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SUMMARY

Histone maodifications regulate chromatin architecture and thereby control gene expression.
Rapid cell divisions and DNA replication however lead to a dilution of histone modifications and
can thus affect chromatin mediated gene regulation So how does the cell-cycle shape the
histone modification landscape, in particular during embryogenesis when a fast and precise
control of cell-specific gene expression is required?

We addressed this question in vivo by manipulating the cell-cycle during early Xenopus laevis
embryogenesis. The global distribution of un-, mono- di- and tri-methylated histone H4K20 was
measured by mass spectrometry in normal and cell-cycle arrested embryos over time. Using
multi-start maximum likelihood optimization and quantitative model selection, we found that
three specific methylation rate constants were required to explain the measured H4K20
methylation state kinetics. Interestingly, demethylation was found to be redundant in the cycling
embryos but essential in the cell-cycle arrested embryos.

Together, we present the first quantitative analysis of in vivo histone H4K20 methylation
kinetics. Our computational model shows that demethylation is only essential for regulating
H4K20 methylation kinetics in non-cycling cells. In rapidly dividing cells of early embryos, we
predict that demethylation is dispensable, suggesting that cell-cycle mediated dilution of
chromatin marks is an essential regulatory component for shaping the epigenetic landscape
during early embryonic development.
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INTRODUCTION

All cells in our body contain the same genetic information encoded in the DNA. However, we are
constituted out of many different cell types all performing their own specialized functions.
Chromatin, mainly composed of DNA and histone octamers (two copies of histone H2A, H2B,
H3 and H4 each), is an instructive DNA scaffold that aids extracting cell-specific information for
gene expression. Histone tails are subject to various post-translational modifications such as
methylation, acetylation, phosphorylation and ubiquitination (Bannister and Kouzarides, 2011),
which play a fundamental role in altering chromatin accessibility. Dynamic regulation of gene
expression is central for executing cell internal programs (proliferation, differentiation, etc.) and
reacting to cell external signals with an appropriate response. Particularly during development,
where cells continuously divide and differentiate, a fast and economical control of gene
expression is required. Histone modifications are believed to regulate the progression
throughout development (Jambhekar et al., 2020). In Xenopus laevis, a model organism for
developmental biology, stage-specific histone modifications have been observed during the
transit from pluripotent to differentiated states, a process called epigenome maturation
(Schneider et al., 2011). However, cells divide rapidly during early development. With each
cell-cycle newly formed, largely unmodified histones are incorporated into the DNA leading to an
overall dilution of most histone modifications (Jasencakova et al., 2010). How is the histone
modification landscape shaped by the cell-cycle in vivo?

Histone methylation is known to play important roles in many biological processes (Greer and
Shi, 2012) and its deregulation is linked to cancer and aging (Fraga et al., 2005; Klutstein et al.,
2016). The methylation of lysine 20 on histone H4 (H4K20) is one of the most frequent lysine
methylation sites (Jorgensen et al., 2013). It is evolutionarily conserved from
Schizosaccharomyces pombe to humans (Lachner et al., 2004), and is known to have a strong
cell-cycle dependence. H4K20 occurs in four different states, un-, mono-, di- and tri-methylation.
Each methylation state plays a different functional role ranging from DNA damage repair
(Sanders et al., 2004), over transcriptional regulation (Barski et al., 2007), chromatin
condensation (Oda et al., 2009; Sanders et al., 2004), mitotic progression (Sakaguchi and
Steward, 2007), and cell-cycle control (Schotta et al., 2008) to silencing of repetitive DNA and
transposons (Schotta et al., 2004). H4K20me is regulated by three methyltransferases: KMT5A
(also known as PR-Set7) for mono-methylation (Xiao, 2005) and SUV4-20H1 and SUV4-20H2
for both di- and tri-methylation (Schotta et al., 2004). Whether there is a specificity of
SUV4-20H1/2 for di- or tri-methylation is still debated (Schotta et al., 2008). The level of
mono-methyltransferase KMT5A is cell-cycle dependent and its degradation in G1 phase leads
to a decline of H4K20me1 in late G1 (Abbas et al., 2010; Centore et al., 2010; Zee et al., 2012).
H4K20me1 reaches its lowest level in S phase while increasing in G2 phase and peaking during
mitosis. Both H4K20me2 and H4K20me3 levels have also been found to be cell-cycle
dependent though in a less dramatic fashion (Pesavento et al., 2008). The cell-cycle dependent
presence of H4K20 methyltransferases allows H4K20me2 and H4K20me3 to be reestablished
only after mitosis in the next cell-cycle (Jargensen et al., 2013). For demethylation, unspecific
enzymes such as PHF8 are known (Feng et al., 2010), but their functional importance has
recently been questioned (Alabert et al., 2020; Jgrgensen et al., 2013; Reveron-Gémez et al.,
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2018). It has even been suggested that the loss of histone marks may occur only by dilution
during chromatin replication than by active removal (Jadhav et al., 2020).

To address the role of the cell-cycle for epigenome maturation in Xenopus development, we
have measured histone modification proportions in sibling embryo populations, which either
proliferate or are arrested at the G1/S transition. Using quantitative mass spectrometry data for
H4K20 we compared over 200 model hypotheses describing H4K20me kinetics in the cycling
and cell-cycle arrested population. With only a few assumptions, our computational model is
able to explain H4K20me kinetics, retrieves correct cell-cycle durations and known cell-cycle
dependencies of H4K20me. Furthermore, our approach allows us to estimate cell numbers over
time and reveals the importance of three specific methylation rate constants and a shared
demethylation rate constant which is essential to establish the observed histone modification
profile in the cell-cycle arrested but redundant in the cycling population of Xenopus embryos.

RESULTS

Cell-cycle arrest changes H4K20me patterns during Xenopus embryogenesis

After in vitro fertilization of a Xenopus oocyte, cells rapidly divide in a state of transcriptional
quiescence up to 5.5 hours post fertilization (hpf) (Heasman, 2006). Only then a regular zygotic
cell-cycle containing G1 and G2 phases is initiated (Newport and Kirschner, 1982). To identify
how H4K20 methylation (H4K20me) is shaped by cell-cycle, we compared a population of
normal Xenopus embryos (from now on called ‘mock’) with a cell-cycle arrested population. For
this, half of the embryos were continuously incubated with hydroxyurea/aphidicolin (from now on
called ‘HUA’) from gastrulation onwards (11 hpf). This treatment arrests cells at the G1/S
boundary and is compatible with embryonic development (Harris and Hartenstein, 1991). Mass
spectrometry measurements of H4K20me states, averaging over all cells in the embryos and all
histones in the cells, were conducted at 14.75, 19.75, 27.5 and 40 hpf corresponding to late
gastrula (NF13), neurula (NF18), tailbud (NF25) and tadpole (NF32) stages, respectively (Figure
1A). H4K20me proportions of mock and HUA showed clear differences across three biological
replicates in all four H4K20me states (Figure 1B). In HUA, methylation accumulates in the di-
and tri-methylation states in comparison to mock. There, newly synthesized and unmodified
histones are incorporated upon DNA replication, leading to an overall dilution of H4K20me and
hence a higher proportion of lowly methylated un- and mono-methylated states.

Specific methylation rate constants are necessary to explain H4K20me in mock
embryogenesis while demethylation is not essential

To identify how H4K20me kinetics are shaped by cell-cycle, we defined models for untreated
embryos (mock) and fitted them to the data (see Methods). Mock models are composed of four
H4K20me states corresponding to un- (me0), mono- (me1), di- (me2) and tri-methylated (me3)
H4K20, allowing for successive methylation and demethylation with rates m, and d,, i € {1,2,3}
respectively (see Figure 2A and Methods for a detailed model description). For mock, where the
cells undergo cell division with a cell-cycle duration ¢, unmethylated histones are incorporated
into replicating DNA leading to a continuous dilution of H4K20me. Considering methylation
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proportions (defined as the frequency of a particular methylation state divided by the sum of all
methylation states as measured by mass spectrometry), cell-cycle results in an overall increase
of unmethylated H4K20 mediated by an outflow of H4K20me states with rate g(t) = In(2)/c(t),
where c(t) is the cell-cycle duration ¢ as a function of experiment time t (see Figure 2A and
Methods). The most general model is parameterized with six rate constants, where a rate
constant is defined as the proportion of H4K20 in a particular methylation state being
methylated/demethylated per hour (h™), and contains three rate constants for methylation m,,
m,, m, and three rate constants for demethylation d,, d,, d, (Figure 2B, rightmost model).
However, we also considered models with less parameters: rate constants shared between two
or more reactions are termed ‘shared methylation/demethylation rate constants’ (Figure 2B,
gray) and rate constants specific to one reaction are termed ‘specific methylation/demethylation
rate constants’ (Figure 2B, colored). Intrigued by the question whether demethylation is
important for methylation kinetics at all (as its existence was recently challenged at least for
histone H3 lysine 27 tri-methylation (Reverén-Gémez et al., 2018), we also considered 5 models
without demethylation. In total, the 30 models we consider comprise between 1 and 6 rate
constants (Figure 2B and Methods). In addition to the rate constants, we inferred another 4
model parameters: 3 initial H4K20me proportions at 5.5 hpf (denoted as meQ,, me1,, me2,,
me3, with me0,=1-me1,-me2;-me3;), and one noise parameter o, determining the width of the
Laplacian noise distribution (Methods). As we were interested in H4K20me kinetics under the
influence of the cell-cycle, we started our mock model at 5.5 hpf (Figure 1A), when a regular
zygotic cell-cycle with G1/G2 phases is initiated (Newport and Kirschner, 1982). Since cell cycle
has been shown to vary substantially with embryonic age, we considered 6 different cell-cycle
functions c(t) to model cell cycle over the experiment time t: constant, linearly increasing, or
gradually plateauing (using a scaled Hill function with Hill coefficient 1 and offset) (Figure 2C).
The number of model parameters for the cell-cycle functions varied from 1 (for the constant
cell-cycle function) to 3 parameters (for the gradually plateauing cell-cycle function) (Methods).
We performed multi-start maximum likelihood optimization and model selection on 180 models
(30 models times 6 different cell-cycle functions). Including prior biological knowledge about the
short cell-cycle at 5.5 hpf of ~30 min (Anderson et al., 2017; Gelens et al., 2015), we found that
only one of the six tested cell-cycle functions was able to predict a biologically meaningful
average cell-cycle duration of around 8 hours: a constrained scaled Hill function with Hill
coefficient 1 and offset 0.5, c(t) = 0.5 + b(t/(b+t)) (Supplementary Information). All models with
other cell-cycle functions estimated average cell-cycle durations of at least 70 hours. Using a
constrained scaled Hill function, we found 12 models that outperformed other models with a BIC
(Bayesian Information Criterion) difference of ABIC>10, which is considered to be an
appropriate threshold for model rejection (Kass and Raftery, 1995) (Figure 2D). The two best
models (with ABIC=0) show specificity in tri-methylation and shared rate constants for mono-
and di-methylation. Overall, the best models with and without demethylation showed specificity
in either all three methylation rate constants or only in the tri-methylation rate constant. Varying
numbers of demethylation rate constants were possible, ranging from 0 to 3. Fits to these 12 top
models were able to capture the kinetics underlying H4K20me during mock embryogenesis
(Figure 2E). Together, we found that either three specific methylation rate constants or one
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specific tri-methylation rate constant were necessary to explain the data from untreated
embryos and that active demethylation was not required.

Validation of mock model by comparing cell-cycle durations to experimental data

We validated one of the best performing models by comparing it to the average cell-cycle
durations experimentally measured in Xenopus neural progenitors at various developmental
stages (Graham and Morgan, 1966; Sabherwal et al., 2014; Thuret et al., 2015). The cell-cycle
durations from the mock model with three specific methylation rate constants but no
demethylation (Figure 2F, inset) showed good agreement with measured cell-cycle durations
(Figure 2F). Using this model, we can also predict the absolute number of cells within a
developing embryo, which is experimentally challenging. For the same model (Figure 2G, inset),
the number of cells was predicted to rise exponentially from roughly 20,000 cells after 10 hours
to 300,000 cells after 40 hours (Figure 2G and Methods).

Specific methylation rate constants and demethylation are necessary to model H4K20me
in HUA embryogenesis

In contrast to mock, methylated H4K20 is not diluted in the cell-cycle arrested HUA embryo
population. We thus modeled HUA with the same set of reactions, however, without a cell-cycle
function g(t)=0 (Figure 3A). Similarly to the mock model we performed multi-start maximum
likelihood optimization and model selection on 30 HUA models with and without demethylation.
We found that the five best performing models (with ABIC<10) all required three specific
methylation rate constants and demethylation (Figure 3B). The number of demethylation rate
constants varied between 0 and 3 (Figure 3B). The single best performing HUA model without
demethylation (rightmost model in Figure 3B) was substantially outperformed by the HUA
models with demethylation (ABIC=13) suggesting that demethylation was essential to explain
the HUA data. The model fits of the five best HUA models were able to capture the kinetics
underlying H4K20me during HUA embryogenesis (Figure 3C). Together, we found that three
specific methylation rate constants were necessary to explain the HUA data and that
demethylation was essential.

Joint model is able to retrieve cell-cycle dependence of H4K20me and finds
demethylation to be essential in HUA but redundant in mock

The models performing best in mock and HUA required three specific methylation rate constants
and were indecisive about demethylation ranging from no demethylation over one shared to
three specific demethylation rate constants (Figure 2D and Figure 3B). To determine which
rates are substantially different between the two Xenopus populations we considered these
findings and devised a joint model considering mock and HUA data simultaneously. For the
most general hypothesis (Figure 4A), we allowed for three mock- and three HUA-specific
methylation rate constants (visualized by a half gray and half green dot for m,, m, or m, in
Figure 4B). We also allowed for joint methylation rate constants shared between specific mock
and HUA methylation steps (visualized as an orange dot for m,, m, or m, in Figure 4B) reducing
the number of parameters. As demethylation was not necessary to explain the mock data and
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one demethylation rate constant shared between methylation steps was sufficient for HUA, we
here restricted demethylation to the simplest case of at most one shared demethylation rate
constant d__ ., and d, , (Figure 4A). We allowed for mock- and HUA-specific demethylation rate
constants (visualized again by a half gray and half green dot for d in Figure 4B) or a joint
demethylation rate constant for mock and HUA (visualized as an orange dot for d in Figure 4B).
Furthermore, as a constrained scaled Hill function with Hill coefficient 1 and offset 0.5 was the
only function that led to biolofgically meaningful cell-cycle durations (see above and Figure 2C
and 2F) we did not consider different cell cycle functions thereby reducing the set of possible
models to 8 joint models without demethylation (Figure 4B left), 16 joint models with
demethylation and 2 x 8 models with demethylation in either mock or HUA (Figure 4B right). To
identify joint models that are able to explain our measured data, we again fitted the models
using multi-start maximum likelihood optimization and model selection.

All 6 best performing joint models (ABIC<10) required mock- and HUA-specific mono- and
di-methylation rate constants (Figure 4C). However, they were not conclusive about
tri-methylation and, if present, demethylation rate constants (Figure 4C). Specificity in one or
more rate constants highlights that the differences in H4K20me proportions of mock and HUA
are not explicable by the missing cell-cycle alone but that the overall H4K20me kinetics are
cell-cycle dependent. The model structure of the best performing joint model (model a) is shown
in Figure 4D. Interestingly, joint models with demethylation in HUA only (models a and d in
Figure 4C) performed just as well as joint models with demethylation in both HUA and mock
(models b, ¢, e and f in Figure 4C) while joint models without demethylation (ABIC=17 and 20)
and joint models with demethylation in mock only (ABIC = 20 and 22) were substantially
outperformed. This suggested that demethylation was essential for HUA only, in accordance
with the results from the separate models (Figure 2D and Figure 3B).

The top 6 joint models (models a-f in Figure 4C) showed good overall agreement with mock and
HUA data (Figure 4E) and strongly consistent rate constants (Figure 4F). We determined the
marginal distributions for all rate constants by MCMC sampling, where the credibility ranges are
the 25" and 75" percentiles of the marginal distributions (see Methods). Particularly interesting
were the strong discrepancies between mono- and di-methylation rate constants for mock and
HUA, decreasing 10-fold and 2-fold, respectively (Figure 4F). The mock-specific mono- and
di-methylation rate constants of the top 6 joint models had overlapping credibility ranges
suggesting that for mock, a shared rate constant for mono- and di-methylation would suffice
(Figure 4F). Similarly, mock- and HUA-specific tri-methylation rate constants show overlapping
credibility ranges suggesting that a joint tri-methylation rate constant would suffice. In joint
models with demethylation (models ¢ and f) we found the mock-specific demethylation rate
constants to take on very small values while the HUA-specific demethylation rate constants
were small but substantially larger: for model f the median mock-specific demethylation rate
constant was estimated to be 2.0 10* (with 0.8-5.8 10* credibility range), while the HUA-specific
demethylation rate constant was estimated to be 5.8 107 (4.7-6.9 10°®) (Figure 4F).
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DISCUSSION

We developed a computational model to investigate how H4K20me states are shaped by
cell-cycle during Xenopus embryogenesis. Our findings support the notion that cell-cycle
influences methylation kinetics and suggests that demethylation is redundant in cycling but
essential in non-cycling cells.

Active demethylation is redundant for mock but essential for HUA treated embryos

Comparing mock and HUA models with and without demethylation we found that demethylation
is redundant in mock but essential undercell cycle arrest (Figure 2D and Figure 3B). We verified
these findings with a joint model where the mock and HUA data is modeled simultaneously.
Interestingly, the joint demethylation rate constants (in models b and e) were estimated to
similar values as HUA-specific demethylation rate constants (for model b the joint demethylation
rate constant was estimated to be 5.9 10° (4.8-7.0 10®), for model f the the HUA-specific
demethylation rate constant was estimated to be 5.8 10 (4.7-6.9 10®)). This suggests that joint
demethylation rate constants are completely overshadowed by the HUA model, strengthening
the hypothesis that demethylation is redundant in mock but essential in HUA. Biologically, this
could mean that while demethylases are present during embryogenesis, their effect in cycling
cells is minute due to an overall dilution by unmodified histones. Only when cells stop to cycle
(as modelled with the HUA treatment in our approach) demethylation kicks in and stabilizes
posttranslational modifications specifically, thereby potentially driving differentiation.

HUA-specific mono- and di-methylation are strongly decreased with respect to mock

Our findings can be interpreted in light of the current knowledge on methyltransferases. The
mono-methyltransferase KMT5A (PR-Set7) was found to be cell-cycle dependent, getting
degraded by the proteasome in G1 phase (Abbas et al., 2010; Centore et al., 2010). In the
absence of KMT5A, mono-methylation might be compensated by SUV4-20H1/2 but with lower
activity (Southall et al., 2013; Yang et al., 2008). HUA treatment blocks the cell-cycle at the
G1/S boundary, suggesting that none to little KMT5A is present in HUA to mono-methylate
H4K20. This is reflected by a 10-fold decrease in the HUA-specific mono-methylation rate
constant in all best performing joint models (Figure 4F). As HUA-specific mono-methylation rate
constants were necessary to explain the data (see Figure 4C), the joint model is able to retrieve
this known cell-cycle dependence of H4K20me. H4K20me2 is also regulated in a cell-cycle
dependent manner, however peaking in G1 phase (Pesavento et al., 2008). In contrast, all best
performing joint models estimate the HUA-specific di-methylation rate constants to be
decreased 2-fold in comparison to the mock-specific di-methylation (Figure 4F). We hypothesize
this unexpected decrease of HUA-specific di-methylation to be due to either compensatory
effects of SUV4-20H1/2, when the enzymes additionally mono-methylate H4K20, or so far
unknown effects.

Computational approach suggests shared rate constant for mono- and di-methylation in mock
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The separate model for mock identified either only tri-methylation or all three methylation steps
to be specific (Figure 2D). The joint model reflects the same specificities regarding methylation
in mock. Even though the joint model allows for specificity in all three methylation steps, the
credibility ranges of mock-specific mono- and di-methylation rate constants in the joint models
overlap (Figure 4F left). This suggests that a shared rate constant for mock mono- and
di-methylation would suffice resulting in a mock model with specificity in tri-methylation only.
However, in the joint models the HUA-specific mono- and di-methylation rate constants have
non-overlapping credible ranges with respect to the mock-specific rate constants (10-fold and
2-fold decrease) nor to each other. Under the assumption that the mock and HUA models are
based on the same model structure, allowing for three specific methylation rate constants in the
joint model was thus necessary (Figure 4F) to resolve these differences. We cannot infer from
specificities in rate constants to specificities in the enzymatic activity of methyltransferases.
However, current research hypothesizes that there exist three different methyltransferases:
KMT5A performing mono-methylation (Xiao, 2005) and SUV4-20H1/2 performing both di- and
tri-methylation (Schotta et al., 2004). Whether there exists a specificity of SUV4-20H1/2 for di- or
tri-methylation is still debated (Schotta et al., 2008).

Joint model suggests that tri-methylation is not necessarily cell-cycle dependent

All three joint models with specificity in tri-methylation (models d, e and f) result in slightly lower
BIC values (Figure 4C), which is likely due to an increased penalization term for an additional
estimated parameter and not due to a decreased likelihood. The estimated tri-methylation rate
constants are small (on the order of 10®) and the credible ranges for mock- and HUA-specific
tri-methylation overlap in all three joint models suggesting that a joint tri-methylation rate
constant would suffice. When we interpret differences in HUA and mock rates as indications for
cell cycle dependent rates, we find no evidence for cell-cycle dependence for H4K20
tri-methylation. To clarify if the corresponding enzymes are indeed homogeneously expressed is
up to further research.

Together, we provided a computational framework to analyze how H4K20me states are shaped
by the cell-cycle throughout early development. We model the evolution of H4K20me states
during embryogenesis in two Xenopus populations - one population with a regular cell-cycle, the
other population with an arrested cell-cycle. We found that our model is able to retrieve the
known cell-cycle dependence of H4K20me, where mono- and di-methylation rate constants are
substantially decreased in HUA. Additionally, our models - both the mock and HUA models as
well as the joint model - propose that demethylation is only essential in the cell-cycle arrested
HUA population while redundant in the cycling cells of the mock population.
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FIGURE LEGENDS

Figure 1. H4K20 methylation kinetics during Xenopus embryogenesis are altered upon
HUA induced cell-cycle arrest.

(A) Xenopus eggs are fertilized in vitro at time point 0. For the next five hours post fertilization
(hpf), the embryonic cell-cycle consists of S and M phases only. At 5.5 hpf, G1 and G2 phases
appear. At 11 hpf, half of the embryos are incubated with hydroxyurea/aphidicolin (HUA),
arresting cells at the G1/S boundary. Mass spectrometry measurements of H4K20 methylation
(H4K20me) are performed at 14.75, 19.75, 27.5 and 40 hpf in embryos with dividing (mock) or
non-dividing cells (HUA). HUA incubated embryos are viable and visually remarkably similar to
mock embryos (scale bar 1mm).

(B) H4K20me kinetics differ between mock (gray) and HUA treated (green) embryo populations.
In HUA H4K20 un- and mono-methylation is decreased while H4K20 di- and tri-methylation
(see inset) is increased.

Figure 2. Demethylation is redundant to explain data of cycling mock cells.

(A) Model of cycling mock population composed of four H4K20 states: un- (me0), mono- (me1),
di- (me2) and tri-methylation (me3). m,, m,, m, represent the mono-, di- and tri-methylation rate
constants, and d,, d,, d, represent the demethylation rate constants. .An overall dilution of
methylation happens due to cell division, parametrized with population growth rate g(t), which is
dependent on the cell-cycle function c(t).

(B) All possible parameter combinations result in 5 models without demethylation and 25
models with demethylation. Rate constants specific to a particular methylation or demethylation
step are indicated in color, rate constants shared between methylation or demethylation steps
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are shown in gray. The number of rate constants ranges between 1 for the simplest model with
no demethylation and shared methylation rate constant and 6 for the most complex model,
where each methylation and demethylation rate constant is specific.

(C) Only a constrained scaled Hill function with Hill coefficient 1 and offset 0.5 gives a cell-cycle
duration in the expected range of 8 hours (marked by the black box). All other cell-cycle
functions c(t) predicted average cell-cycle durations of at least 70 hours, which is biologically not
meaningful and reflects a population of non-cycling cells.

(D) The 12 best performing models are ordered by increasing BIC (Bayesian Information
Criterion). All models with ABIC < 10 require either three specific methylation rate constants (m,,
m,, m,) or a specific tri-methylation rate constant. However, if present, demethylation may take
on any of the 5 possible rate constant combinations. The best performing models without
demethylation perform similarly well as the best performing models with demethylation (ABIC=0
and 1). The estimated average cell-cycle duration <c(t)> is in a biologically realistic range of
around 8 hours.

(E) All 12 best performing models fit the data. The model with three specific methylation rate
constants but with no demethylation is shown in black.

(F) Model prediction of the cell-cycle duration (median, 25th and 75th percentiles of MCMC
chain of the cell-cycle parameter of the model with three specific methylation rate constants but
with no demethylation (inset)) agrees with experimental measurements of different papers.

(G) The model with three specific methylation rate constants but with no demethylation (inset)
predicts an increase of cell numbers from roughly 20,000 cells after 10h to 300,000 cells after
40h (using the median, 25th and 75th percentiles of the MCMC samples of the cell-cycle
parameter of the model with three specific methylation rate constants but with no demethylation
(inset)) in a developing Xenopus embryo.

Figure 3. Demethylation is essential to explain data of cell-cycle arrested HUA cells.

(A) Model of cell-cycle arrested HUA population. In contrast to the mock model (Figure 2A), the
HUA cells do not divide (g(t) = 0) and no dilution of methylated H4K20 is required.

(B) The 5 best performing HUA models with ABIC<10 all require 3 specific methylation rate
constants (m,, m,, m,;) and demethylation. However, demethylation may take on any of the 5
possible rate constant combinations. The single best performing HUA model without
demethylation (right) is outperformed by the HUA models with demethylation (ABIC=13).

(C) Model fits of top 5 HUA models with demethylation overlap strongly and show the ability to
explain the HUA data. The best performing model is highlighted in black.

Figure 4. Joint computational modeling allows direct comparisons between mock and
HUA rate constants and reveals that demethylation is overshadowed by HUA.

(A) Joint model allows for three methylation and one demethylation rate constants for both mock
and HUA as suggested by the best models for mock and HUA.

(B) We fit 16 models with demethylation and 8 models each for without demethylation in mock
and/or HUA to the joint data to infer mock- and HUA-specific rate constants. The joint rate
constants of mock and HUA are shown in orange, the rate constants present in both the mock
and HUA models but taking on mock- and HUA specific values are indicated in gray/green, the
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rate constants only present in the mock or HUA model are shown in gray and green half-circles,
respectively. The model structure of the most complex of models is shown in (A). The number of
rate constants ranges between 3 and 8.

(C) The best performing models on the combined data set are ordered according to their BIC
value. All models require HUA-specific mono- and di-methylation rate constants, but are
indecisive about tri-methylation and demethylation. Joint models where demethylation is present
in either only HUA or in both mock and HUA perform equally well. Joint models where
demethylation is not present in either only HUA or in both mock and HUA perform considerably
worse. Model IDs of all considerably best performing models are given (a-f).

(D) Model structure of the simplest best performing joint model with demethylation in only HUA
(model a).

(E) All best performing joint models are able to explain both the mock and HUA data. The
estimated initial conditions vary between the models. Joint model a is highlighted.

(F) The violin plots of the marginal distributions of all best performing joint models show high
consistency between the estimated methylation and demethylation rate constants. HUA-specific
mono- and di-methylation rate constants are considerably decreased. Tri-methylation rate
constants between mock and HUA have strongly overlapping marginal distributions.
Demethylation seems to be dominated by the HUA population and is negligible in the mock
population if a mock-specific demethylation rate is allowed.

MATERIALS AND METHODS

Embryos handling and HUA treatment

Xenopus laevis eggs were collected, in vitro fertilized and handled by standard methods (Sive et
al., 2000). The staging was done according to Nieukoop and Faber (Nieuwkoop and Faber,
1994). When embryos reached the desired stage (NF10.5), they were separated into two
groups and incubated continuously into either HUA or mock solutions in parallel. HUA solution:
20mM Hydroxyurea (USBiological, H9120) and 150uM Aphidicolin (BioViotica, BVT-0307) in
0.1x MBS solution (Harris and Hartenstein, 1991). Mock solution: 2% DMSO (dissolvent for
Aphidicolin) in 0.1x MBS solution. The embryos were collected at the four developmental stages
(NF13, NF18, NF25 and NF32) for the mass spectrometry analysis.

Nuclear histone extraction

Around 50 to 200 embryos developed to desired stages (NF13, NF18, NF25 NF32). They were
harvested and histone proteins were purified by acid extraction from nuclei (Schneider et al.,
2011, Pokrovsky et al., submitted). Each developmental stage is represented by three biological
replicates. Each biological replicate derived from a different mating pair.

Mass spectrometry sample preparation

The pellet from the nuclear histone extraction was dissolved in an appropriate amount of Lammli
Buffer to reach 1.37 10° nuclei/ul in each sample. 15uL were loaded on an 8-16% gradient
SDS-PAGE gel (SERVA Lot V140115-1) and stained with Coomassie Blue to visualize the
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histone bands. Histone bands were excised and propionylated (as described in (Villar-Garea et
al., 2012)). As an internal and inter-sample control, a library consisting of heavy-labelled
peptides mimicking H4K20 methylation states which contain a heavy Arginine (R10 peptides)
was used (product of JPT company). R10 peptides were mixed in the library with the equimolar
concentration and the mix was added to each analyzed sample before in-gel trypsin digestion.
Digested peptides were sequentially desalted using C18 Stagetips (3M Empore) and porous
carbon material (TipTop Carbon, Glygen) as described in (Rappsilber et al.,, 2007) and
resuspended in 15ul of 0.1% FA.

Mass Spectrometry analysis with scheduled PRM method

To identify and measure the proportion of the histone modifications a parallel reaction
monitoring method (PRM) was used (Liebler and Zimmerman 2013). The mass spectrometer
was operated in the scheduled PRM mode to identify and quantify specific fragment ions of
N-terminal peptides histone proteins. In this mode, the mass spectrometer automatically
switched between one survey scan and 9 MS/MS acquisitions of the m/z values described in the
inclusion list containing the precursor ions, modifications and fragmentation conditions. Survey
full scan MS spectra (from m/z 270-730) were acquired with resolution 60,000 at m/z 400 (AGC
target of 3x1076). PRM spectra were acquired with resolution 30,000 to a target value of 2 10°,
maximum IT 60 ms, isolation window 0.7 m/z and fragmented at 27% or 30% normalized
collision energy. Typical mass spectrometric conditions were: spray voltage, 1.5 kV; no sheath
and auxiliary gas flow; heated capillary temperature, 250°C.

Histone modifications quantification

Data analysis was performed with Skyline (version 3.7) (MacLean et al., 2010) by using doubly
and triply charged peptide masses for extracted ion chromatograms (XICs). Selection of
respective peaks was identified based on the retention time and fragmentation spectra of the
spiked in heavy-labelled peptides. Integrated peak values (Total Area MS1) were exported as
csv file for further calculations. Total area MS1 from endogenous peptides was normalized to
the respective area of heavy-labelled peptides. The sum of all normalized total area MS1 values
of the same isotopically modified peptide in one sample resembled the amount of total peptide.
The proportions of the different K20 methylation states were calculated and displayed as
percentages of the overall K20 peptide amount.

Models
HUA and mock models. We consider the proportions of un- (me0), mono- (me1), di- (me2) and
tri-methylated (me3) H4K20 within a Xenopus embryo population, defined as
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where meX,,q is the H4K20 methylation as measured by mass spectrometry and X € {0,1,2,3}.
We assume successive methylation and demethylation of H4K20 (van Nuland and Gozani,
2016) resulting in three possible methylation rate constants for mono-, di-, and tri-methylation
with rate constants m,, m,, m,, respectively, and three possible demethylation rates with rate
constants d,, d,, d, (Figures 2A and 3A). However, reactions might share rate constants. The
simplest model (Figure 2B left) comprises one shared methylation rate constant for mono-, di-
and tri-methylation We successively added model-specific rate constants to this simplest model
(Figure 2B). Models allowing for two specific methylation rate constants are identical to a model
allowing for three specific methylation rate constants. Hence, we do not consider models with
two specific methylation rate constants separately. This results in 23-3 = 5 models for
methylation - three methylation rate constants with either a shared or specific rate constant
minus the three cases where we assume only two of the three rate constants to be specific. We
have the same for demethylation resulting overall in (23-3)*(2-3) = 25 possible HUA models.

Joint models. The joint model considers both mock and HUA data sets. We based the joint
model on our previous findings assuming three specific methylation rate constants and at most
one demethylation rate constant for both mock (Figure 2D) and HUA (Figure 3B) as well as a
scaled Hill function with Hill coefficient 1 and offset 0.5 as cell-cycle function. In general, the
joint model would allow for (2°-3)* = 625 distinct models. By constraining both the HUA and
mock model to allow for three methylation and one demethylation rate constants, we are able to
reduce the number of possible models to 16. The simplest joint model is comprised of 3 rate
constants which are shared for mock and the HUA reactions (Figure 4B left). We successively
added model complexity by allowing for HUA-specific rate constants, totalling to 16 models for
the joint model with demethylation in mock and HUA and 8 models for the joint model with
demethylation present in either one or none (Figure 4B).

For all models we describe the temporal changes in these proportions by systems of ordinary
differential equations (ODESs) using mass action kinetics (see below).

HUA model. We first derive the system of ODEs for the absolute numbers of H4K20me states,
given by mé0, mé1, mé2, and mé3, for the model with the largest number of rate constants
(Figure 3A):

m;eO = —my x me0 + dy X mel
mel = my X me0 — (my +dy) x mel + dy x me2
me2 = my X mel — (ms + dy) x me2 + ds x me3
mLe3 = ms3 X me2 — d3 X me3

N=0

N is the total number of histone tails. As the HUA model assumes no cell-cycle, the number of
histones over time is constant and its derivative is zero. The proportions me0, me1, me2 and
me3 are given by meX = ZX  for X € {0, 1, 2, 3} (Alabert et al., 2020) and the corresponding
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ODEs are given by

meX meX xN
N N2 ’

meX =

simplifying to

meX = N

in the HUA model. The full ODE system for the proportions is given by

me0 = —my x me0 + dy x mel

mel = my x me0 — (my +dy) x mel + dy x me2
me2 = my x mel — (m3 + dz) x me2 + d3 x me3
me3 = ms X me2 — ds X me3

N=0

Mock model - constant cell-cycle duration. According to the HUA model, we first formulate
the ODE system of the absolute numbers of methylation states, mé0, mé1, mé2, and mé3. We
assume for now the cell-cycle duration to be constant over time, denoted by a:

c(t)=a
Then the full ODE system of the absolute numbers of methylation states is given by

% - o In(2 . - ” -
me0 = —my X me0 + d; X mel + In(%) x (me0 + mel + me2 + me3)
a

mel = my X me0 — (ma+dy) X mel + ds X me2
me2 = mgy X mel — (mgz + da) X me2 + ds x me3

m;e?) = ms3 X me2 — ds X me3

N:@xN,

N is the total number of histone tails, where N() = NO x ¢ and N(t,) = NO the number of
histone tails at the beginning of the model. Then the ODE system of the methylation proportions
is given by
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—my x me0 +dy x mel + 22 (me0 + mel + me2 + me3)  mel x @ x N

a

me( = N - N2
In(2 In(2
=—m1xm60—|—d1xmel+£x(meO+mel+me2+me3)—mer&
a a
In(2)
= —my X me0 + d; x mel + X (mel + me2 + me3)
a
. In(2
mel=m1xm60—(m2+d1+ﬁ)xmel+d2><me2
a
. In(2
me2=m2xmel—(m3+d2+£)><m62+d3><me3
a
. In(2
me3:m3xme2—(d3+£)xme3
a
N:ln(Q)XN,
a

Mock model - linearly increasing cell-cycle duration. Similarly, we derive the ODE system of
the methylation proportions, me0, me1, me2 and me3, for linearly increasing cell-cycle function,
where we first assumed the cell-cycle function to be

c(t)=a+bxt
and hence, N(f) = NO X e
. 0:—m1Xméo+d1xm}31+ali§thx(méo+miel+méz+m~e3)_m”e0x(Zﬁ)xi‘)‘z><N
N N2
In(2 In(2
:—m1xmeO+d1xmel+%X(meO+mel+me2+me3)—mer%
mel = m x me0 — (mg +d —l—m)xmel—i—d X me2
- 2T T (a+bxt)? 2
: In(2
me2=m2xmel—(m3+d2+(;l_|(_z—:g2)xme2+d3xme3
: In(2) X a
= 92— i Sl Al
me3 = m3 X me (d3+(a+bxt)2)><me3
_ In(2) x a IV,
(a+bxt)?

To constrain the system to biologically meaningful cell-cycle durations we included prior
knowledge from literature: at 5.5 hpf the cell-cycle in Xenopus has been found to be ~0.5 hours
(Heasman, 2006). Hence, we assumed a second linearly increasing cell-cycle function

c(t)=05+bxt
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Mock model - scaled Hill function with Hill coefficient 1 and offset as cell-cycle duration.
Similarly, we derive the ODE system of the methylation proportions me0, me1, me2 and me3 for

In(2
the cell-cycle function ¢(r) = a+bx +=and N(f) = NO x e o

- s ¥ In(2) ¥ e 7 ¥ ~ In(2) xax (h+t)24+bx 2
o my X me0 +d; X mel + pra =0 x (me0 + mel + me2 + me3) ~ me0 X ((zzi(});izﬁgxt);t « N
o N N2
In(2) In(2) x a x (h+1t)2+b x t2

) (ax (h+1t)+bxt)?

In(2) x a x (d+t)? +b x 2
(ax (h+t)+bxt)?
In(2) x @ x (h+1t)2+b x 2

(ax (h+1t)+bxt)?

In(2) x a x (h+1t)2 +bx t2
(ax (h+t)+bxt)? )
5= In(2) x a x (h+t)%2+bxt2
(ax (h+t)+bxt)?

= —my; X me0 + d; X mel +

x (me0 + mel + me2 + me3) — me0 x

mélzmlxmeo—(m2+d1+ )Xmel+d2><me2

mé2:m2xmel—(m3+dz+ )xm62+d3><me3

me3 = ms X me2 — (d3 + me3

X N,

Similar to the mock model with linearly increasing cell-cycle function we tested three different
scaled Hill functions with Hill coefficient 1 and offset as cell-cycle functions:

t
c(t)=a+bx R
c(t)=05+bx T
t

We again reduced the number of model parameters in the second equation by inserting prior
knowledge about the cell-cycle duration at the start of the model (see Mock model - linearly
increasing cell-cycle duration). Additionally, we reduced the number of model parameters further
by assuming the scaling b and the dissociation constant h to be identical in the third equation. In
comparison to the former two cell-cycle functions, the third equation constrains the parameter
space more strictly. E.g. for upper and lower boundaries of 100 and 0.0001 for parameters a, b
and h the first equation will allow for cell-cycle durations up to
100+100*(42-5.5)/(0.0001+42-5.5) = 200 hours while the third equation only allows for cell-cycle
durations for up to 0.5+100*(42-5.5)/(100+42-5.5) = 27 hours.

Noise models

As experimental data is generally noise corrupted, we evaluated all models with an underlying
Laplacian noise model. Maier et. al. (Maier et al., 2017) have shown that Laplacian noise
models may outperform Gaussian ones due to their increased robustness against outliers
(Maier et al., 2017). All model parameters are comprised in the parameter vector 6 and the
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experimental measurement /i at time point k is denoted by y_lk The log-likelihoods for the
Laplacian noise model is given by

logL(0) = — _ (log(20) + [log(¥) — log(yi(tx, Q)N
ik g

1,

By performing maximum likelihood estimation we obtain the optimal model parameters.

Optimization and parameter estimation
The model parameters include the relative initial states, me1,, me2, and me3;, where me0,=0.1
is fixed to obtain structural identifiability and

meXo
meXo = —3 :
2o meio

with X € {0, 1, 2, 3}, one noise parameter, the model-specific rate constants of (de-)methylation
and potentially up to three constants (mock models) describing the cell-cycle function. For
numerical reasons we optimized the parameters in a log10 scale (Hass et al., 2019). The lower
and upper bounds for the rate constants, initial states, noise parameter and cell-cycle
parameters were initiated in log10 scale at -10 to 2, -4 to 2, -2 to 0 and -10 to 10, respectively.
We performed multi-start local optimization of the negative log-likelihood using the parameter
estimation toolbox PESTO (Stapor et al., 2018) and simulated the models with AMICI (Frohlich
et al.,, 2017). We performed at least 100 local optimization runs per model, initialized by
latin-hyper cube-sampled starts. For the models not converging upon these initializations (where
by ‘not converging’ we mean that the likelihood value of the second best run differs more than
0.1) we decreased the width between upper and lower bounds to increase the probability of
convergence. For this, we assured that the optimization bounds were wide enough such that the
optimal values are not in the bounds for the rate constants and the cell-cycle parameters. As the
initial states are unidentifiable we ignored optimal values which ran into these boundaries as
long as other optimal values were found within. For models where this was not the case we
expanded the boundaries of the rate constants and initial states up to -20 to 10 and -10 to 10,
respectively, as we assumed any smaller or larger values to be biologically non-informative. For
the initially non-converged joint models we also increased the number of starts to 800. Models
not having converged upon manually adjusting the boundaries and running for 800 starts were
determined to not converge. All mock and HUA models converged. We determined 6 out of the
40 joint models to not converge (Supplementary Information). The given likelihood values of
these joint models are lower bounds of the true optimal likelihood values obtainable upon
convergence. As the likelihood values of all 6 non-converged joint models still resulted in
considerably lower BIC values in comparison to the other tested models we can safely report
them as best performing models for the respective demethylation hypothesis. As the BIC values
between the demethylation hypotheses allowing and not allowing for demethylation in HUA
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differ considerably we assume the comparison between different demethylation hypotheses to
be valid and the resulting conclusions to be justified.

Model selection
We use the Bayesian Information Criterion (BIC) (Schwarz, 1978) for model comparisons,

BIC =1n(n) x k — 2 x logL

where n is the number of data points, k is the number of estimated parameters or the overall
model complexity and logL is the log-likelihood value for the maximum likelihood estimate of the
model parameters. The BIC rewards high likelihood values and penalizes model complexity.
Hence, low BIC values are preferable. In comparison to other model selection methods such as
the Akaike Information Criterion (AIC) the BIC penalizes additional model complexity more
strongly. We consider a ABIC>10 between two models to be enough evidence to reject the
model with the higher BIC (Kass and Raftery, 1995).

Parameter uncertainty
To receive the uncertainties for the estimated model parameters we performed Markov Chain
Monte Carlo (MCMC) sampling of the posterior distribution

p(6]D) o< L(6)7(6)

with uniform prior z(0) defined over the optimization boundaries, likelihood function L(6) and
data D. We sampled the posterior for all six best performing joint models and the mock model
with three specific methylation rate constants and no demethylation (PESTO-internal function
getParameterSamples). We employed parallel tempering with five parallel chains initiated at the
five most optimal parameter estimates per model obtained during optimization and performed
10° iterations. Upon performing a Geweke test (first 10% versus last 50% of the final MCMC
chains), we discarded the first 10% of the samples as burn-in phase and thinned the chains
keeping only every 100" sample. The marginal posterior distributions are plotted via violin plots
(plotting function violin, Hoffman, H. (2015). violin.m - Simple violin plot using matlab default
kernel density estimation.
(https://de.mathworks.com/matlabcentral/fileexchange/45134-violin-plot), MATLAB Central File
Exchange. Retrieved November 13, 2019.)).

Validation - cell-cycle durations

We used the median and the 25" and 75" percentiles of the MCMC chain determined during the
parameter uncertainty analysis for the cell-cycle parameter b, and evaluated the median and the
25™M and 75™ percentiles of the cell-cycle function according to

t
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for t € [0,40], where the cell-cycle duration of 0.5 hours at 5.5 hpf (start of model) is taken from
(Anderson et al., 2017; Gelens et al., 2015).

Prediction of number of cells

Using the median and the 25" and 75" percentiles of the cell-cycle parameter b (as determined
in the validation analysis), we determined the theoretical number of cells a Xenopus embryo is
on average composed of between 5.5 hpf and 45.5 hpf according to

In(2)

NC(t) = NCO x e’*+** s+

Xt

where NC(t) is the number of cells at time t, NCO the initial number of cells and 0.5+b*t/(b+t) the
cell-cycle function (constrained scaled Hill function with Hill coefficient 1 and offset 0.5). To
account for the time-dependent cell-cycle function we calculated the cell numbers in time steps
of 0.01 hours, where we take the initial cell number NCO(t) for every time step t to be the cell
number of the previous time step NC(t-0.01). At the start of the model (at 5.5 hpf) we take the
initial number of cells NCO(0) to be 4096 (Heasman, 2006).

Implementation

The toolboxes used for the analysis of the manuscript for ODE simulation (AMICI (Fréhlich et
al.,, 2017)) and parameter estimation (PESTO (Stapor et al., 2018)) are available under
https://github.com/ICB-DCM. The analysis was performed with MATLAB 2017a.
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