48 hours since the hESCs clusters were 

exposed to BMP4.  

Immunohistochemistry  

Immunohistochemistry of cells from the transwell assay was performed following standard 

procedures. Briefly, cells were fixed in 2% paraformaldehyde for 30 minutes at room 

temperature and washed with PBS. Cells were blocked in blocking buffer (serum diluted in 

PBS with 0.1% Triton X-100) for one hour and then incubated with primary antibodies diluted 

in blocking buffer overnight at 4°C. Cells were washed with PBS supplemented with 0.1% 

Tween-20 (PBS-T) and incubated with secondary antibodies diluted in blocking buffer for 2 

hours at room temperature. After incubation, secondary antibodies were washed off by PBS-T, 

and the samples were mounted for imaging. Staining of embryonic-like sac structure was 

performed as previously described [35]. Confocal micrographs were acquired by Zeiss 700 

LSM confocal microscope or Olympus spinning-disc confocal microscope (DSUIX18) 

equipped with an EMCCD camera (iXon X3, Andor). The bright-field morphologic images of 

embryonic-like sacs were acquired by Zeiss Observer.Z1 microscope equipped with a 

monochrome CCD camera (AxioCam, Carl Zeiss MicroImaging). Images were analyzed by 

iMaris (Bitplane). 

Quantification and Statistical Analysis 
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Values are shown as the mean value plus SEM. Continuous data was analyzed using student’s 

t-test. P-values or adjusted p-values (where appropriate) below 0.05 were considered 

statistically significant. Details on the samples (e.g. number of biological replicates) are 

indicated in figure legends. Graphs were generated using Prism or R. 

 

Data and code availability 

The raw data, unfiltered count matrix and processed count matrix are deposited in the Gene 

Expression Omnibus (GEO) database with the accession number GSE148683 and will be 

publicly released upon publication. All code is available from the authors upon request. 
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Fig. 1 High resolution transcriptomic map of peri-gastrulation events in wildtype in vitro cultured NHP embryos. A, 
scheme of the workflow. B, UMAP plot of all cells from the in vitro cultured embryos at the different time points (Day 10, Day 
12 and Day 14) coloured by cell type.  C, Heatmap showing the scaled expression at Day 14 of 100 differentially expressed 
genes (DEGs) for each cell type identified in (b) selected by adjusted p-value. D, UMAP plot of all cells of the integrated dataset 
from the in vitro cultured embryos (Day 10, Day 12 and Day 14) with cells from the in vivo NHP embryos (E08, E09, E13 and 
E14) colored by cell type. E, position of the cells from the in vivo cultured embryos (E08/E09, E13 and E14) in the UMAP plot 
of the integrated dataset highlighted in red. F, visualization of the single cell signature score reflecting the naïve and the primed 
state of pluripotency on the UMAP plot of the integrated dataset. G, heatmap showing the scaled expression of 100 DEGs across 
pseudotime in epiblast development selected by the Moran’s I statistics. Unsupervised clustering of genes into a blue cluster 
containing genes downregulated over pseudotime and a red cluster containing genes upregulated over pseudotime. H, gene 
expression of 5 exemplary genes downregulated over pseudotime (blue cluster) and 5 exemplary genes upregulated over 
pseudotime (red cluster). Black line showing the fitted expression trend for each gene over pseudotime. Epi, epiblast; ExE-Mech, 
extraembryonic mesenchyme, VE/YE, visceral endoderm/yolk sac endoderm. 
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Fig. 2 Gene regulatory networks in epiblast and its derivatives, endoderm and extraembryonic mesenchyme. A, UMAP 
plot of cells from the in vitro cultured embryos at the different time points (Day 10, Day 12 and Day 14) mapping to the Epi and 
its derivatives, VE/YE and ExE-Mech coloured by cell type. B, Heatmap showing the scaled expression at Day 14 of 20 DEGs 
for each cell type identified in (A) selected by adjusted p-value. C, binary activity matrix of regulons identified at Day 14 by 
gene regulatory network interference active in at least 1% of the cells clustered unsupervised. Selected master regulators are 
depicted in the colour corresponding to the cell type they show activity in. D, gene set activity of the selected regulons at Day 
14 in the different cell types shown as “Area Under the Curve" (AUC) depicted on the UMAP plot from (A). Epi, epiblast; 
VE/YE, visceral endoderm/yolk sac endoderm; ExE-Meso, extraembryonic mesoderm; ExE-Mech, extraembryonic 
mesenchyme; e-AM, early amnion; l-AM, late amnion; ab-AM, abnormal amnion; a-PS, anterior primitive streak; p-PS, posterior 
primitive streak.  
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Fig. 3 ISL1 hypomorphic mutants fail to form primitive streak. A, the morphology of wildtype (left) and ISL1 hypomorphic 
mutants (right) at Day 10, Day 12 and Day 14. Scale bar, 200 µm. Asterisk indicates the embryonic disk. B, UMAP plot of cells 
mapping to the epiblast and its derivatives from the integrated dataset of wildtype and mutant embryos at the different time 
points (Day 10, Day 12 and Day 14) coloured by cell type.  C, relative contribution of cells to the various cell types in wildtype 
(blue) and mutant (red) embryos. D, violin plot of the expression of genes involved in primitive streak formation in cells from 
the epiblast and its derivatives of Day 14 wildtype (blue) and mutant (red) embryos. E, volcano plot showing the DEGs between 
amnion (e-AM, l-AM and ab-AM) of the wildtype and mutant embryos. Grey areas show expected group mean difference from 
a random cell subset and a false discovery rate (FDR) of 1%. Red labelling indicates that the gene is part of the ISL1 regulon 
identified by the gene regulatory network interference.  F, violin plot of the expression of three selected DEGs from (E) in the 
different cell types identified in (B) separated between wildtype (blue) and mutant (red) embryos. Epi, epiblast; VE/YE, visceral 
endoderm/yolk sac endoderm; ExE-Meso, extraembryonic mesoderm; ExE-Mech, extraembryonic mesenchyme; e-AM, early 
amnion; l-AM, late amnion; ab-AM, abnormal amnion; a-PS, anterior primitive streak; p-PS, posterior primitive streak; wt, 
wildtype; mt, mutant. 
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Fig. 4 ISL1 regulates human mesodermal cell formation through BMP4 pathway. A, a diagram of the transwell assay. B, 
ISL1 mRNA expression in AMLCs. Analysed by student’s t-test, p-value <0.0001. Wildtype n=4; ISL1-null are aggregated 
values from two ISL1 knockout cell lines n=4 for each. C, ISL1 protein in AMLCs. Scale bar, 50 µm. D, the expression of the 
amnion markers GATA3 (p-value 0.0038) and TFAP2A (p-value 0.0403) in AMLCs. Analysed by student’s t-test. Wildtype n=4; 
ISL1-null are aggregated values from two knockout lines n=4 for each. E, GATA3 (red) protein in AMLCs. Nucleus shown by 
DAPI (blue). Scale bar, 50 µm, n=3. F, the expression of WNT6 (p-value 0.0752) and BMP4 (p-value <0.0001) in AMLCs. 
Analysed by student’s t-test. Wildtype n=4; ISL1-null are aggregated values from two knockout lines n=4 for each. G, Mesoderm 
marker Brachyury (BRA, green) protein in MeLCs. Nucleus shown by DAPI (blue). Scale bar, 50 µm. H, Quantification of 
BRA+ cells from (G). Analysed by student’s t-test, p-value <0.0001. Wildtype n=3; ISL1-null are aggregated values from two 
knockout cell lines n=3 for each. I, the morphology (top panel) of embryonic-like sacs overlayed with nucleus shown by DAPI 
(blue). NANOG (red) protein and BRA (magenta) protein in lower panels. Scale bar 50 µm, n = 30 for each. Significance levels 
are depicted by asterisks: * p-value <0.05, ** p-value <0.01, and *** p-value <0.001. 
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Fig. 5 A summary scheme depicting the embryogenesis of wildtype and ISL1 hypomorphic mutant embryos. 
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Table 1. Summary of embryo transfer 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* genotyping revealed two intact ISL1 alleles in all fetuses 

  

 Oocytes  Zygotes  Blastocysts 
for ET 

Surrogate 
mothers Pregnancies  Fetuses  

wildtype 48 45 35 12 7 10 

single gRNA 
injection 48 45 24 7 2 4* 

double 
gRNAs 
injection 

53 50 25 8 0 0 
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