

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

1
2 **PelX is a UDP-N-acetylglucosamine C4-epimerase involved in Pel polysaccharide-dependent biofilm
3 formation**

4
5
6 Lindsey S. Marmont^{a, b, 1,*}, Gregory B. Whitfield^{a, b, 2,*}, Roland Pföh^a, Rohan J. Williams^c, Trevor E.
7 Randall^d, Alexandra Ostaszewski^d, Erum Razvi^{a, b}, Ryan A. Groves^d, Howard Robinson^e, Mark Nitz^c,
8 Matthew R. Parsek^f, Ian A. Lewis^d, John C. Whitney^{a, b, 3}, Joe J. Harrison^d, and P. Lynne Howell^{a, b, #}

9
10
11 ^aProgram in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada

12 ^bDepartment of Biochemistry, University of Toronto, Toronto, ON, Canada
13 ^cDepartment of Chemistry, University of Toronto, Toronto, ON, Canada

14 ^dDepartment of Biological Sciences, University of Calgary, Calgary, AB, Canada
15 ^ePhoton Science Division, Brookhaven National Laboratory, Upton, NY, USA
16 ^fDepartment of Microbiology, University of Washington, Seattle, WA, USA

17
18 ¹Current address: Department of Microbiology, Harvard Medical School, Boston, MA, USA
19 ²Current address: Département de microbiologie, Infectiologie et Immunologie, Université de Montréal,
20 Montréal, Quebec, Canada.

21 ³Current address: Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton,
22 ON, Canada

23
24 *These authors contributed equally to this work

25
26 **Running title:** *Pel biosynthesis requires a UDP-GlcNAc C4-epimerase*

27
28 **#Address correspondence to:** P. Lynne Howell, howell@sickkids.ca

29
30 **Keywords:** polysaccharide, biofilm, *Pseudomonas protegens*, X-ray crystallography, epimerase

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

32 **ABSTRACT**

33 Pel is an *N*-acetylgalactosamine rich polysaccharide that contributes to the structure and function of
34 *Pseudomonas aeruginosa* biofilms. The *pelABCDEFG* operon is highly conserved among diverse bacterial
35 species, and thus Pel may be a widespread biofilm determinant. Previous annotation of *pel* gene clusters
36 led us to identify an additional gene, *pelX*, that is found adjacent to *pelABCDEFG* in over 100 different
37 bacterial species. The *pelX* gene is predicted to encode a member of the short-chain
38 dehydrogenase/reductase (SDR) superfamily of enzymes, but its potential role in Pel-dependent biofilm
39 formation is unknown. Herein, we have used *Pseudomonas protegens* Pf-5 as a model to understand PelX
40 function as *P. aeruginosa* lacks a *pelX* homologue in its *pel* gene cluster. We find that *P. protegens* forms
41 Pel-dependent biofilms, however, despite expression of *pelX* under these conditions, biofilm formation was
42 unaffected in a Δ *pelX* strain. This observation led to our identification of the *pelX* parologue, PFL_5533,
43 which we designate *pgnE*, that appears to be functionally redundant to *pelX*. In line with this, a Δ *pelX*
44 Δ *pgnE* double mutant was substantially impaired in its ability to form Pel-dependent biofilms. To
45 understand the molecular basis for this observation, we determined the structure of PelX to 2.1 \AA resolution.
46 The structure revealed that PelX resembles UDP-*N*-acetylglucosamine (UDP-GlcNAc) C4-epimerases and,
47 using ^1H NMR analysis, we show that PelX catalyzes the epimerization between UDP-GlcNAc and UDP-
48 GalNAc. Taken together, our results demonstrate that Pel-dependent biofilm formation requires a UDP-
49 GlcNAc C4-epimerase that generates the UDP-GalNAc precursors required by the Pel synthase machinery
50 for polymer production.

51

52 **INTRODUCTION**

53 Exopolysaccharides are a critical component of bacterial biofilms. The opportunistic pathogen
54 *Pseudomonas aeruginosa* is a model bacterium for studying the contribution of exopolysaccharides to
55 biofilm architecture because biofilms formed by this organism use exopolysaccharides as a structural
56 scaffold (1). *P. aeruginosa* synthesizes the exopolysaccharides alginate, Psl, and Pel, and each have been

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

57 shown to contribute structural and protective properties to the biofilm matrix under various conditions (2).
58 While these polysaccharides differ in their chemical composition and net charge, the synthesis of all three
59 polymers requires sugar-nucleotide precursors. Genes encoding enzymes required for precursor generation
60 are often found within or adjacent to the gene cluster responsible for the production of their associated
61 polysaccharide. For example, Psl requires GDP-mannose (GDP-Man) precursors, which are generated from
62 mannose-1-phosphate by the enzyme PslB (3). Similarly, alginate requires the precursor GDP-mannuronic
63 acid (GDP-ManUA) and the *alg* locus encodes two of the three enzymes, AlgA and AlgD, required to
64 synthesize this activated sugar (4,5). The third enzyme, AlgC, is not found within the *alg* operon and is also
65 involved in synthesizing precursors for Psl and B-band lipopolysaccharide (6).

66 In Gram-negative bacteria, the *pelABCDEFG* operon encodes seven gene products that are required
67 for *pellicle* (Pel) biofilm formation (7). These biofilms form at the air-liquid interface of standing *P.*
68 *aeruginosa* cultures (8). In contrast to the Psl and alginate gene clusters, none of the *P. aeruginosa* *pel*
69 genes are predicted to be involved in sugar-nucleotide precursor production, indicating that, like AlgC,
70 these functions are encoded by genes elsewhere on the chromosome. Analyses of Pel have demonstrated
71 that it is a cationic polysaccharide rich in *N*-acetylgalactosamine (GalNAc) residues and that the putative
72 Pel polymerase, PelF, preferentially interacts with the nucleotide UDP (9). Additionally, functional
73 characterization of PelA has demonstrated that it is a bifunctional enzyme with both polysaccharide
74 deacetylase and α -1,4-*N*-acetylgalactosaminidase activities, which further supports the hypothesis that the
75 precursor required for the biosynthesis of Pel is an acetylated sugar (10,11). Together, these data suggest
76 that a key sugar-nucleotide precursor involved in Pel biosynthesis is UDP-GalNAc, the high energy
77 precursor needed for the biosynthesis of GalNAc-containing glycans.

78 We recently made the observation that many bacteria possess an additional open reading frame in
79 their *pel* biosynthetic gene clusters that is predicted to encode a member of the short-chain
80 dehydrogenase/reductase (SDR) enzyme superfamily (12,13). The SDR superfamily is an ancient enzyme
81 family whose members share a common structural architecture and are involved in the synthesis of
82 numerous metabolites, including sugar-nucleotide precursors used for the generation of bacterial cell

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

83 surface glycans (14). In several species of bacteria, such as the plant-protective Pseudomonad *P. protegens*,
84 the SDR encoding gene *pelX* is found directly upstream of the *pel* genes while other bacteria such as *P.*
85 *aeruginosa* lack this gene within their *pel* locus.

86 Plant root colonization by *P. protegens* Pf-5 requires the formation of biofilms. This process has
87 been shown to require the biofilm adhesin, LapA (15). In addition to LapA, biofilms produced by this strain
88 also contain undefined exopolysaccharides (16,17). Besides Pel, *P. protegens* Pf-5 has the genetic capacity
89 to synthesize the exopolysaccharides Psl, alginate, and poly- β -1,6-*N*-acetylglucosamine (PNAG), however,
90 little is known about the role these polymers play in *P. protegens* biofilm formation (17).

91 In the present study, we show that *P. protegens* Pf-5 forms Pel-dependent biofilms at air-liquid
92 interfaces and using *P. protegens* PelX as a representative Pel polysaccharide-linked SDR enzyme, we find
93 that this enzyme functions as a UDP-GlcNAc C4-epimerase. We find that the *pelX* gene is not essential for
94 Pel-polysaccharide-dependent biofilm formation because *P. protegens* possesses a parologue of this gene,
95 PFL_5533. Deletion of both of these genes was found to substantially impair Pel-dependent biofilm
96 formation. Based on our analyses we designate PFL_5533 as polysaccharide UDP-GlcNAc epimerase
97 (*pgnE*) and propose that the production of UDP-GalNAc by UDP-GlcNAc C4-epimerases is a critical step
98 in the biosynthesis of the Pel polysaccharide.

99

100 RESULTS

101 *Identification of a SDR family enzyme associated with pel gene clusters*

102 In a previous study, we used the sequence of PelC, a protein required for Pel polysaccharide export, to
103 identify *pel* biosynthetic loci in a wide range of Proteobacteria (12). In addition to the conserved
104 *pelABCDEFG* genes, several of these loci contained an additional open reading frame. We observed several
105 genomic arrangements containing this gene (**Fig. 1**). In 70% of these genomes, the additional gene is located
106 directly upstream of *pelA* and may be transcribed together with the *pel* genes. In 24% of cases, the gene is
107 located upstream of *pelA* but is divergently transcribed, while 5% of the time the gene is encoded
108 downstream of *pelG* (**Fig. 1**). Sequence and structure-based analyses of the protein product of this gene,

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

109 PeIX, using BLAST and Phyre² suggest that it likely encodes an SDR family enzyme (18,19). In total, we
110 identified 136 *pel* loci containing a *pelX* gene (**Fig. 1, Data Set S1**).

111 In order to determine whether *pelX* plays a role in Pel polysaccharide dependent biofilm formation,
112 we set out to characterize *pelX* in a species of bacteria for which the regulation of *pel* gene expression has
113 been studied. In *P. protegens*, which contains a *pelX* gene upstream of *pelA*, the *pel* gene cluster is under
114 the control of the same Gac/Rsm global regulatory cascade as in *P. aeruginosa* (17). In addition, two
115 putative recognition sequences for the enhancer binding protein FleQ are found upstream of *pelX*
116 (PFL_2971), not *pelA*, suggesting that in contrast to *P. aeruginosa*, *pelX* may be the first gene of the *pel*
117 operon in this species (20). Given that this operon is likely regulated in a similar manner to the *pel* locus of
118 *P. aeruginosa* and that these two species are closely related, we used *P. protegens* to characterize the role
119 of PelX in biofilm formation.

120

121 *P. protegens* forms Pel-dependent biofilms that are enhanced by elevated levels of c-di-GMP
122 In addition to the *pel* genes, *psl* gene expression has been shown to be regulated by the Gac/Rsm pathway
123 in *P. protegens* and this regulatory cascade is required for *P. protegens* biofilm formation (17).
124 Interestingly, some strains of *P. aeruginosa*, including PAO1, use Psl as their predominant biofilm matrix
125 exopolysaccharide whereas others, such as PA14, use Pel (21). Therefore, in order to determine whether *P.*
126 *protegens* biofilms are dependent on Pel and/or Psl, we generated strains lacking *pelF* or *pslA*, genes
127 previously shown to be required for Pel- and Psl-dependent biofilm formation, respectively, and examined
128 whether these strains could form biofilms (8,22). After five days of static growth in liquid culture, we found
129 that wild-type and Δ *pslA* strains of *P. protegens* adhered similarly to a polystyrene surface, whereas a strain
130 lacking *pelF* displayed a marked reduction in surface attachment (**Fig. 2A**). The level of surface adherence
131 of a Δ *pelF Δ *pslA* double mutant was comparable to that of the Δ *pelF* strain. Based on these data, we
132 conclude that the Pel polysaccharide is a critical component of *P. protegens* Pf-5 biofilms.*

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

133 Previous analysis of the region upstream of *P. protegens pelX* identified a FleQ consensus binding
134 sequence (20). FleQ is a bis-(3',5')-cyclic dimeric guanosine mono-phosphate (c-di-GMP) responsive
135 transcription factor that binds to specific sequences upstream of the *pel* operon in *P. aeruginosa*, blocking
136 their transcription (23). When the intracellular concentration of c-di-GMP is high, FleQ switches to an
137 activator and upregulates transcription of the *pel* genes (24). Based on these observations, we reasoned that
138 expression of the *P. protegens pel* operon is likely upregulated in the presence of elevated levels of c-di-
139 GMP (23). To test this hypothesis, we expressed the well-characterized diguanylate cyclase WspR of *P.*
140 *aeruginosa* from an IPTG-inducible plasmid in *P. protegens* (25). Because WspR activity can be inhibited
141 by c-di-GMP binding to an allosteric site of the enzyme, we inactivated this autoinhibitory site by
142 introducing a previously characterized R242A point mutation into the sequence of the protein (WspR^{R242A};
143 (26)). Upon induction of WspR^{R242A} expression, approximately 2.3-fold more *P. protegens* adhered to
144 polystyrene surfaces compared to a vector control strain (**Fig. 2B**). Taken together, our data suggests that
145 *P. protegens* Pel-dependent biofilm formation is enhanced in response to elevated intracellular c-di-GMP
146 levels.

147
148 *pelX* is expressed under biofilm promoting conditions but is functionally redundant with *PFL_5533*
149 Since Pel-dependent biofilm formation is enhanced in the presence of c-di-GMP, and FleQ is predicted to
150 bind upstream of the *pelX* gene, we reasoned that *pelX* is most likely expressed in a c-di-GMP dependent
151 manner along with the rest of the *pel* genes. To test this, we probed for the expression of PelX by fusing a
152 vesicular stomatitis virus glycoprotein (VSV-G) tag to its C-terminus at the native *pelX* locus on the *P.*
153 *protegens* chromosome. To examine expression of the *pel* operon, a VSV-G tag was similarly added to the
154 C-terminus of the putative Pel synthase subunit, PelF (13). Strains expressing either WspR^{R242A} or a vector
155 control were grown under biofilm-conducive conditions and analyzed by Western blot. In strains lacking
156 WspR^{R242A}, neither PelX nor PelF could be detected; however, in the WspR^{R242A} expressing strains, both
157 PelX and PelF were detected at their expected molecular weights of 34 and 58 kDa, respectively (**Fig. 3A**).
158 These data suggest that *pelX* and *pelF* expression are positively regulated by c-di-GMP in *P. protegens*,

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

159 and that PelX is expressed under conditions where the Pel polysaccharide is produced. However, when we
160 deleted *pelX*, we found that *P. protegens* biofilm biomass was unaffected, indicating that PelX is not
161 essential for Pel-dependent biofilm formation (**Fig. 3B**). These findings led us to hypothesize that the *P.*
162 *protegens* genome might encode a second SDR enzyme that renders PelX functionally redundant. We
163 queried the PelX amino acid sequence against the *P. protegens* Pf-5 proteome using BLASTP to identify
164 similar proteins (18). This search identified several proteins from the SDR superfamily (**Table 1**), however,
165 one protein in particular, PFL_5533, stood out because it shares 68% sequence identity with PelX. To
166 determine whether PFL_5533 is expressed during *P. protegens* biofilm formation, we fused a C-terminal
167 VSV-G tag to PFL_5533 at its native chromosomal locus and examined its expression in the presence and
168 absence of WspR^{R242A}. We detected similar levels of VSV-G tagged PFL_5533 in both vector control and
169 WspR^{R242A}-expressing strains suggesting that in contrast to *pelX*, the expression of this gene does not
170 change in response to c-di-GMP (**Fig. 3A**). The observation that PFL_5533 is expressed during biofilm
171 growth conditions and that it possesses high sequence homology to *pelX* led us to probe its potential role in
172 Pel polysaccharide production.

173 To determine whether PFL_5533 contributes to biofilm formation by *P. protegens*, we generated a
174 strain lacking this gene and examined biofilm formation in our WspR^{R242A} overexpression background.
175 Similar to our Δ *pelX* strain, we detected no significant difference in biofilm formation between Δ PFL_5533
176 and wild-type strains (**Fig. 3B**). In contrast, a Δ *pelX* Δ PFL_5533 double mutant exhibited a defect in biofilm
177 formation comparable to that of a Δ *pelF* strain, which is incapable of producing Pel (**Fig. 3B**). To confirm
178 that this reduction in biofilm formation was due to decreased Pel polysaccharide secretion, *P. protegens*
179 culture supernatants were analyzed using a lectin from *Wisteria floribunda* (WFL) that specifically
180 recognizes terminal GalNAc moieties, and Pel-specific antisera generated using *P. aeruginosa* Pel
181 polysaccharide (10,27). Culture supernatants from wild-type *P. protegens* displayed a strong signal when
182 analyzed by both of these detection methods, while a Δ *pelF* strain exhibited no signal, indicating that these
183 tools can be used to monitor Pel polysaccharide produced by this bacterium (**Fig. 3C**; (9)). In line with our

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

184 biofilm data, Pel was detected in culture supernatants from $\Delta pelX$ and ΔPFL_5533 strains at levels
185 comparable to wild-type whereas no Pel polysaccharide was detected in the $\Delta pelX \Delta PFL_5533$ double
186 mutant. Taken together, these data indicate that *pelX* and *PFL_5533* have genetically redundant functions
187 in biofilm formation under our experimental conditions, and that the activity of a predicted SDR family
188 enzyme is essential for Pel polysaccharide biosynthesis and Pel-dependent biofilm formation by *P.*
189 *protegens*.

190

191 *PelX is a UDP-GlcNAc C4-epimerase that preferentially epimerizes N-acetylated UDP-hexoses*
192 To gain further insight into PelX function, we initiated structural and functional studies on recombinant
193 PelX protein. Initial efforts to purify His₆-tagged PelX overexpressed in *E. coli* yielded two species
194 consistent with a monomer and dimer of PelX when analyzed by SDS-PAGE. Addition of reducing agent
195 significantly lowered the abundance of the putative PelX dimer, suggesting that this higher molecular
196 weight species likely arose from the formation of an intermolecular disulfide bond. This intermolecular
197 disulfide bond is likely not biologically relevant given that the bacterial cytoplasm is a reducing
198 environment. As sample heterogeneity can be problematic for both the interpretation of biochemical data
199 and protein crystallization, we generated a PelX variant in which the cysteine residue presumed to be
200 involved in disulfide bond formation (C232) was mutated to serine (PelX^{C232S}). This PelX^{C232S} variant
201 appeared as a monomer on SDS-PAGE and its purification to homogeneity was straightforward. When
202 examined by size exclusion chromatography, PelX^{C232S} had an apparent molecular weight of 64 kDa
203 compared to its expected monomeric molecular weight of 35 kDa, suggesting that like other characterized
204 SDR enzymes, PelX forms non-covalent, SDS-sensitive dimers in solution (**Fig. S1**; (28)).

205 The SDR superfamily of enzymes are known to catalyze numerous chemical reactions including
206 dehydration, reduction, isomerization, epimerization, dehalogenation, and decarboxylation (14). We
207 hypothesized that PelX likely functions as an epimerase because UDP-GalNAc, the putative precursor for
208 Pel, is typically generated from UDP-GlcNAc by SDR epimerase-catalyzed stereochemical inversion at the

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

209 C4 position of the hexose ring. Characterized SDR C4-epimerases are classified into three groups based on
210 their substrate preference (29). Group 1 epimerases preferentially interconvert non-acetylated UDP-
211 hexoses, group 2 epimerases are equally able to interconvert non-acetylated and *N*-acetylated UDP-hexoses,
212 while group 3 epimerases preferentially interconvert *N*-acetylated-UDP-hexoses. Given that the Pel
213 polysaccharide is GalNAc rich, we hypothesized that PelX likely functions as either a group 2 or group 3
214 epimerase. To examine the potential epimerase activity of PelX, we used ¹H NMR to monitor the
215 stereochemistry of UDP-GlcNAc, UDP-GalNAc, UDP-Glc, or UDP-galactose (UDP-Gal) in the presence
216 or absence of purified PelX^{C232S}. Two ¹H NMR resonances with characteristic multiplicities in the 5.4-5.7
217 ppm H-1" region allow for the differentiation of UDP-GalNAc/UDP-Gal from UDP-GlcNAc/UDP-Glc,
218 respectively (**Fig. 4A and 4B**). Using these resonances, we found that PelX^{C232S} readily converts UDP-
219 GalNAc to UDP-GlcNAc and vice versa (**Fig. 4A and 4C**). PelX^{C232S} also converted a minor amount of
220 UDP-Gal to UDP-Glc, however, we did not observe significant conversion of UDP-Glc to UDP-Gal (**Fig.**
221 **4B**). Collectively, these data define PelX as a group 3 UDP-hexose C4-epimerase.

222 To corroborate our biochemical data, we next performed absolute quantification of cellular GalNAc
223 and GlcNAc levels in our WspR^{R242A}-expressing *P. protegens* wild-type, Δ pelX, Δ PFL_5533, and Δ pelX
224 Δ PFL_5533 strains. While GalNAc levels were below the limit of our detection methods, we found that
225 GlcNAc levels were significantly elevated in the epimerase deficient background compared to both wild-
226 type and the individual epimerase mutant strains (**Fig. 4D**). Taken together with our ¹H NMR results, these
227 data suggest that PelX and its homologue PFL_5533 function to generate pools of UDP-GalNAc precursors
228 for polymerization into Pel polysaccharide.

229

230 *PelX resembles members of the SDR enzyme superfamily*

231 Having established that PelX is a UDP-GlcNAc C4-epimerase, we next sought to determine its structure to
232 obtain further insight into substrate recognition by this enzyme. Despite its straightforward purification and
233 homogenous oligomeric state, we found PelX^{C232S} to be recalcitrant to crystallization. We next attempted

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

234 to crystallize PelX^{C232S} in complex with its confirmed substrate UDP-GlcNAc. Crystals of PelX^{C232S}
235 incubated with UDP-GlcNAc appeared within three days and the structure of the complex was solved to
236 2.1 Å resolution using molecular replacement with the SDR family member WbpP (PDB ID: 1SB8) as the
237 search model (28). PelX crystallized in space group *P*2₁2₁2 and contains a dimer in the asymmetric unit, an
238 arrangement observed for many other structurally characterized SDR family members (**Fig. 5A**; (30)). The
239 dimer interface of PelX^{C232S} is similar to that observed in the WbpP crystal structure where each protomer
240 contributes two α -helices to a four-helix bundle.

241 The overall structure of PelX^{C232S} shows that it possesses the characteristic domains associated with
242 the SDR family, which includes an N-terminal NAD⁺-binding Rossmann-fold (residues 1-172 and 218-
243 243) and a C-terminal α / β -domain involved in substrate-binding (residues 173-217 and 244-310; **Fig. 5A**).
244 PelX^{C232S} contains the GxxGxxG motif required for binding NAD⁺ that is found in all SDR family members
245 as well as the active site catalytic triad Sx₂₄Yx₃K (31). Although NAD⁺ was not exogenously supplied in
246 the purification or crystallization buffers, electron density for this cofactor was clearly observed, suggesting
247 it was acquired during PelX^{C232S} overexpression in *E. coli*. While the addition of UDP-GlcNAc was
248 essential for the formation of crystals, we were unable to model the GlcNAc moiety of this molecule due
249 to the poor quality of the electron density (**Fig. S3**). We speculate that the sugar moiety may be disordered
250 because PelX^{C232S} is catalytically active and converting a portion of the UDP-GlcNAc to UDP-GalNAc.
251 Modeling UDP alone rather than UDP-GlcNAc improved the refinement statistics of the overall model and
252 resulted in ligand B-factors comparable to the surrounding protein atoms (**Table 2**).

253 Previous studies on a catalytically inactive variant of the UDP-Gal 4-epimerase GalE from *E. coli*
254 allowed for the co-crystallization and modeling of UDP-Glc and UDP-Gal in the active site of this enzyme
255 (32). In their study, these authors targeted the serine and tyrosine residues of the consensus Sx₂₄Yx₃K active
256 site motif. Guided by this approach, we generated a variant of PelX^{C232S} with S121A and Y146F mutations
257 and confirmed that this variant is catalytically inactive (**Fig. S2**). PelX^{C232S/S121A/Y146F} crystallized readily
258 with either UDP-GlcNAc or UDP-GalNAc, and both structures were solved to a resolution of 2.1 Å using

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

259 molecular replacement (**Table 2**). The final models of PelX^{C232S/S121A/Y146F} in complex with UDP-GlcNAc
260 or UDP-GalNAc were both refined to an $R_{\text{work}}/R_{\text{free}}$ of 15.6%/19.5% (**Table 2**). In these structures, the
261 electron density for the sugar moieties was well defined compared to the PelX^{C232S}–UDP-GlcNAc co-
262 crystal structure and allowed for the unambiguous modelling of the expected sugar-nucleotides (**Fig. S3**).
263 Given that both structures showed improved ligand density for their respective substrates, these structures
264 substantiate our biochemical data showing that UDP-GlcNAc and UDP-GalNAc are substrates for PelX.
265 Examination of the active site of our PelX^{C232S/S121A/Y146F}-substrate complexes did not show any significant
266 differences in the positions of active site residues suggesting that both sugar-nucleotides are recognized by
267 the enzyme in a similar manner (**Fig. 5B**). We next compared our substrate-bound PelX^{C232S/S121A/Y146F}
268 structures to the UDP-GalNAc bound structure of the aforementioned UDP-hexose C4-epimerase WbpP
269 from *P. aeruginosa*. WbpP shares 32% sequence identity to PelX and also catalyzes the epimerization of
270 UDP-GlcNAc to UDP-GalNAc (28). The overall structure of WbpP is highly similar to PelX^{C232S/S121A/Y146F}
271 (PDB code 1SB8, rms deviation 1.9 Å over 306 Ca) except that WbpP possesses an additional *N*-terminal
272 α -helix not found in PelX. The active site residues identified as being important for sugar-nucleotide
273 interaction in WbpP are invariant in PelX (**Fig. 5C**) with the exception of A81, A122 and G189 in PelX,
274 which correspond to residues G102, S143 and A209 in WbpP, respectively (28). These differences are not
275 predicted to impair specificity towards the UDP-GlcNAc/GalNAc substrate. Rather, Demendi et al found
276 that bulkier residues (G102K, A209N), and mutation of S143A actually displayed enhanced specificity
277 towards acetylated substrates (33). However, while the positions of the PelX^{C232S/S121A/Y146F} and WbpP active
278 site residues and NAD^+ cofactor are highly similar, comparison of the bound UDP-GalNAc substrate
279 between the two structures reveals distinct differences in the conformations of the GalNAc moiety (**Fig.**
280 **5C**). We suspect that this difference in conformation may be a result of the co-crystallization of UDP-
281 GalNAc with wild-type WbpP whereas to observe electron density for the GalNAc moiety of UDP-GalNAc
282 in complex with PelX we had to mutate two active site residues, S121A and Y146F. The residues equivalent
283 to S121 and Y146 in WbpP make contact with the C4 hydroxyl group of GalNAc and thus are likely
284 involved in substrate orientation. These observations suggest that the conformation of UDP-GalNAc in our

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

285 mutant PelX co-crystal structure may not represent a state adopted during catalysis, but demonstrate a high
286 degree of conformational freedom of the sugar moiety within the relatively large substrate binding pocket.
287 The GlcNAc moiety of UDP-GlcNAc in our PelX^{C232S/S121A/Y146F}-UDP-GlcNAc co-crystal structure was
288 also found in a similar orientation as in our UDP-GalNAc-containing structure. Taking these considerations
289 into account and given that WbpP and PelX share a high degree of sequence similarity and interconvert
290 identical substrates with similar preference, we speculate that the epimerization of *N*-acetylated UDP-
291 hexoses by PelX most likely occurs via a similar catalytic mechanism as proposed for WbpP (28,33). In
292 sum, our structural data support our biochemical studies showing that PelX belongs to the group 3 family
293 of UDP-*N*-acetylated hexose C4-epimerases.

294

295 **DISCUSSION**

296 In this study, we report the characterization of the Pel polysaccharide precursor-generating enzyme PelX.
297 Using *P. protegens* Pf-5 as a model bacterium, we found that *pelX* is required for Pel polysaccharide-
298 dependent biofilm formation in a strain that also lacks the *pelX* parologue, PFL_5533. Guided by our ¹H
299 NMR analyses and multiple crystal structures, we have shown that PelX functions as a UDP-GlcNAc C4-
300 epimerase and that it preferentially interconverts UDP-GlcNAc/UDP-GalNAc over UDP-Glc/UDP-Gal,
301 defining it as a group 3 UDP-*N*-acetylhexose C4-epimerase. Based on these observations and the data
302 presented herein we propose naming PFL_5533 polysaccharide UDP-GlcNAc epimerase (*pgnE*).

303 Functional redundancy of sugar-nucleotide synthesizing enzymes in biofilm producing bacteria is
304 not unprecedented. For example, in *P. aeruginosa* PAO1, PslB and WbpW both catalyze the synthesis of
305 GDP-mannose, a precursor molecule required for Psl polysaccharide and A-band lipopolysaccharide (LPS).
306 Like PelX and PgnE, PslB and WbpW have been shown to be genetically redundant as a defect in Psl
307 polysaccharide or A-band LPS is only observed when both *pslB* and *wbpW* are deleted (22). Although *P.*
308 *aeruginosa* PAO1 has another parologue of PslB and WbpW, AlgA, the *algD* promoter responsible for
309 transcription of the *algA* gene is not significantly activated in non-mucoid strains such as PAO1 (34). Psl
310 biosynthesis, like Pel, is also regulated by c-di-GMP through FleQ (23) whereas being an integral

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

311 component of the *P. aeruginosa* outer membrane, the genes responsible for A-band LPS synthesis are
312 constitutively expressed (35). Although, at present what additional glycans PgnE may be involved in
313 producing is unknown, it is clear that the existence of paralogous sugar-nucleotide synthesizing enzymes
314 may be a means of keeping up with metabolic demand during the synthesis of multiple cell surface
315 polysaccharides.

316 We previously reported the isolation of Pel polysaccharide from *P. aeruginosa* PAO1 and
317 carbohydrate composition analyses showed that it is rich in GalNAc (9). Therefore, the co-regulation of a
318 UDP-GlcNAc C4-epimerase with the *pel* genes likely ensures that adequate quantities of UDP-GalNAc are
319 available for Pel biosynthesis when a biofilm mode of growth is favoured. In contrast to *P. protegens* Pf-5,
320 *P. aeruginosa* PAO1 does not contain a *pelX* gene in its Pel biosynthetic gene cluster, yet this bacterium is
321 also capable of producing Pel polysaccharide (36). In the PAO1 genome, the poorly characterized PA4068
322 gene is found in the same genomic context as *pgnE* whereby both genes are part of a two-gene operon, with
323 the second gene predicted to encode a dTDP-4-dehydrorhamnose reductase (PA4069/PFL_5534; (37)). In
324 addition, the protein encoded by PA4068 shares 76% identity with PgnE, suggesting that this gene may
325 function analogously to *pgnE* and by extension *pelX*. A Δ PA4068 mutant was found to display a surface
326 attachment defect during secretin induced stress suggesting a role for this gene in surface glycan production
327 (37). However, it has been established that Psl is the primary polysaccharide required for *P. aeruginosa*
328 PAO1 biofilm formation even though this strain is genetically capable of synthesizing Pel (36).
329 Consequently, studies characterizing Pel polysaccharide production by PAO1 have relied on an engineered
330 strain that lacks the ability to produce Psl and expresses the *pel* genes from an arabinose-inducible promoter.
331 It may be that only low levels of UDP-GalNAc are required to sustain Pel polysaccharide production by
332 wild-type PAO1 and thus a second UDP-GlcNAc C4-epimerase that is dedicated to Pel production is not
333 required. In contrast, Pel polysaccharide appears to be a major biofilm matrix constituent in *P. protegens*
334 Pf-5 and thus the higher levels of Pel production in this organism may necessitate the need for increased
335 synthesis of UDP-GalNAc precursors.

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

336 The epimerization of UDP-Gal to UDP-Glc by PelX occurs much less efficiently than its *N*-
337 acetylated counterpart. Creuzenet and colleagues noted a similar trend for WbpP, a UDP-GlcNAc C4-
338 epimerase involved in *P. aeruginosa* PAK O-antigen biosynthesis, and hypothesized that the poor
339 efficiency displayed by this enzyme towards non-acetylated substrates means that this reaction is unlikely
340 to occur *in vivo* (38). The equilibrium of the PelX catalyzed epimerization between UDP-GalNAc and UDP-
341 GlcNAc *in vitro* is skewed towards the more thermodynamically stable UDP-GlcNAc epimer. A similar
342 balance for this equilibrium has been documented for other epimerases (38,39). We speculate that the
343 continuous polymerization of UDP-GalNAc by the putative Pel polysaccharide polymerase, PelF, would
344 keep the cellular concentration of UDP-GalNAc low and thus drive the equilibrium towards its production.

345 In conclusion, this work demonstrates the involvement of a Pel polysaccharide precursor generating
346 enzyme required for biofilm formation in *P. protegens*. Our data linking the production of UDP-GalNAc
347 to Pel polysaccharide production lends genetic and biochemical support to the chemical analyses that
348 showed Pel is a GalNAc-rich carbohydrate polymer (9). Furthermore, the identification of a new Pel
349 polysaccharide-dependent biofilm forming bacterium provides an additional model system that can be used
350 for the characterization of this understudied polysaccharide secretion apparatus.

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

351 **EXPERIMENTAL PROCEDURES**

352 *Bacterial strains, microbiological media and physiological buffers.* All bacterial strains and plasmids used
353 in this study are listed in Table S1. Jensen's medium contained per liter of MilliQ water: 5 g NaCl, 2.51 g
354 K₂HPO₄, 13.46 g glutamic acid, 2.81 g L-valine, 1.32 g L-phenylalanine, 0.33 g/L MgSO₄•7H₂O, 21 mg
355 CaCl₂•2H₂O, 1.1 mg FeSO₄•7H₂O, 2.4 mg ZnSO₄•7H₂O, and 1.25% D-glucose. Semi-solid agar medium
356 in Petri dishes was prepared by adding 1.0% noble agar to Jensen's medium. A 10 × solution of phosphate
357 buffered saline (PBS) was purchased from Amresco, and diluted, as required in sterile MilliQ water. King's
358 B medium contained per liter of MilliQ water: 10 g proteose peptone #2 (DIFCO), 1.5 g anhydrous K₂HPO₄,
359 15 g glycerol, and 5 mL MgSO₄. Lysogeny broth (LB) contained per liter of MilliQ water: 10 g tryptone,
360 10 g NaCl, and 5 g yeast extract. *E. coli* strains were grown with shaking at 37 °C. *P. protegens* strains were
361 grown at 30 °C. The following concentration of antibiotics were used: gentamicin (Gent) 15 µg ml⁻¹ (*E.*
362 *coli*); Gent 30 µg ml⁻¹ (*P. protegens*); kanamycin (Kan), 25 µg ml⁻¹. Plasmids were maintained in
363 DH5a(λpir).

364

365 *Bioinformatic identification of PelX among pel gene clusters in sequenced bacterial genomes* – We have
366 previously constructed a database of genomes containing *pel* gene clusters using the Geneious platform
367 (12,13,40). Briefly, identification of *pel* gene clusters was made via BLASTP (18) searching of the National
368 Center for Biotechnology Information (NCBI), *Pseudomonas* (41), and *Burkholderia* (42) databases (as of
369 May 6, 2018) using *P. aeruginosa* PAO1 PelC (NP_251752.1) as the query sequence. Annotated genomes
370 encoding PelC orthologs were downloaded from the databases and manually binned according to synteny
371 of the *pel* operon. Conserved domains encoded by open reading frames (ORFs) linked to *pel* loci were
372 queried by searching the Conserved Domain Database (CDD)(43). Visualizations of *pel* gene clusters were
373 drawn to scale using Geneious Prime 2020 and Adobe Illustrator.

374

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

375 *Sequence analysis of PelX and PgnE orthologues* – According to the *Pseudomonas* Genome database,
376 PFL_2971 and PFL_5533 belong to the *Pseudomonas* ortholog groups (POG) 020331 and POG001617,
377 respectively. Prior to this study, the POGs were unnamed, therefore based on our observations we have
378 named these POGs as *pelX* and *pgnE*. PelX primary amino acid sequences were aligned using MUSCLE
379 (44) to identify highly conserved amino acid residues. Additionally, the *P. protegens* PelX sequence was
380 submitted to Phyre² to determine the predicted fold of the protein (19). The PelX and PgnE protein
381 sequences from *P. protegens* Pf-5 were obtained from the *Pseudomonas* Genome Database (41).
382 Comparison of the PelX structure to previously determined structures was performed using the DALI
383 pairwise comparison server (45).

384

385 *Construction of P. protegens chromosomal mutations* - In-frame, unmarked *pslA* (PFL_4208), *pelF*
386 (PFL_2977), *pelX* (PFL_2971), and PFL_5533 gene deletions in *P. protegens* Pf-5 were constructed using
387 an established allelic replacement strategy (46). Flanking upstream and downstream regions of the open
388 reading frames (ORFs) were amplified and joined by splicing-by-overlap extension PCR (primers are listed
389 in **Table S1**). The *pslA*, *pelF*, and *pelX*, alleles were generated using forward upstream and downstream
390 reverse primers tailed with *EcoRI* and *XbaI*, restriction sites, respectively (**Table S1**). The PFL_5533 allele
391 was generated using forward upstream and downstream reverse primers tailed with *EcoRI* and *HindIII*
392 restriction sites, respectively (**Table S1**). This PCR product was gel purified, digested and ligated into
393 pEXG2, and the resulting constructs, pLSM33, pLSM34, and pLSM35, pLSM36 were identified and
394 sequenced as described above.

395 The VSV-G tagged *pelF*, *pelX*, and PFL_5533 constructs were generated by amplifying flanking
396 upstream and downstream regions surrounding the stop codon of the ORFs of each gene. The reverse
397 upstream and forward downstream primers (**Table S1**) were tailed with complementary sequences encoding
398 the VSV-G peptide immediately before the stop codon. Amplified upstream and downstream fragments
399 were joined by splicing-by-overlap extension PCR using forward upstream and reverse downstream primers
400 tailed with *EcoRI* and *HindIII* restriction sites, respectively (**Table S1**). These PCR products were gel

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

401 purified, digested, and ligated into pEXG2, as described above. Clones with positive inserts were verified
402 by Sanger sequencing to generate pLSM37, pLSM38, and pLSM39.

403 The aforementioned pEXG2 based plasmids were introduced into *P. protegens* Pf-5 via biparental
404 mating with donor strain *E. coli* SM10 (47). Merodiploids were selected on LB containing 60 μ g mL⁻¹
405 Gentamicin (Gen) and 25 μ g mL⁻¹ Irgasan (Irg). SacB-mediated counter-selection was carried out by
406 selecting for double-crossover mutations on no salt lysogeny broth (NSLB) agar containing 5% (w/v)
407 sucrose. Unmarked gene deletions were identified by PCR with primers targeting the outside, flanking
408 regions of *pslA*, *pelF*, *pelX*, and PFL_5533 (**Table S1, S2**). These PCR products were Sanger sequenced
409 using the same primers to confirm the correct deletion.

410

411 *Generation of WspR overexpression strains* - The *wspR* nucleotide sequence from *P. aeruginosa* PAO1
412 was obtained from the *Pseudomonas* Genome Database and used to design primers specific to full-length
413 *wspR* (**Table S1**). The forward primer encodes an *EcoRI* restriction site and a ribosomal binding site, while
414 the reverse primer encodes a *HindIII* restriction site. The amplified PCR products were digested with *EcoRI*
415 and *HindIII* restriction endonucleases and subsequently cloned into the pPSV39 vector (**Table S1**).
416 Confirmation of the correct nucleotide sequence of *wspR* was achieved through DNA sequencing (The
417 Center for Applied Genomics, The Hospital for Sick Children). R242 was mutated to an alanine to prevent
418 allosteric inhibition of WspR using the QuickChange Lightning Site Directed Mutagenesis kit (Agilent
419 technologies), as described previously. The resulting expression vector (pLSM-*wspR*^{R242A}) encodes residues
420 1-347 of WspR. Introduction of the pPSV39 empty vector or pSLM-*wspR*^{R242A} into *P. protegens* was carried
421 out by electroporation. Positive clones were selected for on LB agar containing 30 μ g mL⁻¹ Gen.

422

423 *Crystal violet assay* – Overnight cultures grown in King's B media (KBM), were diluted to a final OD of
424 0.005 in 1 mL of KBM in a 24-well VDX plate (Hampton Research) and left undisturbed at 30 °C for 120
425 h. Non-attached cells were removed and the wells were washed thoroughly with water, and stained with
426 1.5 mL 0.1% (w/v) crystal violet. After 10 minutes, the wells were washed again and the stain solubilized

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

427 using 2 mL of 95% (v/v) ethanol for 10 minutes. 200 μ L was transferred to a fresh 96-well polypropylene
428 plate (Nunc) and the absorbance measured at 550 nm. For strains containing empty pPSV39 or pLSM-
429 *wspR*^{R2424}, the above protocol was modified slightly. As c-di-GMP significantly upregulated biofilm
430 formation, crystal violet staining for these strains was performed as described previously using 96-well
431 polypropylene plates that were incubated statically for 6 h or 24 h at 30 °C. All strains were grown in KBM
432 containing 30 μ g ml⁻¹ Gen and 30 μ M IPTG.

433

434 *Dot blots* - Pel antisera was obtained as described in Colvin *et al.* from *P. aeruginosa* PA14 P_{BAD}*pel* (10).
435 The adsorption reaction was conducted as described by Jennings *et al* (9). Culture supernatants containing
436 secreted Pel were harvested by centrifugation (16,000 \times g for 2 min) from 1 mL aliquots of *P. protegens*
437 grown overnight at 30 °C in LB containing 30 μ g ml⁻¹ Gen and 30 μ M IPTG, and treated with proteinase K
438 (final concentration, 0.5 mg mL⁻¹) for 60 min at 60 °C, followed by 30 min at 80 °C to inactivate proteinase
439 K.

440 Pel immunoblots were performed as described by Colvin *et al* (10) and Jennings *et al* (9). 5 μ L of
441 secreted Pel, prepared as described above, was pipetted onto a nitrocellulose membrane and left to air dry
442 for 10 min. The membrane was blocked with 5% (w/v) skim milk in Tris-buffered saline (10 mM Tris-HCl
443 pH 7.5, 150 mM NaCl) containing 0.1% (v/v) Tween-20 (TBS-T) for 1 h at room temperature and probed
444 with adsorbed α -Pel at a 1:60 dilution in 1% (w/v) skim milk in TBS-T overnight at 4 °C with shaking.
445 Blots were washed three times for 5 min each with TBS-T, probed with goat α -rabbit HRP-conjugated
446 secondary antibody (Bio-Rad) at a 1:2000 dilution in TBS-T for 45 min at room temperature with shaking,
447 and washed again. All immunoblots were developed using SuperSignal West Pico (Thermo Scientific)
448 following the manufacturer's recommendations.

449 For WFL-HRP immunoblots, 5 μ L of secreted Pel, prepared as described above, was pipetted onto
450 a nitrocellulose membrane and left to air dry for 10 min. The membrane was blocked with 5% (w/v) bovine
451 serum albumin (BSA) in TBS-T for 1 h at room temperature and probed with 10 μ g/mL of WFL-HRP (EY

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

452 Laboratories) in 2% (w/v) BSA in TBS-T with 0.2 g/L CaCl₂ overnight at room temperature with shaking.
453 Membranes were washed twice for 5 min and once for 10 min with TBS-T, then developed as described
454 above.

455

456 *Western blot sample preparation and analysis* – For analysis of protein levels from WspR^{R242A}
457 overexpressing strains containing VSV-G-tagged PelF, PelX or PFL_5533, 5 mL of LB media containing
458 30 µM IPTG and 30 µg mL⁻¹ Gen was inoculated with the appropriate strain and allowed to grow overnight
459 at 30 °C with shaking. Culture density was normalized to an OD₆₀₀ = 1 and 1 mL of cells was centrifuged
460 at 5,000 × g for 5 min to pellet cells. The cell pellet was resuspended in 100 µL of 2× Laemmli buffer,
461 boiled for 10 min at 95 °C, and analyzed by SDS-PAGE followed by Western blot. For Western blot
462 analysis, a 0.2 µm polyvinylidene difluoride (PVDF) membrane was wetted in methanol and soaked for 5
463 min in Western transfer buffer (25 mM Tris-HCl, 150 mM glycine, 20% (v/v) methanol) along with the
464 SDS-PAGE gel to be analyzed. Protein was transferred from the SDS-PAGE gel to the PVDF membrane
465 by wet transfer (25 mV, 2 h). The membrane was briefly washed in TBS-T before blocking in 5% (w/v)
466 skim milk powder in TBS-T for 2 h at room temperature with gentle agitation. The membrane was briefly
467 washed again in TBS-T before incubation overnight with α-VSV-G antibody in TBS-T with 1% (w/v) skim
468 milk powder at 4 °C. The next day, the membrane was washed four times in TBS-T for 5 min each before
469 incubation for 1 h with secondary antibody (1:2000 dilution of BioRad affinity purified mouse α-rabbit IgG
470 conjugated to alkaline phosphatase) in TBS-T with 1% (w/v) skim milk powder. The membrane was then
471 washed three times with TBS-T for 5 min each before development with 5-bromo-4-chloro-3-indolyl
472 phosphate/nitro blue tetrazolium chloride (BioShop ready-to-use BCIP/NBT solution). Developed blots
473 were imaged using a BioRad ChemiDoc imaging system.

474

475 *Cloning and mutagenesis* - The *pelX* nucleotide sequence from *P. protegens* Pf-5 (PFL_2971) was obtained
476 from the *Pseudomonas* Genome Database (41) and used to design primers specific to full-length *pelX*
477 (Table S1). The amplified PCR products were digested with *Nde*I and *Xho*I restriction endonucleases and

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

478 subsequently cloned into the pET28a vector (Novagen). Confirmation of the correct nucleotide sequence
479 of *pelX* was achieved through DNA sequencing (ACGT DNA Technologies Corporation). The resulting
480 expression vector (pLSM-PelX) encodes residues 1-309 of PelX fused to a cleavable N-terminal His₆ tag
481 (His₆-PelX) for purification purposes (**Table S2**). To prevent aggregation of PelX in solution, a non-
482 conserved cysteine (C232) was mutated to a serine with the aid of the QuickChange Lightning Site Directed
483 Mutagenesis kit (Agilent technologies) and confirmed with DNA sequencing (ACGT DNA Technologies
484 Corporation). The PelX^{C232S} active site mutant (S121A Y146F) was generated analogously.

485

486 *Expression and purification of PelX* - The expression of PelX^{C232S} was achieved through the transformation
487 of the PelX^{C232S} expression vector into *Escherichia coli* BL21 (DE3) competent cells, which were then
488 grown in 2 L lysogeny broth (LB) containing 50 µg mL⁻¹ kanamycin at 37 °C. The cells were grown to an
489 OD₆₀₀ of 0.6 whereupon isopropyl-β-D-1-thiogalactopyranoside (IPTG) was added to a final concentration
490 of 1.0 mM to induce expression. The induced cells were incubated for 20 h at 25 °C prior to being harvested
491 via centrifugation at 6 260 × g for 20 min at 4 °C. The resulting cell pellet was stored at -20 °C until
492 required.

493 The cell pellet from 2 L of bacterial culture was thawed and resuspended in 80 mL of Buffer A [50
494 mM Tris-HCl pH 8.0, 300 mM NaCl, 5% (v/v) glycerol, and 1 mM tris(2-carboxyethyl)phosphine (TCEP)]
495 containing 1 SIGMAFAST protease inhibitor EDTA-free cocktail tablet (Sigma). Due to the presence of
496 two remaining cysteines in PelX^{C232S}, TCEP was included to prevent intermolecular cross-linking of the
497 protein. These cysteines are not predicted to be involved in disulfide bond formation given their poor
498 conservation and the cytoplasmic localization of PelX^{C232S}. The resuspension was then lysed by
499 homogenization using an Emulsiflex-C3 (Avestin, Inc.) at a pressure between 15 000 – 20 000 psi, until the
500 resuspension appeared translucent. Insoluble cell lysate was removed by centrifugation for 25 min at 25
501 000 × g at 4 °C. The supernatant was loaded onto a 5 mL Ni²⁺-NTA column pre-equilibrated with Buffer
502 A containing 5 mM imidazole in order to reduce background binding. To remove contaminating proteins,
503 the column was washed with 5 column volumes of Buffer A containing 20 mM imidazole. Bound protein

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

504 was eluted from the column with 3 column volumes of Buffer A containing 250 mM imidazole. SDS-PAGE
505 analysis revealed that the resulting His₆-PelX^{C232S} was ~99% pure and appeared at its expected molecular
506 weight of 35 kDa. Fractions containing PelX^{C232S} were pooled and concentrated to a volume of 2 mL by
507 centrifugation at 2 200 × g at a temperature of 4 °C using an Amicon ultra centrifugal filter device
508 (Millipore) with a 10 kDa molecular weight cut-off. PelX^{C232S} was purified and buffer exchanged into
509 Buffer B [20 mM Tris-HCl pH 8.0, 150 mM NaCl, 5% (v/v) glycerol, 1 mM TCEP] by size-exclusion
510 chromatography using a HiLoad 16/60 Superdex 200 gel-filtration column (GE Healthcare). PelX^{C232S}
511 eluted as a single Gaussian shaped peak, and all PelX^{C232S} containing fractions were pooled and
512 concentrated by centrifugation, as above, to 8 mg mL⁻¹ and stored at 4 °C. PelX^{C232S/Y146F/S121A} was purified
513 similarly.

514

515 *Determination of the PelX oligomerization state by gel filtration analysis* - Oligomerization of PelX^{C232S}
516 was determined using a Superdex 200 10/300 GL column (GE Life Sciences). The column was equilibrated
517 in Buffer B. Molecular weight standards (Sigma, 12-200 kDa) were applied to the column as directed.
518 PelX^{C232S} was applied to the column at 7.5 mg ml⁻¹ (100 µL) and protein elution was monitored at 280 nm.

519

520 *NMR activity assay* – The following method has been adapted from Wyszynski et al (39). Enzymatic
521 reactions were performed in 30 mM sodium phosphate pH 8.0, with 50 µg of freshly purified PelX^{C232S} and
522 10 mM UDP-GlcNAc, UDP-Glc, UDP-Gal, or 5 mM UDP-GalNAc in a total reaction volume of 220 µL.
523 After incubation at 37 °C for 1 hour, the mixture was flash frozen and lyophilized. The resulting material
524 was dissolved in 220 µL of D₂O and analyzed by ¹H NMR. As control experiments, the same procedures
525 were applied to samples lacking PelX or UDP-GlcNAc. Data were collected on a Varian 600 MHz NMR
526 spectrometer.

527

528 *Intracellular metabolite extraction* – *P. protegens* Pf-5 wild-type, Δ pelX, Δ PFL_5533 and Δ pelX
529 Δ PFL_5533 strains that had been transformed with a plasmid expressing WspR^{R242A} (pLSM21) were

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

530 streaked out twice in succession on Jensen's agar containing 30 µg/mL gentamicin, and these first and
531 second subcultures were grown for 48 h at 30 °C. For each biological replicate, cells from the second
532 subcultures were collected using a polyester swab and suspended in 30 mL of Jensen's medium to match
533 an optical density at 600 nm (OD₆₀₀) of 0.6. Subsequently, two 10 mL aliquots of this standardized culture
534 were each passed through a syringe filter (0.45 µm, PVDF, Millipore) to collect the bacteria. These filters
535 were placed face-up on Jensen's agar using flame sterilized tweezers and were then incubated at 30 °C for
536 3 h.

537 Following this incubation, the first filter was placed in 2 mL of sterile PBS containing 1 mM
538 purified recombinant PelA, and this filter was incubated for 30 min at room temperature to break up
539 aggregates (11). An established microtiter dilution method for viable cell counting was used to determine
540 the number of bacteria on the filter (48). The second filter was put into a Petri dish (60 x 15 mm) containing
541 2 mL of cold 80% (v/v) LC-MS grade methanol, which was incubated for 15 min. Afterwards, 1 mL of
542 80% LC-MS grade methanol was used to wash the filter, and then the 3 mL of the methanol extract were
543 transferred to a 5 mL microcentrifuge tube. These tubes were placed in a centrifuge at 7000 × g for 30 min
544 at 4 °C, and then 2 mL of the supernatant were transferred to a 2 mL microcentrifuge tube. The methanol
545 was evaporated using a speed vac, and then the dried cell extracts were suspended in 200 µL of 50% (v/v)
546 LC-MS grade methanol. Cell extracts were then stored at -80 °C until LC-MS analysis. Mass spectrometry
547 measurements of GalNAc were normalized to viable cell counts.

548

549 *Liquid chromatography-mass spectrometry (LC-MS)* - Mass spectral data collection was done on a Thermo
550 Scientific Q Exactive™ Hybrid Quadrupole-Orbitrap™ Mass Spectrometer in negative ion full scan mode
551 (70-1000 m/z) at 140,000 resolution, with an automatic gain control target of 1e⁶, and a maximum injection
552 time of 200 ms. A Thermo Scientific Ion Max-S API source outfitted with a HESI-II probe was used to
553 couple the mass spectrometer to a Thermo Scientific Vanquish Flex UHPLC platform. Heated electrospray
554 source parameters for negative mode were as follows: spray voltage -2500 V, sheath gas 25 (arbitrary units),
555 auxiliary gas 10 (arbitrary units), sweep gas 2 (arbitrary units), capillary temperature 275 °C, auxiliary gas

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

556 temperature 325 °C. A binary solvent mixture of 20 mM ammonium formate at pH 3.0 in LC-MS grade
557 water (solvent A) and 0.1% (v/v) formic acid in LC-MS grade acetonitrile (solvent B) were used in
558 conjunction with a Syncronis™ HILIC LC column (Thermo Fisher Scientific 97502-102130) to achieve
559 chromatographic separation of chemical compounds. For these runs the following gradient was used at a
560 flow rate of 600 uL min⁻¹: 0-2 min, 100% B; 2-15 min, 100-80% B; 15-16 min, 80-5% B; 16-17.5 min, 5%
561 B; 17.5-18 min, 5-100% B; 18-21 min, 100 % B. For all runs the sample injection volume was 2 uL. Raw
562 data acquisition was carried out using Thermo Xcalibur 4.0.27.19 software. Data analysis was carried out
563 using MAVEN software (49). Compound identification was achieved through matching of high-resolution
564 accurate mass and retention time characteristics to those of authentic standards. Secondary compound
565 confirmation was performed by matching of fragmentation profiles obtained through parallel reaction
566 monitoring.

567

568 *Crystallization and structure determination* - Commercial sparse matrix crystal screens from Microlytic
569 (MCSG1-4) were prepared at room temperature (22 °C) with PelX^{C232S} at a concentration of 8 mg mL⁻¹
570 (0.23 mM). UDP-GlcNAc was added exogenously to a concentration of 2 mM. Trials were set up in 48-
571 well VDX plates (Hampton Research) by hand with 3 µL drops at a ratio of 1:1 protein to crystallization
572 solution over a reservoir containing 200 µL of the crystallization solution. Crystal trays were stored at 22
573 °C. The best crystals were obtained from condition 32 [0.2 M ammonium sulphate, 0.1 M sodium citrate
574 pH 5.6, 25% (w/v) PEG 4000] from MCSG-1 (Microlytic). This condition yielded stacked flat square plate
575 crystals that took approximately 5 days to grow to maximum dimensions of 300 µm x 300 µm x 50 µm.
576 PelX was unable to form crystals in the absence of UDP-GlcNAc.

577 Crystals of PelX^{C232S} were cryoprotected in well solution supplemented with 20% (v/v) ethylene
578 glycol by briefly soaking the crystal in a separate drop. Crystals were soaked for 2-3 s prior to vitrification
579 in liquid nitrogen, and subsequently stored until X-ray diffraction data were collected on beamline X29A
580 at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. A total of 360
581 images of 1° Δφ oscillation were collected on an ADSC Q315 CCD detector with a 250 mm crystal-to-

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

582 detector distance and an exposure time of 0.4 s per image. The data were processed using DENZO and
583 integrated intensities were scaled using SCALEPACK from the HKL-2000 program package (50). The data
584 collection statistics are summarized in **Table 2**. The structure was solved by molecular replacement using
585 WbpP as a model with PHENIX AutoMR wizard. The resulting map was of good quality and allowed
586 manual model building using COOT (51,52). The model was then refined using PHENIX.REFINE (52) to
587 a final $R_{\text{work}}/R_{\text{free}}$ of 16.7% and 19.7%, respectively.

588 $\text{PelX}^{\text{C232S/S121A/Y146F}}$ in complex with UDP-GalNAc or UDP-GlcNAc was crystallized under the
589 same conditions as the wild-type protein, and data collection and refinement were performed as described
590 above. The corresponding statistics can be found in **Table 2**.

591

592 **Acknowledgements** – This work was supported in part by the grants from the Canadian Institutes of Health
593 Research (CIHR) to PLH (MOP 43998 and FDN154327), the National Institute of Health 2R01AI077628
594 to MRP, and the Natural Sciences and Engineering Research Council (NSERC) to (JJH 435631-2013). PLH
595 and JJH are recipients of Canada Research Chairs. LSM, GBW, and JCW have been supported by Canada
596 Graduate Scholarships from NSERC. LSM and JCW have been supported by graduate scholarships from
597 the Ontario Graduate Scholarship Program, and The Hospital for Sick Children Foundation Student
598 Scholarship Program. GBW has been supported by a graduate scholarship from Cystic Fibrosis Canada.
599 Crystallization utilized the Structural and Biophysical Core Facility at The Hospital for Children supported
600 in part by the Canadian Foundation for Innovation. Beam line X29 at the National Synchrotron Light Source
601 is supported by the US Department of Energy and the NIH National Center for Research Resources. The
602 coordinates and structure factors for $\text{PelX}^{\text{C232S}}$ in complex with NAD^+ and UDP, $\text{PelX}^{\text{C232S S121A Y146F}}$ UDP-
603 GlcNAc and $\text{PelX}^{\text{C232S S121A Y146F}}$ UDP-GalNAc have been deposited in the PDB, ID codes 6WJB, 6WJA,
604 6WJ9, respectively. Metabolomics data were acquired by R.A.G. at the Calgary Metabolomics Research
605 Facility (CMRF), which is supported by the International Microbiome Centre and the Canada Foundation
606 for Innovation (CFI-JELF 34986). I.A.L. is supported by an Alberta Innovates Translational Health Chair.
607

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

608 **Conflict of interest.** The authors declare that they have no conflicts of interest with the contents of this
609 article.

610

611 **Author contributions:** L.S.M., M.R.P., and P.L.H. conceptualization; L.S.M., G.B.W., J.J.H., I.A.L., and
612 P.L.H. formal analysis; L.S.M., G.B.W., H.R., R.P., R.J.W, T.E.R., E.R., A.O., R.A.G., and I.A.L.,
613 investigation; L.S.M., G.B.W., and P.L.H. writing-original draft; L.S.M., G.B.W., J.C.W., J.J.H., and
614 P.L.H. writing-review and editing; M.N., H.R., M.R.P., and I.A.L. resources; J.J.H, I.A.L., and P.L.H.
615 supervision; P.L.H. funding acquisition; P.L.H. project administration.

616

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

617 REFERENCES

- 618 1. Whitfield, G. B., Marmont, L. S., and Howell, P. L. (2015) Enzymatic modifications of
619 exopolysaccharides enhance bacterial persistence. *Frontiers in microbiology* **6**, 471
- 620 2. Franklin, M. J., Nivens, D. E., Weadge, J. T., and Howell, P. L. (2011) Biosynthesis of the
621 *Pseudomonas aeruginosa* Extracellular Polysaccharides, Alginate, Pel, and Psl. *Frontiers in*
622 *microbiology* **2**, 167
- 623 3. Lee, H. J., Chang, H. Y., Venkatesan, N., and Peng, H. L. (2008) Identification of amino acid
624 residues important for the phosphomannose isomerase activity of PslB in *Pseudomonas*
625 *aeruginosa* PAO1. *FEBS letters* **582**, 3479-3483
- 626 4. Roychoudhury, S., May, T. B., Gill, J. F., Singh, S. K., Feingold, D. S., and Chakrabarty, A. M.
627 (1989) Purification and characterization of guanosine diphospho-D-mannose dehydrogenase. A
628 key enzyme in the biosynthesis of alginate by *Pseudomonas aeruginosa*. *The Journal of*
629 *biological chemistry* **264**, 9380-9385
- 630 5. Shinabarger, D., Berry, A., May, T. B., Rothmel, R., Fialho, A., and Chakrabarty, A. M. (1991)
631 Purification and characterization of phosphomannose isomerase-guanosine diphospho-D-
632 mannose pyrophosphorylase. A bifunctional enzyme in the alginate biosynthetic pathway of
633 *Pseudomonas aeruginosa*. *The Journal of biological chemistry* **266**, 2080-2088
- 634 6. Ma, L., Wang, J., Wang, S., Anderson, E. M., Lam, J. S., Parsek, M. R., and Wozniak, D. J.
635 (2012) Synthesis of multiple *Pseudomonas aeruginosa* biofilm matrix exopolysaccharides is
636 post-transcriptionally regulated. *Environmental microbiology* **14**, 1995-2005
- 637 7. Friedman, L., and Kolter, R. (2004) Genes involved in matrix formation in *Pseudomonas*
638 *aeruginosa* PA14 biofilms. *Molecular microbiology* **51**, 675-690
- 639 8. Vasseur, P., Vallet-Gely, I., Soscia, C., Genin, S., and Filloux, A. (2005) The pel genes of the
640 *Pseudomonas aeruginosa* PAK strain are involved at early and late stages of biofilm formation.
641 *Microbiology* **151**, 985-997
- 642 9. Jennings, L. K., Storek, K. M., Ledvina, H. E., Coulon, C., Marmont, L. S., Sadovskaya, I.,
643 Secor, P. R., Tseng, B. S., Scian, M., Filloux, A., Wozniak, D. J., Howell, P. L., and Parsek, M.
644 R. (2015) Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the
645 *Pseudomonas aeruginosa* biofilm matrix. *Proceedings of the National Academy of Sciences of the*
646 *United States of America* **112**, 11353-11358
- 647 10. Colvin, K. M., Alnabelseya, N., Baker, P., Whitney, J. C., Howell, P. L., and Parsek, M. R.
648 (2013) PelA deacetylase activity is required for Pel polysaccharide synthesis in *Pseudomonas*
649 *aeruginosa*. *Journal of bacteriology* **195**, 2329-2339
- 650 11. Le Mauff, F., Bamford, N. C., Alnabelseya, N., Zhang, Y., Baker, P., Robinson, H., Codee, J. D.
651 C., Howell, P. L., and Sheppard, D. C. (2019) Molecular mechanism of *Aspergillus fumigatus*
652 biofilm disruption by fungal and bacterial glycoside hydrolases. *The Journal of biological*
653 *chemistry* **294**, 10760-10772
- 654 12. Marmont, L. S., Rich, J. D., Whitney, J. C., Whitfield, G. B., Almblad, H., Robinson, H., Parsek,
655 M. R., Harrison, J. J., and Howell, P. L. (2017) Oligomeric lipoprotein PelC guides Pel
656 polysaccharide export across the outer membrane of *Pseudomonas aeruginosa*. *Proceedings of*
657 *the National Academy of Sciences of the United States of America* **114**, 2892-2897
- 658 13. Whitfield, G. B., Marmont, L. S., Ostaszewski, A., Rich, J. D., Whitney, J. C., Parsek, M. R.,
659 Harrison, J. J., and Howell, P. L. (2020) Pel Polysaccharide Biosynthesis Requires an Inner
660 Membrane Complex Comprised of PelD, PelE, PelF, and PelG. *Journal of bacteriology* **202**
- 661 14. Kavanagh, K. L., Jornvall, H., Persson, B., and Oppermann, U. (2008) Medium- and short-chain
662 dehydrogenase/reductase gene and protein families : the SDR superfamily: functional and
663 structural diversity within a family of metabolic and regulatory enzymes. *Cellular and molecular*
664 *life sciences : CMLS* **65**, 3895-3906
- 665 15. Fox, A. R., Soto, G., Valverde, C., Russo, D., Lagares, A., Jr., Zorreguieta, A., Alleva, K.,
666 Pascuan, C., Frare, R., Mercado-Blanco, J., Dixon, R., and Ayub, N. D. (2016) Major cereal crops

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

667 benefit from biological nitrogen fixation when inoculated with the nitrogen-fixing bacterium
668 *Pseudomonas protegens* Pf-5 X940. *Environmental microbiology* **18**, 3522-3534
669 16. Ueda, A., and Saneoka, H. (2015) Characterization of the ability to form biofilms by plant-
670 associated *Pseudomonas* species. *Current microbiology* **70**, 506-513
671 17. Kidarsa, T. A., Shaffer, B. T., Goebel, N. C., Roberts, D. P., Buyer, J. S., Johnson, A., Kobayashi,
672 D. Y., Zabriskie, T. M., Paulsen, I., and Loper, J. E. (2013) Genes expressed by the biological
673 control bacterium *Pseudomonas protegens* Pf-5 on seed surfaces under the control of the global
674 regulators GacA and RpoS. *Environmental microbiology* **15**, 716-735
675 18. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local
676 alignment search tool. *Journal of molecular biology* **215**, 403-410
677 19. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., and Sternberg, M. J. (2015) The Phyre2
678 web portal for protein modeling, prediction and analysis. *Nature protocols* **10**, 845-858
679 20. Baraquet, C., and Harwood, C. S. (2016) FleQ DNA Binding Consensus Sequence Revealed by
680 Studies of FleQ-Dependent Regulation of Biofilm Gene Expression in *Pseudomonas aeruginosa*.
681 *Journal of bacteriology* **198**, 178-186
682 21. Colvin, K. M., Irie, Y., Tart, C. S., Urbano, R., Whitney, J. C., Ryder, C., Howell, P. L.,
683 Wozniak, D. J., and Parsek, M. R. (2012) The Pel and Psl polysaccharides provide *Pseudomonas*
684 *aeruginosa* structural redundancy within the biofilm matrix. *Environmental microbiology* **14**,
685 1913-1928
686 22. Byrd, M. S., Sadovskaya, I., Vinogradov, E., Lu, H., Sprinkle, A. B., Richardson, S. H., Ma, L.,
687 Ralston, B., Parsek, M. R., Anderson, E. M., Lam, J. S., and Wozniak, D. J. (2009) Genetic and
688 biochemical analyses of the *Pseudomonas aeruginosa* Psl exopolysaccharide reveal overlapping
689 roles for polysaccharide synthesis enzymes in Psl and LPS production. *Molecular microbiology*
690 **73**, 622-638
691 23. Hickman, J. W., and Harwood, C. S. (2008) Identification of FleQ from *Pseudomonas aeruginosa*
692 as a c-di-GMP-responsive transcription factor. *Molecular microbiology* **69**, 376-389
693 24. Baraquet, C., Murakami, K., Parsek, M. R., and Harwood, C. S. (2012) The FleQ protein from
694 *Pseudomonas aeruginosa* functions as both a repressor and an activator to control gene
695 expression from the pel operon promoter in response to c-di-GMP. *Nucleic acids research* **40**,
696 7207-7218
697 25. Hickman, J. W., Tifrea, D. F., and Harwood, C. S. (2005) A chemosensory system that regulates
698 biofilm formation through modulation of cyclic diguanylate levels. *Proceedings of the National
699 Academy of Sciences of the United States of America* **102**, 14422-14427
700 26. De, N., Pirruccello, M., Krasteva, P. V., Bae, N., Raghavan, R. V., and Sondermann, H. (2008)
701 Phosphorylation-independent regulation of the diguanylate cyclase WspR. *PLoS biology* **6**, e67
702 27. Sato, T., Tateno, H., Kaji, H., Chiba, Y., Kubota, T., Hirabayashi, J., and Narimatsu, H. (2017)
703 Engineering of recombinant *Wisteria floribunda* agglutinin specifically binding to
704 GalNAcbeta1,4GlcNAc (LacdiNAc). *Glycobiology* **27**, 743-754
705 28. Ishiyama, N., Creuzenet, C., Lam, J. S., and Berghuis, A. M. (2004) Crystal structure of WbpP, a
706 genuine UDP-N-acetylglucosamine 4-epimerase from *Pseudomonas aeruginosa*: substrate
707 specificity in udp-hexose 4-epimerases. *The Journal of biological chemistry* **279**, 22635-22642
708 29. Beerens, K., Soetaert, W., and Desmet, T. (2015) UDP-hexose 4-epimerases: a view on structure,
709 mechanism and substrate specificity. *Carbohydr Res* **414**, 8-14
710 30. Bauer, A. J., Rayment, I., Frey, P. A., and Holden, H. M. (1992) The molecular structure of UDP-
711 galactose 4-epimerase from *Escherichia coli* determined at 2.5 Å resolution. *Proteins* **12**, 372-381
712 31. Jornvall, H., Persson, B., Krook, M., Atrian, S., Gonzalez-Duarte, R., Jeffery, J., and Ghosh, D.
713 (1995) Short-chain dehydrogenases/reductases (SDR). *Biochemistry* **34**, 6003-6013
714 32. Thoden, J. B., and Holden, H. M. (1998) Dramatic differences in the binding of UDP-galactose
715 and UDP-glucose to UDP-galactose 4-epimerase from *Escherichia coli*. *Biochemistry* **37**, 11469-
716 11477

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

717 33. Demendi, M., Ishiyama, N., Lam, J. S., Berghuis, A. M., and Creuzenet, C. (2005) Towards a
718 better understanding of the substrate specificity of the UDP-N-acetylglucosamine C4 epimerase
719 WbpP. *The Biochemical journal* **389**, 173-180

720 34. Wozniak, D. J., Wyckoff, T. J., Starkey, M., Keyser, R., Azadi, P., O'Toole, G. A., and Parsek,
721 M. R. (2003) Alginate is not a significant component of the extracellular polysaccharide matrix of
722 PA14 and PAO1 *Pseudomonas aeruginosa* biofilms. *Proceedings of the National Academy of
723 Sciences of the United States of America* **100**, 7907-7912

724 35. Rocchetta, H. L., Burrows, L. L., and Lam, J. S. (1999) Genetics of O-antigen biosynthesis in
725 *Pseudomonas aeruginosa*. *Microbiology and molecular biology reviews : MMBR* **63**, 523-553

726 36. Colvin, K. M., Gordon, V. D., Murakami, K., Borlee, B. R., Wozniak, D. J., Wong, G. C., and
727 Parsek, M. R. (2011) The pel polysaccharide can serve a structural and protective role in the
728 biofilm matrix of *Pseudomonas aeruginosa*. *PLoS pathogens* **7**, e1001264

729 37. Seo, J., Brencic, A., and Darwin, A. J. (2009) Analysis of secretin-induced stress in *Pseudomonas*
730 *aeruginosa* suggests prevention rather than response and identifies a novel protein involved in
731 secretin function. *Journal of bacteriology* **191**, 898-908

732 38. Creuzenet, C., Belanger, M., Wakarchuk, W. W., and Lam, J. S. (2000) Expression, purification,
733 and biochemical characterization of WbpP, a new UDP-GlcNAc C4 epimerase from
734 *Pseudomonas aeruginosa* serotype O6. *The Journal of biological chemistry* **275**, 19060-19067

735 39. Wyszynski, F. J., Lee, S. S., Yabe, T., Wang, H., Gomez-Escribano, J. P., Bibb, M. J., Lee, S. J.,
736 Davies, G. J., and Davis, B. G. (2012) Biosynthesis of the tunicamycin antibiotics proceeds via
737 unique exo-glycal intermediates. *Nature chemistry* **4**, 539-546

738 40. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S.,
739 Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., and Drummond, A.
740 (2012) Geneious Basic: an integrated and extendable desktop software platform for the
741 organization and analysis of sequence data. *Bioinformatics* **28**, 1647-1649

742 41. Winsor, G. L., Lam, D. K., Fleming, L., Lo, R., Whiteside, M. D., Yu, N. Y., Hancock, R. E., and
743 Brinkman, F. S. (2011) *Pseudomonas* Genome Database: improved comparative analysis and
744 population genomics capability for *Pseudomonas* genomes. *Nucleic acids research* **39**, D596-600

745 42. Winsor, G. L., Khaira, B., Van Rossum, T., Lo, R., Whiteside, M. D., and Brinkman, F. S. (2008)
746 The *Burkholderia* Genome Database: facilitating flexible queries and comparative analyses.
747 *Bioinformatics* **24**, 2803-2804

748 43. Marchler-Bauer, A., Derbyshire, M. K., Gonzales, N. R., Lu, S., Chitsaz, F., Geer, L. Y., Geer, R.
749 C., He, J., Gwadz, M., Hurwitz, D. I., Lanczycki, C. J., Lu, F., Marchler, G. H., Song, J. S.,
750 Thanki, N., Wang, Z., Yamashita, R. A., Zhang, D., Zheng, C., and Bryant, S. H. (2015) CDD:
751 NCBI's conserved domain database. *Nucleic acids research* **43**, D222-226

752 44. Edgar, R. C. (2004) MUSCLE: a multiple sequence alignment method with reduced time and
753 space complexity. *BMC bioinformatics* **5**, 113

754 45. Holm, L., and Rosenstrom, P. (2010) Dali server: conservation mapping in 3D. *Nucleic acids*
755 *research* **38**, W545-549

756 46. Hmelo, L. R., Borlee, B. R., Almblad, H., Love, M. E., Randall, T. E., Tseng, B. S., Lin, C., Irie,
757 Y., Storek, K. M., Yang, J. J., Siehnel, R. J., Howell, P. L., Singh, P. K., Tolker-Nielsen, T.,
758 Parsek, M. R., Schweizer, H. P., and Harrison, J. J. (2015) Precision-engineering the
759 *Pseudomonas aeruginosa* genome with two-step allelic exchange. *Nature protocols* **10**, 1820-
760 1841

761 47. de Lorenzo, V., and Timmis, K. N. (1994) Analysis and construction of stable phenotypes in
762 gram-negative bacteria with Tn5- and Tn10-derived minitransposons. *Methods in enzymology*
763 **235**, 386-405

764 48. Harrison, J. J., Stremick, C. A., Turner, R. J., Allan, N. D., Olson, M. E., and Ceri, H. (2010)
765 Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model
766 for high-throughput screening. *Nature protocols* **5**, 1236-1254

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

767 49. Clasquin, M. F., Melamud, E., and Rabinowitz, J. D. (2012) LC-MS data processing with
768 MAVEN: a metabolomic analysis and visualization engine. *Curr Protoc Bioinformatics Chapter*
769 **14**, Unit14 11
770 50. Otwinowski, Z., and Minor, W. (1997) [20] Processing of X-ray diffraction data collected in
771 oscillation mode. *Methods in enzymology* **276**, 307-326
772 51. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. *Acta*
773 *crystallographica. Section D, Biological crystallography* **60**, 2126-2132
774 52. Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J.,
775 Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R.,
776 Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010)
777 PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta*
778 *crystallographica. Section D, Biological crystallography* **66**, 213-221
779 53. El-Gebali, S., Mistry, J., Bateman, A., Eddy, S. R., Luciani, A., Potter, S. C., Qureshi, M.,
780 Richardson, L. J., Salazar, G. A., Smart, A., Sonnhammer, E. L. L., Hirsh, L., Paladin, L.,
781 Piovesan, D., Tosatto, S. C. E., and Finn, R. D. (2019) The Pfam protein families database in
782 2019. *Nucleic acids research* **47**, D427-D432
783 54. Chen, V. B., Arendall, W. B., 3rd, Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J.,
784 Murray, L. W., Richardson, J. S., and Richardson, D. C. (2010) MolProbity: all-atom structure
785 validation for macromolecular crystallography. *Acta crystallographica. Section D, Biological*
786 *crystallography* **66**, 12-21

787

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

788 **TABLES**

789 **Table 1: Short-chain dehydrogenase/reductase enzymes in *P. protegens* Pf-5**

Pf-5 PFL number	Annotation	Predicted function ^a	% Identity to PelX
PFL 2971	PelX	NAD-dependent epimerase/dehydratase	100.00
PFL 5533		NAD-dependent epimerase/dehydratase	67.97
PFL 3079	LspL	UDP-glucuronate 5'-epimerase	30.54
PFL 5405	GalE	UDP-Glc 4-epimerase	29.88
PFL 0305	rfbB	dTDP-glucose 4,6-dehydratase	33.60
PFL 5490		NAD dependent epimerase/dehydratase	30.87
PFL 4822		3-beta hydroxysteroid dehydrogenase/isomerase	29.92
PFL 6133		NAD dependent epimerase/dehydratase	29.37
PFL 4307	WbpV	UDP-Glc 4-epimerase WbpV	29.41
PFL 3045	arnA	bifunctional UDP-glucuronic acid decarboxylase/UDP-4-amino-4-deoxy-L-arabinose formyltransferase	25.98
PFL 4587		NAD dependent epimerase/dehydratase	34.09
PFL 4375		NAD dependent epimerase/dehydratase	28.78
PFL 5491	Gmd	GDP-mannose 4,6-dehydratase	28.07
PFL 5106	WbjB	trifunctional UDP-D-GlcNAc 4,6-dehydratase/5-epimerase/3-epimerase WbjB	24.46
PFL 3633		NAD dependent epimerase/dehydratase	22.34

790 ^aPredicted function based on Pfam analysis (53).

791

792

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

793 **Table 2: Data collection and refinement statistics**

	PelX^{C232S} + UDP-GlcNAc	PelX^{C232S Y146F S121A} + UDP-GlcNAc	PelX^{C232S Y146F S121A} + UDP-GalNAc
Data Collection			
Wavelength (Å)	1.075	1.075	1.075
Space group	<i>P</i> 2 ₁ 2 ₁ 2	<i>P</i> 2 ₁ 2 ₁ 2	<i>P</i> 2 ₁ 2 ₁ 2
Cell dimensions			
<i>a</i> , <i>b</i> , <i>c</i> (Å)	123.0, 75.5, 79.2	124.2, 75.5, 79.3	123.6, 75.3, 79.3
α, β, γ (°)	90.0, 90.0, 90.0	90.0, 90.0, 90.0	90.0, 90.0, 90.0
Resolution (Å)	50.00 – 2.1 (2.18-2.10)	50.00 – 2.1 (2.18-2.10)	50.00 – 2.1 (2.18-2.10)
Total no. of reflections	676002	598870	589555
Total no. of unique reflections	43495	43637	44099
<i>R</i> _{merge} (%) ^b	8.0 (58.0)	12.2 (72.2)	10.6 (78.7)
<i>I</i> / <i>σI</i>	38.8 (5.3)	23.6 (3.6)	26.5 (3.1)
Completeness (%)	100.0 (100.0)	100.0 (100.0)	99.5 (98.6)
Redundancy	11.4 (14.6) ^a	7.6 (12.5)	7.6 (12.2)
Refinement			
<i>R</i> _{work} / <i>R</i> _{free} (%) ^c	16.7/19.7	15.6/19.5	15.6/19.5
Average B-factors (Å ²)			
Protein	41.29	31.23	35.80
NAD	32.25	21.64	25.42
UDP-sugar	40.82	33.13	33.19
Water	41.52	37.69	40.39
Rms deviations			
Bond lengths (Å)	0.006	0.006	0.006
Bond angles (°)	0.881	0.863	0.897
Ramachandran plot (%) ^d			
Total favored	97.87	97.55	97.71
Total allowed	2.13	2.45	2.13
Coordinate error (Å) ^e	0.21	0.2	0.22
PDB code	6WJB	6WJ9	6WJA

794 ^aValues in parentheses correspond to the highest resolution shell.

795 ^b $R_{\text{merge}} = \sum \sum |I(k) - \langle I \rangle| / \sum I(k)$ where $I(k)$ and $\langle I \rangle$ represent the diffraction intensity values of the individual 796 measurements and the corresponding mean values. The summation is over all unique measurements.

797 ^c $R_{\text{work}} = \sum ||F_{\text{obs}} - k|F_{\text{calc}}|| / |F_{\text{obs}}|$ where F_{obs} and F_{calc} are the observed and calculated structure factors, 798 respectively.

799 R_{free} is the sum extended over a subset of reflections (5%) excluded from all stages of the refinement.

800 ^dAs calculated using MOLPROBITY (54).

801 ^eMaximum-Likelihood Based Coordinate Error, as determined by PHENIX (52).

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

802 **FIGURE LEGENDS**

803 **Figure 1: A *pelX* homologous gene is found adjacent to *pel* biosynthetic gene clusters in three different**
804 **arrangements.** Each gene is shown as an arrow, where each arrow indicates the direction of transcription.
805 The predicted function of each gene is indicated by its colour as per the legend (bottom). One representative
806 bacterial species is shown per gene arrangement. The total number of species identified with each
807 arrangement is indicated (right). The full list of species with *pelX*-containing *pel* loci can be found in
808 **Dataset S1.**

809

810 **Figure 2: *P. protegens* forms Pel polysaccharide-dependent biofilms that are enhanced by the**
811 **overexpression of the diguanylate cyclase, WspR.** Biofilm biomass determined using the crystal violet
812 assay for (A) wild-type *P. protegens* Pf-5 and the corresponding deletion mutants assayed after 5 days of
813 growth, or (B) strains expressing pPSV39 (empty vector) or pPSV39::*wspR*^{R242A} after 24 h of growth. Error
814 bars indicate the standard error of the mean of two (A) or three (B) independent trials performed in triplicate.
815 Statistical significance was evaluated using one-way ANOVA with Bonferroni correction; ***P < 0.001;
816 ****P < 0.0001.

817

818 **Figure 3: *pelX* or PFL_5533 is required for Pel polysaccharide-dependent biofilm formation by *P.***
819 ***protegens*.** (A) Western blot of VSV-G tagged proteins PelF, PelX, or PFL_5533 in the presence of native
820 c-di-GMP levels (empty vector) or elevated c-di-GMP levels (WspR^{R242A}). (B) Biofilm biomass as
821 determined using the crystal violet assay after 6 h of static growth. Error bars indicate the standard error of
822 the mean of two independent trials performed in triplicate. Statistical significance was evaluated using one-
823 way ANOVA with Bonferroni correction; ***P < 0.001; ****P < 0.0001. (C) Dot blot of culture
824 supernatants of the indicated strains probed using either horseradish peroxidase conjugated *Wisteria*
825 *floribunda* lectin (WFL) or the Pel antibody (α-Pel) (10,27).

826

827 **Figure 4: PelX is a Class 3 UDP-GlcNAc C4-epimerase.** ¹H NMR focused on the anomeric H-1 region

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

828 of the spectra (red line) for (A) UDP-GlcNAc incubated without enzyme (top), UDP-GlcNAc with PelX
829 (middle), and UDP-GalNAc with PelX (bottom) and (B) UDP-Glc incubated without enzyme (top), UDP-
830 Glc with PelX (middle), and UDP-Gal with PelX (bottom). (C) PelX catalyzes the epimerization of UDP-
831 GlcNAc to UDP-GalNAc by inversion of the hydroxyl group at position C4. (D) LC-MS/MS quantification
832 of GlcNAc from cell extracts of the indicated strains. Error bars represent the standard error of the mean of
833 six independent biological replicates. Statistical significance was evaluated using unpaired t-test. *P < 0.05.
834

835 **Figure 5: PelX is a member of the short-chain dehydrogenase/reductase superfamily of enzymes.**

836 Cartoon representations of PelX^{C232S}. (A) PelX^{C232S} is displayed as found in the asymmetric unit with its N-
837 terminal Rossmann-fold domain shown in green, and its C-terminal substrate-binding α/β -domain in purple.
838 (B) Overlay of PelX^{C232S/Y146F/S121A}-substrate complexes with the wild-type PelX^{C232S} coloured according to
839 the legend in the figure (C) Comparison of the active site of PelX^{C232S/Y146F/S121A} -UDP-GalNAc complex,
840 and WbpP-UDP-GalNAc complex (PDB ID: 1SB8). UDP-GalNAc and nicotinamide adenine dinucleotide
841 (NAD⁺), and active site residues are shown in stick representation.
842

843 **Figure S1: PelX^{C232S} forms a dimer in solution.** Analytical gel filtration demonstrates that PelX^{C232S} exists
844 as a dimer in solution, eluting at a molecular weight of approximately 63 kDa. Expected molecular weight:
845 34.6 kDa. Protein standards used to calibrate the column are indicated by inverted triangles; BA, β -amylase;
846 AD, alcohol dehydrogenase; A, albumin; CA, carbonic anhydrase; CC, cytochrome C. The molecular
847 weights of β -amylase, alcohol dehydrogenase, albumin, carbonic anhydrase, and cytochrome C are 200
848 kDa, 150 kDa, 66 kDa, 29 kDa, and 12.4 kDa, respectively.
849

850 **Figure S2: PelX^{C232S/Y146F/S121A} is catalytically inactive towards UDP-GalNAc.** ¹H NMR spectrum from
851 the reaction of PelX^{C232S S121A Y146F} with UDP-GalNAc.
852

853 **Figure S3: PelX^{C232S/Y146F/S121A} density of the ligands.** PelX is displayed with its N-terminal Rossmann-

Pel biosynthesis requires a UDP-GlcNAc C4-epimerase

854 fold domain shown in green, and its C-terminal substrate-binding α/β -domain in purple as in Figure 5. (A)
855 PelX^{C232S} with density shown for UDP and NAD⁺ (B) PelX^{C232S/Y146F/S121A} in complex with UDP-GalNAc
856 and NAD⁺ and (C) PelX^{C232S/Y146F/S121A} in complex with UDP-GlcNAc and NAD⁺. All three structures were
857 modeled with NAD⁺ and nucleotide or sugar-nucleotide shown in stick representation, with the
858 corresponding |2mFo-DFc| map displayed as black mesh contoured at 2.0 σ .

Figure 1

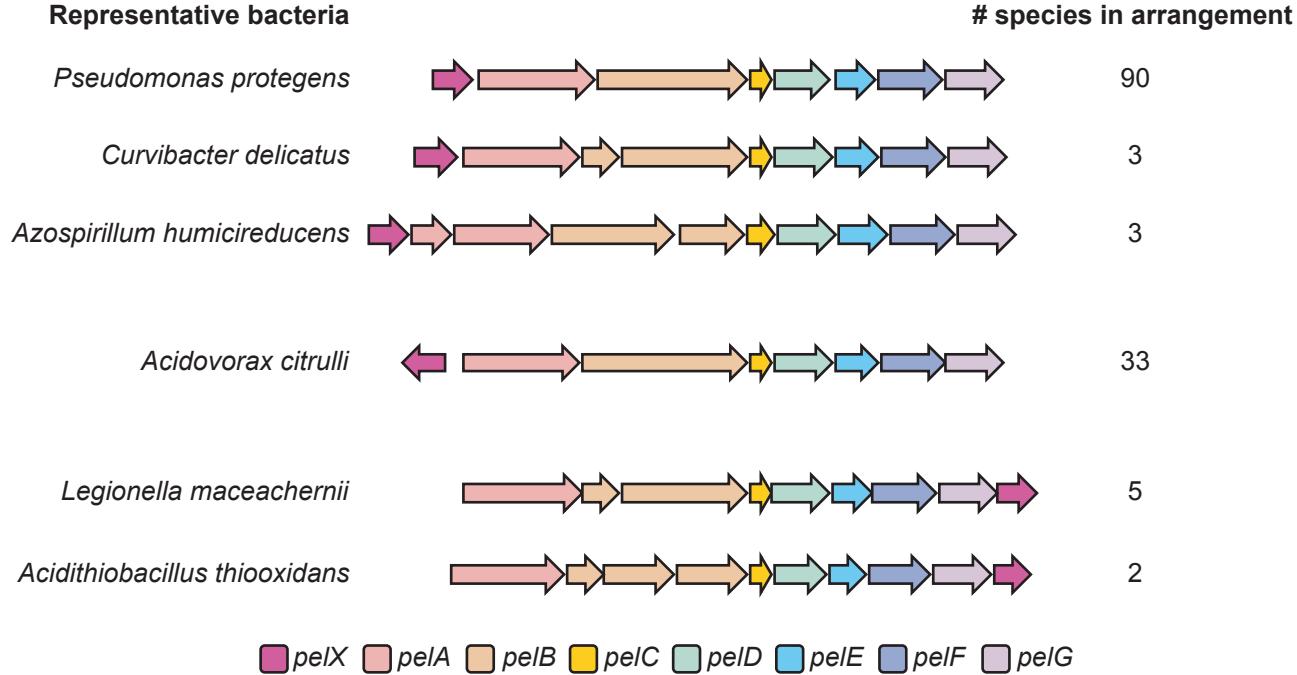
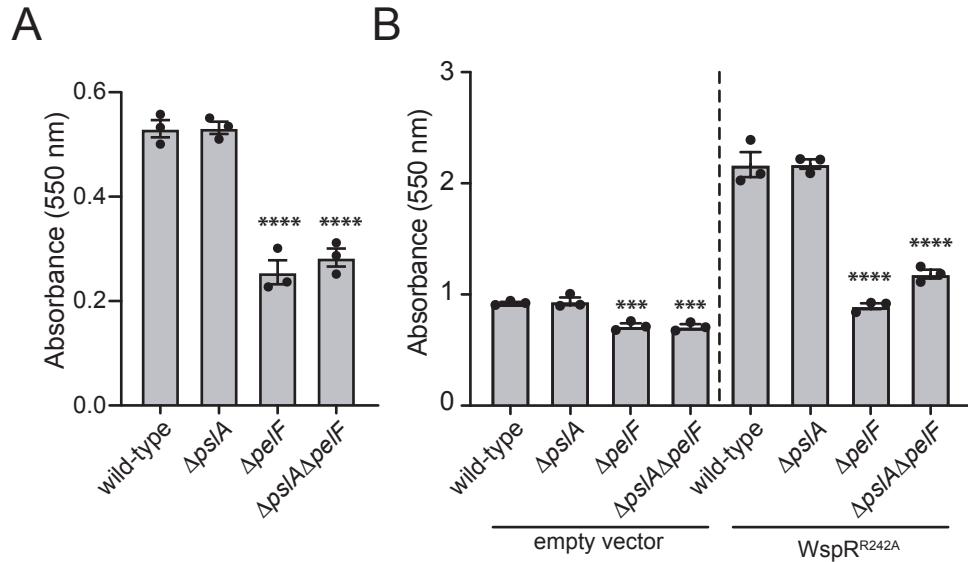



Figure 2

Figure 3

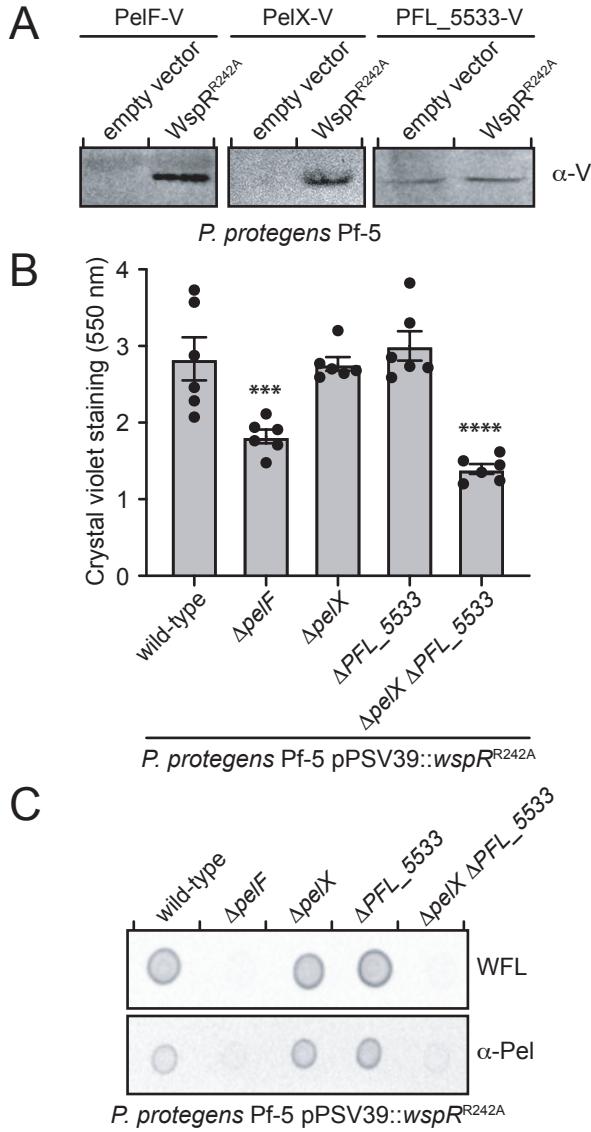
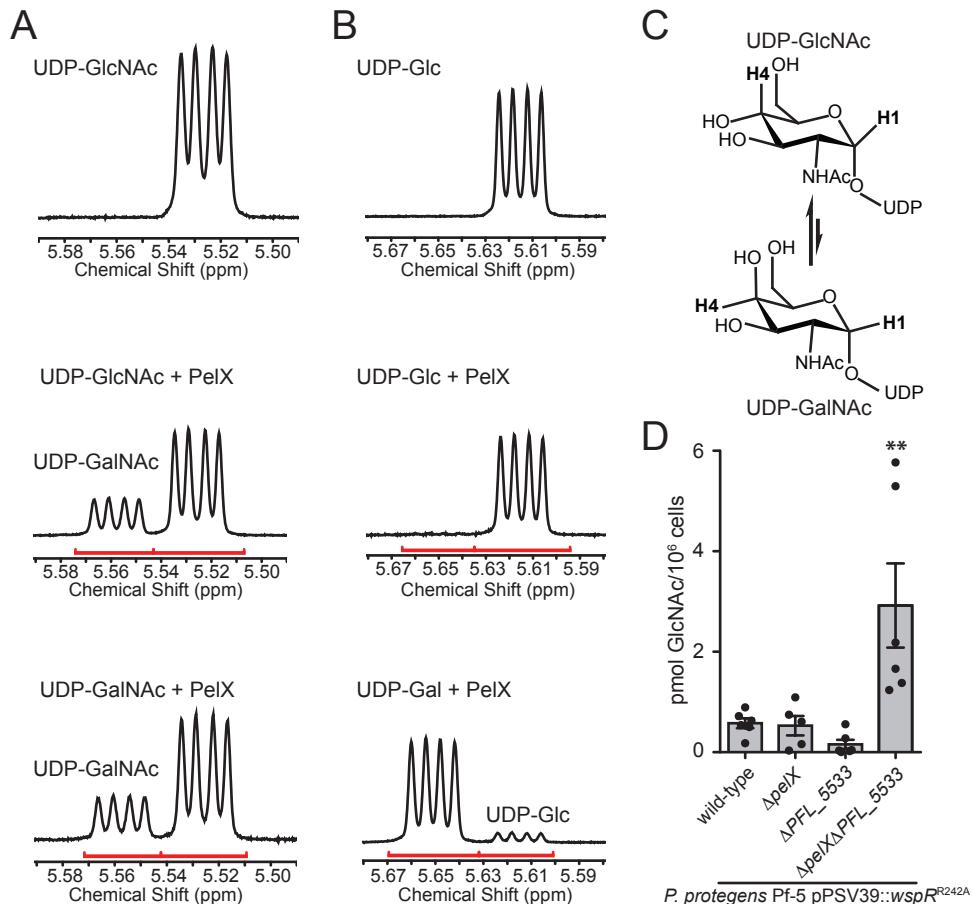
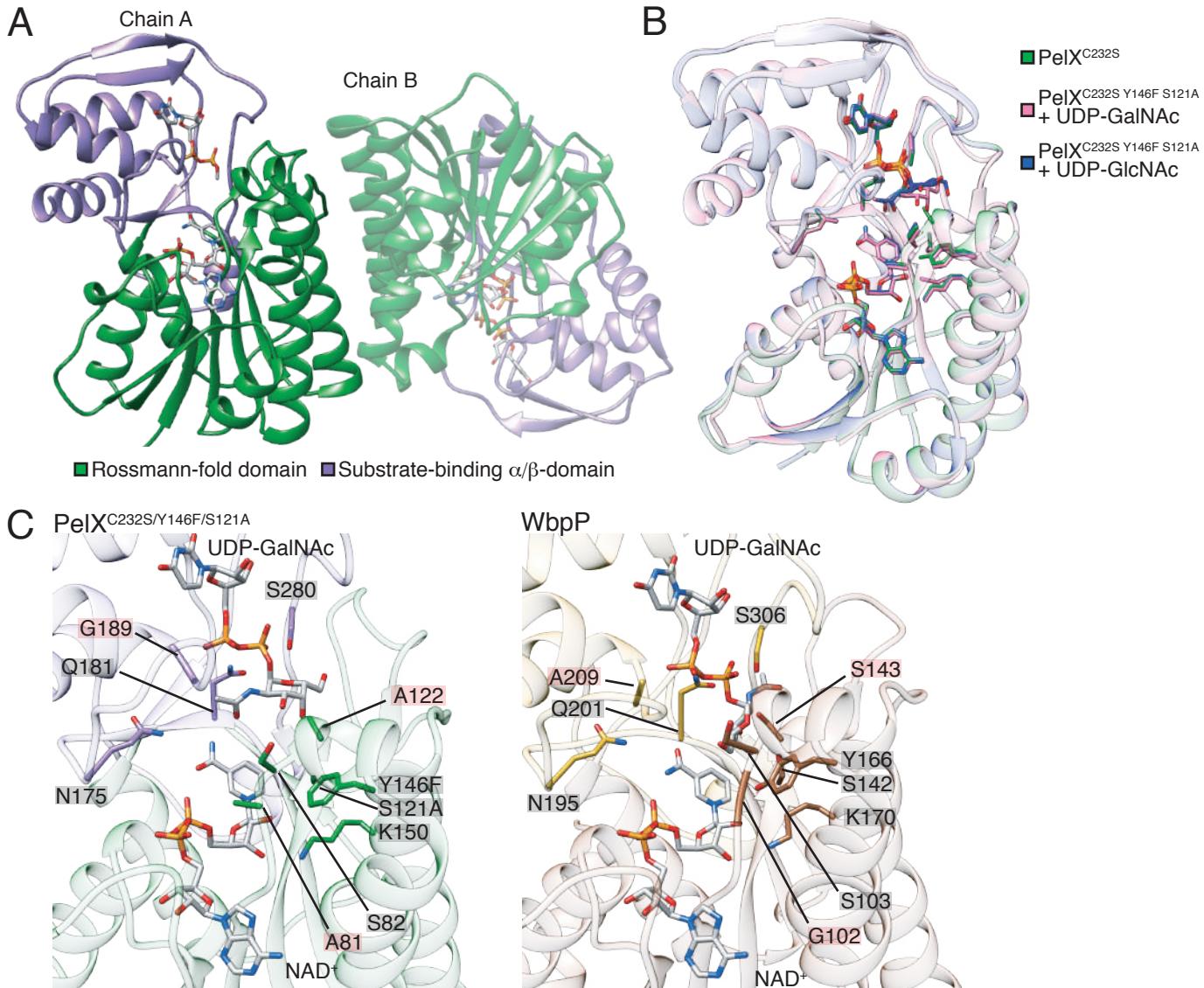
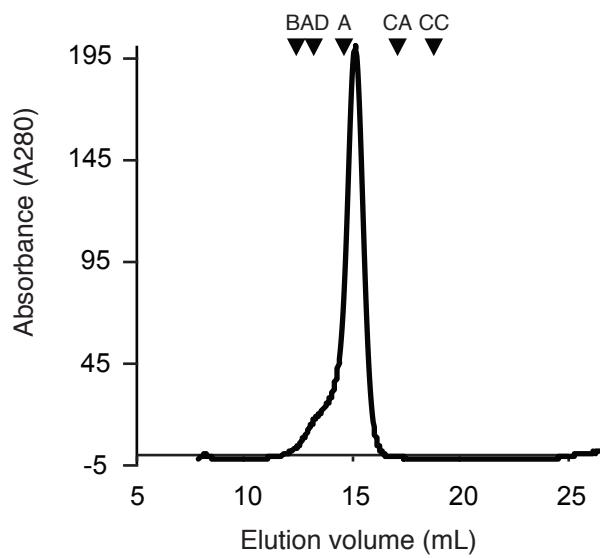


Figure 4

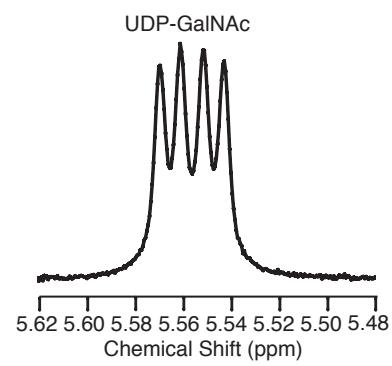

Figure 5

Figure S1

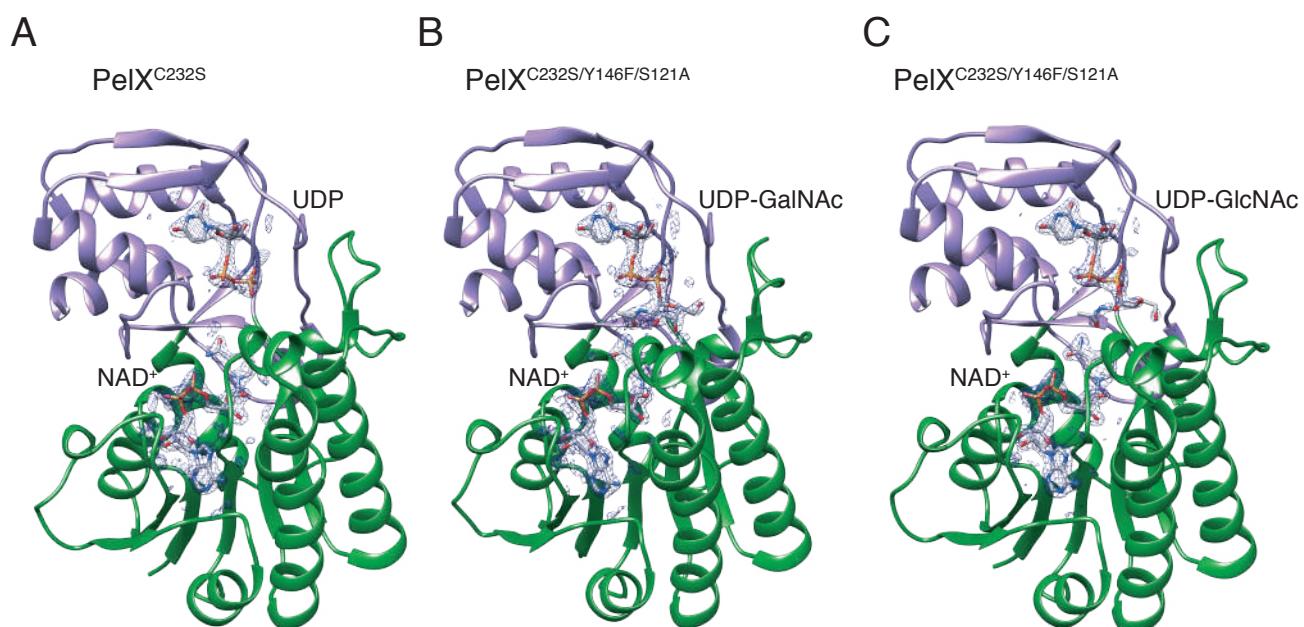


Figure S2

Figure S3

bioRxiv preprint doi: <https://doi.org/10.1101/2020.05.26.111013>; this version posted May 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

