

1 **Characterization of systemic genomic instability in budding yeast**

2
3 Nadia M. V. Sampaio^{1, 2}, V. P. Ajith³, Ruth A. Watson¹; Lydia R. Heasley¹, Parijat
4 Chakraborty³, Aline Rodrigues-Prause¹, Ewa P. Malc⁴, Piotr A. Mieczkowski⁴, Koodali T.
5 Nishant³, and Juan Lucas Argueso^{#1, 2}

6
7
8 1. Department of Environmental and Radiological Health Sciences, Colorado State
9 University, Fort Collins-CO 80523, USA

10 2. Cell and Molecular Biology Graduate Program, Colorado State University, Fort
11 Collins-CO 80523, USA

12 3. School of Biology, Indian Institute of Science Education and Research,
13 Thiruvananthapuram, Trivandrum 695016, India

14 4. Department of Genetics, University of North Carolina, Chapel Hill-NC 27599, USA

15
16
17
18 # Corresponding author:

19 Juan Lucas Argueso, PhD

20 Department of Environmental and Radiological Health Sciences, Colorado State
21 University, 493 MRB Building, 1618 campus delivery, Fort Collins-CO, 80523-1618,
22 USA.

23 email: luca.argueso@colostate.edu

24 Phone: 1-970-491-3681; Fax: 1-970-491-0623

25

26

ABSTRACT

27

28 Conventional models of genome evolution are centered around the principle that
29 mutations form independently of each other and build up slowly over time. We
30 characterized the occurrence of bursts of genome-wide loss-of-heterozygosity (LOH) in
31 *Saccharomyces cerevisiae*, providing support for an additional non-independent and
32 faster mode of mutation accumulation. We initially characterized a yeast clone isolated
33 for carrying an LOH event at a specific chromosome site, and surprisingly, found that it
34 also carried multiple unselected rearrangements elsewhere in its genome. Whole
35 genome analysis of over 100 additional clones selected for carrying primary LOH tracts
36 revealed that they too contained unselected structural alterations more often than
37 control clones obtained without any selection. We also measured the rates of coincident
38 LOH at two different chromosomes and found that double LOH formed at rates 14-150
39 fold higher than expected if the two underlying single LOH events occurred
40 independently of each other. These results were consistent across different strain
41 backgrounds, and in mutants incapable of entering meiosis. Our results indicate that a
42 subset of mitotic cells within a population can experience discrete episodes of systemic
43 genomic instability, when the entire genome becomes vulnerable and multiple
44 chromosomal alterations can form over a narrow time window. They are reminiscent of
45 early reports from the classic yeast genetics literature, as well as recent studies in
46 humans, both in the cancer and genomic disorder contexts. The experimental model we
47 describe provides a system to further dissect the fundamental biological processes
48 responsible for punctuated bursts of structural genomic variation.

49

50

51

SIGNIFICANCE STATEMENT

52

53 Mutations are generally thought to accumulate independently and gradually over
54 many generations. Here, we combined complementary experimental approaches in
55 budding yeast to track the appearance of chromosomal changes resulting in loss-of-
56 heterozygosity (LOH). In contrast to the prevailing model, our results provide evidence
57 for the existence of a path for non-independent accumulation of multiple chromosomal
58 alteration events over few generations. These results are analogous to recent reports of
59 bursts of genomic instability in human cells. The experimental model we describe
60 provides a system to further dissect the fundamental biological processes underlying
61 such punctuated bursts of mutation accumulation.

62

63

64

INTRODUCTION

65

66 Alterations in the DNA sequence and structure of chromosomes are driving
67 forces in evolution and disease. Thus, understanding the mechanisms and dynamics
68 through which mutations form and accumulate in genomes has important implications
69 for wide-ranging biological processes, such as microbial adaptation to environmental
70 changes, as well as cancer onset and progression. The conventional paradigm for
71 genome evolution postulates that new mutations occur randomly and independently of
72 each other, and accumulate gradually over time as organisms develop and species
73 diverge. While this primary path is well established and robustly supported, evidence
74 also exists to suggest a substantial contribution from additional processes that lead to
75 rapid, punctuated mutation accumulation, particularly in the cancer context (1, 2).

76 Recent studies of intratumoral genomic heterogeneity support the occurrence of
77 transient bursts of structural chromosomal instability leading to the formation of multiple
78 copy number alterations (CNAs) over short time periods (3-6). A similar pattern of rapid
79 CNA accumulation followed by stable clonal propagation has also been reported in the
80 human germline and during early embryonic development leading to genomic disorders
81 (7). Interestingly, these findings are broadly analogous to accounts of frequent detection
82 of coincident mitotic recombination and other rare types of chromosomal alterations
83 recorded in the classic yeast genetics literature (8-13), and also described in
84 contemporary studies (14-17).

85 We leverage the budding yeast *Saccharomyces cerevisiae* to track the
86 emergence of coincident chromosomal changes using high resolution genomic
87 approaches. We showed that yeast clones selected for carrying specific and relatively
88 rare loss-of-heterozygosity (LOH) events often contained additional unselected
89 alterations in other chromosomes. We quantified the magnitude of this non-independent
90 accumulation of structural variation using fluctuation assays, and characterized it
91 qualitatively through genome-wide mapping of recombination tracts. Our results
92 suggested that, in addition to the established independent and gradual mutation
93 accumulation path, wild type yeast cells can also experience transient recombinogenic
94 states when instability affects the entire genome systemically, leading to a punctuated
95 pattern of LOH and CNA accrual. The experimental approach described here provides a
96 tractable model system to further dissect the fundamental mechanisms underlying

97 systemic genomic instability (SGI) processes, including those that may play a role in
98 human disease development.
99

100

RESULTS

101

102 **Abundant unselected genomic alterations in a spontaneous yeast isolate**

103 Our group recently reported a case study of mitotic recombination leading to a
104 readily discernable colony morphology alteration in the *S. cerevisiae* diploid strain
105 JAY270 (18). We showed that this strain is heterozygous for a frameshift mutation in
106 *ACE2* (*ACE2/ace2-A7*), a transcriptional regulator of genes involved in septum
107 destruction following cytokinesis (19). Clonally derived cells carrying an LOH tract
108 spanning the region of the right arm of chromosome XII containing the *ACE2* locus
109 (Chr12, homozygosity for the maternal [M] haplotype; *ace2-A7/ace2-A7*) acquired a
110 mother-daughter cell separation defect that manifested macroscopically as a distinctive
111 rough colony morphology phenotype in agar media (Fig. 1B inset). The presence of
112 heterozygous single nucleotide polymorphisms (HetSNPs) associated with restriction
113 enzyme recognition sites allowed us to characterize the LOH tracts spanning the *ACE2*
114 locus in five independent rough clones. In all cases, these tracts were consistent with
115 allelic interhomolog mitotic recombination leading to segmental copy-neutral LOH (20).
116 Unexpectedly, in one of the rough isolates (JAY664), our analysis revealed the
117 presence of an additional unselected LOH tract on the left arm of Chr12 leading to
118 homozygosity for the paternal haplotype (Chr12P). Based on the measured rates of
119 LOH in JAY270, we estimated that these two independent tracts should have coincided
120 in the same clone at a very low rate, in the $\sim 10^{-10}$ to 10^{-11} /cell/division range.

121 Sparse cases of mitotic recombination events coinciding at two marked loci have
122 been previously reported in yeast species (8, 10-16). We considered that a similar
123 process may have been at play in the formation of JAY664 isolate, in which case other
124 parts of its genome might also have been affected. Thus, we carried out a full
125 characterization of structural genomic variation in this clone, initially using pulse-field gel
126 electrophoresis (PFGE), followed by two independent and complementary whole
127 genome sequencing (WGS) platforms. PFGE detected the presence of at least two
128 unselected gross rearrangements in chromosomes other than Chr12 (Chr11P and
129 Chr6M; Fig. 1A). Next, analysis of Illumina short read WGS data revealed that the
130 JAY664 genome contained a remarkable total of seven unselected structural changes,
131 in addition to the selected LOH tract spanning the *ACE2* locus (Fig. 1B, Table S3, and
132 File S1). These included the terminal copy-neutral LOH tract (P/P) on the left arm of

133 Chr12 identified previously (18), and two terminal LOH tracts associated with the
134 rearrangements detected by PFGE. Chr11 contained a terminal copy-neutral LOH tract
135 (M/M) on the right arm, and Chr6M had a terminal CNA deletion tract on the right arm
136 distal to *FAB1* (P/-; only P HetSNPs detected at ~50% relative read depth coverage).
137 Additional LOH tracts that did not result in altered copy number or chromosome length
138 were identified on Chr7 (terminal), Chr2, Chr14 and Chr15 (interstitial).

139 We also generated Oxford Nanopore single molecule long WGS reads from
140 JAY270 and JAY664 to characterize additional structural features near the tract
141 endpoints detected by short read WGS, and thus infer the respective causal
142 recombination mechanisms. We identified sets of long Nanopore reads spanning the
143 entirety of each of the three JAY664 interstitial LOH tracts (>41.4 kb for the Chr2 LOH
144 tract, and ~10 kb for the Chr14 and Chr15 tracts) and aligned them to determine the
145 phasing configuration of the flanking HetSNP markers (Fig. S1A). This analysis
146 validated all homozygous base calls made at these positions using short read WGS
147 data and showed that there was no alteration of the JAY270 parental phasing of the
148 HetSNPs flanking the LOH regions. Therefore, all three unselected interstitial LOH
149 tracts detected in JAY664 were formed through an interhomolog gene conversion (GC)
150 mechanism without associated reciprocal crossovers (20).

151 Next we focused on the junction associated with the Chr6M deletion by identifying
152 long reads (>40 kb) that included *FAB1* (Fig. 1C). In the JAY270 parent strain we
153 identified two discrete groups of read structures corresponding to the Chr6P and Chr6M
154 homologs with their respective phased HetSNPs. This region in JAY270 Chr6P was
155 similar in structure to the S288c reference (data not shown), but JAY270 Chr6M
156 contained an insertion that included a full-length Ty1 element and a ~17 kb DNA
157 segment absent in S288c (Fig. S1B). This segment corresponded to a well-
158 characterized set of five ORFs acquired by *S. cerevisiae* through horizontal gene
159 transfer of an extrachromosomal circular DNA intermediate postulated to have
160 originated in *Zygosaccharomyces bailii* (Zb circle) (21, 22). A similar analysis of
161 Nanopore data derived from JAY664 revealed that Chr6M reads included on their distal
162 side ~9 kb of sequences matching the left end of S288c Chr14, from a position in the
163 middle of the *COS1* gene to the telomeric repeats (*TEL14L*). This prompted us to
164 retrieve long reads from JAY270 and JAY664 corresponding to the Chr14 left arm
165 region spanning from *RPD3* to *TEL14L*. This region, which is homozygous in JAY270,

166 contained another insertion of the *Zb* circle within *COS1* (Fig. S1C), thus offering a
167 substantial region of sequence homology to Chr6M. Notably, these two *Zb* circle
168 insertions had different arrangement of the five ORFs, consistent with the circle
169 linearizing prior to integration between ORFs *A* and *E* in Chr6M, and within ORF *A* in
170 Chr14. This difference was reflected in the structure of the JAY664 Chr6-M/Chr14
171 translocation junction, which included a ~1.5 kb flanking duplication spanning the
172 promoter and 5' region of ORF *A*. This indicated that the non-allelic homologous
173 recombination (NAHR; (20)) event responsible for the formation of the translocation
174 occurred somewhere in the 15.5 kb region between the 3' end of ORF *A* and the
175 promoter of ORF *E*.

176

177 **Characterization of coincident recombination in JAY270**

178 The remarkable number of unselected rearrangements detected in the JAY664
179 genome made it unlikely that they had all accumulated independently and over time. A
180 simpler explanation would be that instead, this highly altered karyotype formed rapidly
181 during a discrete burst of structural variation in one or a few ancestor cells in the
182 JAY664 lineage. If such an underlying process, which here we refer to as systemic
183 genomic instability (SGI), does indeed exist and is active in *S. cerevisiae*, then selecting
184 for clones carrying a primary LOH tract should enrich for the presence of unselected
185 LOH tracts or other forms of structural variation elsewhere in the genome. In the specific
186 case of JAY270, rough colony derivatives selected for carrying an LOH tract on Chr12
187 should carry more unselected tracts than comparable control smooth clones isolated
188 without any selection.

189 To test this prediction, we obtained 28 independent unselected smooth control
190 clones, and screened additional cultures until 23 independent rough morphology clones
191 were found (28 total rough clones including the five isolated previously (18)). The
192 controls were isolated by picking random smooth colonies plated after growth for five
193 consecutive transfer cycles in liquid culture (~57 cell generations; Methods). The
194 experimental clones were derived from the same liquid growth regimen, but instead
195 plating ~1,000 cells after every passage cycle to screen for the presence of rough
196 colonies until one clone per culture was isolated. Thus, the rough clones were isolated
197 after a variable number of cell generations between cultures, but typically lower (median
198 ~50; Table S3) than the number used to isolate the controls. Initial PCR and PFGE

199 analyses of these isolates showed that all smooth clones remained heterozygous at the
200 ACE2 locus and had normal karyotypes, whereas the rough clones were all
201 homozygous for *ace2-A7* and seven of them contained discernible size alterations of
202 chromosomes other than Chr12 (data not shown).

203 We next we carried out Illumina short read WGS analysis of these clones to
204 characterize any differences in frequency or qualitative spectra of unselected structural
205 variation between clone sets (Fig. 2 and Table S3). A total of 12 unselected LOH tracts
206 were identified in 9 of the 28 smooth control clones, most of which had only one tract
207 per clone. The rough clones collectively carried a larger and more diverse pool of
208 unselected genomic changes. Including the JAY664 tracts described above, a total of
209 26 unselected structural variation tracts (24 copy-neutral LOH and 2 CNA deletions)
210 were found in 12 of the 28 rough clones, most of which had two or more tracts per
211 clone. The overall proportions of unselected tracts between the clone sets were
212 statistically different ($p<0.001$). Further, the incidence of unselected tracts per clone
213 among the controls followed a Poisson random distribution ($p=0.585$), whereas among
214 the rough clones it did not ($p<0.001$). These results were consistent with enhanced and
215 non-independent accumulation of unselected LOH and CNA in clones selected for
216 carrying a primary recombination tract on Chr12. This was particularly notable since
217 most rough clones were isolated after a lower number of cell generations than the
218 smooth controls, and, there was no significant correlation ($p=0.305$; linear regression
219 $R^2=0.323$) between the number of generations and the number of unselected tracts
220 detected per rough clone.

221 Interestingly, while the frequency and distribution of unselected LOH tracts were
222 different, the qualitative spectra were similar (Table S3). The two clone sets had roughly
223 1:1 ratios of interstitial to terminal unselected LOH tracts, and the median tract sizes
224 were also comparable (5.0 and 5.3 kb for interstitial, and 254 and 232 kb for terminal, in
225 smooth and rough clones respectively). The WGS analysis also provided a detailed
226 picture of the qualitative spectrum of selected Chr12 LOH in the rough clones (Fig. S2)
227 that corroborated and expanded on our earlier report (18).

228

229 **Quantitative analyses of coincident LOH**

230 In the second phase of this study, we set out to validate and more broadly
231 characterize the SGI phenomenon by pursuing two additional orthogonal approaches.

232 These experiments were carried out in diverse strain backgrounds, using fewer cell
233 generations, and selecting for LOH at other regions of the *S. cerevisiae* genome.

234 We conducted a set of experiments to determine whether the degree of
235 coincidence between LOH events at different genomic regions could be quantified. To
236 do that we generated diploid strains hemizygous for the counter selectable CORE2
237 cassette (κ URA3- Sc URA3-KanMX4) inserted on Chr13 or Chr4, and heterozygous
238 *CAN1/can1* Δ on Chr5 (Fig. 3A-B). We then used these strains to measure the rates of
239 LOH at these individual loci by selection for resistance to 5-FOA or canavanine,
240 respectively, and also to measure the rate of coincident double LOH through selection
241 for clones in plates containing both 5-FOA and canavanine. We reasoned that if the
242 occurrence of LOH at a CORE2 insertion locus were completely independent from the
243 occurrence of LOH at the *CAN1* locus, then the rate of coincident LOH at both loci
244 should be equal to the multiplicative product of the two single rates. The rates of single
245 LOH at each locus were measured to be in the 10^{-5} to 10^{-4} /cell/division range (Lea and
246 Coulson method of the median (L&C); (23)), thus the rates of double LOH should be in
247 the 10^{-10} to 10^{-9} /cell/division range. Instead, the double LOH rates that we measured
248 experimentally were 14-50 fold higher than the expected rates calculated based on
249 independence. This was initially observed in two different diploid strain backgrounds,
250 JAY270 and CG379 (an S288c-related strain), for double LOH events at the two pairs of
251 genomic regions assayed (Fig. 3A-D, Table S4).

252 We also considered the possibility that the SGI mechanism causing higher than
253 expected rates of double LOH could result from rare initiation of meiotic recombination
254 in a few cells in the vegetatively-grown population followed by return-to-growth (RTG)
255 (24). Unlike the sporadic nature of mitotic recombination, meiotic recombination is
256 initiated as a well-coordinated systemic and genome-wide process (25). To distinguish
257 between mitotic and meiotic origins, we repeated the double LOH measurements in
258 CG379 diploids deleted for the *MAT α* locus. These *MAT α /mat Δ* diploids behaved
259 essentially as *MAT α* haploids. They mated efficiently to a *MAT α* haploid tester strain
260 and completely lost the ability to sporulate (data not shown). Since *MAT α /mat Δ* diploids
261 are unable to activate the meiotic program, they are also unable to initiate meiotic
262 recombination. The rate of single LOH in the *MAT α /mat Δ* diploids was slightly lower
263 than the rate in the isogenic CG379 *MAT α /MAT α* diploids, consistently with earlier
264 studies (26). The observed rate of double LOH in the *MAT α /mat Δ* strains (Fig. 3D) was

265 also slightly lower than in *MAT α /MAT α* , but more importantly, it remained >51 fold
266 higher than expected if the single LOH events were initiated independently of each
267 other. This result indicated that the excess double LOH detected in these assays was
268 not caused by cryptic meiotic initiation or RTG within vegetative cultures.

269 In order to expand our analysis to encompass the full spectrum of coincident
270 LOH and CNA, we carried out additional experiments in a third, hybrid diploid strain
271 background resulting from a cross between diverged haploid parents (27, 28). Two
272 experimental strains (Fig. 3A-B) were obtained by crossing S288c *MAT α* *can1Δ* carrying
273 a CORE2 cassette integrated on Chr4 or Chr13, to a *MAT α* derivative of the clinical
274 isolate YJM789 (*CAN1 ura3*). The resulting hybrid diploids contained ~50,000 HetSNP
275 markers evenly distributed across the genome that were later used to map structural
276 variation tracts with higher resolution and sensitivity than in JAY270.

277 We used these new strains to quantify single and double LOH rates, initially
278 using the same general approach described above for the JAY270 and CG379 strain
279 backgrounds. One distinction, however, was that for these experiments we plated
280 aliquots from each of the cultures onto permissive and all three selective media (Fig.
281 4A), and therefore obtained culture-matched measurements of the two single as well as
282 the double LOH rates for each culture. This design supported two different ways of
283 calculating the expected rate of independent double LOH: the conventional way (exp)
284 by simply multiplying the two median single LOH rates; and an alternative method
285 (exp^m) by multiplying the two matched single LOH rates within each culture, and then
286 taking the median expected double LOH rate for all cultures of that strain. These two
287 methods produced very similar expected double LOH rate estimates (Fig. 3E), and
288 again, were substantially lower (27-66 fold) than the experimentally measured double
289 LOH rates.

290 The quantitative analyses above consistently indicated a degree of coincidence
291 between LOH events at different regions of the genome caused by SGI, however, our
292 estimation of the magnitude of this process (*i.e.*, the excess ratio of observed to
293 expected double LOH rates) was reliant on our ability to accurately measure the single
294 LOH rates used to calculate the expected double rate. Several factors are known to
295 influence the accuracy of mutation rate measurements (29-31), including the fraction of
296 the culture that is plated onto selective media and the method that is used in the
297 calculation itself. Because the rates of single vs. double LOH differed by 2-3 orders of

298 magnitude (Fig. 3C-E), we needed to plate highly diluted cultures (~100 fold) in order to
299 obtain countable numbers of isolated colonies on single selection Petri dishes, while
300 needing to plate much higher fractions of the same culture onto double selection in
301 order to find a few double LOH colonies. Another possible limitation was that the L&C
302 rate calculation method (23) is susceptible to distortion when the number of mutation
303 events in the culture is too high (*i.e.*, high rate single LOH events in larger than
304 necessary cultures), whereas the Ma-Sandri-Sarkar maximum likelihood estimation
305 method (MSS-MLE; (32) is robust across a wide rate range. Therefore, in order to
306 improve the accuracy and strengthen the rigor of our analysis, we conducted a new
307 round of experimental single LOH rate measurements by using extremely small cultures
308 (20 μ l; Methods) grown in microwell plates and plated nearly entirely to selective media,
309 followed by rate calculations using both L&C and MSS-MLE. These procedural
310 refinements resulted in only minor differences in the calculated single LOH rates (Fig.
311 S3 and Table S4). The reduction in the size of cultures resulted in single LOH rate
312 estimates that were equal or at most ~2 fold higher, and calculations using MSS-MLE
313 produced single LOH rates equal or at most ~3 fold higher than L&C. In all cases,
314 across all strains, culture volumes and calculation methods, the observed rate of double
315 LOH was always higher than expected, within an excess range of 14 up to 150 fold.
316

317 **Characterization of systemic genomic instability in densely heterozygous
318 diploids**

319 We next explored the densely marked genome of the hybrid strain background to
320 carry out a comprehensive characterization of coincident unselected structural variation
321 in clones recovered from the culture-matched LOH rate assays described above. A total
322 of 120 clones were derived from 30 independent cultures, 15 from each hybrid parent
323 (Fig. 3A-B and Fig. 4A). From each culture, we recovered and sequenced a matched
324 set of four clones: one control clone from YPD permissive plates (no selection), one 5-
325 FOA resistant single LOH selection on Chr4 or Chr13, one canavanine resistant single
326 LOH selection on Chr5, and one 5-FOA and canavanine resistant clone from double
327 LOH selection.

328 This experimental design allowed us to control for any tracts that were present in
329 the precursor cell that gave rise to each culture, before the start of each experiment.
330 Indeed, regions of pre-existing LOH were identified in seven cultures (Table S5, File

331 S2). These identical tracts were present in all four matched sequenced clones from
332 these cultures. Since these tracts were pre-existing and did not accumulate during the
333 growth of the cultures, they were not counted toward the totals described below. In
334 addition, this set-up allowed us to infer the sequential temporal formation relationship
335 between tracts in cases where identical tracts were found in more than one clone in a
336 culture-matched set (see below). A final important feature of this experimental design
337 was that all sequenced clones, regardless of the no, single or double selection
338 regimens, underwent a similar number of cell generations (~29) since the culture's
339 precursor cell. This was approximately half the number of generations required earlier to
340 isolate the JAY270-derived smooth and rough clones (Fig. 2), thus restricting the
341 window of opportunity for the sequential accumulation of tracts.

342 Genomic analysis of the control clones isolated from permissive YPD plates
343 showed that the baseline rates of unselected LOH and CNA were very low under the
344 growth conditions utilized. No unselected tracts were identified in any of the 30 control
345 clones, whereas unselected tracts were detected in several of the clones derived from
346 single and double selection. Excluding the selected tracts on Chr4, Chr13 or Chr5, our
347 analysis revealed the presence of 7 unselected tracts in 5 of the 60 clones (8.3%)
348 derived from single selection, and 14 unselected tracts in 9 of the 30 clones (30%)
349 derived from double selection (Fig. 4B). These results indicated that the likelihood of
350 identifying clones carrying unselected tracts was dependent on whether or not selection
351 for LOH elsewhere in the genome was applied to isolate the clones ($p=0.020$ from
352 Fisher exact test). Further, double selection led to a stronger enrichment for clones
353 carrying unselected tracts than single selection ($p=0.012$), consistently with a more
354 robust manifestation of the SGI phenomenon among the double selection clones.

355 For 3 of the 30 culture-matched clone sets we were able to infer a sequential
356 temporal formation relationship between the selected tracts by examining their endpoint
357 positions (cultures 5, 15 and 27 in Table S5; File S2). For example, in culture 15, the
358 Chr4 LOH tracts were identical in the clones derived from single Chr4 LOH (clone
359 NS30) and double Chr4 plus Chr5 LOH (clone NS60) selections. This suggested that
360 the shared Chr4 LOH event must have occurred first in a common ancestor, followed by
361 the Chr5 loss (monosomy) event detected in NS60. We also applied this same
362 genealogy rationale to analyze the unselected tracts, but found that all were private to
363 the clones where they were detected (none were shared between any of the sequenced

364 matched clones). This was consistent with most unselected tracts possibly appearing in
365 the lineage either at the same time (*i.e.*, SGI burst) or after the formation of the selected
366 tracts present in those respective clones.

367 The unselected LOH tracts detected in the hybrid diploid background were
368 qualitatively similar to those found in the JAY270 smooth and rough clone sets, with
369 approximately the same 1:1 ratio of interstitial to terminal tracts, and comparable tract
370 sizes. Specifically, there were nine interstitial GC-type LOH tracts (median size 5.0 kb)
371 and seven terminal crossover-type LOH tracts (median size 89 kb). In addition to
372 segmental LOH, we also found cases of unselected genomic alterations spanning whole
373 chromosomes, including monosomy (Chr10) and trisomies (Chr4, Chr10, Chr11,
374 Chr16). Interestingly, and consistent with our recent report (17), four of the five
375 unselected aneuploidies coincided with selected Chr5 monosomy or uniparental disomy
376 (UPD; see clone NS101; Fig 4B), suggesting the possibility of a transient and systemic
377 perturbation of a discrete genome stability pathway (*e.g.*, spindle assembly checkpoint)
378 being responsible for both the selected and unselected aneuploidies detected in these
379 clones.

380 Finally, this dataset provided additional information about the patterns of genomic
381 alterations for selected LOH, specifically in Chr4, Chr13 and Chr5 (tract maps shown in
382 Figs. S4, S5 and S6, respectively). The patterns for Chr4 and Chr13 were similar to that
383 found earlier for Chr12 in JAY270 (Fig. S2). All 30 Chr4 LOH tracts and 27 of 30 Chr13
384 LOH tracts were terminal, with endpoints somewhere between the centromere and the
385 CORE2 insertion sites. Several of these had shorter tracts of bidirectional LOH near the
386 endpoint, consistent with GC associated with crossing over (20). One particularly
387 interesting and fortuitous such case was that of clone NS49 (Fig. S4) where the CORE2
388 marker was within the short GC LOH tract (YJM789 homozygosity), whereas the much
389 longer terminal crossover LOH tract was in the opposite direction (S288c homozygosity)
390 compared to all other selected Chr4 tracts. In addition, three cases of interstitial LOH
391 were found in the Chr13 strain (Fig. S5), with median tract size of 5.4 kb.

392 The qualitative spectrum of the 60 selected tracts for Chr5 (Fig. S6) was more
393 diverse as it included allelic interhomolog recombination LOH tracts, segmental CNA, as
394 well as whole-chromosome alteration events. The majority (34 of 39) of the allelic
395 recombination-type LOH tracts were terminal, and the remaining (5 of 39) were
396 interstitial with relatively large median tract size of 35.9 kb. One clone (NS59) had a

397 terminal CNA deletion of the left arm of Chr5 spanning *CAN1* with an endpoint at a Ty
398 repeat, coupled with a terminal CNA amplification of the right arm of Chr1 also with
399 another Ty at the endpoint. In addition, this clone had a short, bidirectional, copy neutral
400 LOH tract on the immediate proximal side of the Chr5 deletion endpoint, and PFGE
401 (data not shown) showed a rearranged chromosome of size consistent with a Ty-
402 mediated Chr5/Chr1 non-reciprocal translocation. This interesting combination of
403 proximal allelic and distal non-allelic recombination in the same chromosomal
404 rearrangement event suggested a complex mechanism, perhaps initiated as a short
405 allelic interhomolog break-induced replication tract followed by template switching to the
406 non-allelic Chr1 Ty template (33). Finally, we also found 20 cases of whole-
407 chromosome Chr5 LOH, including 15 cases of simple monosomy where the clones lost
408 the *CAN1*-containing YJM789 homolog, and 5 cases of UPD where the clones carried
409 two full copies of the S288c homolog. Notably, this whole-Chr5 selected LOH class was
410 more prevalent (18 of 20) in the double selection clones (Chr4 plus Chr5, and Chr13
411 plus Chr5) compared to the single selection clones (2 of 20; Chr5 selection only).

412 Altogether, the results from our comprehensive sets of experiments provide
413 compelling support for the existence of sporadic and transient bursts of mitotic SGI
414 leading to the rapid accumulation of multiple tracts of structural variation in *S. cerevisiae*
415 cells, including some clones with remarkably rearranged genomes, such as JAY664.
416

417

DISCUSSION

418

419 **Precedents of coincident recombination and mitotic origin of SGI**

420 This study allowed us to uncover the SGI phenomenon through which multiple
421 LOH events can accumulate rapidly in a cell lineage. We determined using WGS that
422 yeast clones carrying a primary selected LOH tract at any of four different genomic
423 regions were more likely than expected to carry unselected LOH tracts elsewhere. We
424 also showed in quantitative LOH assays that combinations of double LOH at Chr5 and
425 Chr4 or Chr13, occurred at rates 14-150 fold higher than expected if single LOH events
426 always occurred independently. We interpret these results as evidence for the
427 occurrence of bursts of genomic instability leading to multiple LOH events over one or
428 few mitotic cell generations.

429 Spontaneous mitotic recombination events like the ones described here are
430 triggered by local DNA lesions and/or replication fork collapse episodes, which then
431 lead to chromosomal breakage and HR repair using the allelic homolog or a non-allelic
432 homologous sequence as template (20). Such precursor lesions are thought to occur
433 mostly randomly in vegetative cells, both spatially across the genome and temporally,
434 therefore mitotic recombination events involving different chromosomes should rarely be
435 coincident. In contrast, meiotic recombination is known to be a systemic genetic
436 variation process, since it occurs simultaneously throughout the genome and involves
437 intricate coordination between generation and repair of genome-wide double strand
438 breaks (25).

439 While our study is, to our knowledge, one of the first to describe the SGI
440 phenomenon through the lens of high-resolution genome-wide analytical methods, there
441 have been sparse reports of elevated coincident mitotic recombination in yeasts as well
442 as in mammalian cells dating back decades (8-10, 13-15, 34, 35). The typical
443 experimental design in those cases was to select clones for carrying a recombination
444 event at a primary locus, and then screening the resulting clones for the occurrence of
445 secondary unselected recombination at one or a limited number of unlinked marked loci.
446 The same intriguing observation, shared in all cases, was a frequency of coincident
447 recombination that was higher than that predicted assuming the individual events
448 always occurred independently.

449 In some of the yeast studies, the high coincident recombination rates were
450 interpreted as being derived from a small number of cells within the replicating
451 population that spuriously entered the meiotic developmental program, or transiently
452 experienced a “para-meiotic” state, but reverted back to mitotic growth (9, 10). A recent
453 study specifically characterized this type of return-to-growth (RTG) event and the
454 genome-wide recombination outcomes associated with it (24). The authors often
455 detected a large number of LOH tracts per clone (minimum of 5, average of ~30, and up
456 to 87), indicating that RTG induction leads to abundant and widespread recombination.
457 Another notable finding was that while interstitial GC LOH tracts were frequent, their
458 sizes were relatively constrained (2.3 kb on average). This measurement is notable
459 because it is consistent with GC tract sizes measured in haploids derived from complete
460 meiotic divisions; ~2 kb median size (36). In contrast, GC tracts associated with mitotic
461 recombination tend to be significantly longer, approximately 5-6 kb median size (37).
462 This increase in typical GC tract sizes is likely a reflection of subtle mechanistic
463 differences in the processing of HR intermediates between meiotic and mitotic cells.

464 The studies outlined above suggest that cryptic initiation of meiosis in a small
465 number of cells can in some cases lead to coincident recombination, however, we favor
466 the interpretation that the events analyzed in our study originated primarily from *bona*
467 *fide* mitotic cells. The work by Laureau *et al.* (24) described above clearly defined the
468 features of systemic LOH caused by meiotic initiation followed by RTG. The pattern we
469 detected in our study was different, and instead was consistent with mitotic patterns.
470 The number of unselected interstitial GC LOH tracts per clone we detected was small
471 (typically 1 to 3) and their sizes were long (~5.0 kb). This was reinforced by the
472 observation that *MAT α /mat Δ* diploids, incapable of entering the meiotic developmental
473 program, continued to display double LOH rates that were higher than expected from
474 independent events (Fig. 3D).

475 Our interpretation of a mitotic origin for SGI is supported by other reports of high
476 coincident recombination in proliferating cells in which the induction of a full meiotic
477 cycle, RTG or para-meiosis were either unlikely or could be ruled out entirely. One study
478 in *S. cerevisiae* specifically measured the formation of spurious haploids from mitotic
479 diploid cultures displaying high coincident intragenic recombination at unlinked pairs of
480 heteroalleles (14). The authors found that while haploids did form in their cultures, the
481 frequency was far below that needed to influence the formation of double recombinants,

482 thus concluding that a low level of cryptic meiosis was not a likely contributor. In
483 addition, one of the seminal studies (15) of LOH in *C. albicans* (a species devoid of a
484 conventional sexual cycle (38)), reported data that closely parallel our own
485 observations. First, the authors selected clones for the presence of a primary LOH
486 event at the *GAL1* locus on chromosome 1. Then, using a SNP-array platform, they
487 detected frequent unselected secondary LOH tracts among clones carrying the primary
488 event, but rarely in control clones still heterozygous at *GAL1*. In addition, selection for
489 LOH at *GAL1* was associated with the emergence of altered colony morphology
490 phenotypes, presumably derived from rearrangements elsewhere in the genome.
491 Accordingly, clones displaying altered morphology were enriched for the presence of
492 unselected LOH tracts when compared to clones with normal morphology. A recent
493 expanded study by the same group corroborated their original findings using high
494 resolution sequencing-based approaches (16).

495 Another important pair of precedents of mitotic SGI observations comes from
496 experiments conducted in mammalian systems. These used either human TK6
497 lymphoblastoid cells in culture (34), or mouse kidney cells *in vivo* and in culture (35). In
498 both cases, the starting cells were heterozygous for mutations at the counter-selectable
499 markers, *TK* and *Aprt*, respectively, enabling the selection of clones carrying a primary
500 LOH event at those loci. Subsequently, the presence of secondary LOH tracts was
501 assessed at roughly a dozen marker loci elsewhere in the human or mouse genomes.
502 The two studies found that secondary LOH was more frequent in clones selected for
503 carrying the primary LOH event than in controls clones that remained heterozygous.
504 These studies demonstrated that SGI also likely exists in metazoans, and can be
505 detected in cells that are exclusively mitotic.

506

507 **SGI-like observations in human disease**

508 In addition to the experimental examples above, our results also resemble recent
509 reports of bursts of mitotic genomic instability in humans during cancer genome
510 evolution and early development. Specifically, genome-wide copy number profiling of
511 thousands of individual cells isolated from tumors from patients with triple-negative
512 breast cancer revealed that a large number of CNAs were acquired within a short period
513 of time at the early stages of tumor development (3). Most of these CNAs were shared
514 between several cells from a same tumor, suggesting the occurrence of a burst of

515 genomic instability in one or few initiating cells followed by a long period of stable clonal
516 expansion. Although the study had power to detect gradual accumulation of mutations,
517 no clones with intermediate CNA profiles were identified, suggesting a punctuated
518 model of mutation accumulation (1, 2). This same conclusion has been corroborated
519 recently through spatially resolved breast tumor single cell sequencing (39), in
520 colorectal cancer (4), and even more broadly in thousands of tumor samples from
521 dozens of different cancer types reported by the pan-cancer analysis of whole genomes
522 (PCAWG) consortium (6).

523 Another pertinent parallel is the recent analysis of patients with genomic
524 disorders that carry multiple *de novo* constitutional CNVs (MdnCNVs; (7)). Typically in
525 those patients, only one of the structural variants was the primary event causing the
526 symptoms associated with the disorder. The additional CNVs were secondary, occurred
527 at unrelated regions, and apparently formed during a short burst of genomic instability at
528 some point in the perzygotic time interval. The changes then propagated stably during
529 development to be found in all cells in the patients. Taken together, these results
530 suggest that SGI processes may be universal and can play an important role in human
531 disease development.

532

533 **Possible mechanisms underlying SGI**

534 While our results support a pronounced contribution of SGI to the rapid
535 accumulation of structural variation in budding yeast, the specific causes for the
536 existence of a small subset of recombination-prone cells within a normal mitotic
537 population remain to be determined. This phenomenon most likely has multiple and
538 distinct origins, however, we favor two non-exclusive mechanisms, related to cellular
539 ageing and stochastic gene expression. These two models are attractive because they
540 are transient in nature, which would support stable transmission of rearranged genomic
541 structures after the systemic vulnerability time window has passed.

542 The first scenario is that clones carrying multiple unselected LOH events
543 originated from replicatively old mother cells. This model stems from the observation of
544 a marked increase in the rate of LOH in daughter yeast cells budded from mothers that
545 had undergone ~25 cell divisions (40), relatively old within the context of a typical
546 maximum *S. cerevisiae* replicative lifespan of ~38-40. Subsequent work showed that
547 this increase in nuclear genomic instability was strongly correlated with the initial

548 appearance of mitochondrial DNA loss and/or damage in the old mother cells (41). In
549 our study, however, all of the spontaneous rough colony isolates analyzed retained
550 normal respiratory activity (all were non-*petite*; grew on non-fermentable carbon
551 sources), so they must have had integral mitochondrial genomes. They also did not
552 show signs of continual genomic instability. Therefore, if replicative aging were an
553 underlying factor in SGI, it would be through a pathway that does not involve loss of
554 mitochondrial function.

555 Another explanation for a subpopulation of transiently hyper-recombinogenic
556 cells involves heterogeneities that exist within an isogenic population. Specifically, cell-
557 to-cell variation (*i.e.* noise) in gene expression has been reported in organisms ranging
558 from prokaryotes, to yeast, to humans (42). It is plausible that stochastic variation in the
559 expression of a broad class of genes involved in genome stability could cause specific
560 protein levels to drop below or rise above those required for optimal function. A recent
561 comprehensive genome stability network analysis identified 182 genes involved in
562 suppression of gross chromosomal rearrangements (43), and an earlier genetic screen
563 identified 61 genes specifically involved in suppressing LOH (44). In this scenario, rare
564 individual cells that fail to adequately express any of these genes could effectively
565 behave as defective mutants and display a mutator phenotype for a short period. Some
566 of these genes act cooperatively, therefore concomitant loss of activity causes extreme
567 levels of genomic instability. For example, double knockouts for *TEL1* and *MEC1*,
568 encoding critically important DNA damage response proteins (orthologs of mammalian
569 ATM and ATR, respectively), show marked increase in mitotic genomic instability (45),
570 often accumulating multiple genome rearrangements (46). A similar extreme phenotype
571 might be expected in a wild type cell that by chance simultaneously had a critically low
572 level of transcription of these two genes.

573 Likewise, overexpression of single genes encoding a subunit of a genome
574 stability multi-protein complex, or a critical regulatory component of a DNA repair
575 reaction, could also lead to a dominant negative phenotype that temporarily impairs
576 function. A recent study (47) demonstrated precisely this effect in budding yeast by
577 sorting wild type cells that randomly over or under-expressed *RAD52* or *RAD27*. The
578 individual cells at the extremes of the expression spectrum had markedly altered rates
579 of recombination. Importantly, the hyper-recombinogenic state of these individuals
580 would be completely reversible once the descendant cells returned to the gene

581 expression levels typical of most individuals in the population. Another way through
582 which noise in gene expression could lead to transient increases in structural variation
583 and all other forms of mutation, including base substitutions (48), would be by
584 overexpression of genes involved in the formation of endogenous DNA damage (49). In
585 this case, cells would be overburdened by systemic genome-wide damage for a brief
586 period leading to the simultaneous accumulation of multiple seemingly independent
587 mutations. This mechanism could explain the observed stable clonal expansion that
588 followed SGI in our selected LOH clones, as well as in the recent *in vivo* human studies
589 above.

590 The genomic analyses of clones carrying primary selected LOH tracts described
591 in our study provides detailed information about the nature and frequency of secondary
592 recombination events resulting from the SGI process. Our study also provides a unifying
593 context for the interpretation of classic and recent reports of coincident recombination in
594 yeasts, in mammalian experimental systems, and in human disease. The combination
595 of whole genome analyses, modern lineage tracing and single cell transcriptomic
596 approaches (50, 51), and the double LOH selection approach described here offer a
597 powerful experimental platform to further dissect the core mechanisms responsible for
598 the SGI phenomenon.
599

600

MATERIALS AND METHODS

601

602 Yeast genetic backgrounds, growth media and procedures

603

Saccharomyces cerevisiae strains used in this study descended from the

604

JAY270 (52) or CG379 (53) strain backgrounds, or from crossings between the strains

605

S288c and YJM789 (Table S1). Standard procedures for yeast transformation, crossing

606

and sporulation were followed (54). Cells were grown in YPD and synthetic minimal

607

media (SC) at 30C, under rotation for liquid cultures. *URA3*, *KanMX4*, *NatMX4* and

608

HphMX4 transformants were selected in uracil drop-out SC, YPD plus 400 mg/L

609

Geneticin, 200 mg/L of Nourseothricin (Nat) and 300 mg/L of Hygromycin B,

610

respectively. Counter-selection against *URA3* and *CAN1* were performed in SC plus 1

611

g/L of 5-FOA and 60 ml/L of canavanine in arginine drop-out, respectively.

612

613 Isolation of smooth and rough clones derived from JAY270

614

The control smooth clones were isolated by inoculating 28 independent 2-day old

615

single smooth colonies from YDP agar plates onto 5 ml of YPD liquid. Liquid cultures

616

were grown until saturation for 24 hours at which point 50 μ l ($\sim 5 \times 10^6$ cells) were

617

transferred to fresh 5 ml YPD to start a new passage cycle. At the end of the fifth

618

consecutive liquid passage the cultures were diluted, plated onto YPD and a single

619

random smooth colony was isolated and frozen for genomic analysis. We estimated this

620

growth regimen involved ~ 57 consecutive cell generations (22 in agar, plus 35 in liquid

621

[5 passages \times 7 generations per passage]). The 23 independent rough colonies isolated

622

in this study were derived through a similar growth protocol, but aliquots were plated to

623

YPD for visual screening of colony morphology at the end of every liquid growth cycle.

624

The liquid passages were discontinued once the first rough colony was identified and

625

frozen from each culture. The estimated median number of cell generations after which

626

rough clones were isolated was ~ 50 (Table S3). For the five rough clones isolated

627

previously (18), including JAY664, and three of the rough clones isolated in this study,

628

the total number of liquid passages was not recorded. However, because we never

629

exceeded ten passages, the number of cell generations associated with these clones

630

was at most ~ 92 (22+[10 \times 7]), likely less.

631

632

Strain construction for LOH assays

633 The JAY270 strains used in the LOH assays were constructed from a
634 homozygous *ura3/ura3* derivative of JAY270 (JAY585; gift from F. Galzerani). The
635 CORE2 cassette containing the *Kluveromyces lactis URA3* gene, the *S. cerevisiae*
636 *URA3* gene and the *KanMX4* geneticin resistance marker (*KIURA3-ScURA3-KanMX4*)
637 was amplified from pJA40 (55) with primers targeting two genomic regions (Table S2).
638 Primers JAO506 and JAO507 were used for integration of CORE2 distal to *SSF2* in
639 Chr4, and JAO502 and JAO503 for integration proximal to *ADH6* in Chr13.
640 Transformation of JAY585 with each cassette resulted in JAY865
641 (*SSF2/SSF2::CORE2*) and JAY868 (*ADH6/ADH6::CORE2*), which were used in the
642 single 5-FOA^R LOH assays. Subsequently, one native copy of the *CAN1* gene was
643 deleted from each of these strains using the *NatMX4* cassette. The cassette was
644 amplified from pAG25 (56) using primers JAO271 and JAO272 and transformed into
645 JAY865 and JAY868, resulting in JAY1804 and JAY1812, respectively. These strains
646 were used for Can^R single LOH assays and for Can^R - 5-FOA^R double LOH assays. The
647 same procedure was followed to build LOH assay strains in the CG379 background,
648 resulting in strains JAY861 and JAY859 (5-FOA^R single LOH assays), and strains
649 JAY1567 and JAY1569 (Can^R single LOH assays and Can^R - 5-FOA^R double LOH
650 assays). We further manipulated JAY1567 and JAY1569 to create *MATa/matΔ* isogenic
651 derivatives. The *HphMX4* cassette was amplified from pAG32 (56) using the primers
652 JAO1440 and JAO1441. This cassette was used to replace a segment of the *MATα*
653 allele in JAY1567 and JAY1569, resulting in JAY1808 and JAY1809 respectively. A
654 similar procedure was used to build hybrid strains in the S288c/YJM789 background
655 used in the LOH assays. In this case, JAY297 (S288c *MATa*) (57) was transformed for
656 integration of the CORE2 cassette distal to *SSF2* in Chr4 and proximal to *ADH6* in
657 Chr13. Subsequently, the native copy of *CAN1* was replaced with a *NatMX4* cassette in
658 each strain, resulting in JAY2355 and JAY2356, respectively. These strains were then
659 crossed to JAY308 (YJM789, *MATα*), resulting in JAY2357 (*MATa/MATα*,
660 *SSF2/SSF2::CORE2 CAN1/can1Δ*) and JAY2358 (*MATa/MATα*, *ADH6/ADH6::CORE2*
661 *CAN1/can1Δ*).
662

663 **Quantitative LOH rate assays**

664 For conventional culture size recombination assays, single colonies were
665 inoculated into 5 ml liquid YPD, and incubated for 24 hours at 30C in a rotating drum.

666 For small culture LOH assays, 5 ml cultures were inoculated and incubated at 30C for
667 24 hours. Cultures were then diluted in fresh YPD to a final concentration of ~30
668 cells/ml, and 20 μ L aliquots of this dilution were dispensed into individual wells of 96
669 well plates and incubated at 30C for 48 hours. At this concentration, most wells did not
670 show any growth, whereas wells with growth were likely started from a single cell. The
671 cultures were serially diluted and plated on YPD (permissive), and SC plus 5-FOA
672 (selective) and/or canavanine (selective). Colony counts were used to calculate
673 recombination rates and 95% confidence intervals using the Lea & Coulson method of
674 the median within the FALCOR web application (23, 58). Recombination rates and 95%
675 confidence intervals were also calculated through the Ma-Sandri-Sarkar maximum
676 likelihood estimation method (MSS-MLE) with plating fraction correction using the
677 FluCalc web application (31).

678

679 **Genome Sequencing Analyses**

680 The Illumina short read WGS platform was used to sequence the genomes of the
681 JAY270 derivatives (28 smooth and 28 rough clones) and 120 derivatives from
682 the S288c/YJM789 hybrid strain. Oxford Nanopore single molecule long reads were also
683 generated for JAY270 and JAY664. All genome sequencing data associated with this
684 study is available in the Sequence Read Archive (SRA) database under study number
685 SRP082524.

686

687 *Detection of LOH tracts in the JAY270 background*

688 LOH tracts were detected using CLC genomics workbench software to map
689 sequencing reads from the smooth and rough clones onto the S288c reference and
690 detecting SNPs across the whole genome. Low stringency detection parameters were
691 set such that SNPs present at frequencies higher than 0.05 were identified. We then
692 interrogated the 12,023 loci in the JAY270 HetSNP list generated previously (18),
693 determining the nucleotides present at those positions and their relative frequency.
694 When no SNPs were detected at those specific positions, the genotype was called as
695 homozygous for the reference nucleotide. When the alternative nucleotide was detected
696 at frequency higher than 0.95 the genotype was called homozygous for the alternative
697 nucleotide. Alternative nucleotides detected at frequencies between 0.1 and 0.9
698 resulted in a heterozygous call for that locus. After the genotypes were called they were

699 then converted to the respective haplotype designations as M/M and P/P homozygous,
700 and M/P heterozygous. In control analysis using WGS reads from JAY270, all 12,023
701 loci were called as heterozygous. LOH tract sizes were estimated by calculating the
702 positions of breakpoints to the right and to the left, and subtracting the left side position
703 from the right side. Breakpoint positions were calculated as the average position
704 between the two HetSNPs that defined the transition from heterozygosity to
705 homozygosity. For terminal LOH tracts the coordinates of the left or right telomeres were
706 used as the breakpoint positions. LOH tracts were called even if they included
707 homozygosity of a single marker HetSNP. Six such cases were identified, all were
708 interstitial. All were validated through direct visual inspection of the read mapping files.
709 A subset of these single marker LOH calls were independently validated by PCR and
710 Sanger sequencing, or by Nanopore WGS (Fig. S1).

711

712 *Detection of LOH tracts in the S288c/YJM789 hybrid background*

713 A list of heterozygous loci in the S288c/YJM789 diploid background was
714 generated by combining overlapping SNP data from the strains JAY2355, JAY2356,
715 JAY2357, JAY2358 and JAY308, which resulted in 51,053 HetSNPs. This list was then
716 filtered manually to identify markers commonly identified as false positives, resulting in a
717 final list of 50,708 HetSNPs that were interrogated in the S288c/YJM789-derived clones
718 isolated from LOH assays. LOH was called when the nucleotide frequency in a specific
719 position was <0.1 or >0.9 and all LOH calls were supported by 10 or more reads. LOH
720 tract sizes were calculated using the same approach described for the LOH analysis in
721 the JAY270 derivatives above.

722

723 *Detection of CNA tracts in JAY270 and S288c/YJM789 derivatives*

724 Reference genome read mapping BAM files from each of the control and
725 experimental clones generated in CLC genomics workbench were imported into
726 Biodiscovery Nexus Copy Number software. CNA analyses in Nexus were conducted
727 based on read depth of coverage using as reference BAM files generated from read
728 mappings of the appropriate JAY270 or S288c/YJM789 parent strains. In clones where
729 regions of segmental or full-chromosome CNA were identified, the coordinates of these
730 calls were cross-referenced to the LOH calls above to obtain a final classification of

731 CNA tracts as segmental deletion or amplification, and in the case of aneuploidies, as
732 monosomy, uniparental disomy or trisomy.

733

734 **Statistical Analyses**

735 To compare the number of unselected LOH tracts in JAY270 smooth vs. rough
736 clones we used a test of equal proportions. We also tested the Poisson distribution
737 goodness of fit for the number of unselected tracts per clone within smooth and rough
738 clone sets. In the S288cxYJM789 hybrid system, the Fisher Exact Test was used to
739 determine whether the probability of having unselected LOH tracts was dependent on
740 the initial selection of LOH elsewhere in the genome. We first compared the type of
741 selection used (none vs. any) to the number of clones showing a presence or absence
742 of unselected LOH tracts, yielding a p-value of 0.020. Second, we compared the type of
743 selection used (single vs. double) to the number of clones showing a presence or
744 absence of unselected LOH tracts, yielding a p-value of 0.012. All calculations were
745 done in R.

746

747

ACKNOWLEDGMENTS

748

749 We thank Tom Petes, Michael McMurray, Dmitry Gordenin, Aaron Mitchell for valuable
750 insights and comments on earlier versions of the manuscript. NMVS received a pre-
751 doctoral fellowship from Brazil's CAPES (0316/13-0). PC and AVP were supported by a
752 UGC fellowship. KTN was supported by a Wellcome Trust-DBT India Alliance
753 Intermediate fellowship- (IA/I/11/2500268) and IISER-TVM intramural funds. Research
754 reported here was supported by an NIH grant to JLA (R35GM119788), and an NIH
755 grant to LRH (K99GM134193).

756

REFERENCES

757

- 758 1. Cross W, Graham TA, & Wright NA (2016) New paradigms in clonal evolution:
759 punctuated equilibrium in cancer. *J Pathol* 240(2):126-136.
- 760 2. Turajlic S, Sottoriva A, Graham T, & Swanton C (2019) Resolving genetic
761 heterogeneity in cancer. *Nature reviews. Genetics* 20(7):404-416.
- 762 3. Gao R, *et al.* (2016) Punctuated copy number evolution and clonal stasis in triple-
763 negative breast cancer. *Nature genetics* 48(10):1119-1130.
- 764 4. Cross W, *et al.* (2018) The evolutionary landscape of colorectal tumorigenesis. *Nat
765 Ecol Evol* 2(10):1661-1672.
- 766 5. Field MG, *et al.* (2018) Punctuated evolution of canonical genomic aberrations in
767 uveal melanoma. *Nature communications* 9(1):116.
- 768 6. Gerstung M, *et al.* (2020) The evolutionary history of 2,658 cancers. *Nature*
769 578(7793):122-128.
- 770 7. Liu P, *et al.* (2017) An organismal CNV mutator phenotype restricted to early human
771 development. *Cell* 168(5):830-842.
- 772 8. Fogel S & Hurst DD (1963) Coincidence relations between gene conversion and
773 mitotic recombination in *Saccharomyces*. *Genetics* 48:321-328.
- 774 9. Hurst DD & Fogel S (1964) Mitotic recombination and heteroallelic repair in
775 *Saccharomyces cerevisiae*. *Genetics* 50:435-458.
- 776 10. Minet M, Grossenbacher-Grunder AM, & Thuriaux P (1980) The origin of a
777 centromere effect on mitotic recombination : A study in the fission yeast
778 *Schizosaccharomyces pombe*. *Current genetics* 2(1):53-60.
- 779 11. Montelone BA, Prakash S, & Prakash L (1981) Spontaneous mitotic recombination
780 in mms8-1, an allele of the CDC9 gene of *Saccharomyces cerevisiae*. *Journal of
781 bacteriology* 147(2):517-525.
- 782 12. Golin JE & Esposito MS (1984) Coincident gene conversion during mitosis in
783 *saccharomyces*. *Genetics* 107(3):355-365.
- 784 13. Golin JE & Tampe H (1988) Coincident recombination during mitosis in
785 *Saccharomyces*: Distance-dependent and -independent components. *Genetics*
786 119(3):541-547.
- 787 14. Freeman KM & Hoffmann GR (2007) Frequencies of mutagen-induced coincident
788 mitotic recombination at unlinked loci in *Saccharomyces cerevisiae*. *Mutation
789 research* 616(1-2):119-132.

790 15. Forche A, Magee PT, Selmecki A, Berman J, & May G (2009) Evolution in *Candida*
791 *albicans* populations during a single passage through a mouse host. *Genetics*
792 182(3):799-811.

793 16. Forche A, *et al.* (2018) Rapid Phenotypic and Genotypic Diversification After
794 Exposure to the Oral Host Niche in *Candida albicans*. *Genetics* 209(3):725-741.

795 17. Heasley LR, Watson RA, & Argueso JL (2020) Punctuated aneuploidization of the
796 budding yeast genome. *bioRxiv* doi:10.1101/2020.05.04.076935.

797 18. Rodrigues-Prause A, *et al.* (2018) A Case Study of Genomic Instability in an
798 Industrial Strain of *Saccharomyces cerevisiae*. *G3* 8(11):3703-3713.

799 19. Weiss EL (2012) Mitotic exit and separation of mother and daughter cells. *Genetics*
800 192(4):1165-1202.

801 20. Gusa A & Jinks-Robertson S (2019) Mitotic Recombination and Adaptive Genomic
802 Changes in Human Pathogenic Fungi. *Genes (Basel)* 10(11).

803 21. Borneman AR, *et al.* (2011) Whole-genome comparison reveals novel genetic
804 elements that characterize the genome of industrial strains of *Saccharomyces*
805 *cerevisiae*. *PLoS Genet* 7(2):e1001287.

806 22. Galeote V, *et al.* (2011) Amplification of a *Zygosaccharomyces bailii* DNA segment
807 in wine yeast genomes by extrachromosomal circular DNA formation. *PLoS One*
808 6(3):e17872.

809 23. Lea DE & Coulson CA (1949) The distribution of the numbers of mutants in bacterial
810 populations. *Journal of Genetics* 28:491-511.

811 24. Laureau R, *et al.* (2016) Extensive recombination of a yeast diploid hybrid through
812 meiotic reversion. *PLoS Genet* 12(2):e1005781.

813 25. Keeney S, Lange J, & Mohibullah N (2014) Self-organization of meiotic
814 recombination initiation: General principles and molecular pathways. *Annual review*
815 of genetics 48:187-214.

816 26. Paques F & Haber JE (1999) Multiple pathways of recombination induced by
817 double-strand breaks in *Saccharomyces cerevisiae*. *Microbiology and molecular*
818 *biology reviews : MMBR* 63(2):349-404.

819 27. Cherry JM, *et al.* (2012) *Saccharomyces* Genome Database: the genomics resource
820 of budding yeast. *Nucleic acids research* 40(Database issue):D700-705.

821 28. Wei W, *et al.* (2007) Genome sequencing and comparative analysis of
822 *Saccharomyces cerevisiae* strain YJM789. *Proceedings of the National Academy of*
823 *Sciences of the United States of America* 104(31):12825-12830.

824 29. Rosche WA & Foster PL (2000) Determining mutation rates in bacterial populations.
825 *Methods* 20(1):4-17.

826 30. Lang GI (2018) Measuring Mutation Rates Using the Luria-Delbrück Fluctuation
827 Assay. *Methods Mol Biol* 1672:21-31.

828 31. Radchenko EA, McGinty RJ, Aksanova AY, Neil AJ, & Mirkin SM (2018)
829 Quantitative Analysis of the Rates for Repeat-Mediated Genome Instability in a
830 Yeast Experimental System. *Methods Mol Biol* 1672:421-438.

831 32. Sarkar S, Ma WT, & Sandri GH (1992) On fluctuation analysis: a new, simple and
832 efficient method for computing the expected number of mutants. *Genetica*
833 85(2):173-179.

834 33. Smith CE, Llorente B, & Symington LS (2007) Template switching during break-
835 induced replication. *Nature* 447(7140):102-105.

836 34. Li CY, Yandell DW, & Little JB (1994) Elevated frequency of microsatellite mutations
837 in TK6 human lymphoblast clones selected for mutations at the thymidine kinase
838 locus. *Molecular and cellular biology* 14(7):4373-4379.

839 35. Grygoryev D, et al. (2014) Autosomal mutants of proton-exposed kidney cells
840 display frequent loss of heterozygosity on nonselected chromosomes. *Radiation*
841 *research* 181(5):452-463.

842 36. Mancera E, Bourgon R, Brozzi A, Huber W, & Steinmetz LM (2008) High-resolution
843 mapping of meiotic crossovers and non-crossovers in yeast. *Nature* 454(7203):479-
844 485.

845 37. St Charles J & Petes TD (2013) High-resolution mapping of spontaneous mitotic
846 recombination hotspots on the 1.1 Mb arm of yeast chromosome IV. *PLoS Genet*
847 9(4):e1003434.

848 38. d'Enfert C, et al. (2017) Genome diversity and dynamics in *Candida albicans*.
849 *Candida albicans: Cellular and Molecular Biology*, ed Prasad R (Springer
850 International Publishing, Cham), pp 205-232.

851 39. Casasent AK, et al. (2018) Multiclonal Invasion in Breast Tumors Identified by
852 Topographic Single Cell Sequencing. *Cell* 172(1-2):205-217 e212.

853 40. McMurray MA & Gottschling DE (2003) An age-induced switch to a hyper-
854 recombinational state. *Science* 301(5641):1908-1911.

855 41. Veatch JR, McMurray MA, Nelson ZW, & Gottschling DE (2009) Mitochondrial
856 dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. *Cell*
857 137(7):1247-1258.

858 42. Raj A & van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene
859 expression and its consequences. *Cell* 135(2):216-226.

860 43. Putnam CD, *et al.* (2016) A genetic network that suppresses genome
861 rearrangements in *Saccharomyces cerevisiae* and contains defects in cancers.
862 *Nature communications* 7:11256.

863 44. Andersen MP, Nelson ZW, Hetrick ED, & Gottschling DE (2008) A genetic screen
864 for increased loss of heterozygosity in *Saccharomyces cerevisiae*. *Genetics*
865 179(3):1179-1195.

866 45. Craven RJ, Greenwell PW, Dominska M, & Petes TD (2002) Regulation of genome
867 stability by *TEL1* and *MEC1*, yeast homologs of the mammalian ATM and ATR
868 genes. *Genetics* 161(2):493-507.

869 46. Serero A, Jubin C, Loeillet S, Legoix-Ne P, & Nicolas AG (2014) Mutational
870 landscape of yeast mutator strains. *Proceedings of the National Academy of
871 Sciences of the United States of America* 111(5):1897-1902.

872 47. Liu J, Francois JM, & Capp JP (2019) Gene Expression Noise Produces Cell-to-Cell
873 Heterogeneity in Eukaryotic Homologous Recombination Rate. *Front Genet* 10:475.

874 48. Petljak M, *et al.* (2019) Characterizing Mutational Signatures in Human Cancer Cell
875 Lines Reveals Episodic APOBEC Mutagenesis. *Cell* 176(6):1282-1294 e1220.

876 49. Xia J, *et al.* (2019) Bacteria-to-Human Protein Networks Reveal Origins of
877 Endogenous DNA Damage. *Cell* 176(1-2):127-143 e124.

878 50. Nguyen Ba AN, *et al.* (2019) High-resolution lineage tracking reveals travelling wave
879 of adaptation in laboratory yeast. *Nature* 575(7783):494-499.

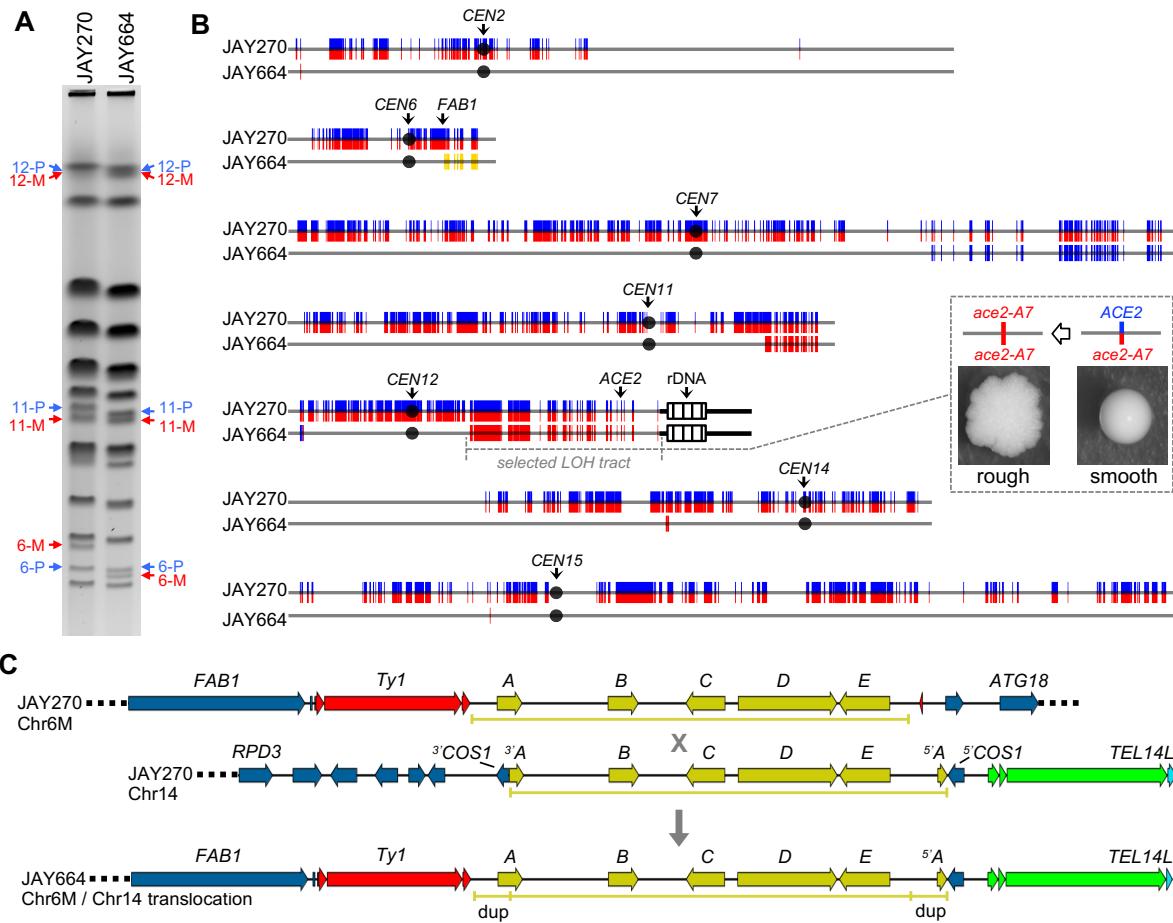
880 51. Jariani A, *et al.* (2020) A new protocol for single-cell RNA-seq reveals stochastic
881 gene expression during lag phase in budding yeast. *eLife* 9.

882 52. Argueso JL, *et al.* (2009) Genome structure of a *Saccharomyces cerevisiae* strain
883 widely used in bioethanol production. *Genome Research* 19(12):2258-2270.

884 53. Morrison A, Bell JB, Kunkel TA, & Sugino A (1991) Eukaryotic DNA polymerase
885 amino acid sequence required for 3'-5' exonuclease activity. *Proceedings of the
886 National Academy of Sciences of the United States of America* 88(21):9473-9477.

887 54. Ausubel FM, *et al.* (2003) *Current protocols in molecular biology* (John Wiley &
888 Sons).

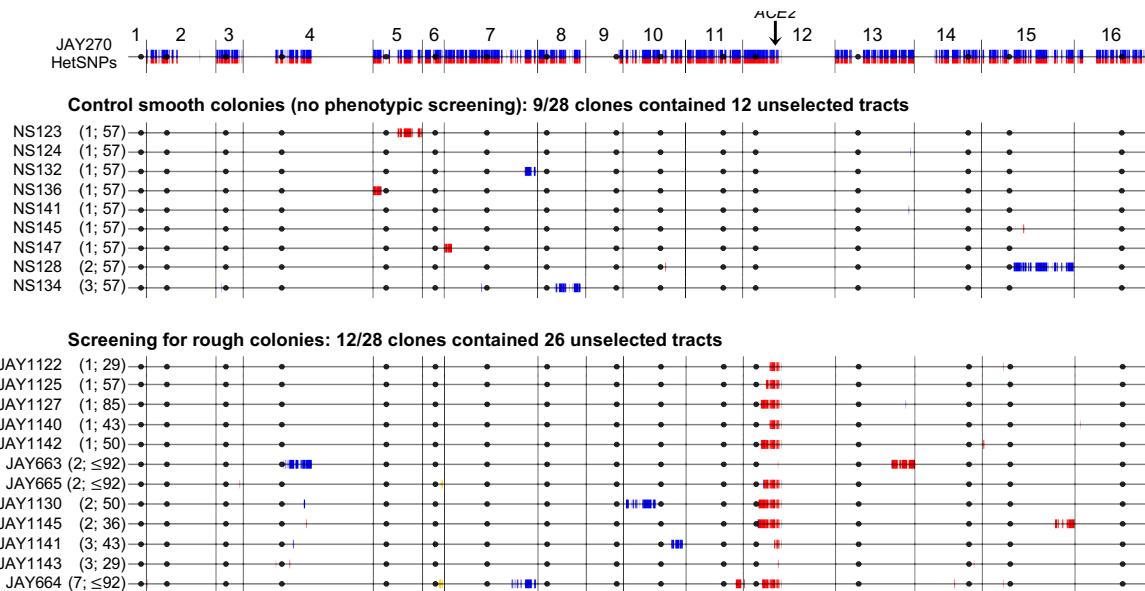
889 55. Zhang H, *et al.* (2013) Gene copy-number variation in haploid and diploid strains of
890 the yeast *Saccharomyces cerevisiae*. *Genetics* 193(3):785-801.

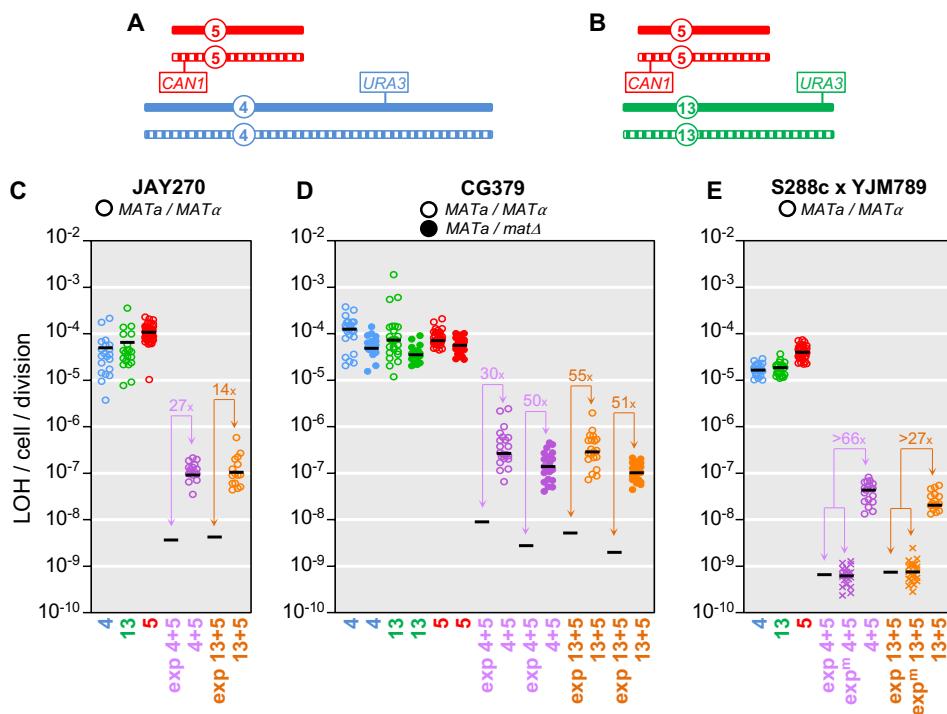

891 56. Goldstein AL & McCusker JH (1999) Three new dominant drug resistance cassettes
892 for gene disruption in *Saccharomyces cerevisiae*. *Yeast* 15(14):1541-1553.

893 57. Winston F, Dollard C, & Ricupero-Hovasse SL (1995) Construction of a set of
894 convenient *Saccharomyces cerevisiae* strains that are isogenic to S288C. *Yeast*
895 11(1):53-55.

896 58. Hall BM, Ma CX, Liang P, & Singh KK (2009) Fluctuation analysis calculator: A web
897 tool for the determination of mutation rate using Luria-Delbrück fluctuation analysis.
898 *Bioinformatics* 25(12):1564-1565.

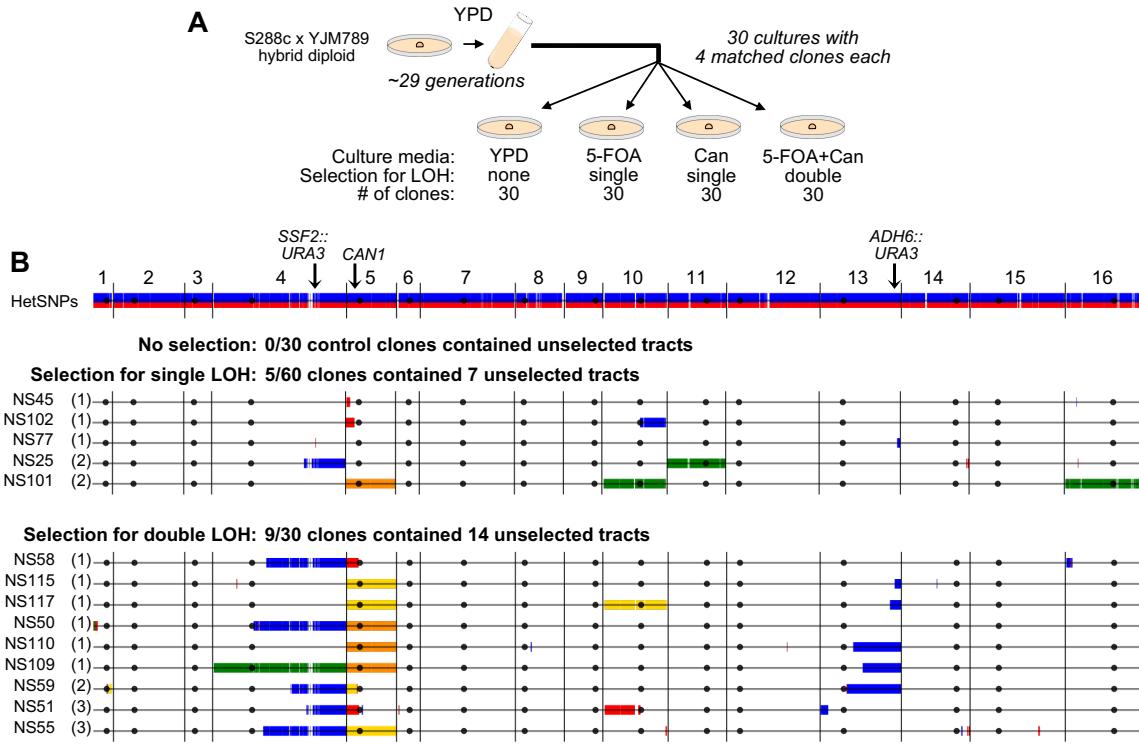
899


900


901 **Figure 1.** Genomic analysis of the JAY664 rough colony isolate.

902 **A** PFGE of JAY270 and JAY664. Arrows indicate the bands for Chr6, Chr11 and Chr12,
903 with the two homologs identified as paternal (P, blue) or maternal (M, red) according to
904 the phased HetSNP haplotypes described previously (18). **B** Distribution of HetSNPs in
905 JAY270 and tracts of LOH and CNA in JAY664. JAY270 HetSNPs are represented as
906 double colored vertical lines (P/M; blue/red). In the JAY664 maps below, markers that
907 remained heterozygous were omitted to emphasize visualization of tracts of copy-
908 neutral LOH (double red [M/M] and double blue [P/P]), or CNA deletion on Chr6 (double
909 yellow). The LOH tract on the right arm of Chr12 spanning the ACE2 locus was selected
910 based on the rough colony morphology shown in the inset. The LOH tracts on the left
911 arm of Chr12 and on each of the other chromosomes were unselected. Chromosome
912 numbers are to the left of each map, black circles represent their respective
913 centromeres, and the positions of pertinent loci are indicated. Striped boxes on the right
914 arm of Chr12 represent ~1.5 Mb of ribosomal DNA repeats (rDNA); regions distal to the

915 rDNA are homozygous in JAY270 so are not represented. Chromosome plots were
916 generated to scale in Python 2.7 using the matplotlib package and a custom script. For
917 size reference, Chr6 is 270 kb. **C** shows the detailed DNA structures determined by
918 Nanopore single molecule long read WGS present in JAY270 Chr6M, JAY270 Chr14,
919 and at the junction of the JAY664 Chr6M/Chr14 NAHR-mediated non-reciprocal
920 translocation. The sequences in yellow correspond to the *Zb* circle insertions, with the
921 five ORFs being labeled *A* through *E* following the abbreviations described previously
922 (21). The X represents the deduced NAHR event and the downward arrow points to the
923 recombination outcome detected in JAY664. Ty1 and delta LTR retrotransposon
924 sequences are shown in red, and telomeric sequences (X and Y' elements, and the
925 telomeric short repeats) are shown in green. *dup* indicates the short segment of the *Zb*
926 circle at the Chr6-M / Chr14 junction that was duplicated by the NAHR event.
927


928 **Figure 2.** Genome-wide maps of unselected LOH and CNA tracts in smooth and rough
929 colony isolates derived from JAY270.
930 The top horizontal line is the linear end-to-end depiction of the 16 *S. cerevisiae*
931 chromosomes in the JAY270 strain, with HetSNPs represented as described in Fig.1B.
932 Chromosome numbers are indicated above, black circles represent their respective
933 centromeres, and the position of the ACE2 locus on Chr12 is shown. The tract maps
934 below are grouped for control smooth and rough colony clones. Each horizontal line
935 corresponds to the genomes of clones that displayed at least one unselected LOH or
936 CNA tract. HetSNPs that were homozygous P/P (blue) or M/M (red) are shown, while
937 markers that remained heterozygous in those clones were omitted. Two CNA deletions
938 are shown in yellow (Chr6 [P/-] in JAY664 and Chr6 [M/-] JAY665). The numbers of
939 unselected tracts and the number of generations used to isolate each clone are shown
940 between parentheses (i.e., (# unselected tracts; # generations)). As expected from
941 selection for the rough colony morphology, all rough clones were homozygous for the
942 maternal ace2-A7 allele (red; close-up view in Fig S2). Full LOH calls with coordinates
943 are available in File S1. Plots were generated to scale as in Fig. 1B. For size reference,
944 Chr1 is 230 kb.
945

946 **Figure 3.** Quantitative analyses of single and double LOH rates.

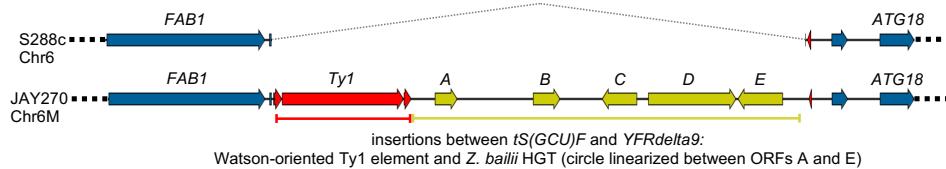
947 **A** and **B** show schematic representations of the positions of hemizygous counter-
948 selectable markers in the diploid yeast strains used in the LOH assays. The pairs of
949 homologous chromosomes are shown as solid or striped for Chr5 (red), Chr4 (blue),
950 Chr13 (green), with the overall sizes, and positions of markers and centromeres drawn
951 to approximate scale. **A** shows the genomic configuration of markers in strains used in
952 the Chr4 plus Chr5 double LOH assays, and **B** shows the configuration used for the
953 Chr13 plus Chr5 assays. Specifically for the hybrid strain background in **E**, the solid
954 chromosome corresponds to the S288c homolog and the striped homolog corresponds
955 to the YJM789 homolog. The *CAN1* locus was present at its native position on Chr5,
956 and the *CORE2* cassettes were inserted near *SSF2* in Chr4 and *ADH6* in Chr13. **C**
957 shows the mutation rate data for the JAY270 strain background calculated using the
958 Lea & Coulson method of the median. Circles indicate the experimentally determined
959 rates in individual cultures, color-coded according to single chromosomes as in **A** and
960 **B**, and double chromosomes using purple for Chr4 plus Chr5 or orange for Chr13 plus
961 Chr5. Black horizontal bars indicate the median rate values for each culture set. The
962 same numerical data are shown in Table S4, including 95% confidence intervals (not
963 plotted in **C-E**). “exp” in the x-axis designates the expected double LOH rates based on

964 the multiplicative product of the pertinent median single LOH rate pairs. Only the black
965 bar is shown in these “exp” cases. The excess fold ratio of experimentally observed
966 over calculated expected double LOH rates are shown in all pairwise comparisons. **D**
967 shows the LOH rate data in the CG379 strain background similarly to **C**, with the
968 exception that open circles correspond to *MAT α /MAT α* , while solid circles correspond to
969 data collected in the isogenic *MAT α /mat Δ* strain. **E** shows the LOH rate data in the
970 S288c x YJM789 hybrid strain background similarly to **C**, with addition of an alternative
971 method for the calculation of expected double LOH rates (exp^m). For this strain
972 background, aliquots from each individual culture were plated in YPD, 5-FOA, Can, and
973 5-FOA plus Can (Fig. 4A), producing culture-matched single and double LOH rate
974 results. The “X” symbols in the exp^m datasets correspond to the expected matched
975 double LOH rates for each culture obtained by multiplying the pertinent two single LOH
976 rates within that same culture. The black bar in those cases corresponds to the median
977 value of matched expected double LOH rates. The conventional (exp) and matched
978 expected (exp^m) double LOH rate estimates were very close. The most conservative
979 value for the excess ratio of observed over exp or observed over exp^m is shown in the
980 plot.
981

982 **Figure 4.** Genome-wide maps of unselected LOH and CNA tracts in clones derived
983 from S288c x YJM789 hybrid diploids.

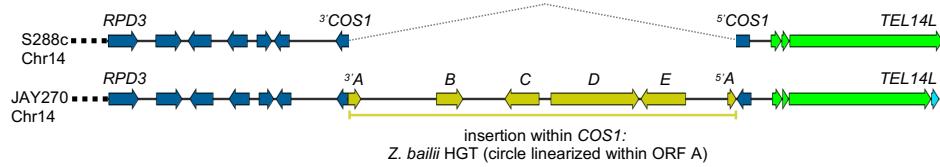
984 **A** Experimental design: A total of 30 YPD cultures (15 of the Chr4 plus Chr5 strain
985 JAY2357, and 15 of the Chr13 plus Chr5 strain JAY2358) were started from single cells,
986 grown into colonies, and then transferred to 5 ml tubes until saturation ($\sim 3 \times 10^8$ cells per
987 culture; ~ 29 cell generations). Four appropriate aliquot dilutions from each culture were
988 plated, one each: non-selectively to YPD, selectively for single LOH on 5-FOA,
989 selectively for single LOH on canavanine, and selectively for double LOH on 5-FOA plus
990 canavanine. One colony per plate was isolated and whole genome sequenced, for a
991 total of 30 sets of 4 culture-matched clones. **B** shows the results of the WGS analysis.
992 The top horizontal line is the linear end-to-end depiction of the 16 chromosomes in the
993 S288c x YJM789 hybrid diploid strain background, with HetSNPs represented as red
994 S288c alleles and blue YJM789 alleles. Chromosome numbers are indicated above,
995 and black circles represent their respective centromere positions. Each horizontal line
996 corresponds to the genomes of clones that displayed at least one unselected LOH or
997 CNA tract, grouped according to their selection category (no selection; single selection
998 on 5-FOA or Can; double selection on 5-FOA plus Can). None of the no selection
999 control clones contained any LOH or CNA tracts, thus none of those clones are

1000 displayed. For the single and double selection groups, the number of unselected tracts
1001 in each clone is shown between parentheses. Identical LOH tracts that were detected in
1002 all four clones in a matched set (pre-culture) are displayed in the plots, but were not
1003 counted toward the total of unselected tracts that arose during each culture. Markers
1004 that remained heterozygous were omitted to emphasize visualization of tracts. HetSNPs
1005 that were homozygous YJM789/YJM789 (blue) or S288c/S288c (red) are shown as
1006 double vertical lines above and below the black chromosome line. No segmental CNAs
1007 were found, but multiple whole chromosome CNAs were. Chromosome losses
1008 (monosomy) are shown in yellow, chromosome gains (trisomy) are shown in green.
1009 Cases of copy-neutral LOH spanning whole chromosomes (uniparental disomy) are
1010 shown in orange. Details of all selected and unselected tracts are also available in File
1011 S2, Fig. S4-S6, and Table S5. Plots were generated to scale as in Fig. 1B. For size
1012 reference, Chr1 is 230 kb.
1013

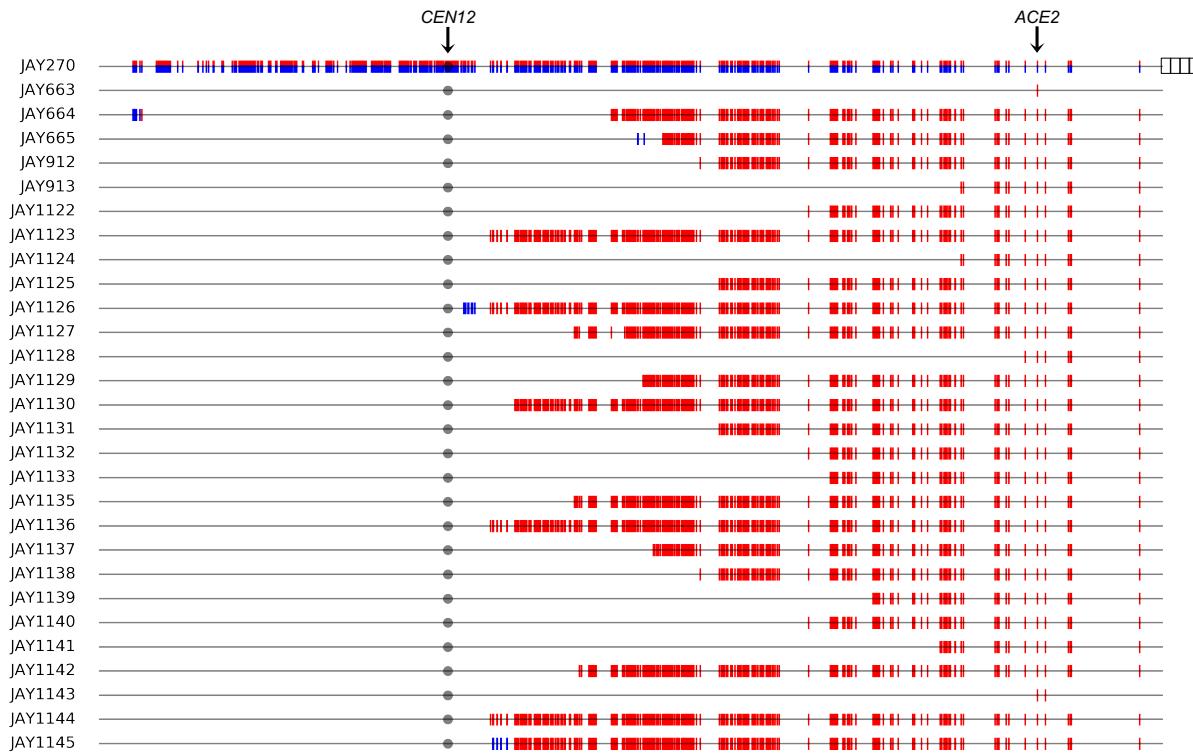

A

Non-crossover configuration of HetSNP markers flanking interstitial gene conversion LOH tracts in JAY664

JAY270 HetSNP		Phased haplotypes		Diploid genotype		Individual JAY664 NanoPore single molecule sequencing reads with respective base calls									
Chr	Position	M	P	JAY270	JAY664										
2	9736	G	A	Het	Het	A	A	A	G	G	-	-	-		
2	10621	T	C	Het	Het	C	C	C	T	T	-	-	-		
2	15222	T	A	Het	T / T	T	T	T	T	T	-	-	-		
2	50620	C	T	Het	Het	T	T	T	C	C	-	-	-		
2	51150	G	C	Het	Het	C	C	C	G	G	-	-	-		
14	455254	T	G	Het	Het	G	G	G	G	G	T	T			
14	455264	A	G	Het	Het	G	G	G	gap	G	A	A			
14	455781	G	A	Het	Het	A	A	A	A	A	A	G	gap		
14	456836	G	T	Het	Het	T	T	T	T	T	T	G	G		
14	459959	T	C	Het	T / T	T	T	T	T	T	T	T	T		
14	460392	G	A	Het	G / G	G	G	G	G	G	G	G	G		
14	460919	G	C	Het	G / G	G	G	G	G	G	G	G	G		
14	462339	A	G	Het	A / A	A	A	A	A	A	error	A	A		
14	462377	A	G	Het	A / A	A	A	A	A	A	A	A	A		
14	462772	C	T	Het	C / C	gap	gap	C	gap	gap	gap	gap	gap	C	
14	463124	C	T	Het	Het	T	T	gap	T	T	T	C	C		
14	463562	T	C	Het	Het	C	C	C	C	C	C	T	T		
14	464483	G	A	Het	Het	A	A	A	A	A	A	G	G		
14	464693	A	G	Het	Het	G	G	G	G	G	A	A	A		
15	243303	T	C	Het	Het	C	C	C	T	T	T	T	T		
15	243311	T	C	Het	Het	C	C	error	T	T	error	T	T		
15	243332	C	A	Het	Het	A	A	gap	C	C	C	C	C		
15	243335	C	G	Het	Het	G	G	G	C	C	C	C	C		
15	246139	G	A	Het	G / G	G	G	G	G	G	G	G	G		
15	254962	T	C	Het	Het	C	C	C	T	T	T	T	T		
15	254985	T	C	Het	Het	C	C	C	T	T	T	T	T		
15	255031	T	C	Het	Het	C	C	C	T	T	T	T	T		


B

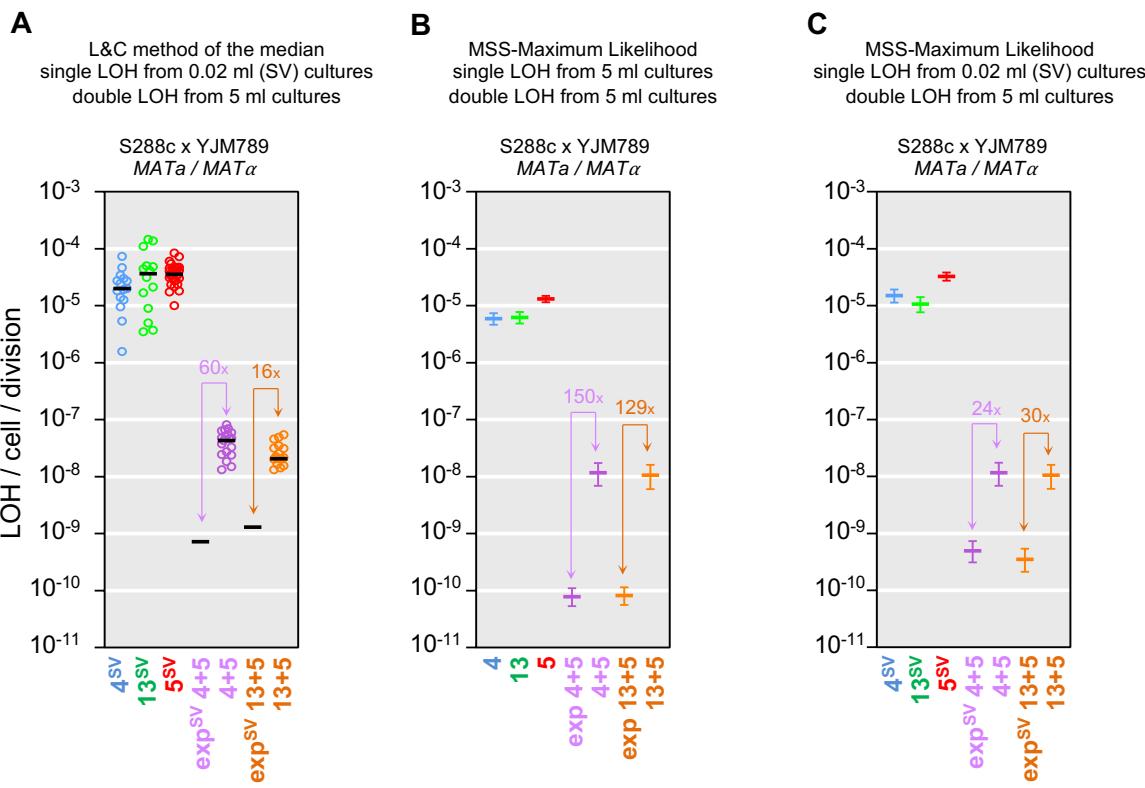
Structural variation between JAY270 and S288c at the right arm of Chr6


C

Structural variation between JAY270 and S288c near left telomere of Chr14

1014 **Figure S1.** Structural genomic analyses in JAY664 and JAY270 through Nanopore
1015 single molecule long read WGS. **A** shows the recombination outcomes associated with
1016 the three interstitial LOH tracts detected in JAY664. Each row corresponds to JAY270
1017 HetSNP positions within or flanking the LOH tracts. M alleles are shaded in red, P
1018 alleles are shade in blue. LOH tracts in JAY664 are also shaded to highlight the LOH
1019 regions (all three were M/M; red). Each column on the right side of the table contains
1020 the base calls made for individual single molecule long reads that spanned the entire

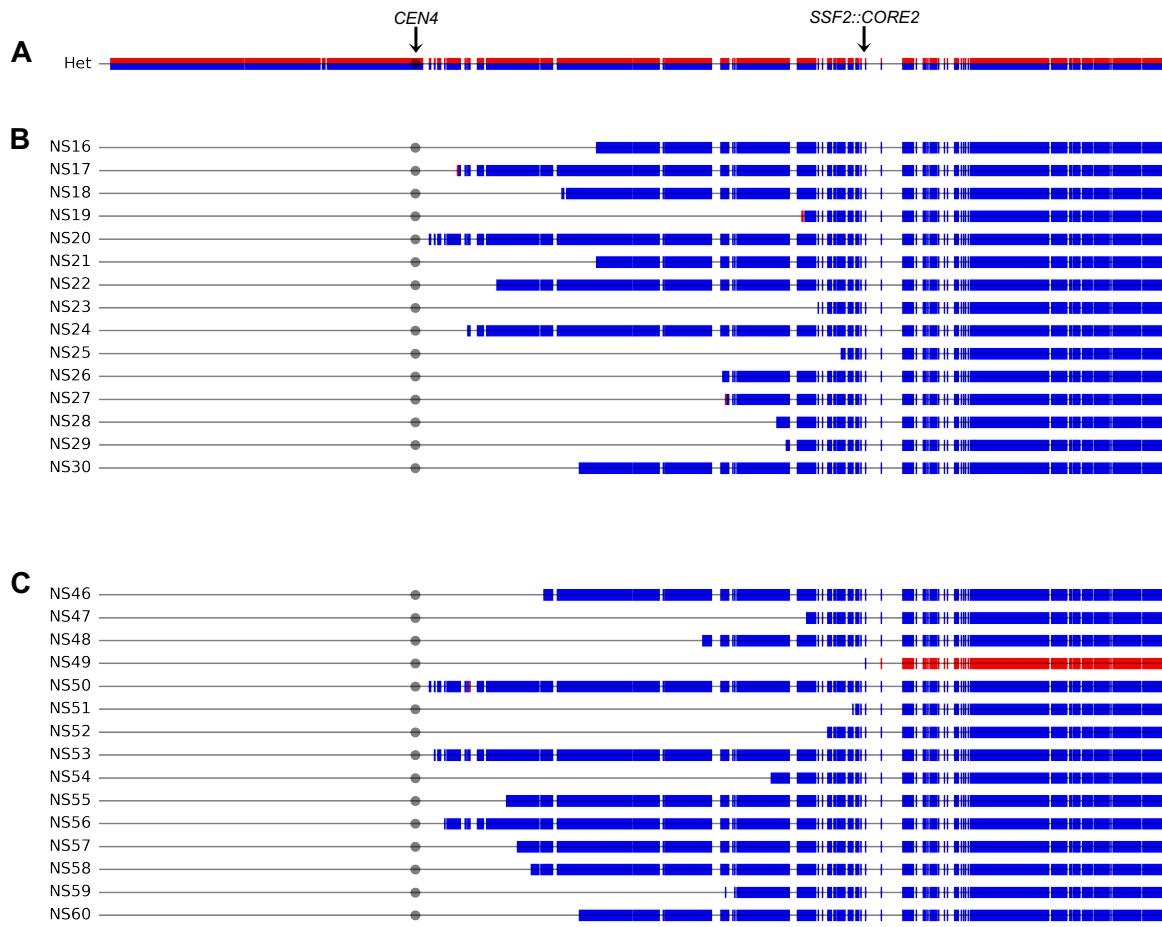
1021 regions of Chr2 (top), Chr14 (middle), or Chr15 (bottom). For all three LOH tracts, the
1022 recombinant homolog (recipient molecule) has P alleles present before and after the (P
1023 to M) gene conversion tract, whereas the other homolog (donor molecule) has M alleles
1024 present before, within, and after the tract. This pattern demonstrated that the gene
1025 conversion event was not associated with exchange of flanking markers (*i.e.*, non-
1026 crossover resolution of the recombination intermediate), and ruled out a gene
1027 conversion with associated reciprocal crossover mechanism, which would have caused
1028 the telomeric-proximal markers to remain heterozygous. **B** and **C** show respectively, the
1029 positions and ORF arrangements of the *Zb* circle insertions in JAY270 Chr6-M and
1030 Chr14 relative the S288c reference genome. The color pattern follows the system
1031 described in the legend of Fig. 1C.
1032



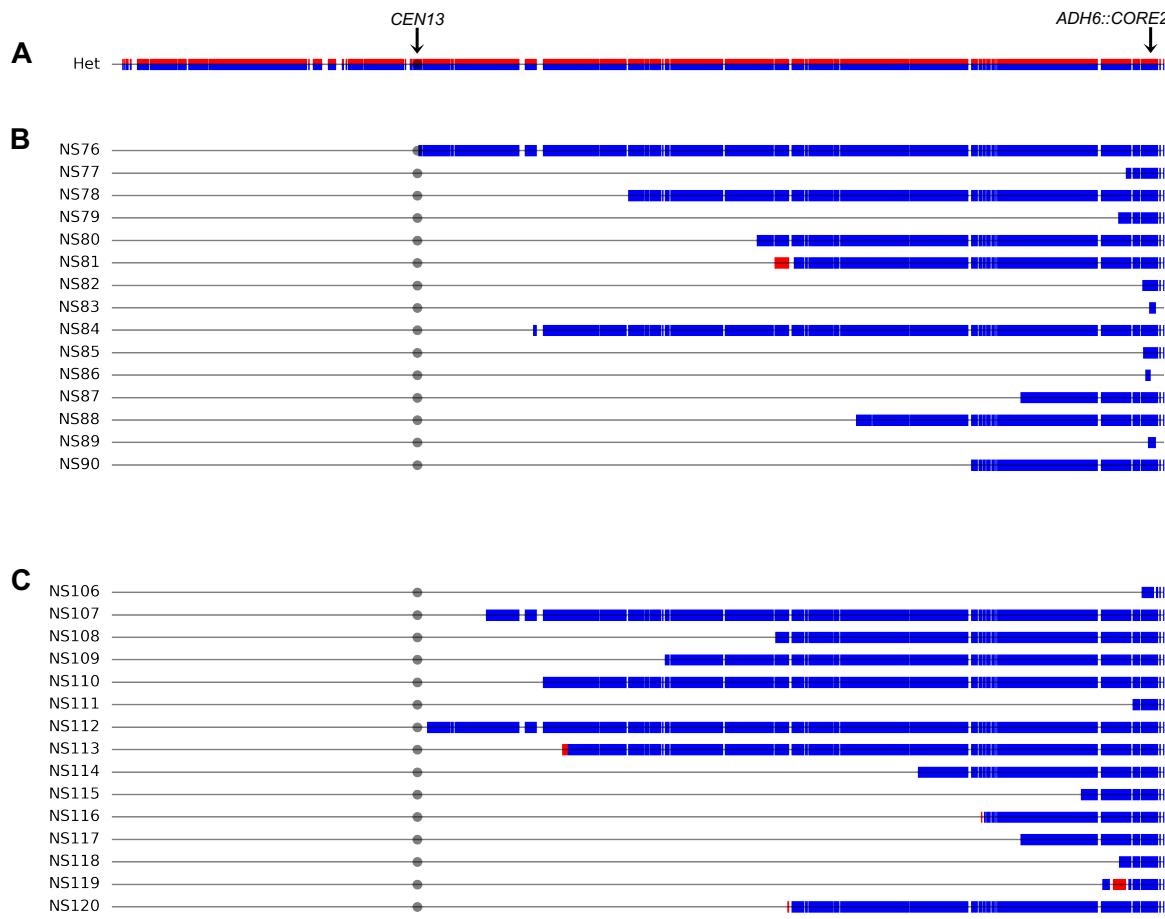
1033 **Figure S2** Maps of selected Chr12 LOH tracts spanning the *ACE2* locus in rough
1034 colony clones.

1035 The top horizontal line is the linear depiction of Chr12 in the JAY270 strain, from the left
1036 telomere to the rDNA cluster (right; striped boxes), with HetSNPs represented as
1037 paternal (blue) and maternal (red) markers. Note that Chr12 regions distal to the rDNA
1038 do not contain any heterozygous markers in JAY270 and thus are not shown. The
1039 position of the *ACE2* locus is shown. Each horizontal line below corresponds to the
1040 selected Chr12 LOH tract maps in each of the rough clones. HetSNP positions that
1041 were homozygous P/P (blue) or M/M (red) are shown as double vertical lines above and
1042 below the black chromosome line. Markers that remained heterozygous M/P were
1043 omitted to emphasize visualization of LOH tracts. As expected from selection for the
1044 rough colony morphology, all rough clones were homozygous for the maternal *ace2-A7*
1045 allele (red). Plots were generated to scale in Python 2.7 using the matplotlib package
1046 and a custom script. For size reference, the distance between the left telomere and the
1047 right-most HetSNP (proximal to the rDNA) is 450 kb.

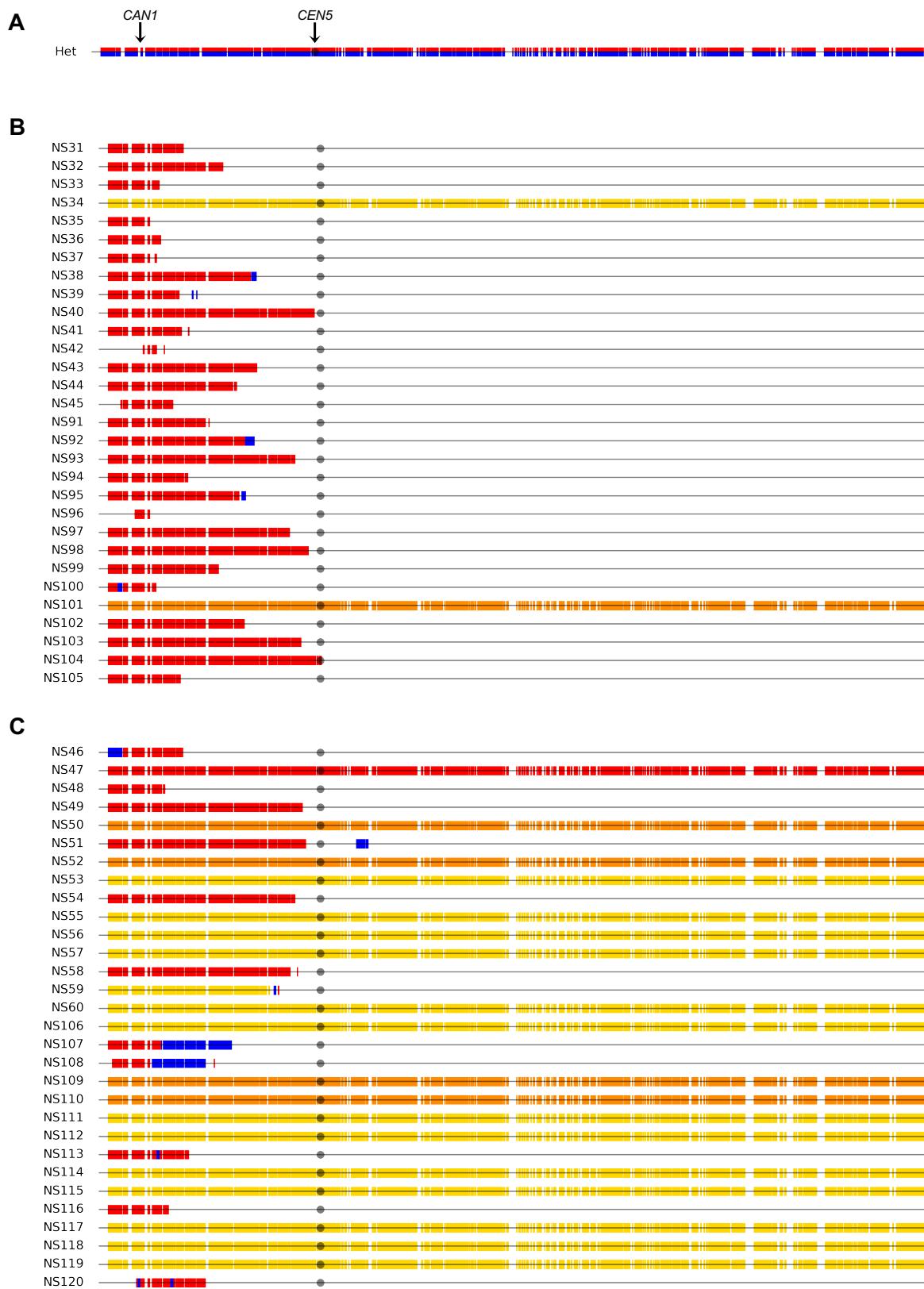
1048 The predominant class (26 of 28) of selected Chr12 LOH tracts spanning the
1049 *ACE2* locus in rough colony clones included tracts that were terminal (extended from a
1050 proximal position between *CEN12* and *ACE2*, up to the end of Chr12 heterozygosity


1051 near the rDNA cluster). Four of these clones had complex discontinuities and/or showed
1052 limited reversed LOH pattern for the Chr12-P alleles near the endpoint. Interstitial tracts
1053 spanning only a limited region that included the *ACE2* locus were found in only two of
1054 the rough clones. These two broad tract classes, terminal and interstitial, were
1055 consistent with crossover and gene conversion-only outcomes of interhomolog mitotic
1056 recombination, respectively. The large overall excess of crossover-type relative to gene
1057 conversion-type recombination outcomes (26:2) was similar to that described in our
1058 previous characterization of selected Chr12 LOH tracts in JAY270 (18).
1059

1060 **Figure S3.** Alternative approaches to the calculation of single and double LOH rates in
1061 the S288c x YJM789 hybrid strain background.


1062 **A** shows LOH rate data calculated using the Lea & Coulson method of the median. In
1063 this case, the single LOH rates for Chr4, Chr13 and Chr5 were obtained from small
1064 volume (SV) cultures (0.02 ml YPD), while the double LOH rates were obtained from
1065 regular volume cultures (5 ml YPD; same values plotted in Fig. 3E). “ exp^{SV} ” in the Y-
1066 axis designates the expected double LOH rates based on the multiplicative product of
1067 the pertinent SV median single LOH rate pairs. The excess fold ratio of experimentally
1068 observed over calculated expected double LOH rates are shown in all pairwise
1069 comparisons. Circles indicate the experimentally determined rates in individual cultures,
1070 color-coded according to single chromosomes as in Fig. 3A and 3B, and double
1071 chromosomes using purple for Chr4 plus Chr5 or orange for Chr13 plus Chr5. Black
1072 horizontal bars indicate the median rate values for each culture set. Only the black bar
1073 is shown in the “ exp^{SV} ” cases. The same numerical data are shown in Table S6,
1074 including 95% confidence intervals (95% CI; not plotted in **A**). **B** shows single and
1075 double LOH rates and 95% CI calculated using the MSS-maximum likelihood (MSS-
1076 MLL) method with dilution volume correction from the same colony count data used for

1077 Fig. 3E (regular 5 ml YPD cultures for single and double LOH). Note that (unlike Lea &
1078 Coulson) the MSS-MLL method does not produce mutation rates for individual cultures,
1079 just a rate and 95% CI (plotted following color code above) for the collective set of
1080 culture repetitions in each measurement. The expected double LOH rates and 95% CI
1081 were derived by multiplying the pertinent 5 ml MSS-MLL single LOH rates. **C** shows
1082 single and double mutation rates and 95% CI calculated using the MSS-MLL method
1083 with dilution volume correction using SV 0.02 ml YPD for single LOH and regular 5 ml
1084 YPD double LOH (same values as in **B**) cultures. The expected SV double LOH rates
1085 and 95% CI were derived by multiplying the pertinent SV 0.02 ml MSS-MLL single LOH
1086 rates.
1087


1088 **Figure S4.** Maps of selected Chr4 LOH tracts spanning the SSF2::CORE2 insertion
1089 locus.

1090 The horizontal line shown in **A** is the linear depiction of Chr4 in the S288c/YJM789
1091 hybrid strain background, with HetSNPs represented as red S288c alleles and blue
1092 YJM789 alleles. The circle indicates the position of the centromere and the arrow
1093 indicates the position of the SSF2::CORE2 insertion. Each horizontal line in **B** and **C**
1094 below corresponds to the selected Chr4 LOH tract maps in each of the single and
1095 double selection clones, respectively. Markers that remained heterozygous were
1096 omitted to emphasize visualization of tracts. HetSNPs that were homozygous
1097 YJM789/YJM789 (blue) or S288c/S288c (red) are shown as double vertical lines above
1098 and below the chromosome line. Details of all selected and unselected tracts are also
1099 available in File S2 and Table S5. Plots were generated to scale in Python 2.7 using the
1100 matplotlib package and a custom script. For size reference, Chr4 is 1525 kb.
1101

1102 **Figure S5.** Maps of selected Chr13 LOH tracts spanning the *ADH6::CORE2* insertion
1103 locus.

1104 The horizontal line shown in **A** is the linear depiction of Chr13 in the S288c/YJM789
1105 hybrid strain background, with HetSNPs represented as red S288c alleles and blue
1106 YJM789 alleles. The circle indicates the position of the centromere and the arrow
1107 indicates the position of the *ADH6::CORE2* insertion. Each horizontal line in **B** and **C**
1108 below corresponds to the selected Chr13 LOH tract maps in each of the single and
1109 double selection clones, respectively. Markers that remained heterozygous were
1110 omitted to emphasize visualization of tracts. HetSNPs that were homozygous
1111 YJM789/YJM789 (blue) or S288c/S288c (red) are shown as double vertical lines above
1112 and below the chromosome line. Details of all selected and unselected tracts are also
1113 available in File S2 and Table S5. Plots were generated to scale in Python 2.7 using the
1114 matplotlib package and a custom script. For size reference, Chr4 is 1525 kb.
1115

1116 **Figure S6.** Maps of selected Chr5 LOH tracts spanning the CAN1 locus.

1117 The horizontal line shown in **A** is the linear depiction of Chr5 in the S288c/YJM789
1118 hybrid strain background, with HetSNPs represented as red S288c alleles and blue
1119 YJM789 alleles. The circle indicates the position of the centromere and the arrow
1120 indicates the position of the *CAN1* locus. Each horizontal line in **B** and **C** below
1121 corresponds to the selected Chr5 LOH tract maps in each of the single and double
1122 selection clones, respectively. Markers that remained heterozygous were omitted to
1123 emphasize visualization of tracts. HetSNPs that were homozygous YJM789/YJM789
1124 (blue) or S288c/S288c (red) are shown as double vertical lines above and below the
1125 chromosome line. Whole chromosome alterations are shown in solid colors as follows:
1126 Chromosome losses (monosomy) are shown in yellow and cases of copy neutral LOH
1127 spanning the Chr5 (uniparental disomy; UPD) are shown in orange. Details of all
1128 selected and unselected tracts are also available in File S2 and Table S5. Plots were
1129 generated to scale in Python 2.7 using the matplotlib package and a custom script. For
1130 size reference, Chr4 is 1525 kb.

Table S1. Yeast strains used in this study.

Strain	Relevant genotype ¹	Genetic background	Description	Source
Diploids:				
JAY270	<i>MATa/MATα, ACE2/ace2-A7</i>	JAY270	Representative single colony isolate from the PE-2 bioethanol production strain	Argueso <i>et al.</i> , 2009
JAY663	<i>MATa/MATα, ace2-A7/ace2-A7</i>	JAY270	Spontaneous rough colony isolate; range of 29-92 generations	Rodrigues-Prause <i>et al.</i> , 2018
JAY664	<i>MATa/MATα, ace2-A7/ace2-A7</i>	JAY270	Spontaneous rough colony isolate; range of 29-92 generations	Rodrigues-Prause <i>et al.</i> , 2018
JAY665	<i>MATa/MATα, ace2-A7/ace2-A7</i>	JAY270	Spontaneous rough colony isolate; range of 29-92 generations	Rodrigues-Prause <i>et al.</i> , 2018
JAY912	<i>MATa/MATα, ace2-A7/ace2-A7</i>	JAY270	Spontaneous rough colony isolate; range of 29-92 generations	Rodrigues-Prause <i>et al.</i> , 2018
JAY913	<i>MATa/MATα, ace2-A7/ace2-A7</i>	JAY270	Spontaneous rough colony isolate; range of 29-92 generations	Rodrigues-Prause <i>et al.</i> , 2018
JAY585	<i>MATa/MATα, ACE2/ace2-A7, ura3Δ0/ura3Δ0</i>	JAY270	Ura $^{-}$ derivative of JAY270, also known as FGY50	Our strain collection
JAY865, 866	<i>MATa/MATα, ACE2/ace2-A7, ura3Δ0/ura3Δ0, SSF2::CORE2/SSF2</i>	JAY270	Hemizygous CORE2 insertion at Chr4	This study
JAY868	<i>MATa/MATα, ACE2/ace2-A7, ura3Δ0/ura3Δ0, ADH6::CORE2/ADH6</i>	JAY270	Hemizygous CORE2 insertion at Chr13	This study
JAY859, 860	<i>MATa/MATα, ACE2/ACE2, ura3Δ0/ura3Δ0, ADH6::CORE2/ADH6</i>	CG379*	Hemizygous CORE2 insertion at Chr13	This study
JAY861, 862	<i>MATa/MATα, ACE2/ACE2, ura3Δ0/ura3Δ0, SSF2::CORE2/SSF2</i>	CG379*	Hemizygous CORE2 insertion at Chr4	This study
JAY1567, 1568	<i>MATa/MATα, SSF2/SSF2::CORE2, CAN1/can1Δ::Nat</i>	CG379*	Hemizygous CORE2 insertion at Chr4 and hemizygous CAN1 at Chr5	This study
JAY1569, 1570	<i>MATa/MATα, ADH6/ADH6::CORE2, CAN1/can1Δ::Nat</i>	CG379*	Hemizygous CORE2 insertion at Chr13 and hemizygous CAN1 at Chr5	This study
JAY1804, 1805	<i>MATa/MATα, SSF2/SSF2::CORE2, CAN1/can1Δ::Nat</i>	JAY270	Hemizygous CORE2 insertion at Chr4 and hemizygous CAN1 at Chr5 in FGY50 strain	This study
JAY1812	<i>MATa/MATα, ADH6/ADH6::CORE2, CAN1/can1Δ::Nat</i>	JAY270	Hemizygous CORE2 insertion at Chr13 and hemizygous CAN1 at Chr5 in FGY50 strain	This study
JAY1808	<i>MATa/matΔ, SSF2/SSF2::CORE2, CAN1/can1Δ::Nat</i>	CG379	JAY1567 with deletion of <i>MATα</i> allele.	This study
JAY1809	<i>MATa/matΔ, ADH6/ADH6::CORE2, CAN1/can1Δ::Nat</i>	CG379	JAY1569 with deletion of <i>MATα</i> allele.	This study
JAY1122	<i>MATa/MATα, ace2-A7/ace2-A7</i>	JAY270	Spontaneous rough colony isolate from JAY270; 29 generations	This study
JAY1123	<i>MATa/MATα, ace2-A7/ace2-A7</i>	JAY270	Spontaneous rough colony isolate from JAY270; 43 generations	This study
JAY1124	<i>MATa/MATα, ace2-A7/ace2-A7</i>	JAY270	Spontaneous rough colony isolate from JAY270; 43 generations	This study
JAY1125	<i>MATa/MATα, ace2-A7/ace2-A7</i>	JAY270	Spontaneous rough colony isolate from JAY270; 57 generations	This study
JAY1126	<i>MATa/MATα, ace2-A7/ace2-A7</i>	JAY270	Spontaneous rough colony isolate from JAY270; range of 29-92 generations	This study
JAY1127	<i>MATa/MATα, ace2-A7/ace2-A7</i>	JAY270	Spontaneous rough colony isolate from JAY270; 85 generations	This study
JAY1128	<i>MATa/MATα, ace2-A7/ace2-A7</i>	JAY270	Spontaneous rough colony isolate from JAY270; 36 generations	This study

Table S1 (continued). Yeast strains used in this study.

Table S1 (continued). Yeast strains used in this study.

Strain	Relevant genotype ¹	Genetic background	Description	Source
JAY2357	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Hemizygous CORE2 insertion at Chr4 and hemizygous <i>CAN1</i> at Chr5	This study
JAY2358	<i>MAT_a/MAT_a ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Hemizygous CORE2 insertion at Chr13 and hemizygous <i>CAN1</i> at Chr5	This study
NS1	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 1	This study
NS2	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 2	This study
NS3	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 3	This study
NS4	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 4	This study
NS5	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 5	This study
NS6	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 6	This study
NS7	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 7	This study
NS8	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 8	This study
NS9	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 9	This study
NS10	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 10	This study
NS11	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 11	This study
NS12	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 12	This study
NS13	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 13	This study
NS14	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 15	This study
NS15	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 17	This study
NS16	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 1	This study
NS17	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 2	This study
NS18	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 3	This study
NS19	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 4	This study
NS20	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 5	This study
NS21	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 6	This study
NS22	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 7	This study
NS23	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 8	This study
NS24	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 9	This study
NS25	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 10	This study
NS26	<i>MAT_a/MAT_a SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 11	This study

Table S1 (continued). Yeast strains used in this study.

Strain	Relevant genotype ¹	Genetic background	Description	Source
NS27	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 12	This study
NS28	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 13	This study
NS29	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 15	This study
NS30	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 17	This study
NS31	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 1	This study
NS32	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 2	This study
NS33	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 3	This study
NS34	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 4	This study
NS35	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 5	This study
NS36	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 6	This study
NS37	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 7	This study
NS38	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 8	This study
NS39	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 9	This study
NS40	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 10	This study
NS41	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 11	This study
NS42	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 12	This study
NS43	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 13	This study
NS44	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 15	This study
NS45	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 17	This study
NS46	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 1	This study
NS47	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 2	This study
NS48	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 3	This study
NS49	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 4	This study
NS50	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 5	This study
NS51	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 6	This study
NS52	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 7	This study
NS53	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 8	This study
NS54	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 9	This study
NS55	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 10	This study

Table S1 (continued). Yeast strains used in this study.

Strain	Relevant genotype ¹	Genetic background	Description	Source
NS56	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 11	This study
NS57	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 12	This study
NS58	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 13	This study
NS59	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 15	This study
NS60	<i>MATα/MATα SSF2/SSF2::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 17	This study
NS61	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 4	This study
NS62	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 5	This study
NS63	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 6	This study
NS64	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 7	This study
NS65	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 8	This study
NS66	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 9	This study
NS67	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 10	This study
NS68	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 11	This study
NS69	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 12	This study
NS70	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 13	This study
NS71	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 16	This study
NS72	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 17	This study
NS73	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 18	This study
NS74	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 19	This study
NS75	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from control YPD plates in LOH assay. Culture 21	This study
NS76	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 4	This study
NS77	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 5	This study
NS78	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 6	This study
NS79	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 7	This study
NS80	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 8	This study
NS81	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 9	This study
NS82	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 10	This study
NS83	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 11	This study

Table S1 (continued). Yeast strains used in this study.

Strain	Relevant genotype ¹	Genetic background	Description	Source
NS84	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 12	This study
NS85	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 13	This study
NS86	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 16	This study
NS87	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 17	This study
NS88	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 18	This study
NS89	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 19	This study
NS90	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA plates in LOH assay. Culture 21	This study
NS91	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 4	This study
NS92	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 5	This study
NS93	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 6	This study
NS94	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 7	This study
NS95	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 8	This study
NS96	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 9	This study
NS97	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 10	This study
NS98	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 11	This study
NS99	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 12	This study
NS100	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 13	This study
NS101	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 16	This study
NS102	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 17	This study
NS103	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 18	This study
NS104	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 19	This study
NS105	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from canavanine plates in LOH assay. Culture 21	This study
NS106	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 4	This study
NS107	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 5	This study
NS108	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 6	This study
NS109	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 7	This study
NS110	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 8	This study
NS111	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 9	This study
NS112	<i>MATα/MATα ADH6/ADH6:Core3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 10	This study

Table S1 (continued). Yeast strains used in this study.

Strain	Relevant genotype ¹	Genetic background	Description	Source
NS113	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 11	This study
NS114	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 12	This study
NS115	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 13	This study
NS116	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 16	This study
NS117	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 17	This study
NS118	Chr13 ADH6/ADH6::CORE3 Chr5 CAN1/can1	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 18	This study
NS119	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 19	This study
NS120	<i>MATα/MATα ADH6/ADH6::CORE3 CAN1/can1</i>	S288c x YJM789	Clone isolated from 5-FOA + canavanine plates in LOH assay. Culture 21	This study
JAY308	<i>MATα, ho::hisG, ura3, gal2</i>	YJM789	YJM799 derivative from YJM789	John McCusker
JAY297	<i>MATα, ura3-52, leu2Δ1, trp1Δ63</i>	S288c	S288c isogenic haploid (FY strain series)	Winston <i>et al.</i> 1995
JAY2355	<i>MATα, ura3-52, leu2Δ1, trp1Δ63, SSF2::CORE3, can1Δ::NatMX4</i>	S288c	S288c isogenic haploid with <i>can1Δ</i> and CORE cassette (<i>KIURA3-ScURA3-KanMX4</i>) insertion downstream of SSF2 on Chr4	This study
JAY2356	<i>MATα, ura3-52, leu2Δ1, trp1Δ63, ADH6::CORE3, can1Δ::NatMX4</i>	S288c	S288c isogenic haploid with <i>can1Δ</i> and CORE cassette (<i>KIURA3-ScURA3-KanMX4</i>) insertion downstream of ADH6 on Chr13	This study

1. CG379 strains are homozygous for: *ade5-1, his7-2, leu2-3, 112, Leu+, trp1-289, cup1 Δ , RSC30, sfa1 Δ ::hisG, ura3 Δ 0*.

Table S2. Oligonucleotides used in this study.

Name	5'-3' sequence ¹	Description
JAO14	AGGAGGGTATTCTGGGCCTCCATG	Inside Mx4 region Fwd
JAO15	ATGCGAAGTTAAGTGCAGAGAAAG	Inside Mx4 region Rev
JAO1073	GGGCAATGTACCTAAAGGTTGTG	Proximal of ACE2::CORE2 insertion Fwd
JAO957	AGCGTACCAAAAGAGAAAT	Inside KIURA3 Fwd
JAO1076	GATCAACAAGAACTTACATCTCCC	Distal of ACE2::CORE2 insertion Rev
JAO501	GTCCGATACCCATGAACGTG	Proximal of ADH6::CORE2 insertion Fwd
JAO502	TTGTTAGTGTATTGATATGTGTTCTTTCACCTTAAAGGTGCTTAGCAAGGAG <i>CCTTACCATTAAGTTGATC</i>	Insertion of CORE2 proximal of Chr13 ADH6 Fwd
JAO503	TTTTTATGATTAAAGGTACTATTTAAATATTACAACTCGTACAGTTCTC <i>GAGCTCGTTTCGACACTGG</i>	Insertion of CORE2 proximal of Chr13 ADH6 Rev
JAO504	GGTCTGTATAGGAGTGCTG	Distal of ADH6::CORE2 insertion Rev
JAO505	GTGACTTATTCACTGAAGTAG	Proximal of SSF2::CORE2 insertion Fwd
JAO506	CCTCCGTACCTAACATCACTATCCATATAGTAGCCATGACTCCGATGGAC <i>CCTTACCATTAAGTTGATC</i>	Insertion of CORE2 distal of Chr4 SSF2 Fwd
JAO507	TTGAGGTGTTCCCTCACCTATGAATAAACAGACACTTCCCTGGTTTTAA <i>GAGCTCGTTTCGACACTGG</i>	Insertion of CORE2 distal of Chr4 SSF2 Rev
JAO508	TTTGCCTTCCATGATGCCG	Distal of SSF2::CORE2 insertion Rev
JAO611	AGGAGGCAAGATATTATGTC	Proximal of MAL13::CORE2 insertion Fwd
JAO612	AGTTACTAGATACGGACATATCTAGGAACATGAAGGCTG <i>GAGCTCGTTTCGACACT</i>	Insertion of CORE2 distal of Chr7 MAL13 Fwd
JAO613	TTAGGAAGGAAATGAATTAAAGCTACGCAGAAAGGACATCTCTT <i>CCTTACCATTAAGTTGA</i>	Insertion of CORE2 distal of Chr7 MAL13 Rev
JAO614	CCTGCCAAGGCAGGGTGCAG	Distal of MAL13::CORE2 insertion Rev
JAO271	GCGAAATGGCGTGGAAATGTGATCAAAGGTATAAAACGTCATAT <i>AATTAAGGCGCCAGATCTG</i>	To replace CAN1 with NAT Fwd
JAO272	ATCGAAAGTTATTTCAGAGTTTCAGACTCTTAACTCCTGTA <i>GCATAGGCCACTAGTGGAT</i>	To replace CAN1 with NAT Rev
JAO1438	GATTATAGTAAGCTATTGATCC	Upstream to CAN1 Fwd
JAO1439	GAACAGAGTAAACCGAATCAGG	Downstream to CAN1 Rev
JAO1440	GCGAGATAAACTGGTATTCTCATTAGATTCTAGGCCCTGGTATCTAGATATGGGTT <i>TTCGTACGCTGCAGGTCGAC</i>	To replace MAT α allele with Hyg Fwd
JAO1441	TCCCATATTCCGTGCTGCATTGGTCCGCGGCCATTCTCAGCGAGCAGAGAACAAAG <i>CGAGTCAGTGAGCGAGGAAG</i>	To replace MAT α allele with Hyg Rev
JAO1442	AAGAGGTCCGCTAATTCTGGAG	MAT locus Fwd
JAO1371	AGAACAAAGAAGGATGCTAAG	MAT locus Rev

1. In the case of long oligonucleotides used for PCR-based integrations, the nucleotides in the 5' end (**bold**) are targeting tails with homology to the respective chromosomal insertion sites; the 3' end nucleotides (*italicized*) correspond to primer sequences used to amplify the selectable marker sequence from the specific template plasmids.

Table S3. Summary of WGS analysis of smooth and rough colony isolates.

Rough clone ID	Colony phenotype	Generations at isolation	LOH / CNA Tracts					
			Selection category and Chromosome	LOH or CNA?	Size (Kb)	Terminal or Interstitial?	Continuous or Interrupted?	Unidirectional or Bidirectional?
JAY2057	Smooth	57	Unselected: Chr05	LOH	335290.5	T	C	U
JAY2058	Smooth	57	Unselected: Chr13	LOH	2923	I	C	U
JAY2062	Smooth	57	Unselected: Chr10	LOH	5360.5	I	C	U
			Unselected: Chr15	LOH	744706	T	C	U
JAY2066	Smooth	57	Unselected: Chr7	LOH	173336.5	T	I	B
			Unselected: Chr3	LOH	1242	I	C	U
JAY2068	Smooth	57	Unselected: Chr7	LOH	5975.5	I	C	U
			Unselected: Chr8	LOH	361045	T	C	U
JAY2070	Smooth	57	Unselected: Chr05	LOH	107572	T	C	U
JAY2075	Smooth	57	Unselected: Chr13	LOH	3168	I	C	U
JAY2079	Smooth	57	Unselected: Chr15	LOH	13153	I	C	U
JAY2081	Smooth	57	Unselected: Chr7	LOH	90769	T	C	U
			Selected: Chr12	LOH	4.4	I	C	U
JAY663	Rough	29 to 92	Unselected: Chr04	LOH	1063.9	T	I	B
			Unselected: Chr13	LOH	272.7	T	I	B
			Selected: Chr12	LOH	859.9 + rDNA	T	C	U
			Unselected: Chr02	LOH	20.0	I	C	U
JAY664	Rough	29 to 92	Unselected: Chr06	CNA	78.5	T	-	-
			Unselected: Chr07	LOH	310.1	T	C	U
			Unselected: Chr11	LOH	85.1	T	C	U
			Unselected: Chr12	LOH	21.8	T	I	B
			Unselected: Chr14	LOH	4.6	I	C	U
			Unselected: Chr15	LOH	5.8	I	C	U
			Selected: Chr12	LOH	845.6 + rDNA	T	I	B
JAY665	Rough	29 to 92	Unselected: Chr03	LOH	20.8	I	C	U
			Unselected: Chr06	CNA	60.6	T	-	-
JAY912	Rough	29 to 92	Selected: Chr12	LOH	818.9 + rDNA	T	C	U
JAY913	Rough	29 to 92	Selected: Chr12	LOH	706.6 + rDNA	T	C	U
JAY1122	Rough	29	Selected: Chr12	LOH	777.7 + rDNA	T	C	U
			Unselected: Chr15	LOH	5.8	I	C	U
JAY1123	Rough	43	Selected: Chr12	LOH	912.3 + rDNA	T	C	U
JAY1124	Rough	43	Selected: Chr12	LOH	706.6 + rDNA	T	C	U
JAY1125	Rough	57	Selected: Chr12	LOH	814.0 + rDNA	T	C	U
			Unselected: Chr15	LOH	0.5	I	C	U
JAY1126	Rough	29 to 92	Selected: Chr12	LOH	920.8 + rDNA	T	I	B
JAY1127	Rough	85	Selected: Chr12	LOH	873.4 + rDNA	T	I	U
			Unselected: Chr13	LOH	3.4	I	C	U

Table S3 (continued). Summary of WGS analysis of smooth and rough colony isolates.

Rough clone ID	Colony phenotype	Generations at isolation	LOH / CNA Tracts				
			Selection category and Chromosome	LOH or CNA?	Size (Kb)	Terminal or Interstitial?	Continuous or Interrupted?
JAY1128	Rough	36	Selected: Chr12	LOH	681.2 + rDNA	T	C
JAY1129	Rough	29 to 92	Selected: Chr12	LOH	843.4 + rDNA	T	C
JAY1130	Rough	50	Selected: Chr12	LOH	900.0 + rDNA	T	C
			Unselected: Chr04	LOH	12.1	I	I
			Unselected: Chr10	LOH	373.5	T	C
JAY1131	Rough	50	Selected: Chr12	LOH	814.0 + rDNA	T	C
JAY1132	Rough	50	Selected: Chr12	LOH	777.7 + rDNA	T	C
JAY1133	Rough	29 to 92	Selected: Chr12	LOH	766.6 + rDNA	T	C
JAY1135	Rough	50	Selected: Chr12	LOH	873.4 + rDNA	T	C
JAY1136	Rough	57	Selected: Chr12	LOH	912.3 + rDNA	T	C
JAY1137	Rough	57	Selected: Chr12	LOH	838.8 + rDNA	T	C
JAY1138	Rough	43	Selected: Chr12	LOH	818.9 + rDNA	T	C
JAY1139	Rough	43	Selected: Chr12	LOH	747.2 + rDNA	T	C
JAY1140	Rough	43	Selected: Chr12	LOH	777.7 + rDNA	T	C
			Unselected: Chr16	LOH	10.4	I	C
JAY1141	Rough	43	Selected: Chr12	LOH	717.2 + rDNA	T	C
			Unselected: Chr04	LOH	6.1	I	C
			Unselected: Chr06	LOH	5.0	I	C
			Unselected: Chr10	LOH	209.6	T	C
JAY1142	Rough	50	Selected: Chr12	LOH	870.9 + rDNA	T	C
			Unselected: Chr15	LOH	26.7	T	C
JAY1143	Rough	29	Selected: Chr12	LOH	11.1	I	C
			Unselected: Chr04	LOH	0.9	I	C
			Unselected: Chr04	LOH	4.1	I	C
			Unselected: Chr14	LOH	1.6	I	C
JAY1144	Rough	36	Selected: Chr12	LOH	912.3 + rDNA	T	C
JAY1145	Rough	36	Selected: Chr12	LOH	908.4 + rDNA	T	I
			Unselected: Chr04	LOH	3.9	I	C
			Unselected: Chr15	LOH	254.7	T	C

None of the LOH tracts above crosses the centromere of the respective chromosomes.

The sizes of Chr12 Selected terminal tracts were calculated assuming continuous LOH from the breakpoint and *TEL12R*, plus the rDNA cluster (~1.5 Mb).

ID of smooth clones without any detected unselected LOH or CNA events: JAY2055, JAY2056, JAY2059, JAY2060, JAY2061, JAY2063, JAY2064, JAY2065, JAY2067, JAY2069, JAY2071, JAY2072, JAY2073, JAY2074, JAY2077, JAY2078, JAY2080, JAY2082, JAY2083.

Table S4. Summary of LOH rate analyses.

Chromosome ^a	Observed or Expected ^b	Cultures ^c (Volume)	Mutation Rate	Lower 95% C.I.	Upper 95% C.I.	Obs/Exp ratio
Figure 3A: JAY270 strain background, <i>MATα/MATα</i> ; L&C method of the median						
Chr4	Obs	20 (5 ml)	3.47E-05	1.73E-05	5.65E-05	-
Chr13	Obs	20 (5 ml)	4.02E-05	2.61E-05	5.84E-05	-
Chr5	Obs	63 (5 ml)	1.06E-04	9.33E-05	1.15E-04	-
Chr4 + Chr5	Exp	-	3.67E-09	1.62E-09	6.48E-09	27
Chr4 + Chr5	Obs	21 (5 ml)	9.76E-08	3.52E-08	1.32E-07	
Chr13 + Chr5	Exp	-	4.24E-09	2.44E-09	6.70E-09	14
Chr13 + Chr5	Obs	21 (5 ml)	6.14E-08	-	1.23E-07	
Figure 3B: CG379 strain background, <i>MATα/MATα</i> ; L&C method of the median						
Chr4	Obs	23 (5 ml)	1.26E-04	8.56E-05	1.75E-04	-
Chr13	Obs	25 (5 ml)	7.30E-05	4.71E-05	1.16E-04	-
Chr5	Obs	41 (5 ml)	7.10E-05	6.62E-05	8.02E-05	-
Chr4 + Chr5	Exp	-	8.96E-09	5.67E-09	1.40E-08	30
Chr4 + Chr5	Obs	22 (5 ml)	2.65E-07	2.29E-07	5.18E-07	
Chr13 + Chr5	Exp	-	5.19E-09	3.12E-09	9.31E-09	55
Chr13 + Chr5	Obs	21 (5 ml)	2.86E-07	2.00E-07	5.19E-07	
Figure 3B: CG379 strain background, <i>MATα/matΔ</i> ; L&C method of the median						
Chr4	Obs	20 (5 ml)	4.90E-05	4.50E-05	6.90E-05	-
Chr13	Obs	21 (5 ml)	3.55E-05	2.99E-05	4.30E-05	-
Chr5	Obs	21 (5 ml)	5.65E-05	4.21E-05	7.32E-05	-
Chr4 + Chr5	Exp	-	2.77E-09	1.89E-09	5.05E-09	50
Chr4 + Chr5	Obs	21 (5 ml)	1.39E-07	7.45E-08	2.28E-07	
Chr13 + Chr5	Exp	-	2.00E-09	1.26E-09	3.15E-09	51
Chr13 + Chr5	Obs	20 (5 ml)	1.03E-07	7.26E-08	1.55E-07	
Figure 3C: S288c x YJM789 strain background, <i>MATα/MATα</i> ; L&C method of the median						
Chr4	Obs	21 (5 ml)	1.65E-05	1.38E-05	2.09E-05	-
Chr13	Obs	21 (5 ml)	1.86E-05	1.33E-05	2.12E-05	-
Chr5	Obs	41 (5 ml)	4.00E-05	3.47E-05	4.59E-05	-
Chr4-Chr5	Exp	-	6.58E-10	4.77E-10	9.61E-10	66 and 70
Chr4 + Chr5	Exp matched	20 x 20 (5 ml)	6.21E-10	5.03E-10	7.56E-10	
Chr4 + Chr5	Obs	21 (5 ml)	4.32E-08	2.40E-08	5.53E-08	28 and 27
Chr13 + Chr5	Exp	-	7.45E-10	4.62E-10	9.73E-10	
Chr13 + Chr5	Exp matched	21 x 21 (5 ml)	7.58E-10	5.33E-10	1.05E-09	28 and 27
Chr13 + Chr5	Obs	21 (5 ml)	2.06E-08	1.43E-08	3.15E-08	

Table S4 (continued). Summary of LOH rate analyses.

Chromosome ^a	Observed or Expected ^b	Cultures ^c (Volume)	Mutation Rate	Lower 95% C.I.	Upper 95% C.I.	Obs/Exp ratio
Figure S7A: S288c x YJM789 strain background, <i>MATα/MATα</i> ; L&C method of the median						
Chr4	Obs	15 (20 μ l)	2.01E-05	1.27E-05	2.99E-05	-
Chr13	Obs	15 (20 μ l)	3.64E-05	9.00E-06	5.04E-05	-
Chr5	Obs	30 (20 μ l)	3.57E-05	2.71E-05	4.50E-05	-
Chr4 + Chr5	Exp	-	7.18E-10	3.43E-10	1.35E-09	60
Chr4 + Chr5	Obs	21 (5 ml)	4.32E-08	2.40E-08	5.53E-08	
Chr13 + Chr5	Exp	-	1.30E-09	2.44E-10	2.27E-09	16
Chr13 + Chr5	Obs	21 (5 ml)	2.06E-08	1.43E-08	3.15E-08	
Figure S7B: S288c x YJM789 strain background, <i>MATα/MATα</i> ; MSS – Maximum Likelihood Estimate						
Chr4	Obs	21 (5 ml)	5.93E-06	4.63E-06	7.36E-06	-
Chr13	Obs	21 (5 ml)	6.24E-06	4.86E-06	7.74E-06	-
Chr5	Obs	41 (5 ml)	1.32E-05	1.15E-05	1.49E-05	-
Chr4 + Chr5	Exp	-	7.82E-11	5.33E-11	1.10E-10	150
Chr4 + Chr5	Obs	21 (5 ml)	1.17E-08	6.90E-09	1.74E-08	
Chr13 + Chr5	Exp	-	8.22E-11	5.59E-11	1.15E-10	129
Chr13 + Chr5	Obs	21 (5 ml)	1.06E-08	6.08E-09	1.61E-08	
Figure S7C: S288c x YJM789 strain background, <i>MATα/MATα</i> ; MSS – Maximum Likelihood Estimate						
Chr4	Obs	15 (20 μ l)	1.51E-05	1.13E-05	1.92E-05	-
Chr13	Obs	15 (20 μ l)	1.07E-05	7.66E-06	1.41E-05	-
Chr5	Obs	30 (20 μ l)	3.26E-05	2.75E-05	3.81E-05	-
Chr4 + Chr5	Exp	-	4.92E-10	3.11E-10	7.33E-10	24
Chr4 + Chr5	Obs	21 (5 ml)	1.17E-08	6.90E-09	1.74E-08	
Chr13 + Chr5	Exp	-	3.50E-10	2.11E-10	5.38E-10	30
Chr13 + Chr5	Obs	21 (5 ml)	1.06E-08	6.08E-09	1.61E-08	

The table above contains the numerical representation of same data used to generate the plots in Fig. 3 and Fig. S7. The corresponding figure panel, strain background, and method used to calculate the LOH rates are indicated for each table sector sub-header.

a. Indicates the genomic region of selection of either single or double LOH events.

b. Indicates whether the LOH rate displayed in each row is derived either from observed experimental data (Obs), or expected double LOH (Exp) based on independence calculated by multiplication of the two respective observed single LOH rates. Exp matched indicates expected double LOH rates calculated by multiplying the two individual observed single LOH rates within each specific matched culture.

c. Indicates the number of replicate cell cultures used in each rate measurement and the volume of liquid YPD they were grown in.

d. Mutation rates and 95% confidence intervals (C.I.) are given in LOH events per cell per division.

Table S5. Summary of WGS analysis of S288c x YJM789 hybrid isolates.

Culture	Clone ID	Selection	Selection category and Chromosome	Tract size (kb)	Terminal or Interstitial?	Continuous or interrupted?	Unidirectional or Bidirectional?
1	NS16	5-FOA	Selected: Chr04	807476	T	C	U
	NS31	Canavanine	Selected: Chr05	58019	T	C	U
	NS46	Double selection	Selected: Chr04	883461.5	T	C	U
			Selected: Chr05	57652	T	I	B
2	NS17	5-FOA	Selected: Chr04	1005628	T	I	B
	NS32	Canavanine	Selected: Chr05	85318.5	T	C	U
	NS47	Double selection	Selected: Chr04	509366.5	T	C	U
			Selected: Chr05	Monosomy	-	-	-
3	NS18	5-FOA	Selected: Chr04	857123	T	I	U
	NS33	Canavanine	Selected: Chr05	41488.5	T	C	U
	NS48	Double selection	Selected: Chr04	657238	T	C	U
			Selected: Chr05	45474.5	T	C	U
4	NS4	YPD	Pre-existing: Chr11	957	I	C	
	NS19	5-FOA	Selected: Chr04	516181	T	I	B
			Pre-existing: Chr11	957	I	C	U
	NS34	Canavanine	Selected: Chr05	Monosomy	-	-	-
			Pre-existing: Chr11	957	I	C	U
	NS49	Double selection	Selected: Chr04	429081.5	T	I	B
			Selected: Chr05	139978.5	T	C	U
			Pre-existing: Chr11	957	I	C	U
5	NS20	5-FOA	Selected: Chr04	1050238	T	C	U
	NS35	Single Chr5	Selected: Chr05	35874	T	C	U
	NS50	Double selection	Unselected: Chr01	46040.5	T	I	U
			Selected: Chr04	1050238	T	I	B
			Selected: Chr05	UPD	-	-	-
6	NS21	5-FOA	Selected: Chr04	807476	T	C	U
	NS36	Single Chr5	Selected: Chr05	42724.5	T	C	U
	NS51	Double selection	Selected: Chr04	443728.5	T	C	U
			Selected: Chr05	141983.5	T	C	U
			Unselected: Chr05	9498.5	I	I	U
			Unselected: Chr10	427034.5	T	I	U
			Unselected: Chr13	89161	T	C	U

Table S5 (continued). Summary of WGS analysis of S288c x YJM789 hybrid isolates.

Culture	Clone ID	Selection	Selection category and Chromosome	Tract size (kb)	Terminal or Interstitial?	Continuous or interrupted?	Unidirectional or Bidirectional?
7	NS7	YPD	Pre-existing: Chr14	184755.5	T	C	U
	NS22	5-FOA	Selected: Chr04	949330.5	T	C	U
			Pre-existing: Chr14	184755.5	T	C	U
	NS37	Canavanine	Selected: Chr05	39979	T	I	U
			Pre-existing: Chr14	184755.5	T	C	U
	NS52	Double selection	Selected: Chr04	482949	T	C	U
			Selected: Chr05	UPD	-	-	-
			Pre-existing: Chr14	184755.5	T	C	U
8	NS23	5-FOA	Selected: Chr4	494863.5	T	C	U
	NS38	Canavanine	Selected: Chr05	108155	T	I	B
			Selected: Chr4	1040900.5	T	C	U
	NS53	Double selection	Selected: Chr05	Monosomy	-	-	-
9	NS24	5-FOA	Selected: Chr4	991945	T	C	U
	NS39	Single Chr4	Selected: Chr05	67534.5	T	I	B
			Selected: Chr4	559780.5	T	C	U
	NS54	Double selection	Selected: Chr05	134692	T	C	U
10	NS10	YPD	Pre-existing: Chr14	29770.5	T	C	U
	NS25	5-FOA	Selected: Chr4	459892.5	T	I	U
			Pre-existing: Chr14	29770.5	T	C	U
			Unselected: Chr16	4983	I	single marker	U
			Unselected: Chr11	Trisomy	-	-	-
	NS40	Canavanine	Selected: Chr05	148078.5	T	C	U
			Pre-existing: Chr14	29770.5	T	C	U
	NS55	Double selection	Selected: Chr4	935291.5	T	I	U
			Selected: Chr05	Monosomy	-	-	-
			Unselected: Chr10	14599	T	C	U
			Unselected: Chr14	9992	I	C	U
			Pre-existing: Chr14	29770.5	T	C	U
			Unselected: Chr15	16947.5	I	C	U
11	NS26	5-FOA	Selected: Chr4	629334.5	T	C	U
	NS41	Canavanine	Selected: Chr05	59374.5	T	I	U
			Selected: Chr4	1026480.5	T	C	U
	NS56	Double selection	Selected: Chr05	Monosomy	-	-	-
12	NS27	5-FOA	Selected: Chr4	625360	T	I	B
	NS42	Canavanine	Selected: Chr05	9692.5	I	I	U
			Selected: Chr4	920705	T	C	U
	NS57	Double selection	Selected: Chr05	Monosomy	-	-	-

Table S5 (continued). Summary of WGS analysis of S288c x YJM789 hybrid isolates.

Culture	Clone ID	Selection	Selection category and Chromosome	Tract size (kb)	Terminal or Interstitial?	Continuous or interrupted?	Unidirectional or Bidirectional?
13	NS28	5-FOA	Selected: Chr4	552091	T	C	U
	NS43	Canavanine	Selected: Chr05	108565.5	T	C	U
	NS58	Double selection	Selected: Chr4	901581.5	T	C	U
			Selected: Chr05	136464.5	T	I	U
			Unselected: Chr16	79038.5	T	I	B
14	NS29	5-FOA	Selected: Chr4	538514.5	T	C	U
	NS44	Canavanine	Selected: Chr05	94881	T	C	U
	NS59	Double selection	Unselected: Chr01	10257	I	C	U
			Selected: Chr4	625360	T	I	U
			Selected: Chr05	115932	T	I	B
			Unselected: Chr13	623330.5	T	I	B
15	NS30	5-FOA	Selected: Chr4	832505.5	T	C	U
	NS45	Canavanine	Selected: Chr05	35888.5	I	C	U
			Unselected: Chr16	1917	I	C	U
	NS60	Double selection	Selected: Chr4	832505.5	T	C	U
			Selected: Chr05	Monosomy	-	-	-
16	NS76	5-FOA	Selected: Chr13	654342	T	C	U
	NS91	Canavanine	Selected: Chr05	75893	T	C	U
	NS106	Double selection	Selected: Chr05	Monosomy	-	-	-
			Selected: Chr13	19511	T	C	U
17	NS77	5-FOA	Unselected: Chr04	2048	I	C	U
			Selected: Chr13	33636.5	T	C	U
	NS92	Canavanine	Selected: Chr05	106463	T	I	B
	NS107	Double selection	Selected: Chr05	91361.5	T	I	B
			Selected: Chr13	595011.5	T	C	U
18	NS78	5-FOA	Selected: Chr13	471247.5	T	C	U
	NS93	Canavanine	Selected: Chr05	134692	T	C	U
	NS108	Double selection	Selected: Chr05	70108.5	I	I	B
			Selected: Chr13	340935.5	T	C	U
19	NS79	5-FOA	Selected: Chr13	40236	T	C	U
	NS94	Canavanine	Selected: Chr05	61137	T	C	U
	NS109	Double selection	Unselected: Chr04	Trisomy	-	-	-
			Selected: Chr05	UPD	-	-	-
			Selected: Chr13	439006	T	C	U

Table S5 (continued). Summary of WGS analysis of S288c x YJM789 hybrid isolates.

Culture	Clone ID	Selection	Selection category and Chromosome	Tract size (kb)	Terminal or Interstitial?	Continuous or interrupted?	Unidirectional or Bidirectional?
20	NS65	YPD	Pre-existing: Chr08	5395.5	I	C	U
	NS80	5-FOA	Pre-existing: Chr08	5395.5	I	C	U
			Selected: Chr13	357325	T	C	U
			Selected: Chr05	100983	T	I	B
	NS95	Canavanine	Pre-existing: Chr08	5395.5	I	C	U
			Selected: Chr05	UPD	-	-	-
			Pre-existing: Chr08	5395.5	I	C	U
			Unselected: Chr12	173	I	C	U
			Selected: Chr13	548085	T	C	U
21	NS81	5-FOA	Selected: Chr13	342567.5	T	C	B
	NS96	Canavanine	Selected: Chr05	10862.5	I	C	U
	NS111	Double selection	Selected: Chr05	Monosomy	-	-	-
			Selected: Chr13	28478	T	C	U
22	NS67	YPD	Pre-existing: Chr16	13422.5	I	C	U
	NS82	5-FOA	Selected: Chr13	18898	T	C	U
			Pre-existing: Chr16	10565	I	C	U
			Selected: Chr05	131047.5	T	C	U
	NS97	Canavanine	Pre-existing: Chr16	10565	I	C	U
			Selected: Chr05	Monosomy	-	-	-
			Selected: Chr13	647074	T	C	U
			Pre-existing: Chr16	10565	I	C	U
23	NS83	5-FOA	Selected: Chr13	5402	I	C	U
	NS98	Canavanine	Selected: Chr05	143882.5	T	C	U
	NS113	Double selection	Selected: Chr05	61587	T	I	U
			Selected: Chr13	528135.5	T	C	B
24	NS84	5-FOA	Selected: Chr13	553694	T	C	U
	NS99	Canavanine	Selected: Chr05	82130	T	C	U
	NS114	Double selection	Selected: Chr05	Monosomy	-	-	-
			Selected: Chr13	215880.5	T	C	U
25	NS70	YPD	Pre-existing: Chr14	113.5	I	single marker	U
	NS85	5-FOA	Selected: Chr13	18385.5	T	C	U
			Pre-existing: Chr14	113.5	I	single marker	U
			Selected: Chr05	39408.5	T	I	U
	NS100	Canavanine	Pre-existing: Chr14	113.5	I	single marker	U
			Selected: Chr05	Monosomy	-	-	-
			Selected: Chr13	73401	T	C	U
			Pre-existing: Chr14	113.5	I	single marker	U
			Unselected: Chr04	2398	I	C	U

Table S5 (continued). Summary of WGS analysis of S288c x YJM789 hybrid isolates.

Culture	Clone ID	Selection	Selection category and Chromosome	Tract size (kb)	Terminal or Interstitial?	Continuous or interrupted?	Unidirectional or Bidirectional?
26	NS86	5-FOA	Selected: Chr13	3773.5	I	C	U
	NS101	Canavanine	Selected: Chr05	UPD	-	-	-
			Unselected: Chr10	Trisomy	-	-	-
			Unselected: Chr16	Trisomy	-	-	-
	NS116	Double selection	Selected: Chr05	48119	T	C	U
			Selected: Chr13	161230	T	C	B
27	NS87	5-FOA	Selected: Chr13	125737	T	C	U
	NS102	Canavanine	Selected: Chr05	99816	T	C	U
			Unselected: Chr10	291211	T	C	U
			Selected: Chr05	Monosomy	-	-	-
	NS117	Double selection	Unselected: Chr10	Monosomy	-	-	-
			Selected: Chr13	125737	T	C	U
28	NS88	5-FOA	Selected: Chr13	270059.5	T	C	U
	NS103	Canavanine	Selected: Chr05	138964	T	C	U
	NS118	Double selection	Selected: Chr05	Monosomy	-	-	-
			Selected: Chr13	39625	T	C	U
29	NS89	5-FOA	Selected: Chr13	6548.5	I	C	U
	NS104	Canavanine	Selected: Chr05	152715	T	C	U
	NS119	Double selection	Selected: Chr05	Monosomy	-	-	-
			Selected: Chr13	54183	T	C	B
30	NS75	YPD	Pre-existing: Chr07	5810	I	C	U
	NS90	5-FOA	Pre-existing: Chr07	5810	I	C	U
			Selected: Chr13	170870.5	T	C	U
			Selected: Chr05	55985	T	C	U
	NS105	Canavanine	Pre-existing: Chr07	5810	I	C	U
			Selected: Chr05	48557.5	I	I	B
	NS120	Double selection	Pre-existing: Chr07	5810	I	C	U
			Selected: Chr13	330524	T	C	B