
1 

Single cell characterization of B-lymphoid differentiation and 

leukemic cell states during chemotherapy in ETV6-RUNX1 positive 

pediatric leukemia identifies drug-targetable transcription factor 

activities 

Juha Mehtonen1*, Susanna Teppo2*, Mari Lahnalampi1, Aleksi Kokko1, Riina Kaukonen3, Laura 

Oksa2, Maria Bouvy-Liivrand1, Alena Malyukova4, Saara Laukkanen2, Petri I. Mäkinen5, Samuli 

Rounioja2, Pekka Ruusuvuori6, Olle Sangfelt4, Riikka Lund3, Tapio Lönnberg3, Olli Lohi2, Merja 

Heinäniemi1  

*equal contribution 

 

1Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, 

Kuopio, Finland 

2Clinical Medicine, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, 

Finland 

3Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland 

4Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden  

5A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1, FI-70211, 

Kuopio, Finland 

6BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere Finland 

 

 

Abstract 

Tight regulatory loops orchestrate commitment to B-cell fate within bone marrow. Genetic 

lesions in this gene regulatory network underlie the emergence of the most common childhood 

cancer, acute lymphoblastic leukemia (ALL). The initial genetic hits, including the common 
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translocation that fuses ETV6 and RUNX1 genes, lead to arrested cell differentiation. Here, we 

aimed to characterize transcription factor activities along the B-lineage differentiation trajectory 

as a reference to characterize the aberrant cell states present in leukemic bone marrow, and to 

identify those transcription factors that maintain cancer-specific cell states for more precise 

therapeutic intervention. 

We compared normal B-lineage differentiation and in vivo leukemic cell states using single cell 

RNA-sequencing (scRNA-seq) and several complementary genomics profiles. Based on 

statistical tools for scRNA-seq, we benchmarked a workflow to resolve transcription factor 

activities and gene expression distribution changes in healthy bone marrow lymphoid cell states. 

We compared these to ALL bone marrow at diagnosis and in vivo during chemotherapy, 

focusing on leukemias carrying the ETV6-RUNX1 fusion. 

We show that lymphoid cell transcription factor activities uncovered from bone marrow scRNA-

seq have high correspondence with independent ATAC- and ChIP-seq data. Using this 

comprehensive reference for regulatory factors coordinating B-lineage differentiation, our 

analysis of ETV6-RUNX1-positive ALL cases revealed elevated activity of multiple ETS-

transcription factors in leukemic cells states, including the leukemia genome-wide association 

study hit ELK3. The accompanying gene expression changes associated with natural killer cell 

inactivation and depletion in the leukemic immune microenvironment. Moreover, our results 

suggest that the abundance of G1 cell cycle state at diagnosis and lack of differentiation-

associated regulatory network changes during induction chemotherapy represent features of 

chemoresistance. To target the leukemic regulatory program and thereby overcome treatment-

resistance, we show that selective inhibitors of ETS-transcription factors could effectively reduce 

cell viability. 

Our data provide a detailed picture of the transcription factor activities that characterize both 

normal B-lineage differentiation and those acquired in leukemic bone marrow and provide a 
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rational basis for new treatment strategies targeting the immune microenvironment and the 

active regulatory network in leukemia. 

Keywords Cell differentiation, leukemia, gene regulation, single cell genomics 

 

Background 

Failures in lymphoid cell differentiation underlie the emergence of acute lymphoblastic leukemia 

(ALL) that peaks in incidence in childhood [1]. Recently, 35 potential cell states in 

hematopoiesis were resolved using single-cell RNA-seq (scRNA-seq) data based on eight 

healthy bone marrow (BM) donors profiled by the Human Cell Atlas (HCA) groups, comprising 

approximately 100 000 cells [2]. Understanding normal B cell differentiation in BM forms the 

basis to characterize the aberrant cell states in cancers that originate from lymphoid progenitor 

cells. Previous work has identified tight regulatory loops that orchestrate B-cell fate [3]. 

However, their activity along the single cell resolution trajectory in human B-lineage has not 

been studied in detail.  

The genetic basis of ALL initiation and progression is mechanistically linked to 

alterations in key lymphoid transcription factors (TFs) [1]. The most common translocation 

t(12;21)  generates a fusion between two transcription factors (TFs): the repressive domain of 

ETV6 is fused with RUNX1, retaining the RUNT-DNA-binding domain. This confers cells with 

functional properties that sustain self-renewal and survival [4]. We and others have shown that 

the aberrant ETV6-RUNX1 (E/R) TF-fusion can silence key genes and regulatory regions [5–9]. 

In effect, cells become arrested at a lymphoid progenitor state [7,10], whereby additional DNA 

lesions can accumulate, which especially in E/R-leukemias are driven by a transcription-coupled 

mechanism that results in off-targeting of the recombination activating genes (RAG) complex 

[11,12]. However, the emerging cell state heterogeneity that manifests at diagnosis and during 

chemotherapy within the bone marrow remains poorly characterized. 
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In the clinics, the accumulated knowledge regarding initiating genetic lesions has been 

implemented into diagnostic screens that inform choices between chemotherapy regimes that 

differ in intensity. However, almost half of relapses occur in children presenting initially with 

good-risk cytogenetic features such as E/R [13], thus raising the question what underlies their 

resistance. Epigenetic changes driven by TF, coregulator and chromatin modifier activities in the 

blast cells contribute to the blast cell phenotype [14,15]. The epigenetic plasticity of leukemic 

cells may support resistant states [16,17], allow conversion into quiescent stem-like states or 

lineage switching to escape the cytotoxic agents [18–22]. This poses a challenge in the design 

of drug therapy and urges the development of new therapies informed by characterization of the 

cancer cells and their cross-talk with the microenvironment.   

Single cell genomics holds promise to resolve the leukemic gene regulatory programs 

even in small cell populations, based on mRNA, chromatin and DNA profiles [23]. 

Computational analysis can resolve TF activity, transcriptome dynamics and capture changes in 

gene expression distributions between cell states analyzed [24–26]. Here, we set out to 

elucidate cell states and TF activities characteristic of normal B-lineage differentiation from 

hematopoietic stem cells (HSC) and to compare these to the E/R+ ALL cases at diagnosis and 

during standard chemotherapy. 

 

Results 

Bone marrow B-lineage differentiation states are captured in single cell transcriptomes 

For a refined view on early B-cell differentiation, we processed BM scRNA-seq data available 

from HCA [27] and projected each cell into a two-dimensional map using UMAP (Fig. S1). A 

branching map centered at CD34+ HSC was obtained, where cycling progenitor cell states lead 

to more differentiated cells that predominantly existed in the G1 cell cycle state based on cell 
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cycle marker gene scoring (Fig. S1a-b), while stromal cells or mature T (CD3D+), NK (GNLY+) 

and plasma B cells, which mature outside the bone marrow, clustered separately (Fig. S1c). 

We separated the B-lineage branch for further analysis, resulting in a reference dataset 

for B-lineage differentiation from HSCs with 11 clusters (Fig. 1a). The first two clusters 

corresponded to HSC (in G1 or cycling cell cycle states S/G2/M). DNA 

nucleotidylexotransferase (DNTT, also known as TdT) and MME (also known as CD10) marker 

gene expression distinguishes the early lymphoid progenitors (CLP, cluster 3) that progress into 

the CD19-expressing cycling and G1 pro-B cell states (Fig. 1b). Furthermore, three pre-B cell 

clusters (lacking DNTT expression) segregated on the map, corresponding to the cycling large 

pre-B state, followed by pre-B-I and pre-B-II cells in the G1 cell cycle state. The pre-B-II and the 

subsequent immature B cell clusters were defined by MS4A1(CD20)-positivity [28,29]. The 

pseudo-temporal ordering of the clusters, based on diffusion pseudotime analysis, is shown in 

Figure 1c. The progression between cell states based on this analysis is in agreement with the 

assigned differentiation stages. These cell state annotations had high agreement also with 

differentiation state scoring using gene sets defined by flow-sorted B-cell populations (Fig. 1d) 

[30]. However, these gene sets defined from bulk transcriptomes scored highly only in the 

cycling cell states. Therefore, we additionally distinguished marker genes for each cluster from 

the single cell analysis (Table S1) to facilitate BM B-lineage cell state assignment in future 

studies. 

To delineate the gene expression changes that characterize the cell state transitions in 

early B-lineage differentiation, we compared the cell clusters sequentially along the pseudotime 

trajectory (HSC -> CLP -> pro-B -> pre-B -> immature B cell state). Using the scDD tool [26], 

changes in mRNA detection (as proportion of zeros), differences in mean expression and 

modality could be distinguished for 2201 genes in total (Fig. S2; Table S2). Analysis of the RNA 

dynamics of this gene cohort based on RNA velocity [25,31] allowed further resolving the B-

lineage cell state map (Fig. 1e). In this analysis, both spliced and unspliced counts are used to 
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estimate the velocity of gene expression change, thus extending the cell state representation 

with gene regulatory dynamics (see Methods). This is illustrated by DNTT (Fig. 1f) that is first 

upregulated (red tones correspond to positive velocity, top panel) in early lymphoid cells and 

further increases in mRNA expression (red tones indicating high spliced mRNA counts, bottom 

panel) at the pro-B state. The pro-B G1 cell state separates as a branch in these analyses, 

indicating the possibility that this cell state is present as a progenitor pool. Moreover, two 

successive cycling cell states precede the cell cycle exit into the small pre-B state: the S-phase 

marker PCNA is upregulated (positive velocity) as cells progress from early lymphoid to the first 

cycling state (pro-B cycling) (Fig. S1d) and its mRNA peaks at S-phase cells, coinciding with 

increasing TOP2A velocity (Fig. 1g, top panel, G2/M marker gene) that subsequently peaks in 

its mRNA level at the G2/M state. The successive increases in the velocity and mRNA levels of 

these cell cycle state markers indicate the direction of cells on the map and the final exit from 

the cell cycle into pre-B I G1 state (Fig. 1g, lower panel). 

 

TF activity changes reveal the regulatory dynamics of B cell differentiation 

The cell state transitions along the B-lineage trajectory are tightly controlled by TFs. To 

characterize TF, coregulator (CR), chromatin modifier (CM) and splicing/transcription complex 

(ST) activities at fine-resolution, we performed discovery of so-called TF regulons with a 

workflow based on the SCENIC tool [24] (see Methods for details). Significant predictors for cell 

states were analyzed by linear model fitting using regulons that were reproducibly identified 

across training and test set splits. The regulon activity scoring across the B-lineage 

differentiation stages is shown in Figure 2a (Table S3) for regulons passing a stringent R2 cut-off 

(0.5). Expression levels for TFs involved in the main B-lineage commitment loop (B-lineage TFs 

reviewed in [32,33]) are shown for comparison in Figure 2b. EBF1, FOXO1, LEF1 and TCF4, 

together with ETS-factors ERG and FLI1, displayed the highest activity (in red) in pro-B cells in 

our analysis, while TCF3 and PAX5 had similarly high activity in both pro- and pre-B cell states. 
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SPIB and IRF4 activity was elevated later at pre-B cells, together with several negative regulons 

for TFs with known repressive function such as BCL11A and known co-repressor complex 

components HDAC2 and TBL1XR1 that interact with glucocorticoid receptor to promote terminal 

differentiation. 

As independent validation, we first retrieved bulk ATAC-seq profiles from pro-B cells 

[34]. Significantly enriched TF motifs confirmed 9/12 TF regulons (EBF1, FOXO1, TCF3, RFX5, 

IRF1, TCF4, LEF1, ERG, FLI1) that our analysis associated with the pro-B G1 cell state (Fig. 

2c). Next, we examined closer the regulon gene sets that include TF targets discovered based 

on TF-to-target gene expression correlation and TF-motif analysis at each target gene locus. 

We categorized the predicted targets based on how many training/test set splits supported them 

in the regulon discovery phase. To test whether the predicted targets were bound by the TF, we 

retrieved ChIP-seq data for PAX5, EBF1 and BCL11A, available in the human cell line model 

Nalm-6 (see Methods). Peak to gene associations were obtained using the tool GREAT [35], 

and compared to SCENIC predictions (Table S3). For PAX5 and EBF1, over 75% of predicted 

targets had a ChIP-seq peak association (Fig. 2d). The validation for the BCL11A repressive 

regulon was initially low (< 25%). However, upon modification of the regulon discovery strategy 

(see Methods; data shown in Fig. 2a corresponds to updated regulon discovery), we could 

improve this nearly 2-fold. Moreover, targets discovered across multiple training data splits 

(Npred, number of iterations supporting the target) were associated with more ChIP-seq peaks 

(Fig. 2e, Fig. S3), including the most prominent peaks based on ChIP peak score (Fig. 2f, low 

ranks corresponds to best ChIP scores). The number of associated peaks and their relative 

peak ranking is further illustrated for top 50 genes from the PAX5 regulon (Fig. 2g, targets 

ranked by Npred). ChIP-seq validated genes include known PAX5 targets from confirmed 

regulatory loops (EBF1, IRF4, BACH2) and B-cell maturation pathways [36–38]. The high 

agreement of ATAC-seq motif enrichment and the verified TF binding at target gene set loci 
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based on ChIP-seq provides evidence that the TF activity scoring reflects bona fide active 

regulatory interactions. 

In summary, our analysis of healthy BM single cell transcriptomes provides a 

comprehensive reference for gene expression and TF activity changes that characterize early 

B-lineage differentiation at single cell resolution. 

 

E/R-leukemic cells resemble the pro-B cell state and display heterogeneity in cell cycle 

activity 

Lymphoblastic leukemias arise as a consequence of arrested cell differentiation and often carry 

initiating genetic lesions directly affecting key lymphoid TFs. To characterize leukemic cells 

carrying the most common TF fusion in ALL (E/R), we performed scRNA-seq on six pediatric 

E/R+ pre-B-ALL cases, collecting from each the diagnostic BM and from two cases BM at day 

15 during induction chemotherapy (Fig. 3a, Table 1). The leukemic cell clusters in each donor 

were identified based on DNTT expression and their clear separation from normal bone marrow 

cell types (Fig. 3b) (Fig. S4a-c). The cycling leukemic states clustered across donors directly, 

while the similarity of G1 leukemic cells could be ascertained by correcting for donor effect (Fig. 

S4d). Based on the B-lineage cluster-specific gene sets, the diagnostic leukemic blasts 

resembled the pro-B differentiation state (Fig. 3c). This analysis was supported by label transfer 

analysis using Seurat [39] (Fig. S4c) that similarly identified pro-B cells as the closest normal 

differentiation state, in agreement with previous studies [4,7,40]. The cell cycle state distribution 

differed between cases, from lowest proportion of cycling cells in ALL3 to highest in ALL9 (Fig. 

3d). For the two cases (ALL10 and ALL12) with mid-induction therapy BM profiles, the cells 

collected at day 15 separated as distinct cell states (Fig. 3a and d), indicating that treatment 

further alters leukemic cell states. 

Next, we aimed to further characterize how the diagnostic E/R leukemic cells differ from 

pro-B cells by comparing separately the gene expression distributions of cycling and G1 state 
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cells to normal pro-B cells. For the majority of genes, the most notable change upon normal B-

lineage differentiation was in the zero proportion (ZP) metric that captures the fraction of cells 

with zero counts for a gene of interest, as exemplified for top 50 genes up- and downregulated 

in pro-B to pre-B transition (Fig. S2). Therefore, we used ZP for clustering the 272 up- and 90 

downregulated genes found in both G1 and cycling cell state comparisons of E/R+ and pro-B 

cells (Fig. 3e; Table S2). Compared to other cell states along the B-lineage differentiation 

trajectory, about one-third of the upregulated genes were expressed at the highest level in E/R+ 

cells (cluster 4), while genes in clusters 1, 2, 5 and 6 showed expression in leukemia and 

normal stem/progenitor cells (Fig. 3e). A smaller fraction (19 genes, cluster 8) were highly 

expressed in normal pre- or immature B-cells. Considering that some gene expression patterns 

resembled the pre-B cell state, yet the leukemic cells appeared arrested at the pro-B state, we 

further identified genes that are normally regulated in the pro-B to pre-B transition, to distinguish 

additional genes associated with the differentiation arrest. In total 97 genes normally 

upregulated upon transition to pre-B state remained at similar low expression level as in normal 

pro-B cells, while 145 genes downregulated during differentiation remained expressed in 

leukemic (Table S2).  

Pathway enrichment analysis (Table S4) revealed that several of the upregulated genes 

associated with cytokine, chemokine and growth factor pathways, in particular those involved in 

the negative regulation of NK cell-mediated cytotoxicity. Previous study in ALL implicated 

elevated TGF-β expression in immune evasion [41]. TGFB1 and three additional genes, LY6E, 

TERF2 and HLA-E, contributing to lower NK cell recruitment and activation [42–44] were found 

up-regulated in our analysis comparing the expression distribution of E/R+ G1 cells to pro-B G1 

cells (Fig. 3f). 

 

The E/R+ BM immune microenvironment has low abundance and activity of NK cells 
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The increase in cells expressing genes that may suppress NK cell activity prompted further 

analysis of the BM immune cells. In accordance, GNLY or NKG7 positive NK cell numbers were 

markedly reduced in E/R+ BM compared to HCA BM donors (Fig. 4a). To characterize the 

immune cell populations further, we combined T and NK cells across HCA and E/R+ ALL 

donors for joint analysis. 

Based on clustering and marker gene analysis, several different NK cell types could be 

distinguished (Fig. 4b and c). We focused on clusters expressing GNLY or NKG7 (clusters 0, 2, 

3, 7, 10, 11, 16) and noticed that the NK cells from ALL BM were disproportionately assigned to 

these clusters compared to NK cells from HCA donors (Fig. 4d). Specifically, ALL NK cells 

mainly represented clusters 10 and 16 that matched granzyme K (GZMK) expressing immature 

CD56 bright and translational NK cells (gene set scores in Fig. 4e represent the NK subtypes 

from a scRNA-seq study[45]). In comparison, the majority of the normal BM NK cells 

represented the mature or terminal NK cells (cluster 0) that express granzyme B (GZMB) and 

perforin (PRF1). Therefore, E/R+ leukemic cells may actively evade NK cell cytotoxicity. 

However, the frequency of NK types varied between donors (Fig. 4f). Cluster 7 that expressed 

IFNG at high level corresponded almost exclusively to HCA donor 3 and the highly cell cycle 

active ALL8 and ALL9 resembled more the mature or active NK profile in normal BM compared 

to other ALL cases.  

Taken together, the leukemic cell states differed from normal pro-B differentiation state 

based on high expression of stem/progenitor cell-specific genes and several immunomodulatory 

genes. The changes in immunomodulatory genes were reflected as more immature NK cell 

types within the E/R+ BM.  

 

The leukemic regulatory program reveals cell state infidelity in TF activities and includes 

leukemia risk genes 
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To further decipher the aberrant TF activities contributing to the epigenetic reprogramming that 

distinguishes E/R+ leukemic cells from normal lymphoid cell states, we repeated the TF regulon 

activity analysis including the diagnostic leukemic cell states from patient BM (Fig. 5a) (Table 

S3). Two-third of the regulons passing the linear model fit (R2>0.5) were active in pro-B cells 

and showed elevated activity in E/R+ cells, including several ETS-factors (ELK3, ERG, FLI1), 

FOXO1, MAX, MAZ, SP4, TCF4 and THAP11. However, our analysis also revealed high activity 

of RFX5 and NFYC in E/R+ blasts that typically would peak only at the immature B-cell state. 

This infidelity in differentiation-stage timed TF activities is also manifest in the misexpression of 

GATA2 that is normally confined to HSC and erythroid progenitors. Furthermore, high but more 

variable levels of IRF-, KLF- STAT- and CREB1 activity characterized E/R+ cells. Regulons 

showing diminished activity included RUNX1, SPIB, TCF3 and IRF4 (Fig. 5a). 

In further confirmation, we analyzed TF expression matching the positive TF regulons 

with high activity in E/R+ cells (top panel, Fig. 5a) across a large microarray gene expression 

dataset [50] (Hemap, N=9544, with 1304 pre-B-ALL samples). The ETS-factor ELK3 and SP4 

have been implicated by genome-wide association (GWAS) studies as risk loci for pediatric pre-

B-ALL [48,49]. Based on the bulk transcriptomes, we could validated both to be expressed in B-

ALL, with highest proportion detected in the E/R+ subtype (red arrow), as shown comparing 

hematologic malignancies on the t-SNE plot of Hemap samples (Fig. 5b), where lymphoid 

malignancies are highlighted above the panel (Fig S6). The two most common B-ALL subtypes 

(E/R+ and high hyperdiploid cases) displayed similarly high ELK3 and ERG expression (Fig S6). 

Overall, we could confirm the expression in E/R+ leukemias (log2 signal above probe detection 

level of approximately 6 (Fig S6)) for all 19 TFs analyzed. 

   

Leukemic TF activities that persist during chemotherapy provide new targets to 

overcome resistance  
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Next, we analyzed the effect of the standard leukemia induction therapy (prednisolone, 

vincristine, doxorubicin) on the TF expression based on the scRNA-seq profiles acquired at mid-

induction therapy in ALL10 and ALL12 (Fig. 5c). Based on differential distribution analysis, 

residual  leukemic blasts from day 15 bone marrow had lower expression of RUNX1, TCF3, 

SOX4 and ERG compared to diagnostic state in both samples, while SMAD1 and ELK3 levels 

increased slightly (refer to Table S2 for full analysis). ALL10 had a favorable decrease in blast 

count at end of induction on day 29 (0.08%). At day 15, the expression of pre-/immature-B TFs 

POU2F2, KLF2/6, AFF3 and SPIB were elevated in the remaining leukemic cells of ALL10 (10% 

blasts). These changes may relate to the differentiation-inducing effects of glucocorticoids (daily 

prednisolone). However, overall the changes in TF activities or gene expression were modest, 

indicating that only partial differentiation towards pre-B cell state may occur, despite the 

increase in the maturation marker CD20 (encoded by MS4A1). In contrast, cases ALL3 and 

ALL12 responded slowly to therapy (74% and 59% blasts at day 15; 0.16% and 0.2% end of 

induction, respectively). In ALL3, the cell cycle state distribution was strongly skewed to G0/G1 

state at diagnosis (Fig. 3d) compared to the other E/R+ cases, which could underlie resistance 

to drugs targeting dividing cells (doxorubicin/vincristine). In ALL12, the day 15 sample TF profile 

indicated persistence of the leukemic gene regulatory program, manifest as lack of pre-

/immature-B TF upregulation (Fig. 5c).  

This prompted further analysis of TF regulation in E/R+ cells. Towards this end, we 

extracted predicted regulatory interactions for ELK3 from TF regulons (Npred>4) and analyzed 

the active enhancers and transcripts based on global run-on sequencing (GRO-seq) data (Fig. 

5d). The GRO-seq profile confirmed high transcriptional activity of the gene locus in E/R+ cells 

(E/R+ cell line REH and two primary E/R+ bone marrow profiles are shown) and revealed an 

alternative TSS upstream the annotated ELK3 TSS. We retrieved public ChIP-seq peak data for 

the TFs that could represent ELK3 upstream factors, and narrowed down the analysis to active 

promoters and enhancers detected by GRO-seq: ELK3 (data from HUVEC) and the two other 
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ETS-factors ERG, FLI1, together with GATA2 (data from HSC) bound the novel TSS, while 

ELK3-FLI1-GATA2 or FLI1-ERG-MEF2C bound at intronic enhancers (Fig. 5d). Further, their 

binding may contribute to the aberrant cytokine, chemokine and growth factor expression 

detected in E/R+ cells based on regulon target and ChIP-seq peak data (Fig. S6a). Thus, the 

regulon and ChIP-seq analysis indicates that a tightly interconnected network may form 

between TFs with high activity in E/R+ cells.  

As one strategy to overcome resistance to standard induction therapy, we sought to 

identify drugs that could target the high activity TFs identified. We selected two compounds for 

further experiments: XRP44X has been shown to have dual activity in both targeting 

microtubules (like vincristine) and simultaneously decreasing ELK3 activation by inhibiting its 

phosphorylation [51]. TK216 is an analog of YK-4-279 that was directly shown to inhibit ERG 

and FLI1-mediated transcriptional activity [52]. We used the glucocorticoid-resistant E/R+ REH 

cells as a cellular model and performed proliferation and viability assays at different drug doses 

(Fig. 5f; Fig. S6b. At 72 h, cellular ATP levels assessed using MTS assay (top panel) and viable 

cell counts (bottom panel) dropped sharply at sub-micromolar doses of XRP44X and TK216. 

Moreover, >1 uM doses (1.6 uM for XRP44X, 2 uM for TK216) resulted in loss of cellular ATP. 

In summary, small molecule inhibitors targeting the leukemic regulatory network could be 

effective in drug-resistant leukemic cells.  

 

Discussion 

Specific cell types are faithfully generated in a repeated manner during development. This is 

due to gene regulatory interactions that limit the space of stable cell states [53]. Understanding 

the direct impact of aberrant leukemic TFs on cell state transitions in differentiating lymphoid 

cells, and identifying such TFs that maintain leukemia-specific cell states could enable more 

precise therapeutic intervention. Here, we explored large-scale single cell transcriptomics data 
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from healthy human BM to generate a reference for cell state transitions and TF activities that 

characterize early B-lineage differentiation. Focusing on leukemias carrying the E/R fusion, we 

profiled primary patient bone marrow samples from diagnosis and during induction therapy. The 

data suggest that the leukemic cell states resemble most the pro-B state, differ between cases 

in their cell cycle activity, interact with the immune microenvironment and may partially be 

programmed towards pre-B state during chemotherapy. Accompanying the differentiation arrest 

at pro-B cells, our results revealed elevated activity of specific TFs that could serve as 

therapeutic targets.  

Single cell profiling techniques have challenged how we define cell types and provided 

new methodology to characterize their molecular phenotypes [23,54]. Previous analysis of the 

HCA BM data [2,27] distinguished the B-lineage cell populations but did not further compare 

them, or analyze how the transition from HSC to immature B cells is regulated. One 

distinguishable feature along this lineage are the alternating cycling and G1 cell populations that 

the single cell profiling uniquely could resolve. Here, we focused on uncovering key lymphoid 

TFs orchestrating these cell state transitions. A popular approach to study gene regulation 

based on scRNA-seq profiles is to analyze so-called TF regulons defined by TF-to-target 

correlation and TF motif analysis, available in the SCENIC tool [24]. We benchmarked this 

method for studying BM cell states, using target genes for EBF1, PAX5 and BCL11A from ChIP-

seq as validation. Compared to the original method, we introduced a cross-validation step and 

improved capture of repressive TF-target interactions. The regulons thus identified faithfully 

captured targets confirmed by ChIP-seq and TFs that have been previously functionally 

implicated in B-lineage differentiation through mouse knockout studies [32,33]. This same 

analysis strategy could be adopted to identify candidate regulatory programs for cell states 

across hematologic malignancies.  

In this study, we examined the TF activities that may contribute in maintaining leukemic 

cell states in E/R+ cases and linked those to target genes, including modulators of leukemia-
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immune cross-talk. Previous bulk cancer genomics studies have established that repeated gene 

expression patterns also characterize cancer samples [55], including ALL where such studies 

have established several transcriptome-based subtypes [56–60]. They have also shed light on 

pathway activity and TF expression in E/R+ cells that could be utilized to design targeted 

therapies [6,61,62]. However, the rarity of normal B-lymphoid pro-B cells in BM tissue has 

represented a challenge to perform direct comparison of E/R+ and healthy BM lymphoid cell 

states in vivo. Moreover, bulk profiles have obscured the characteristics of the immune 

microenvironment. Existing scRNA-seq studies in ALL have so far not focused on the these 

aspects, in particular on the leukemic gene regulatory network [63,64]. Through computational 

discovery and analysis of TF regulons from scRNA-seq data, and independent validation with 

GRO-seq and bulk genomics data, we could show that elevated activity of multiple ETS-factors 

(ELK3, ERG and FLI1), together with pro-B TFs FOXO1, MEF2C, immature B-cell TFs NFYC, 

RFX5, lineage-atypical GATA2 expression and E/R-subtype-specific SP4 and TCFL5 activities 

characterized the E/R+ regulatory network. TCFL5 has been previously shown to be 

upregulated in E/R+ pre-B-ALL [65–67], while GATA2 has been reported to contribute in the 

upregulation of erythroid genes, such as EPOR, a known marker gene in E/R+ leukemia [68–

70]. While these TF activities were consistently high across the six diagnostic samples studied, 

many IRF- and STAT-regulons showed variable activity. Previously, inhibition of STAT3 was 

tested in E/R+ leukemic cells and shown to be necessary for MYC expression [61]. However, 

we did not observe the correlation between STAT3 and MYC regulon activities in our analysis. 

Among the E/R+ TF network, ELK3 and SP4 have been reported to confer risk of 

leukemia development in GWAS studies [48,49]. Previous expression quantitative trait loci data 

from mature B lymphoid cells indicated that the ELK3 risk variant associates with its lower 

expression [48]. This contrasts the data obtained here where high expression was seen in E/R+ 

scRNA-seq data, which we confirmed by bulk gene expression data comparing across 

hematologic malignancies [50]. This data indicated similar expression levels also in high 
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hyperdiploid pre-B-ALL samples that represent the most common ALL subtype. In E/R+ cells, 

we observed an active alternative TSS at the ELK3 locus. Further functional studies on the 

impact of the risk variants on expression of ELK3 variants in normal pro-B cells and leukemia 

are thus warranted to characterize their role during leukemogenesis. One aspect to study in this 

context is the role of immune surveillance of pre-leukemic clones, as the target genes that were 

reproducible associated with the ELK3 regulon across SCENIC runs included TGFB1, TERF2 

and HLA-E that we showed to be highly expressed in E/R+ cells. In addition to HLA-E, class I 

MHC molecules HLA-A, -B, C, and F were also upregulated in leukemic cells. Functionally, their 

expression might interfere with NK cell-mediated tumor surveillance [40,42–44,66,71,72]. It is 

known that infection exposure is a key underlying factor in the development of E/R+ leukemias 

[73–76]. The decrease in NK cell number observed in the five E/R+ BM characterized here is in 

agreement with a larger flow-cytometry based study [41]. However, using scRNA-seq data from 

E/R+ and normal BM, we could analyze the small NK cell population further. There was a shift 

towards immature NK cell populations in leukemic BM and we did not detect subpopulations 

with high BHLHE40 or IFNγ expression that would characterize active tumor killing, matching 

targets inhibited by TGF-β [77,78]. Interestingly, the TF regulons did not indicate canonical 

activation of SMAD2/3 by TGF-β in the E/R-leukemic cells but instead both the regulon and 

differential expression analysis showed high SMAD1 levels. Atypical activation of SMAD1 via 

TGF-β has been reported to occur in different cell types [79,80], and instead of suppressive 

signaling it may give E/R+ preleukemic cells a growth advantage over healthy pro-B cells [73]. 

Overall, our analysis provides a rationale for carrying out further studies focused on immune 

cell-leukemia cross-talk to develop therapies that specifically target these immune cell 

suppressive mechanisms and to understand how genetic variations in the leukemia-associated 

TF loci relate to leukemia risk.  

Measurable residual disease (MRD) at mid- [90] and end of induction chemotherapy are 

predictive markers for relapse risk [13]. Moreover, in vitro resistance to prednisolone has been 
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shown to confer poor prognosis [91]. Previous bulk gene expression studies have indicated 

treatment-specific changes in gene expression and expression of more mature cell markers 

[92,93]. In this study, we sought to gain insight on the efficacy of drug therapy in leukemic cell 

clearance examining cell state features from scRNA-seq samples collected during in vivo 

chemotherapy. The E/R+ samples analyzed included several cases with residual leukemia cells 

at mid (day 15) or end of induction (day 29), and we profiled two of these from post-therapy 

bone marrow at day 15. ALL10 with a favorable end of induction blast count (<0.1%), regained 

expression of multiple pre-B/immature B-specific TFs, including SPIB and AFF3. In contrast, 

similar changes in TF expression were lacking in blasts representing 59% of BM cells in ALL12 

at day 15. In ALL3 that had also a high blast count at day 15, the leukemic blasts at diagnosis 

represented predominantly non-cycling cells. Characterization of these features across a larger 

patient cohort is thus warranted. To overcome resistance to standard induction therapy, our 

analysis highlighted candidate drug therapy targets in E/R+ cells that could disrupt leukemic TF 

activities. We tested small molecule drugs targeting the ETS-factors ELK3, or ERG and FLI1 in 

dexamethasone resistant E/R+ REH cells and found reduced cell viability with sub-micromolar 

concentration. Inhibitors abrogating FLI1, MEF2C, ELK3, or SP4 activation have been 

previously shown to have efficacy in different cancers [94–99]. Moreover, the small molecule 

ERG/FLI1 inhibitor tested here has entered a phase 1 study in Ewing sarcoma [100]. Our 

findings demonstrate the feasibility of monitoring the early treatment response using single cell 

genomics characterization and its potential to uncover targets for further pre-clinical and clinical 

studies. 

One limitation of this study is that we could only compare the E/R+ leukemic cells to 

early B-lineage differentiation in adult BM. In our analysis, a putative steady state of pro-B cells 

in G1 state was connected to the succession of cell states from early lymphoid to pre-B state. 

Pro-B cells can migrate during early development from fetal liver and contribute as a progenitor 

pool to lymphoid cell generation alongside HSC during early life [34]. As pre-leukemic clones 
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may arise already in utero, the origin and the relative contributions of both HSC- and pro-B pool-

derived lymphoid cells at different ages would be relevant to characterize further, which could 

be achieved using new lineage tracing approaches coupled with scRNA-seq [101–103]. 

Moreover, compared to other hematopoietic lineages, the succession of lymphoid cell states 

from early lymphoid to immature B cells differed markedly in transcriptional activity and cell size. 

The sequential transitions between G1 and cycling cell states pose challenges in single cell 

analysis in data normalization and resolving the B-lineage differentiation path. Existing 

benchmarks with down-sampling of counts [104,105] show that normalization methods are 

robust to differences up to 20% in “size”, yet the differences between G1 and G2/M states 

observed in lymphoid cell data exceeded this. Moreover, many common trajectory analysis 

methods fit tree-like structures to data [106]. This challenge motivated our choice of diffusion 

pseudotime and RNA velocity analyses that both can accommodate cycling cell 

states[25,31,107]. The variability between donors in relative proportions of cycling cells at each 

differentiation state, would also represent a confounder in comparative analysis of cells 

categorized using differentiation markers alone, as carried out in previous flow sorted bulk 

transcriptomes. Therefore the comparisons of subsequent differentiation states matched by cell 

cycle state, as performed here, represents a significant advance. One technical confounder in 

scRNA-seq performed using viably frozen (unfixed) BM samples could derive from the specific 

protocol used for thawing cells, which could introduce differences in the transcriptional activity 

level of cells measured. We noted that the largest variance (PC1) within individual leukemic 

bone marrow samples reflected their transcriptional activity. These effects could be mitigated by 

careful selection of analysis steps and underline the importance of good benchmarking data for 

optimizing single cell workflows for clinical samples. 

 

Conclusions 
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This study provides the first comprehensive characterization of cell states and TF activities in 

E/R+ ALL cases and its comparison to normal human B-lineage differentiation at single cell 

resolution. Through joint analysis of single cell and bulk genomics data, we characterized TF 

activities contributing to the aberrant cell phenotype in leukemic cells. These results could 

provide a rational basis for developing new therapies targeting leukemia-immune cell cross-talk 

and treatment-resistant leukemic cell states. 

 

Methods 

 

Patient samples 

This study was approved by the Regional Ethics Committee in Pirkanmaa, Tampere, Finland 

(#R13109) and conducted according to the guidelines of the Declaration of Helsinki. A written 

informed consent was received by the patient and/or guardians. All the patients were positive for 

the E/R-fusion transcript based on clinical RT-qPCR and FISH analysis (further confirmed using 

bulk WGS data). Their age ranged between 1-10 years and all cases received standard 

induction therapy according to the NOPHO ALL-2008 protocol, with prednisolone 60 mg/m2/day 

p.o. days 1-29, vincristine 2.0 mg/m2 i.v. days 1, 8, 15, 22, and 29, doxorubicin 40 mg/m2 i.v. 

days 1 and 22, and methotrexate i.t. days 1, 8, 15, and 29 [108]. Leukemic blast percentages in 

the bone marrow during diagnosis, at day 15, and at day 29 are shown in Table 1. Mononuclear 

cells (MNC) were extracted from fresh BM using Ficoll-Paque Plus (GE Healthcare, #17-1440-

02). Bone marrow MNCs were also extracted from two patients (ALL10 and ALL12) during the 

induction therapy at day 15 after initiation of therapy. MNCs were viably frozen in 15% 

DMSO/40% FBS in RPMI in liquid nitrogen. In addition, nuclei were isolated for GRO-seq (ALL7 

and ALL13) as described in [5], snap-frozen and stored at -80� in a freezing buffer containing 

40% glycerol. 
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Cell line samples 

The E/R+ REH cell line (ACC-22, DSMZ, Germany) was maintained in RPMI 1640 (Gibco, 

Thermo Fisher) supplemented with 10% FBS (Gibco, Thermo Fisher), 2 mM  L-glutamine 

(Gibco, Thermo Fisher), penicillin (100 U/ml), and streptomycin (100 mg/ml) (Sigma-Aldrich). 

Mycoplasma status was defined negative for all cell lines by PCR (PCR Mycoplasma Test Kit 

I/C, PromoCell GmbH, Germany) and cell lines were authenticated by Short Tandem Repeat 

genotyping (Eurofins Genomics, Ebersberg, Germany).  

 

scRNA-seq 

Single cell gene expression was studied to characterize leukemic bone marrow cell populations. 

Cells from primary BM samples (n=6 diagnostic, n=2 post-treatment) were processed for 

scRNA-seq in the Finnish Functional Genomics Center, Turku, Finland, in 4 batches: 1) ALL3, 

2) ALL1 3) ALL10 and ALL10-d15, and 4) ALL8, ALL9, ALL12, and ALL12-d15. Before applying 

the cells into the Chromium cartridge, their viability was checked using Trypan blue. PI-negative 

(live) cells were selected from sample ALL3 using FACS. Samples ALL1, ALL10, and ALL10-

d15 were processed directly after thawing the MNC fraction without further processing. Excess 

dead cells were depleted from samples ALL8 and ALL9 using bead-based Dead Cell Removal 

Kit (#130-090-101, MACS miltenyi Biotech), increasing the percentage of viable cells from 43 % 

to 72 % and from 63 % to 78 %, respectively. For samples ALL12 and ALL12-d15, enrichment 

of leukemic cells was carried out by depleting non-B-cells using streptavidin-beads (BD 

Streptavidin Particles Plus, BD Biosciences, Franklin Lakes, NJ, USA) and biotinylated 

antibodies against human CD16 (clone 3G8), CD14 (HCD-14), CD11c (3.9), CD56 (HCD56), 

CD3 (UCHT1), and CD66 (G10F5) (Biolegend), all with final concentrations of 2 ug/ml, following 

the manufacturer's instructions and as previously described (Good et al. 2018 Nat Meth). 

Depletion efficiency was estimated by flow cytometry using CD3 (BV421, BD Biosciences, 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.27.116293doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.27.116293
http://creativecommons.org/licenses/by-nc/4.0/


21 

#56287, RRID:AB_27378607) and CD19 (Thermo Fisher Scientific, # 25-0199-41, 

RRID:AB_1582279) antibodies, with a viability dye (eBioscience, Fixable Viability Dye eFluor™ 

506, #65-0866-14). Depletion decreased the proportion of T-cells (CD3+) from 30 to 2%, 

increased the proportion of B-cells (CD19+) from 23 to 50%, and increased the percentage of 

viable cells from 50 to 80% in a test BM sample.  

scRNA-seq was performed using the 10X Genomics Chromium technology, according to the 

Chromium Single-Cell 3’ Reagent Kits V2 User guide Rev B. In brief, cells were combined with 

reverse transcriptase Master Mix and partitioned into Gel Bead-In EMulsions (GEMs) using 10X 

GemCode Technology, where the poly-A transcripts are barcoded with an Illumina R1 

sequence, a 16 bp 10X barcode and a 10 bp Unique Molecular Identifier (UMI). 11-12 cycles of 

PCR was used to amplify the cDNA. Sequencing was performed using the Illumina HiSeq 3000. 

Primary BM samples were sequenced to an average depth of ~50 000 reads per cell.  

 

HCA bone marrow scRNA-seq data processing and cell state annotation 

Characterization of normal bone marrow B-lymphoid cell states was performed using data from 

healthy donors (n=8), available from the HCA data portal. Raw fastq-files corresponding to 10X 

Genomics Chromium single cell data were downloaded from [109]. Data was aligned with Cell 

Ranger 3.0.2 to human reference (hg19) version 3.0.0 with default parameters and the filtered 

count matrix was taken for downstream analysis. Scanpy [110] (version 1.4) was used for initial 

characterization of cells[111] as follows: Genes were first filtered to include only genes present 

in more than 100 cells. Then, bad quality cells were removed if i) UMIs arising from 

mitochondrial genes in a cell accounted for more than 10% of total UMI count, while possible 

doublets were excluded based on ii) total number of UMIs 50 000 or more, or iii) the number of 

genes expressed in a cell 6 000 or more. Next, genes were filtered once more to include only 

those expressed in minimum 400 cells. Highly variable genes (HVG) were defined as genes 

with minimum mean expression 0.0125, maximum mean expression 3, and minimum dispersion 
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0.5, resulting in 2046 genes with the rest of the genes filtered out from the data for downstream 

analyses. To reduce undesired technical effects in data analysis, the function “regress_out” was 

used to normalize the effect of the number of UMIs and the percentage of UMIs arising from 

mitochondrial genes to gene expression in each cell. Mutual nearest neighbors (MNN) 

correction [112,113] (mnnpy version 0.1.9.5) was used to combine data across the eight donors 

for clustering and cell state identification (batch_categories set to Manton donor identifier). 

Principal Component Analysis (PCA) was then calculated using the processed data (Scanpy 

version 1.4). Top 50 principal components were used to calculate a neighborhood graph 

(number of neighbors was set to 30) that was used as input for Uniform Manifold Approximation 

and Projection (UMAP) [114], where min_dist was set to 0.5, and Louvain clustering [115] with 

resolution set to 1.0, which was enough to characterize major cell type clusters from the data. 

Wilcoxon test was used to find marker genes for each cluster which were used to characterize 

the found clusters in concordance with known marker genes. Cell cycle states (G1, S, G2/M) of 

cells were annotated using score_genes_cell_cycle-function in Scanpy using annotated cell 

cycle genes from [116]. 

To focus on B-lineage cell differentiation, a subset of cells from clusters containing 

hematopoietic stem cells and B cell lineage cells was re-analyzed in an iterative manner, each 

time running the basic workflow again with additional filtering steps. Initially, genes expressed in 

less than 100 cells were removed when analyzing this subset. When choosing highly variable 

genes, we required the minimum dispersion to be 1, compared to the previous 0.5. Small 

clusters containing high expression of markers for T cells, NK T cells, monocytes and erythroid 

precursor cells were still present after the first iteration and were filtered out. In the second 

iteration, we required the minimum mean expression to be 0.1 and the minimum dispersion 0.5 

for choosing highly variable genes. In the neighborhood graph calculation, the number of 

principal components used was set to 20. Next, we filtered each cluster for possible outliers by 

calculating cluster-specific Absolute Median Deviance (MAD) for number of UMIs and 
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percentage of UMIs from mitochondrial genes and removed cells assigned to the cluster with 

MAD greater than 5 in either. This was motivated by the large differences between clusters in 

these metrics. During B cell differentiation, the cells display marked changes in cell size (e.g. 

transitioning from large cycling pre-B cells to small pre-B cells). Thus this choice is also 

motivated by biology. With the filtered subset of 20 753 cells we ran through the workflow once 

again, choosing highly variable genes with minimum mean 0.1 and minimum dispersion 0.75 

and set the number of principal components in neighborhood graph calculation to 20. The final 

clusters were characterized as described above. 

 

ALL scRNA-seq data processing and cell state annotation 

To perform similar analysis in leukemic BM, raw patient data acquired in this study (n=6 

diagnostic, n=2 post-treatment) was processed and aligned with Cell Ranger (version 3.0.2) 

with the same settings as the HCA data. Scanpy (version 1.4) was used for initial 

characterization of cells following the same approach as outlined above [111] (HCA analysis): 

Genes were first filtered to include only genes present in more than 100 cells, requiring this 

metric to exceed 200 in the final iteration. Cells were removed if i) UMIs arising from 

mitochondrial genes in a cell was more than 10 %, ii) total number of UMIs was 40 000 or more, 

or iii) number of genes expressed in a cell was 5 000 or more. Highly variable genes were 

defined as genes with minimum mean expression 0.0125, maximum mean expression 3, and 

minimum dispersion 0.5, resulting in 1425 genes that were used for clustering and 

dimensionality reduction (50 principal components, number of neighbors 15, resolution 1.0). 

MAD filtering was used to remove outlier cells from clusters, as described above. With the final 

cell subset passing these criteria (44746 cells), the workflow was repeated and clusters 

characterized based on marker genes. 

 

Differential distribution of read counts: scDD analysis 
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The gene expression distributions in subsequent cell states representing B-lineage 

differentiation, or between leukemic and normal cell states, were analysed with the scDD-

package [26,111]. The tool enables comparisons based on differential distribution and 

proportion of zeros between two groups of cells. Genes were assigned into three main 

categories - DE, DM, and DZ. DM and DE characterize changes in the expression distribution in 

cells with non-zero count for the gene analyzed (differential mean and differential modality, 

respectively). DZ genes differ between the groups in proportion of cells with zero read count for 

the gene analyzed. In the context of differentiation, where cells switch genes on/off to proceed 

in maturation, this metric captured majority of the changes.  

To account for differences in the number of UMIs and genes detected in different cell types, 

variance stabilizing transformation [105] (version 0.2.0) was used to correct for these 

differences before differential distribution testing. Sample was used as the batch interaction 

term and logarithm of UMI counts in cell (“log_umi”) was specified as the latent variable to 

regress out. The resulting corrected UMI counts were then used as input to scDD. When 

running scDD we noticed that for some genes the clustering of the expression level within scDD 

failed due to zero variance. To overcome this, the scDD tool was modified to add a small jitter to 

genes which had this problem [117]. Cells with 3000-3500 counts after the corrections were 

included in comparing the pre-B G1 vs. pro-B G1, and the pro-B G1 vs. leukemic G1 cells. The 

following number of cells per differentiation/disease state were compared: HSC 3660; early B-

lymphoid  895; pro-B cycling  794; pro-B G1 1413; pre-B cycling 1714; pre-B I G1 2541; pre-B II 

G1 2025; diagnostic leukemic G1 6340; diagnostic leukemic cycling: 7054. 

Further filtering for scDD results was done using adjusted p-value and fold change or difference 

in percentage cut-offs (Fig S2). P-values were adjusted using the Benjamini-Hochberg FDR 

method. 

 

Clustering genes based on differential zero proportion 
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Differentially distributed genes from the leukemic vs. pro-B zero proportion comparisons, 

present in both G1 and cycling cell based comparisons (90 downregulated and 272 

upregulated), were clustered based on their zero proportion metric in ten cell states (HSC, early 

lymphoid progenitors, proB cycling (S/G2/M), pro-B G1, pre-B cycling, pre-B G1 I, pre-B G1 II, 

immature B, leukemic cells G1, and leukemic cells cycling). K-means centroids were calculated 

using the R package flexclust [118] (version 1.4-0) with k = 8 and correlation as distance metric 

using the kccaFamily function (cent = centMean, dist = distCor).  

 

Pathway enrichment analysis 

Gene lists were analyzed for enrichment of ontology and pathway terms using the online web 

server Enrichr [119,120] (release Jan 2019). The analysis was performed based on gene sets 

from GO, MGI Mammalian Phenotype, Reactome and TF perturbations. Enriched terms were 

selected based on the combined score (>150) cut-off.  The combined score refers to the 

combination of p-value (Fisher's exact test) and the z-score that represents the deviation from 

the expected rank. 

 

Ordering cells based on pseudotime 

Pseudotime analysis can be used to find a latent trajectory (pseudotemporal ordering of cells) in 

single cell data, corresponding to differentiation or cell cycle. HSC and B lineage cells from HCA 

BM data were subjected to pseudotime analysis following the best practices workflow by 

Luecken and Theis [121] using Scanpy (version 1.4.5). Non-expressed genes (zero UMIs in any 

cell) were excluded and the data was normalized with size factors calculated with 

computeSumFactors-function from scran-package [104,122] (version 1.10.2) where louvain 

clusters (resolution 0.5) were used and min.mean was set to 1. The analysis was done two 

ways: using highly variable genes or selecting differentially distributed genes from our scDD 

analyses between HSC and B lineage cell types and the cell cycle phase marker genes. 
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Neighborhood graph was calculated with the number of principal components set to 15 and the 

number of neighbors set to 15. Diffusion map representation [123] was then calculated obtaining 

15 diffusion components and a pseudotime ordering was calculated using diffusion pseudotime 

[107] using 10 diffusion components and setting the required root cell as the HSC with the 

highest value in the 1st diffusion component (DC1). For visualization the DC1 vector was 

mirrored to obtain a left to right pseudotime trajectory of cells. The ordering of clusters was 

highly comparable with HVG or custom gene selection. The latter is shown in figures for 

consistency. 

 

RNA dynamics analysis 

During differentiation, dynamic changes occur in gene transcription that can be modelled based 

on newly synthetized RNA (reads corresponding to unspliced mRNA) and processed RNA 

(reads corresponding to mRNA). Based on the dynamic RNA processing model, predictions of 

the future transcriptome state can be obtained and visualized together with the measured 

current state. Velocyto CLI [25] (version 0.17.17) was used to calculate spliced and unspliced 

counts per gene using human reference genome (hg19) version 3.0.0 for Cell Ranger from 10x 

Genomics. Expressed repetitive elements were masked using expressed repeat annotation for 

hg19 downloaded from UCSC Genome Browser [124]. scVelo-package [31] (version 0.1.21) 

was used to analyze RNA dynamics in B cell differentiation. The gene expression matrix was 

accompanied with the spliced and unspliced count matrices of HSCs and B lineage cells from 

HCA BM data. The data was first filtered by removing genes with less than 10 shared counts in 

both spliced and unspliced data. The matrices were each then normalized by dividing the counts 

in each cell with the median of total counts per cell. The 3000 most variable genes were 

extracted based on the spliced count matrix and the data matrices were log-transformed. 30 top 

PCs were defined based on the most variable gene spliced count data followed by 

neighborhood graph calculation, with the number of neighbors set to 30. Based on the 
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neighborhood connectivities, the first order moments for spliced and unspliced matrices were 

calculated. The normalized unspliced and spliced count matrices were then used to estimate the 

velocity of each cell using the deterministic model. The velocities were embedded to a UMAP 

presentation which was calculated with the same preprocessing steps before calculating the 

diffusion map. 

 

Regulon discovery and TF activity scoring 

For the discovery of TF activities that characterize specific cell states, a modified SCENIC 

workflow [24,111] was developed based on the python implementation of the SCENIC method 

[125]. In our implementation, equal amounts of cells per cell type were sampled from the original 

data to ascertain that differences in cell type abundances do not bias the analysis. Secondly, 

the discovered regulons were evaluated based on a left-out test set. Specifically, the input 

matrix (equal representation of cell types) was split into training (70% of cells) and test (30% of 

cells) sets. The default SCENIC pipeline for regulon discovery was then run for the training set. 

The regulons found were scored in the training and test sets and and the average score per cell 

type calculated in both sets. These mean regulon scores across cell types were compared 

between training and test sets with Pearson’s product moment correlation coefficient. Regulons 

with p-value > 0.001 were discarded. The discovery was repeated 10 times. The final set of 

regulons was then scored using the whole original data set. Because different iterations often 

find regulons with the same driving TF and a similar target gene set, the mean score of the 

regulon for each cell was used in downstream analysis. In these analyses, leukemic cells from 

different donors and collection times were treated as separate cell types. For filtering regulons, 

a linear model was fit 100 times to a random subset of the regulon score matrix where 600 cells 

per cell type were sampled from the original data set. In the model, the response is the regulon 

score and the cell type label is the independent variable (score ~ cell type). Regulons with the 

coefficient of determination (R2) < 0.5 were considered to not show sufficient variation between 
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cell types and were therefore filtered out (Table S3 shows the unfiltered result). Additionally, a 

regulon was filtered out if the mean score in any cell type was above 70% percentile while the 

TF’s gene expression had > 95% of zeros. 

 

Cell type assignment of ALL cells with label transfer 

Annotated HCA BM cells were used as a reference to label the ALL scRNA-seq data. This was 

performed with label transfer functions from Seurat [39] (version 3.1.4) as follows: Each ALL 

sample was separately normalized with CPM with scale factor of 10000 and then log-

transformed followed by extracting top 2000 most variable genes. Then, separately for each 

ALL sample, transfer anchors between reference and sample were calculated with 

FindTransferAnchors-function where the first 30 dimensions of CCA were used as neighbor 

search space (parameter dims). Finally, the TransferData-function was used to annotate the 

leukemic cells with 30 first PCs used in the weighting procedure. 

 

NK cell analysis 

Clusters labelled NK and NK T cells from full HCA BM and primary ALL data were combined 

and processed together starting from raw counts with Scanpy (version 1.4.5). Genes were first 

filtered to include only genes present in more than 100 cells. Then cells were removed if i) UMIs 

arising from mitochondrial genes in a cell was more than 5 %, ii) total number of UMIs was 

below 500 or 3 000 or more, or iii) number of genes expressed in a cell was below 200 or 3 000 

or more. Then, data was normalized with following the same steps and parameters as in the 

pseudotime analysis followed by extraction of 3 000 most variable genes which were used to 

calculate the first 50 PCs followed by neighborhood graph calculation with the 50 PCs and 

n_neighbors set to 15. Leiden clustering [126] with resolution 1 was calculated identifying two 

clusters with high expression of erythroid markers HBA1, HBA2 and HBB which were then 

removed and analysis repeated starting from calculating the most variable genes. UMAP 
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embedding was calculated with the obtained PCs and the neighborhood graph to visualize the 

data. Leiden clustering was calculated again but with resolution parameter set to 2 to obtain 

more detailed clusters. NK clusters were separated from NK T clusters based on CD3D 

expression. Marker genes for the clusters were calculated with the rank_genes_groups-function 

with method-parameter set to “t-test_overestim_var” (Welch t-test) and discarding genes with 

fold change less than 2. Top 5 genes per cluster based on test score were extracted. Scores for 

NK subtype gene sets from [45] were calculated with the score_genes-function using the top 20 

genes per gene set sorted by log-fold change. 

 

Bulk pro-B cell ATAC-seq analysis 

For analyzing open chromatin regions in pro-B cells, ATAC-sequencing data of human fetal pro-

B cells (n=3) were retrieved from NCBI SRA database, GSE122989 [127]. Data pre-processing 

and peak calling was done following the ENCODE pipeline for ATAC-seq [128] (version 1.5.4) 

which is a tool for statistical signal processing and produces alignment and measures of 

enrichment. Caper configuration file was set up for the local server platform and parameters in 

the JSON file were selected based on the example JSON file. Hg19 was used as a reference 

genome in alignment. Narrow peaks were pooled and merged from three replicates. The highest 

enriched 10 000 peaks were taken to downstream analysis. Regions overlapping annotated 

TSS (NCBI RefSeq and UCSC Known gene) were discarded. TF motif discovery was performed 

with HOMER [129] (version 4.9.1) findMotifsGenome.pl  (-size 200 -mask) using the remaining 

(3923) open chromatin regions. P-values were adjusted using the Benjamini-Hochberg FDR 

method. 

GRO-seq assay 

To study enhancer and gene region activity, primary ALL BM samples (n=2) were collected for 

GRO-seq. In addition, our existing data in REH cells available via NCBI GEO (GSE67540 [132]) 
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were analyzed. For these samples and ALL7, the nuclear isolation and library preparation 

protocols were performed as described in [12]. Briefly, run-on products labelled with BrUTP 

were extracted with TRIzure (Bioline, London, UK). RNA was precipitated first for 30 min on RT 

and then for an extra 10 min on ice. Poly-A tailing reaction was carried out and nascent RNA 

collected using anti-BrUTP beads. The anti-BrUTP beads used previously [12] were not 

available for the collection of run-on products for ALL13 and for this sample the libraries were 

performed as described in [133] with few modifications. Bead-binding was performed using 30 μl 

of Protein G Dynabeads (Thermo Fisher Scientific Baltics UAB, V.A. Graiciuno 8, LT-02241 

Vilnius, Lithuania. Thermo Fisher Scientific Baltics UAB complies with Quality System 

Standards ISO 9001 and ISO: 13485) per sample with 2 μg anti-BrdU monoclonal antibody 

(cat# ab6326, Abcam, Cambridge, UK). Beads were washed four times with 300 μl of PBST 

wash buffer including SUPERase In RNase Inhibitor (Thermo Fisher, Carlsbad, CA, USA). The 

purified run-on RNAs were next converted to cDNA and PCR amplified for 13 cycles size and 

selected to 225–350 bp length. Single-end sequencing (50 bp) was performed with Illumina Hi-

Seq2000 (GeneCore, EMBL Heidelberg, Germany).  

 

GRO- and ChIP-seq data pre-processing  

TF ChIP-seq was used to validate TF-target associations obtained using SCENIC. ChIP-seq 

data representing PAX5 and EBF1 (GSE126300 [137]) were available in hg19, while BCL11A 

(GSE99019 [138]) read data was processed to hg19 from raw reads. For BCL11A and GRO-

seq data, the raw sequencing reads were quality controlled using the FastQC tool [134]. Bases 

with poor quality scores were trimmed (min 97% of positions have a min phred quality score of 

10) using the FastX toolkit [135]. Duplicate reads were collapsed from ChIP-seq files using fastx 

(collapse), while reads mapping to rRNA regions (AbundantSequences as annotated by 

iGenomes) were discarded from GRO-seq data. The Bowtie software [136] (version 0.12.9 for 

GRO-seq, version 1.2.3 for ChIP-seq) was then used for alignment of remaining reads to the 
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hg19 genome version, allowing up to two mismatches and no more than three matching 

locations. The best alignment was reported. Reads overlapping with so-called blacklisted 

regions that include unusual low or high mappability as defined by ENCODE, ribosomal and 

small nucleolar RNA (snoRNA) loci from ENCODE and a custom collection of unusually high 

signal depth regions from GRO-seq was used to filter the data. Subsequently, data was 

analyzed using HOMER [129] (version 4.9.1). GRO-seq tagDirectories were generated with 

fragment length set to 75 and data visualized using makeMultiWigHub.pl with strand-specificity.  

HOMER [129] (version 4.9.1) findPeaks tool (-style factor) was used in peak calling from ChIP-

seq against input sample. 

 

ChIP-seq peak analysis 

The peak data was ranked based on peak calling statistics (lowest rand corresponding to best 

peak) and the rank annotated in each peak name. Next, peaks were associated with nearby 

genes using the approach described in [35].  The data was summarized by gene, recording the 

number of associated peaks, the peak ranks and peak distances to gene TSS. 

 

Immunofluorescence stainings and flow cytometry 

For flow cytometric analysis, 500 000 cells were washed with Cell staining buffer (catalog 

number #420201; all from Biolegend, San Diego, CA, USA, if not stated otherwise), and FcR 

was blocked using TruStain human FcX for 5 min (#422301). For intracellular staining, 150 µl of 

Cyto-Fast Fix/Permeabilization buffer (#426803) was added to 100 µl of cells in cell staining 

buffer, and incubated for 20 min at room temperature in the dark. Cells were washed 2X with 

Cyto-Fast Perm Wash solution and stained with antibodies and kept on ice in the dark for 20 

min during staining. All centrifugations were done at 350 x g. Cells were washed 2X with Cell 

staining buffer and measured with Accuri C6 (BD Biosciences, CA, USA). RNA flow analysis 
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was performed with Amnis® FlowSight® imaging flow cytometer (Luminex Corporation, TX, 

USA). 

 

Cell proliferation and viability 

Effect of drugs targeting TF activities that were found to be high in E/R+ leukemia was studied 

in the glucocorticoid-resistant REH cell line. The experiments were performed in three biological 

replicates. TK216 (ERG/FLI1 inhibitor) was acquired from MedChemExpress and XRP44X 

(Ras-Net-Elk-3 inhibitor) from Sigma-Aldrich. The drugs were reconstituted in DMSO. MTS 

assay was used to determine viable cells in proliferation upon drug treatments with increasing 

concentrations at 72 h time point. REH cells (10000 cells/well) were seeded with drugs into 96-

well plates with a final volume of 100 µl. Following drug treatment, cell proliferation was 

measured using CellTiter 96® AQueous One Solution (Promega). 20 µl of CellTiter 96® AQueous 

One Solution reagent per well was added and cells were incubated for 3 h in a humidified 

(atmosphere 95% air/ 5% CO2) incubator at 37˚C. Absorbance was measured at 492 nm by a 

spectrophotometer (Thermo Scientific, Multiskan Ex). The background signal (no cells) was 

subtracted and the average signal from three technical replicate wells was used in calculations. 

In parallel, cell viability and count was measured based on Trypan Blue (Sigma-Aldrich) staining 

using Cellometer Mini Automated Cell Counter (Nexcelom Bioscience). Relative proliferation 

and cell amounts were calculated by normalizing to DMSO as a control sample. 

 

Visualization tools 

Scatter plots in Figures 1-4 and heatmaps in Figures 1 and 3 were generated with Scanpy [110] 

and scVelo [31]. Regulon activity heatmaps in Figures 2 and 5 were generated with 

ComplexHeatmap [146]. Illustrations in Figures 1, 3 and 4 were created with BioRender [147]. 

Motif logos in Figure 2 were generated with HOMER [129]. Track plots from gene loci in Figures 
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4 and 5 were generated from UCSC Genome Browser [124]. Other plots in Figures 1-5 were 

generated using ggplot2 [148] and base R graphics [149]. 

 

Figure legends and tables 

Figure 1. B-lymphoid differentiation states separate in bone marrow scRNA-seq. a. 

scRNA-seq clusters for the B-lymphoid lineage defined from HCA BM scRNA-seq data are 

shown in color on the UMAP visualization and annotated by differentiation stage (refer to Fig. 

S1 for other cell type annotations). b. Marker gene expression level is colored on the UMAP, 

where darker tones of red indicate high expression. c. Diffusion pseudotime ordering of cells is 

shown with colors corresponding to clusters shown in C (left) or pseudotime (right). d. Scores 

for gene sets corresponding to distinct B-cell differentiation states[30] are visualized as a 

heatmap. e. Differentiation dynamics based on RNA velocyto analysis is shown for the B-

lymphoid cell states. Arrows correspond to predicted direction of cell state transitions. f and g. 

RNA velocities (top panel) compared to spliced mRNA counts (bottom panel) of the early B-cell 

marker gene DNTT and the G2/M-phase specific gene TOP2A are shown. Red tones 

correspond to high velocity or mRNA level, respectively. 

 

Figure 2. Transcription factor activities across B-lineage differentiation. a. Regulon activity 

score is visualized as a heatmap (tones of red indicate high activity). The annotated functional 

category (CM=chromatin modifier; CR=coregulator; TF=transcription factor; 

ST=splicing/transcription complex) of each regulon is shown. b. Gene expression levels for the 

TFs EBF1, FOXO1, TCF3 and PAX5 are indicated in color on the B-lineage scRNA-seq map. 

c.Significant motifs matching pro-B active TFs (indicated in panel a) are shown from pro-B cell 

bulk ATAC-seq. d. Percentage of TF regulon target genes associated with ChIP-seq peaks is 

shown for EBF1(+), PAX5(+) and BCL11A(-) regulons obtained with the customized workflow. 
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BCL11A(-)* corresponds to the initial regulon discovered by default SCENIC run. e. The 

distribution of ChIP-seq peaks associated to targets is shown as a combined violin and box plot 

for predicted targets from PAX5(+) regulon. Targets are binned based on the number of training 

set runs supporting each target (Npred). The y-axis corresponds to 0.05-0.95 quantile range. f. 

Similarly as in e, the ChIP-seq peak rank distribution is visualized across binned PAX5(+) 

regulon genes. Lower rank corresponds to higher ChIP peak score. g. The ChIP peak data is 

visualized using a dot plot for top 50 predicted PAX5 targets. The color corresponds to the 

number of associated peaks and the dot size indicates binned ChIP-peak rank (bin size 2000).   

 

Figure 3. Comparison of E/R+ cells to normal pro-B cells. a. Six diagnostic and two post-

treatment bone marrow samples analyzed with scRNA-seq are shown on the UMAP 

representation. b. Expression level of the DNTT marker gene is shown in color on the ALL BM 

UMAP. c. Gene set scoring of differentiation stage is shown as a heatmap, comparing ALL cells 

to normal bone marrow lymphoid cells. d. Computationally predicted cell cycle state of leukemic 

cells is colored separately for each donor on a UMAP. For ALL10 and ALL12 the sample origin 

(diagnostic or day 15 post-treatment) is indicated in the bottom panel. e. Eight clusters formed 

from genes that distinguish ALL cells from normal pro-B cells are shown in the heatmap. The 

data corresponds to cluster centroids and the colors indicate the mRNA detection metric ZP, 

with dark blue tones indicating low expression (high ZP) and light tones corresponding to larger 

proportion of cells expressing the genes in each cluster. The number of genes in each cluster is 

indicated on the right. f. Genes modulating NK cell activity (TGFB1, TERF2, LY6E and HLA-E) 

plotted as density plots that compare the gene expression distribution of E/R+ cells to pro-B 

cells (both in G1 cell cycle state).  

 

Figure 4. NK cell numbers and activity are low in E/R+ BM. a. Percentage of NK cells in BM 

scRNA-seq data is shown as barplots across the five diagnostic E/R+ (top panel, in blue, ALL12 
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samples enriched for B-cells are not shown) and eight normal BM samples (bottom panel, in 

green). b. Gene expression level for NK and T cell markers and Louvain clustering of cells is 

shown on the HCA and ALL NK/T cell UMAP. c. Marker genes for NK clusters analyzed are 

shown as a heatmap. Bright yellow color tones correspond to high expression. d. The 

percentage (in barplot) and NK cell counts in each cluster are shown from HCA (left) and ALL 

(right) samples. e. Gene set scores corresponding to scRNA-seq based subtypes[45] are 

colored on the NK/T cell UMAP. Only cell clusters with low/negative CD3D expression used in 

this comparison are shown. f.  NK cell data plotted separately by donor, indicating the cluster 

assignment for each cell (colored bar above). The heatmap shows the scaled gene set score for 

NK cell clusters and gene expression for mature vs immature cell markers GZMB and GZMK, 

respectively. The cells (in columns) are clustered based on gene set activity. 

 

Figure 5. TF activity in E/R+ leukemic cells. a. Regulon activity is visualized as a heatmap as 

in Fig. 2a comparing E/R+ cells and normal BM cells. b. Bulk mRNA expression data for ELK3 

and SP4 from Hemap is shown on a t-SNE map comparing transcriptomes across hematologic 

malignancies. The location of pre-B-ALL and E/R+ samples are indicated on the plot. Red color 

tones indicate high expression. c. Distributions of expression level at diagnosis and day 15 post-

treatment are shown as ridge plots for a set of TFs with significant expression change (Table 

S2). X-axis corresponds to normalized expression level. The differentiation marker MS4A1 

(mRNA) / CD20 (corresponding protein) level is shown for comparison. d. Candidate regulatory 

interactions evaluated at active enhancer and promoter regions (highlighted by shading) at the 

ELK3 locus. TF regulons that included ELK3 with nPred>4 are shown. The ChIP-seq peaks are 

shown at these locations, corresponding to HUVEC (ELK3), HSC (ERG, FLI1, GATA2), K562 

(IRF1 upon IFNγ stimulus) and GM12878 (MEF2C and RFX5) peak annotations (no data for 

ZNF467 available). Lines between enhancer or promoter regions and regulons are drawn when 

corresponding peak was found. GRO-seq data is shown from E/R+ REH cell line and two 
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primary E/R+ bone marrows. e. The luminescence signal from MTS assay (above) and relative 

cell counts (viable cells in colored bars, total cell count indicated without fill) at different drug 

concentrations are shown TK: TK216, XR: XRP44X).  

 

Table 1. Leukemic blast percentage during induction therapy determined by BM flow 

cytometry. E/R-positive patient samples used in genomics experiments are shown. 

Sample 

ID 

Leukemic blast-% at 

diagnosis 

Leukemic blast-% at 

day 15  

Leukemic blast-% at 

day 29  

ALL1 94  10 0.3 

ALL3 95 74 0.16 

ALL8 93 0.93 0.02 

ALL9 79 0.17 0.01 

ALL10 65 10 0.08 

ALL12 90 59 0.2 

ALL7 27 0 0 

ALL13 80 0.04 0 
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This study was approved by the Regional Ethics Committee in Pirkanmaa, Tampere, Finland 

(#R13109) and conducted according to the guidelines of the Declaration of Helsinki. A written 

informed consent was received by the patient and/or guardians.  

 

Consent for publication 

A written informed consent was received by the patient and/or guardians for publication of their 

data. Sensitive data will be stored in a controlled access database (EGA). 

 

Availability of data and materials 

The datasets generated and analyzed in the current study are available in Gene Expression 

Omnibus under the accession number GSE148218  

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148218 [130] and European Genome-

phenome Archive under the accession number EGAS00001004374 

https://www.ebi.ac.uk/ega/studies/EGAS00001004374 [131]. The Human Cell Atlas bone 

marrow scRNA-seq data was downloaded from 

https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-a234-480eca21ce79 [28]. 

Bulk ATAC-seq profiles of pro-B cells were acquired from GEO GSE122989 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122989 [52]. Data for GRO-seq in the 

REH cell line is available in GEO GSE67540 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67540 [55]. Additional data for ChIP-

seq peak analysis was downloaded from GEO GSE45144 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45144 [132], GSE99019 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99019 [58] and GSE126300 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126300 [57]. Code related to analyses 

is available from GitHub [30] (https://github.com/systemsgenomics/ETV6-

RUNX1_scRNAseq_Manuscript_2020_Analysis). 
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