

1 **Title:** Discovery and characterization of a novel family of prokaryotic nanocompartments
2 involved in sulfur metabolism
3

4 **Authors:** Robert J. Nichols^{1,2}, Benjamin LaFrance^{1,2}, Naiya R. Phillips², Luke M. Oltrogge², Luis
5 E. Valentin-Alvarado⁴, Amanda J. Bischoff³, Eva Nogales^{2,5,6*}, and David F. Savage^{2,*}
6

7 ¹these authors contributed equally

8 ²Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA,
9 USA.

10 ³Department of Chemistry, University of California Berkeley, Berkeley, CA, USA.

11 ⁴Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.

12 ⁵Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.

13 ⁶Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National
14 Laboratory, Berkeley, CA, USA.

15 *email: enogales@lbl.gov and savage@berkeley.edu
16
17

18 **Abstract**

19 Prokaryotic nanocompartments, also known as encapsulins, are a recently discovered
20 proteinaceous organelle in prokaryotes that compartmentalize cargo enzymes. While initial
21 studies have begun to elucidate the structure and physiological roles of encapsulins, bioinformatic
22 evidence suggests that a great diversity of encapsulin nanocompartments remains unexplored.
23 Here, we describe a novel encapsulin in the freshwater cyanobacterium *Synechococcus*
24 *elongatus* PCC 7942. This nanocompartment is upregulated upon sulfate starvation and
25 encapsulates a cysteine desulfurase enzyme via an N-terminal targeting sequence. Using cryo-
26 electron microscopy, we have determined the structure of the nanocompartment complex to 2.2
27 Å resolution. Lastly, biochemical characterization of the complex demonstrated that the activity of
28 the cysteine desulfurase is enhanced upon encapsulation. Taken together, our discovery,
29 structural analysis, and enzymatic characterization of this prokaryotic nanocompartment provide
30 a foundation for future studies seeking to understand the physiological role of this encapsulin in
31 various bacteria.

32 **Introduction**

33 Subcellular compartmentalization is an essential strategy used by cells to facilitate metabolic
34 pathways that are incompatible with the rest of the cytosol. Contrary to common misconceptions
35 that organelles are exclusive to eukaryotes, even prokaryotes partition metabolic pathways into
36 unique chemical environments using subcellular compartments (Grant et al., 2018). For example,
37 studies of the bacterial microcompartments called carboxysomes have shown how the complex
38 sequesters the enzyme rubisco and facilitates substrate channeling by increasing the local
39 concentration of CO₂ (Oltrogge et al., 2020; Mangan et al., 2016; Kerfeld et al., 2018). In addition
40 to modulating cargo activity, compartmentalization can also provide a means of sequestering toxic
41 intermediates of metabolic pathways from the rest of the cell. For example, the propane-diol
42 utilization (PDU) microcompartment sequesters a cytotoxic aldehyde intermediate from the
43 cytoplasm and allows it to be subsequently converted by downstream, compartmentalized
44 enzymes to efficiently generate the end products of the pathway (Sampson and Bobik, 2008;
45 Crowley et al., 2010; Chowdhury et al., 2015; Kerfeld et al., 2018).

46

47 Recently, another class of protein-bounded compartments, known as prokaryotic
48 nanocompartments, has been discovered (Sutter, M., et al., 2008). These nanocompartments,
49 also called encapsulins, are smaller and less complex than microcompartments. They are
50 typically found as a two-gene system which encodes a shell protein that self-assembles into an
51 icosahedral capsid-like compartment, and a cargo protein that becomes encapsulated by the shell
52 through a targeting peptide sequence (Giessen, 2016; Nichols et al., 2017). Many functionally
53 diverse cargo proteins have been found to be associated with encapsulins, including ferritin-like
54 proteins (FLP), iron mineralizing encapsulin cargo from firmicutes (IMEF), DyP-type peroxidases,
55 and hydroxylamine oxidoreductase (HAO) (Sutter et al., 2008; Giessen et al., 2019; Giessen and
56 Silver, 2017; Xing et al., 2020). The precise physiological role of these compartments remains
57 elusive except for a few instances. Notably, the DyP-containing encapsulins from *Myxococcus*
58 *xanthus* have been implicated in nutrient starvation and oxidative stress responses (Kim et al.,
59 2009; Kim et al., 2019; McHugh et al., 2014). The FLP and IMEF containing encapsulins appear
60 to be involved in iron storage and mitigation of toxic reactive oxygen species products of the
61 Fenton reaction due to free iron during oxidative stress (Giessen et al., 2019; Giessen and Silver,
62 2017; He et al., 2016). Encapsulins are also thought to be integral to highly-specialized
63 metabolism, such as that found in anammox bacteria, in which the HAO cargo has been
64 hypothesized to reduce a cytotoxic hydroxylamine metabolic intermediate (Giessen and Silver,
65 2017; Kartal et al., 2013; Xing et al., 2020).

66

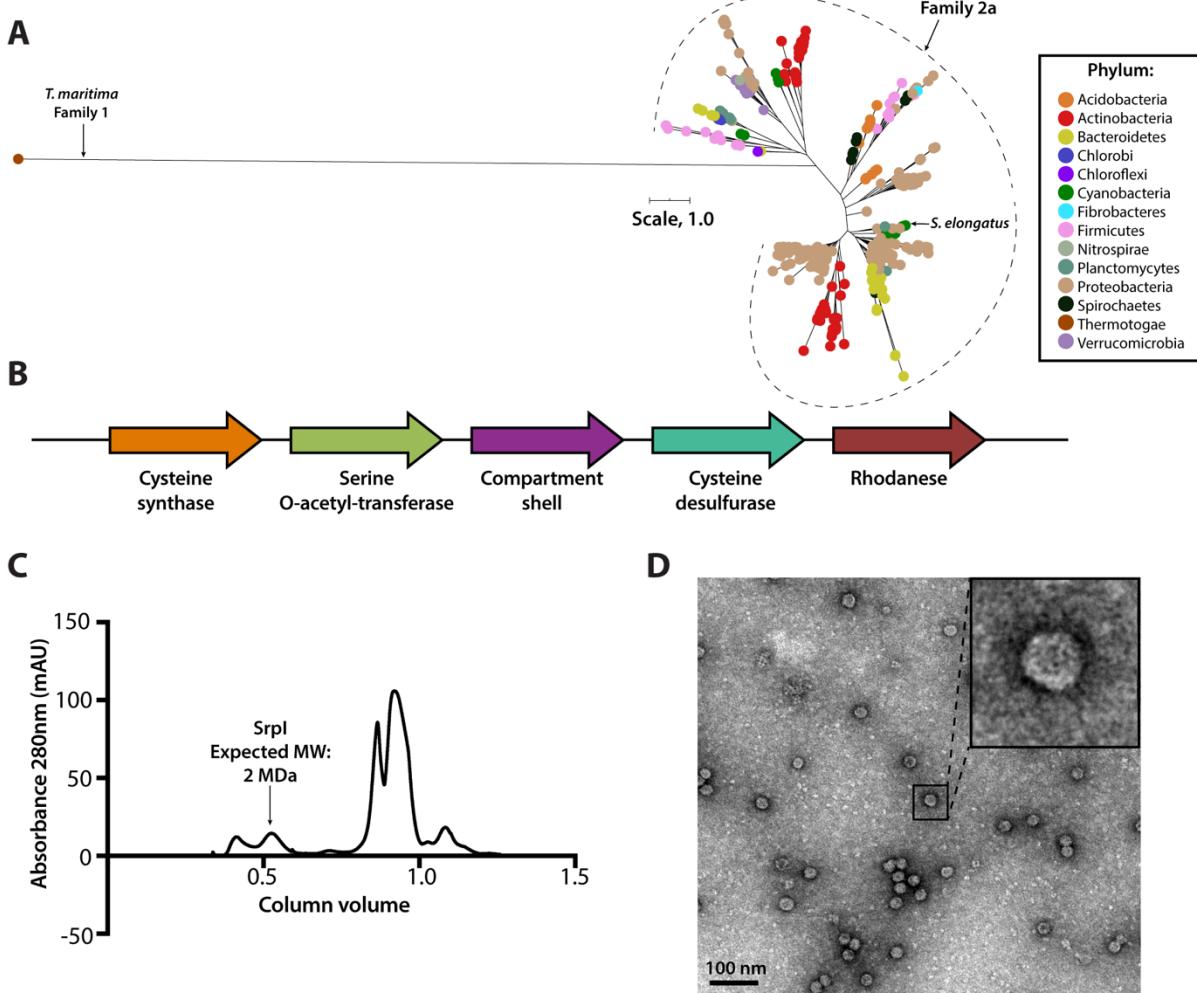
67 Based on the evidence accumulated thus far, it appears that encapsulins play diverse
68 physiological roles. Despite this diversity, encapsulation of redox reactions is a recurring theme
69 (Nichols et al., 2017). Thus far, study of this expansive repertoire of encapsulins has been limited
70 to the homologs of closely related compartment shell proteins. Here we describe a new family of
71 nanocompartment systems that are evolutionarily distinct from those previously reported.
72 Specifically, we implicated a role for this encapsulin family in the sulfur starvation response.
73 Further, we have identified a unique cysteine desulfurase cargo enzyme and elucidated an N-
74 terminal encapsulation targeting sequence that is necessary and sufficient for
75 compartmentalization. Finally, we report a high-resolution structure (2.2 Å) of the complex and

76 identify the cargo binding site within the compartment. This structure greatly informs our model
77 for the biochemical function of this novel organelle.

78 **Results**

79 **A novel family of predicted prokaryotic nanocompartments is widespread throughout**
80 **bacterial phyla**

81 A unifying feature of the encapsulin nanocompartments is the shared HK97 phage-like fold of the
82 shell protein (Giessen and Silver, 2017; Nichols et al., 2017). Bacteriophages belonging to the
83 order Caudovirales also possess a major capsid protein that is structurally homologous to the
84 HK97 fold. Given the shared homology of encapsulins and Caudovirales capsid proteins,
85 an evolutionary relationship between the two has been proposed (Koonin and Krupovic, 2018;
86 Krupovic et al., 2019; Krupovic and Koonin, 2017), and the existence of other bacteriophage-
87 related nanocompartments beyond the close relatives of known encapsulins has been postulated
88 (Radford, 2015; Giessen, 2016; Nichols et al., 2017). Recently, a bioinformatic study explored this
89 possibility by searching prokaryotic genomes for phage capsid genes that are unlikely to be
90 functional phages, but may actually be putative encapsulins (Radford, 2015). This search
91 suggested that previously published encapsulins, hereafter referred to as Family 1 encapsulins,
92 comprise a minor fraction of all encapsulin systems. Here we report the first characterization of a
93 novel encapsulin family, which we term Family 2. This novel family is even more prevalent than
94 Family 1 encapsulins (Supp. Table 1) and is present in many model organisms. Despite the
95 prevalence of Family 2 encapsulins, the experimental characterization of this family as a
96 prokaryotic nanocompartment has never been explored.

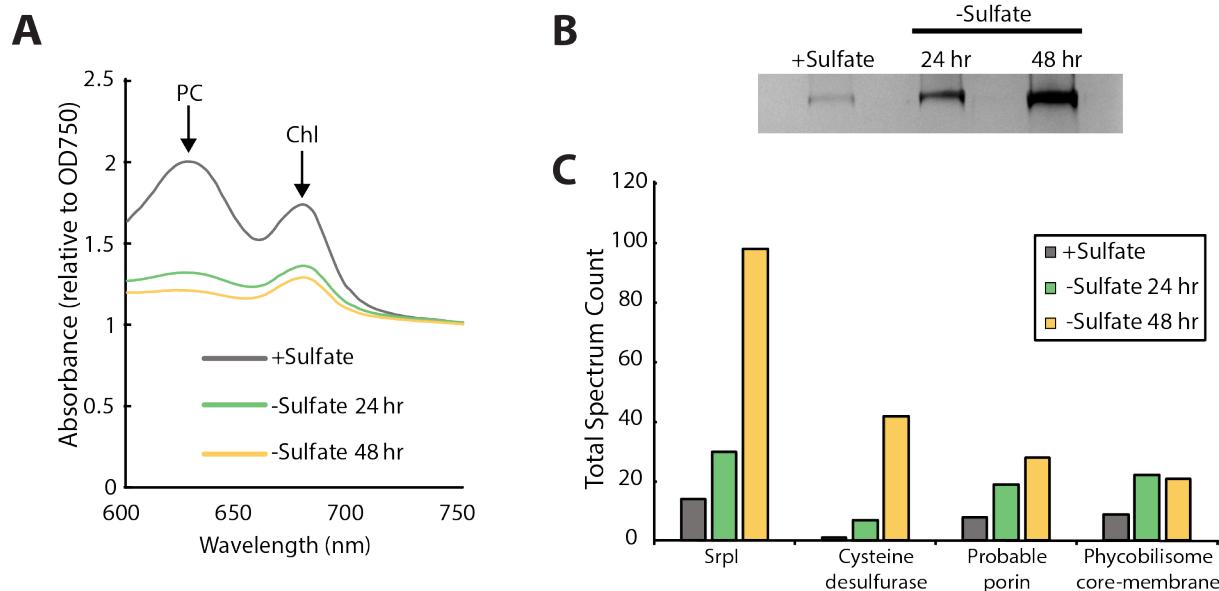

97

98 Phylogenetic analysis of the encapsulin shell proteins revealed that Family 2 encapsulins are
99 distinct from the previously published Family 1 systems (Figure 1A). Family 2 further divides into
100 what we propose as two distinct subfamilies, Family 2a and Family 2b. The subfamilies can be
101 distinguished from each other by their phylogenetic clustering (Supp. Figure 1-1). Notably, the
102 two subfamilies are found in distinct genomic contexts. Family 2a is found adjacent to sulfur
103 metabolism genes whereas Family 2b neighbors genes involved in terpenoid synthesis (Figure
104 1B; Supp. Figure 1-2). Most prevalent among the Family 2a subfamily was the co-occurrence of
105 a neighboring cysteine desulfurase gene, while the Family 2b shell genes were found to most
106 often neighbor a polyprenyl diphosphate synthase gene (Supp. Table 2 and 3). The individual
107 subfamilies can also be defined by the CRP/FNR cyclic nucleotide-binding domain that is
108 predominantly found in the Family 2b shell sequences but not Family 2a. Our focus for the
109 remainder of the paper will be on the Family 2a subfamily, which is widespread and found
110 distributed in a polyphyletic fashion throughout 13 bacterial phyla (Figure 1A).

111

112 One such occurrence of Family 2a is in the model cyanobacterium *Synechococcus elongatus*
113 PCC 7942 (henceforth *S. elongatus*) and we sought to validate whether the predicted encapsulin
114 shell gene (Synpcc7942_B2662, Srpl) was indeed part of a nanocompartment complex.
115 Expression of the shell gene in *Escherichia coli* BL21 (DE3) cells, followed by purification and
116 size-exclusion chromatography, revealed that the protein eluted with an estimated molecular
117 weight of \approx 2 MDa (Figure 1C), the typical size for many previously characterized encapsulins
118 (Cassidy-Amstutz et al., 2016; Snijder et al., 2016). Consistent with the previously characterized
119 Family 1 encapsulin from *Thermotoga maritima*, a high molecular weight band was detected with
120 SDS-PAGE analysis for non-heat denatured samples. Boiling the sample yielded a band at 35
121 kDa, the expected weight of the monomeric shell protein (Supp. Figure 1-3; Cassidy-Amstutz et

122 al., 2016). Negative stain transmission electron microscopy (TEM) of the purified sample indicated
123 the complex forms a nanocompartment with an average diameter of 25 ± 1 nm (n=180) (Figure 1D,
124 Supp. Figure 1-4).



125
126 **Figure 1: Srpl is a bacterial nanocompartment that is widespread throughout bacterial phyla and found**
127 **neighboring sulfur metabolism genes.** (A) Maximum-likelihood phylogenetic tree of Family 2a encapsulin shell
128 proteins using the *T. maritima* Family 1 encapsulin shell protein (WP_004080898.1) as a Family 1 representative. Scale
129 bar, one substitution per site. (B) Genomic neighborhood of the Family 2a encapsulin shell gene from *S. elongatus*
130 PCC 7942. (C) Size exclusion-chromatogram of purified Srpl shell protein using a Superose™ 6 Increase column (GE
131 Life Sciences). Expected molecular weight was determined using the previously characterized *T. maritima* encapsulin
132 and Bio-Rad gel filtration calibration standard (D) Negative stain TEM micrograph of resulting Srpl encapsulin-
133 containing fraction post size-exclusion chromatography. Scale bar, 100 nm.

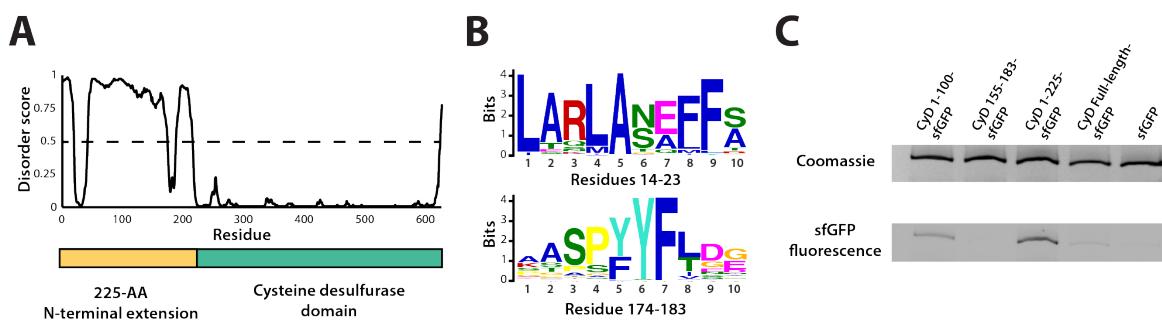
134
135 **Srpl encapsulin is upregulated under sulfur starvation and hosts a cysteine desulfurase**
136 **cargo protein**

137 Previous work by Nicholson and colleagues in *S. elongatus* demonstrated that the encapsulin
138 shell gene (Synpcc7942_B2662) is one of many whose mRNA expression level is upregulated
139 upon sulfur starvation (Nicholson et al., 1995; Nicholson and Laudenbach, 1995). Thus, this gene,
140 which is found on a plasmid encoding many sulfur-related genes, was termed Srpl for Sulfur
141 regulated plasmid-encoded gene-1 (Chen et al., 2008; Nicholson and Laudenbach, 1995). In order

142 to validate this result at the protein level, we sulfur starved wild-type *S. elongatus* cells for the
143 duration of a 48-hour time-course to detect the upregulation of the nanocompartment and,
144 potentially, identify additional cargo via mass spectrometry.
145

146
147 **Figure 2: Srpl encapsulin is upregulated in *S. elongatus* upon sulfate starvation.** (A) Absorbance spectra of *S.*
148 *elongatus* liquid cultures under nutrient-replete conditions (+Sulfate) and sulfur starvation (-Sulfate) for 24 and 48
149 hours. Absorbance maxima of phycocyanin (PC) at 620 nm and chlorophyll (Chl) at 680 nm are indicated.
150 Absorbance spectra are normalized to the same optical density at 750 nm. (B) Non-denaturing SDS-PAGE analysis
151 of lysates from nutrient-replete and sulfur starved *S. elongatus* cultures visualized by silver stain. Inputs were
152 normalized using absorbance at 280 nm. (C) Liquid chromatography-mass spectrometry of excised high molecular
153 weight bands from SDS-PAGE analysis. Top protein hits from each condition are represented by total spectrum
154 counts.

155
156 Consistent with previous studies of sulfur starvation in cyanobacteria, we observed the expected
157 chlorosis phenotype due to the degradation of phycobilisomes (Collier and Grossman, 1992).
158 Chlorosis was confirmed by loss of phycocyanin absorbance at 620 nm (Figure 2A). During this
159 time-course, SDS-PAGE analysis of cell lysates also indicated upregulation of a high molecular
160 weight complex (Figure 2B). Bands were excised, proteolytically digested, and analyzed via liquid
161 chromatography-mass spectrometry. After 48 hours of sulfur starvation, the top hits, as
162 determined by total spectral counts, were the putative encapsulin shell protein, Srpl, and the
163 product of the neighboring gene (Synpcc7942_B2661), a cysteine desulfurase (Figure 2C). Taken
164 together, these results suggest that the cysteine desulfurase, which neighbors the Srpl shell gene,
165 is the encapsulated cargo protein (Supp. Table 2, Nichols et al., 2017).


166
167 **A disordered N-terminal domain targets cargo for Srpl encapsulation *in vivo***
168 Sequence alignment of the five cysteine desulfurases found in the *S. elongatus* genome revealed
169 that the Srpl-associated cysteine desulfurase (Synpcc7942_B2661), hereafter named CyD,
170 possesses a unique N-terminal domain in addition to the canonical cysteine desulfurase domain

171 (Figure 3A, Supp. Figure 3-1). This N-terminal domain is shared by cysteine desulfurases found
172 adjacent to Srpl homologs in species possessing this encapsulin system. Structural prediction
173 using the primary sequence of the Srpl-associated CyD revealed that the N-terminal domain
174 (NTD) is highly disordered (Figure 3A). Intrinsically disordered domains are known to evolve
175 rapidly, preserving bulk chemical characteristics even as the sequence diverges greatly (Moesa
176 et al., 2012; Varadi et al., 2015). Accordingly, sequence conservation throughout the N-terminal
177 domain is sparse. However, two motifs, 'LARLANEFFS' and 'AASPYYFLDG', can be found in
178 most Srpl-associated CyD sequences (Supp Figure 3-2; Figure 3B).

179

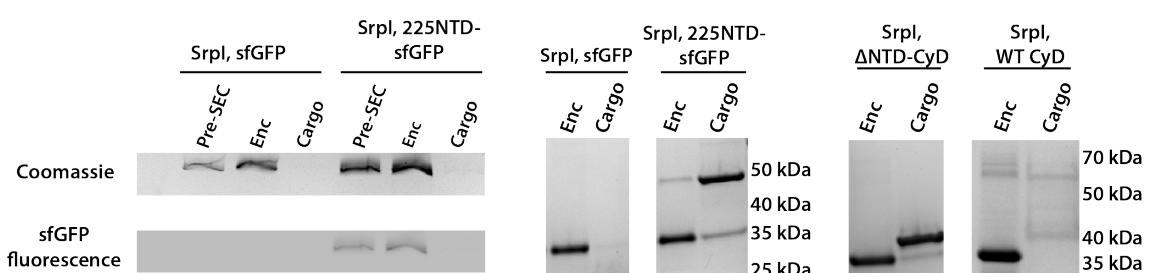
180 We next sought to confirm that CyD is the cargo protein by using the N-terminal domain to target
181 heterologous cargo to the compartment. To identify the minimal sequence necessary for
182 encapsulation, truncated sequences of the CyD cargo gene were fused to the superfolder green
183 fluorescent protein variant (sfGFP) and co-expressed with the shell protein in *E. coli*. This same
184 approach has been applied to identify targeting sequences for the Family 1 encapsulins (Cassidy-
185 Amstutz et al., 2016). Examination of these expressed constructs via SDS-PAGE and Coomassie
186 stain showed that all constructs formed the nanocompartment complex, as indicated by the
187 presence of the signature high molecular weight band that also served as a loading control.
188 Encapsulation of the heterologous sfGFP-fusion cargo was assayed by measuring GFP
189 fluorescence of the high molecular weight band (Figure 3C). The entire 225 amino acid N-terminal
190 domain from CyD fused to sfGFP (CyD 1-225-sfGFP) yielded the highest loading signal. Targeting
191 with the first 100 amino acids of the NTD also functioned, albeit not as efficiently as the full N-
192 terminus. The entire cysteine desulfurase fused to sfGFP was also encapsulated, yet again not
193 as well as the 225-NTD. This discrepancy may be due to steric hindrance resulting in fewer copies
194 of the larger full-length CyD-sfGFP construct physically packed inside the compartment. Lastly,
195 CyD 155-183-sfGFP, containing the conserved motif of 'AASPYYFLDG', was not sufficient to
196 sequester cargo within the compartment, nor was the non-tagged sfGFP construct.

197

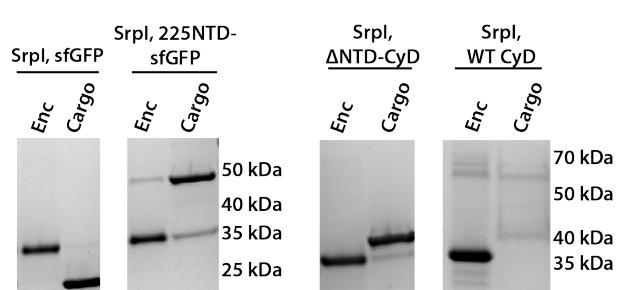
198

199 **Figure 3: An N-terminal signal sequence directs cargo loading *in vivo*.** (A) Domain organization of cysteine
200 desulfurase (CyD; Synpcc7942_B2661) and the predicted disorder scores calculated using DISOPRED3. CyD can be
201 split into two domains – a highly disordered N-terminal domain and an ordered cysteine desulfurase domain. (B)
202 Sequence WebLogos of conserved motifs found within the N-terminal domain of CyD calculated using the MEME
203 suite motif discovery server. (C) SDS-PAGE analysis of CyD constructs fused to sfGFP. Loading of fusion cargo and
204 untagged-sfGFP control was determined by fluorescence of the nanocompartment band prior to Coomassie staining.

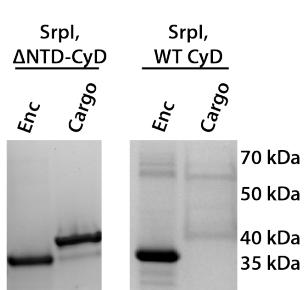
205


206

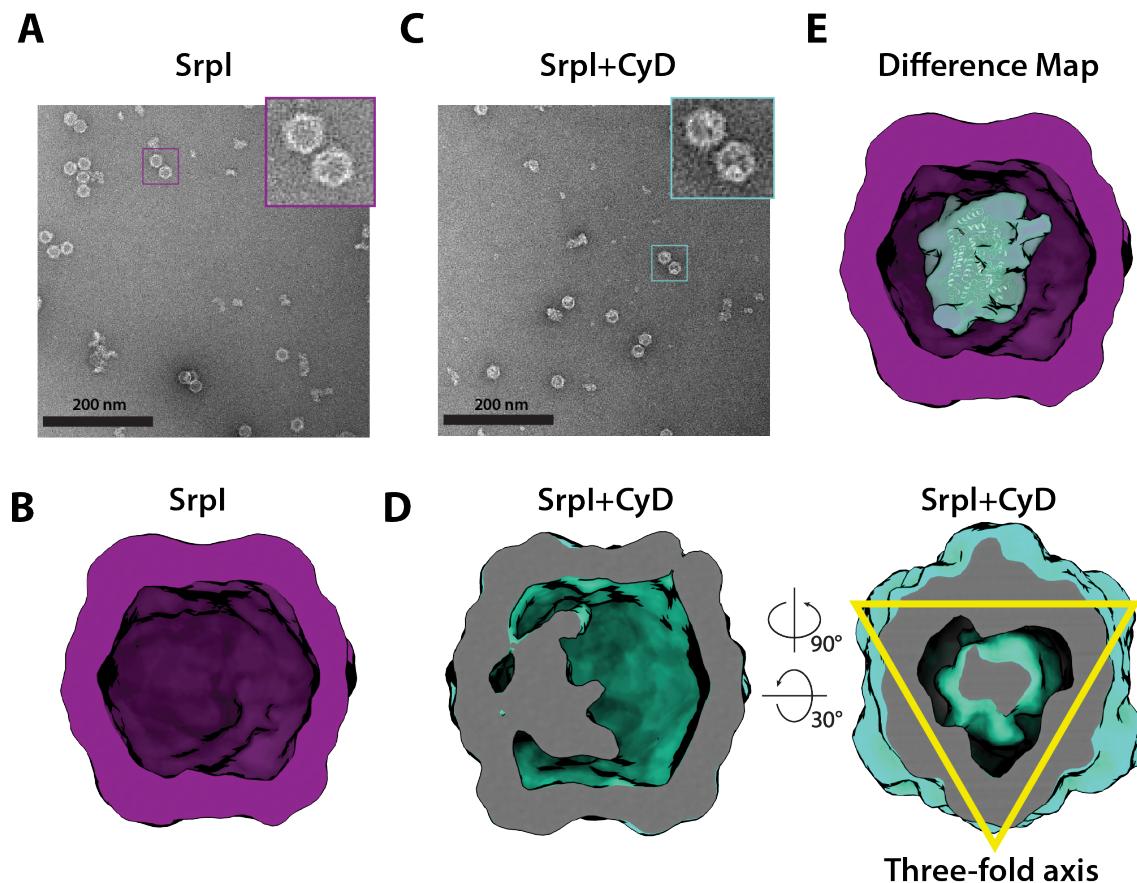
207


208 **The CyD NTD is necessary and sufficient for loading heterologous cargo *in vitro***

209 Prior work demonstrated that it is possible to assay cargo loading by disassembling the shell
210 protein with a chaotrope, such as guanidine hydrochloride (GuHCl), and re-folding the shell
211 protein in the presence of cargo protein (Cassidy-Amstutz et al., 2016). In this manner, we can
212 control the amount of cargo protein and ensure that loading is due to the targeting sequence
213 rather than mass-action. The shell protein was purified, unfolded in GuHCl, and then refolded by
214 dilution in the presence of purified 225NTD-sfGFP or untagged sfGFP. After refolding and
215 concentration of the sample, the loaded compartment fraction was separated from un-loaded
216 cargo via size exclusion chromatography (Supp. Fig. 4-1). Again, encapsulation was assayed via
217 SDS-PAGE analysis. Only the 225NTD-sfGFP construct displayed GFP fluorescence in the high
218 molecular weight band, indicative of sfGFP loading (Figure 4A). Furthermore, analysis of the
219 compartment and cargo fractions using denaturing SDS-PAGE showed the presence of cargo
220 protein in the compartment fraction only for the 225NTD-sfGFP construct whereas the presence
221 of sfGFP lacking the NTD was only found in the cargo fraction (Figure 4B).
222


A

B



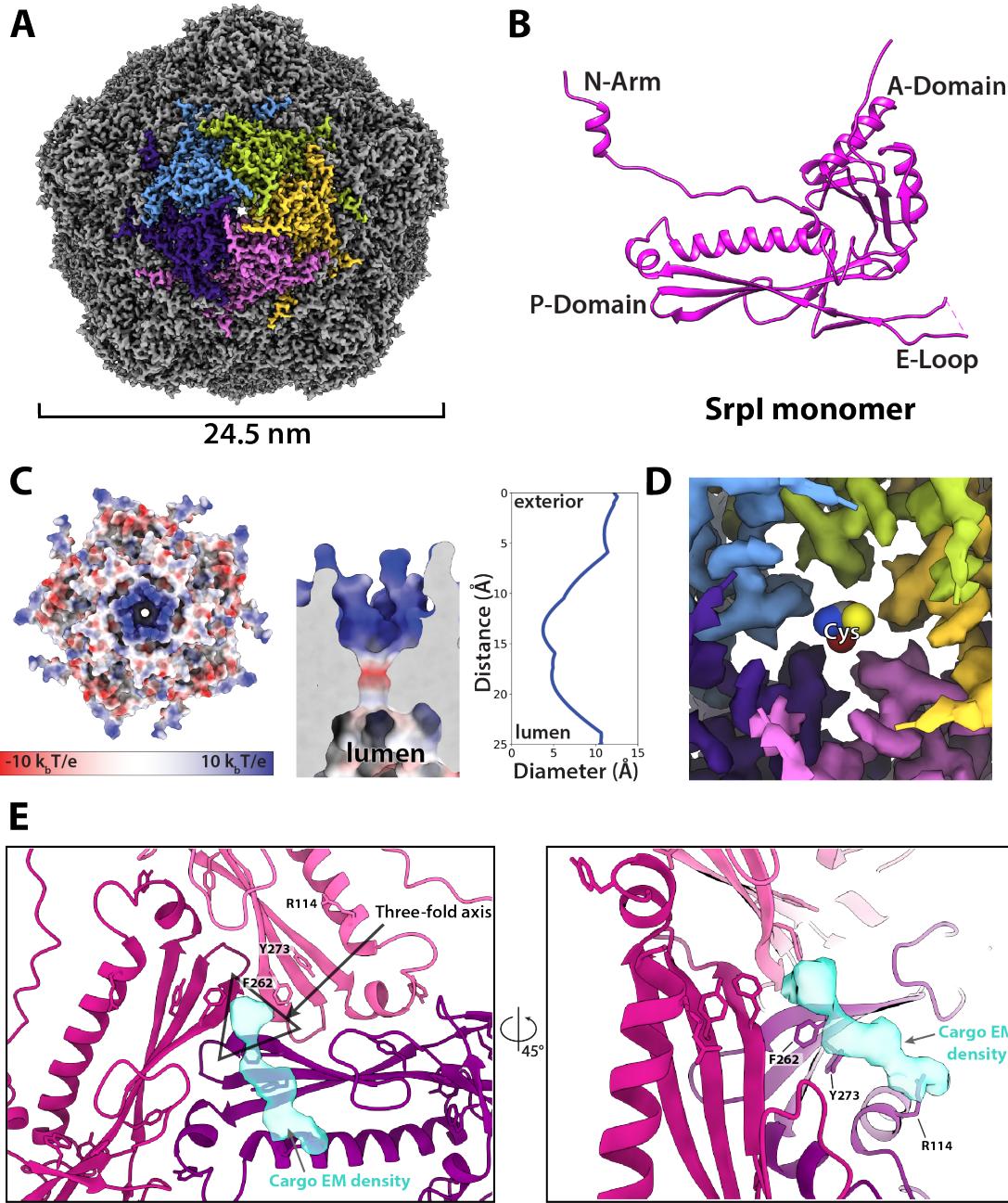
C

223
224 **Figure 4: The 225-NTD of CyD is necessary and sufficient for cargo loading *in vitro*.** (A) Non-denaturing SDS-
225 PAGE of sfGFP or the CyD N-terminal domain-sfGFP fusion (225NTD-sfGFP) loaded *in vitro* into Srpl encapsulin.
226 sfGFP fluorescence followed by Coomassie staining of the encapsulin (Enc), cargo, and pre size-exclusion
227 chromatography (Pre-SEC) fractions was performed to determine cargo loading and presence of nanocompartment
228 respectively. (B) Denaturing SDS-PAGE of *in vitro* loaded sfGFP and 225NTD-sfGFP samples to determine presence
229 of Srpl shell monomer (35kDa), sfGFP (27kDa), and 225NTD-sfGFP (50kDa) in the encapsulin and cargo fractions
230 from size-exclusion chromatography. (C) Denaturing SDS-PAGE of *in vitro* loaded native cysteine desulfurase (WT
231 CyD) and cysteine desulfurase with the N-terminal domain removed (ΔNTD-CyD) to determine presence of Srpl shell
232 monomer (35kDa), WT CyD (68kDa), and ΔNTD-CyD (45kDa) in the encapsulin and cargo fractions from size-
233 exclusion chromatography.

234
235 We were also able to load the full-length cysteine desulfurase *in vitro* using the same procedure.
236 We observed encapsulation of the native cargo as indicated by the co-elution of cargo in the
237 compartment fraction (Figure 4C). Lastly, we found that the disordered NTD is essential for cargo
238 loading. A mutant CyD lacking the entire N-terminal domain (ΔNTD-CyD) was not measurably
239 encapsulated, as evidenced by separate elution of compartment and truncated cargo (Figure 4C).

240
241 **Figure 5: Negative stain analysis indicates CyD loading into Srpl encapsulin** (A) Negative stain micrograph of
242 apo-Srpl shell in contrast with (C) the holo-Srpl shell that includes the CyD cargo. (B) and (D) 3D reconstruction of
243 apo-Srpl and holo-Srpl, respectively. (E) Difference map showing additional density for the holo-Srpl with a
244 homologous cysteine desulfurase dimer docked in (pdb:6c9e).
245

246 **Visualization of cargo density by transmission electron microscopy**


247 To further characterize the interaction between Srpl encapsulin and the CyD cargo, we first used
248 negative stain TEM to understand the spatial organization of the CyD cargo within the
249 nanocompartment. Even in raw micrographs, a clear difference in density on the shell interior was
250 observed when comparing the apo-Srpl encapsulin (no cargo) to the holo-Srpl encapsulin (CyD
251 loaded) (Figure 5A,C). The apo-Srpl encapsulin structure revealed the shell without any internal
252 cargo density, with modest features clearly visible as expected from a $\approx 20\text{\AA}$ negative stain
253 reconstruction (Figure 5B, Methods). The lack of density within the interior of the apo-Srpl capsid
254 also demonstrates that the shell is permissive to uranyl formate stain, which would also allow
255 definition of internal features for the cargo-loaded sample. For the cargo-loaded structure, clear
256 density for the CyD exists at one of the sites of three-fold symmetry within the complex (Figure
257 5D). A difference map, created by subtracting apo-Srpl from the holo-Srpl structure, revealed
258 density corresponding to 1-2 copies of the cysteine desulfurase (Figure 5E).
259

260 **Structural details of the Srpl shell revealed by cryo-EM**

261 Motivated by our negative stain TEM results, we sought to obtain a high-resolution structure of
262 the nanocompartment complex by single-particle cryo-electron microscopy (cryo-EM). All

263 encapsulin structures published thus far have belonged to the Family 1 encapsulins. These
264 structures are all icosahedral, vary in size from 24-42 nm in diameter, and have a triangulation
265 number of T=1, T=3, or more recently T=4 (Sutter et al., 2008; Akita et al., 2007; McHugh et al.,
266 2014; Giessen et al., 2019). Cryo-EM analysis was performed on purified holo-Srpl to resolve the
267 shell structure at 2.2 Å resolution. This represents the first Family 2 encapsulin structure and is
268 the highest resolution structure for an encapsulin to date, allowing for accurate atomic model
269 building (Figure 6A, Supp. Figure 6-1, Supp. Figure 6-2). The Srpl encapsulin is 24.5 nm in
270 diameter and has a T=1 icosahedral capsid formed by the self-assembly of 60 Srpl monomeric
271 subunits (Figure 6A), similar to previously reported encapsulin structures. Given the structural
272 similarity of the entire shell, it is unsurprising that the Srpl monomer also shares the canonical
273 HK97 fold found in Family 1 encapsulins and Caudovirales bacteriophages (Figure 6B, Supp.
274 Figure 6-3 C).

275
276 Most of the topological elements are shared between the monomeric subunits of encapsulins and
277 Caudovirales shells, including the A-domain (axial domain), E-loop (extended loop), and P-
278 domain (peripheral domain). However, unlike other Family 1 encapsulin shell proteins, the Family
279 2a Srpl possesses an extended N-terminal arm (N-arm) that is more characteristic of
280 bacteriophage structures (Supp. Figure 6-3C; Duda and Teschke, 2019). Similar to other HK97
281 bacteriophage capsids, the N-arm of the Srpl shell intertwines with the neighboring subunit to
282 create a chainmail-like topology (Supp. Figure 6-4). The most striking differences in quaternary
283 structure between the Srpl encapsulin and the previously studied Family 1 encapsulins can be
284 observed at the major vertices that form the 5-fold axis of symmetry. The vertices of the Srpl
285 encapsulin protrude from the capsid yielding a raised “spike” morphology not found in the Family
286 1 encapsulins (Supp. Figure 6-3 D). This difference is due to an extended C-terminus in the Srpl
287 shell protomer that is found near the A-domain, whereas the C-terminus of the Family 1
288 encapsulins is located farther away from the 5-fold axis.

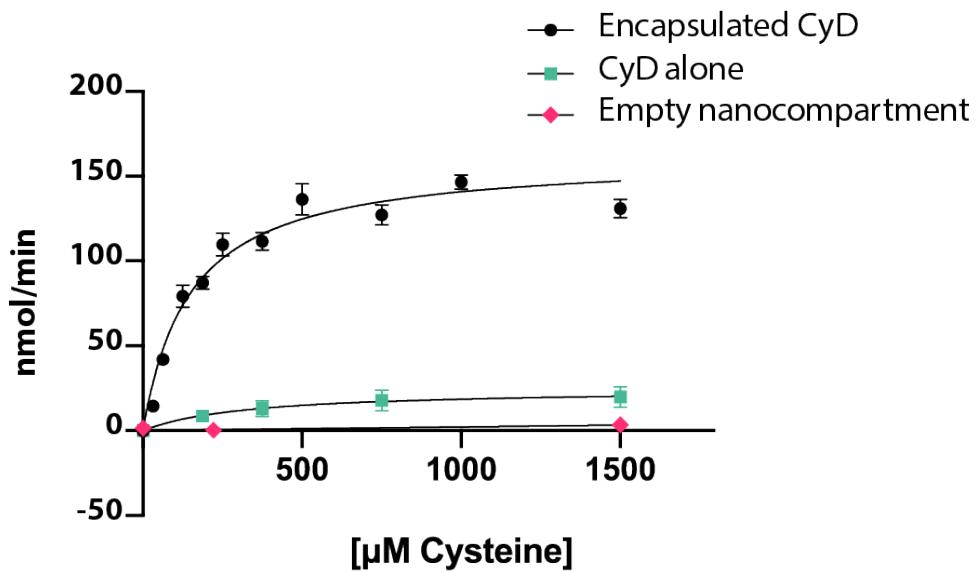
289
290
291
292
293
294
295
296
297
298
299
300

Figure 6 CryoEM structure of the Srpl encapsulin reveals a common HK97 fold, a potential mechanism for cysteine selectivity, and a cargo binding site (A) The Srpl encapsulin structure at 2.2 Å resolution. This Srpl encapsulin forms a T=1 icosahedral structure 24.5 nm in diameter. Five subunits around a five-fold axis are shown in distinct colors. (B) Srpl monomer subunits have a HK97 fold with the characteristic A-Domain, E-Loop, P-Domain, and N-Arm. (C) Electrostatic surface potential at the five-fold symmetry axis indicates a relatively neutral pore with an electropositive exterior (left). At its constriction point, the pore is 3.7 Å in diameter. (D) Modeling of a cysteine amino acid at the five-fold axis illustrates the possible mechanism of substrate selection (permissivity to cysteines) by the pore. (E) Unassigned density (turquoise) near the 3-fold axis (grey triangle) revealed by symmetry expansion and focused classification of the holo-Srpl cryoEM map shown in two different orientations.

301 Interestingly, the A-domain of Srpl that forms a pore at the 5-fold axis is composed of residues
302 that are positively charged (Figure 6C, Supp. Figure 6-5), in contrast to the negatively charged
303 five-fold axis pore of Family 1 encapsulins (Giessen et al., 2019). It is thought that the 5-fold pore
304 at the capsid vertices creates a selective barrier to allow encapsulin substrates into the
305 compartment lumen (Giessen et al., 2019; Nichols et al., 2017; Sutter et al., 2008). Cysteine is a
306 likely substrate for the Srpl encapsulin given its cysteine desulfurase cargo enzyme. At
307 physiological pH for *S. elongatus* growing in light, pH 8 - 8.4 (Mangan et al., 2016), roughly 30-
308 54% of free cysteine will have a net charge of -1 and therefore could traverse the positively
309 charged pore exterior (Cameselle et al., 1986). Likewise, the size of the pore is also an important
310 constraint for limiting the spectrum of substrates that can enter the compartment (Williams et al.,
311 2018). The Srpl encapsulin 5-fold pore is 3.7 Å in diameter at its most restrictive point (Figure 6C)
312 as calculated by HOLE (Smart et al., 1996). Furthermore, modeling of cysteine in the pore
313 demonstrates it is likely small enough to enter the nanocompartment (Figure 6D).

314

315 Unfortunately, during processing and classification the holo-Srpl encapsulin proved nearly
316 indistinguishable from the apo-Srpl control (Supp. Figure 6-1). The inability to resolve significant
317 portions of the cargo density may be due to low occupancy, or conformational flexibility of the
318 cargo, which disappears at higher resolutions when many particles are averaged together. The
319 inability to fully resolve cargo protein within the nanocompartment has been observed for
320 previously published encapsulin structures (Sutter et al., 2008). However, symmetry expansion
321 and focused classification of the holo-Srpl encapsulin revealed additional EM density at the
322 interior surface of the shell that was localized to the three-fold symmetry axis (Figure 6E). This
323 corroborates our findings from the holo-Srpl structure obtained via negative stain TEM, which also
324 demonstrated cargo interfacing with the shell at the axis of three-fold symmetry (Figure 5D).


325

326 While the cargo EM density was too weak to accurately build an atomic model of the cysteine
327 desulfurase cargo residues, we were able to determine which shell residues likely interact with
328 cargo density based on their proximity to the putative cargo EM density (Figure 6E). Of note, shell
329 residues at the three-fold axis neighboring the cargo EM density are highly conserved, which
330 suggests that the interaction between the encapsulin cargo and shell may be conserved (Supp
331 Figure 6-3 A,B). Namely, residues F262, and Y273 are located near the suggested cargo density.

332

333 **Encapsulation of CyD modulates enzymatic activity**

334 Finally, we wanted to understand the enzymatic activity of CyD and assess whether encapsulation
335 affects the cargo. Enzyme activity was monitored via NADH fluorescence using an assay coupling
336 cysteine desulfurase, which produces alanine, to alanine dehydrogenase (Dos Santos, 2017).
337 Unencapsulated CyD was active towards a cysteine substrate and exhibited a k_{cat} of $10 \pm 4 \text{ s}^{-1}$
338 (Figure 7). In accordance with our hypothesis that free cysteine could enter the Srpl encapsulin
339 pore, we found that the encapsulated CyD was roughly 7-fold more active than unencapsulated
340 CyD, with a k_{cat} of $67 \pm 5 \text{ s}^{-1}$ (Figure 7). Importantly, unloaded Srpl encapsulin did not exhibit any
341 cysteine desulfurase activity. Rate enhancement of cargo enzymes by Family 1 encapsulins has
342 been observed previously and is discussed below (Rahmanpour and Bugg, 2013).

343
344
345
346
347

Figure 7: Cysteine desulfurase activity is enhanced upon encapsulation. Substrate-dependent activity of encapsulated cysteine desulfurase (encapsulated CyD), unencapsulated cysteine desulfurase (CyD alone), and empty nanocompartment using a coupled-enzyme assay with alanine dehydrogenase and production of NADH as a readout of cysteine desulfurase activity. Error bars are SD of 3-6 replicate experiments.

348 **Discussion**

349 Here we have identified a unique bacterial nanocompartment and established it as a member of
350 a distinct family of encapsulins, which we name Family 2, that have thus far evaded
351 characterization as a protein-bounded organelle.

352

353 **Structural analysis of *Srp1* encapsulin reveals a potential role as an organelle**

354 We report here the first high-resolution structure for Family 2 encapsulins and find that it shares
355 the HK97 fold found in the Family 1 encapsulins. While there are many structural similarities
356 between the Family 1 and Family 2 encapsulin shell proteins, there are notable differences in the
357 structural properties of the individual domains within the HK97 fold that likely confer distinct
358 functions. One considerable difference between the two encapsulin families is the nature of the
359 pentameric vertex of the capsid that forms the major pore of the compartment. The five-fold pore
360 is likely crucial to the organellar function of encapsulins, as it provides a selective barrier for the
361 entrance of compartment substrates based on size and charge (Nichols et al., 2017; Williams et
362 al., 2018; Giessen et al., 2019). Structures determined for the Family 1 encapsulins reveal pores
363 that are negatively charged (Giessen et al., 2019; McHugh et al., 2014; Sutter et al., 2008). Many
364 of the Family 1 encapsulins possess cargo that binds iron, such as the IMEF and FLP containing
365 encapsulins that have been demonstrated to be capable of iron storage (Giessen et al., 2019; He
366 et al., 2016). The negative charge of the Family 1 pores is therefore noteworthy because it may
367 allow passage of the positively charged iron ions to enter the encapsulin lumen.

368

369 In the Family 2 encapsulin structure reported here, we find the electrostatic charge of the pore to
370 be positive - opposite to what is observed in Family 1. The positive charge of the Family 2
371 encapsulin is consistent with its likely substrate, cysteine, which will have a net negative charge
372 at physiological pH (Cameselle et al., 1986; Mangan et al., 2016). This contrast between pore
373 charges suggests an overarching theme that may be shared among the encapsulins: the
374 electrostatic charge of the pore is likely reflective of the charge characteristics of the cargo
375 substrate. Furthermore, the size of the pore also appears to be an important parameter as it
376 selects for the entry of substrate molecules while still maintaining a partitioned barrier from larger
377 molecules in the surrounding environment. Initial work has begun towards dissecting how the size
378 of the pore affects mass transport of substrates varying in size. One such study has engineered
379 the pore of the *T. maritima* encapsulin to allow for the diffusion of metals such as terbium, which
380 is nearly double the atomic radius of the native iron substrate (Williams et al., 2018). Further
381 mutational studies of pore residues will be needed to better understand how the properties of
382 encapsulin pores affect permeability and function of nanocompartments both *in vitro* and *in vivo*.

383

384 **The effect of encapsulation on cargo protein function**

385 Our enzymatic activity data of the CyD cargo provide evidence that encapsulation of the enzyme
386 is important for its activity. We found that the k_{cat} for the encapsulated CyD was almost 7-fold
387 higher than that of the naked cargo *in vitro*. Others have also reported changes in cargo activity
388 upon encapsulation for the Family 1 encapsulins. One such example is the DyP-type peroxidase-
389 containing encapsulin from *Rhodococcus jostii*, which was shown to exhibit an 8-fold higher
390 activity on a lignin substrate compared to the unencapsulated peroxidase (Rahmanpour and
391 Bugg, 2013). The biochemical function of the FLP-containing encapsulin is also impeded in the

392 absence of shell protein, as it loses the ability to properly store and mineralize iron (He et al.,
393 2016; McHugh et al., 2014). The exact mechanism by which encapsulation affects cargo activity
394 remains unknown and may differ for the various cargo types found in encapsulin systems. In the
395 case of the CyD cargo, there are precedents for the enhancement of cysteine desulfurase activity
396 in the presence of accessory proteins. For example, the protein SufE from *E. coli* has been shown
397 to increase the activity of the cysteine desulfurase, SufS, 8 to 50-fold (Loiseau et al., 2003; Outten
398 et al., 2003). SufE binding stimulates an allosteric change in SufS and enables faster regeneration
399 of the SufS active site by the removal of persulfide from the SufS active site, thereby allowing
400 additional reaction cycles (Outten et al., 2003; Singh et al., 2013). It is possible that Srpl may be
401 acting as an accessory protein for the activity of its cysteine desulfurase cargo analogous to what
402 has been observed for SufE and SufS.

403

404 **Srpl may be linked to the canonical sulfur starvation pathway in cyanobacteria**

405 The physiological response to sulfur starvation in cyanobacteria has been studied for decades,
406 yet much is still unknown about the interplay of the known components of the pathway. Genetic
407 and biochemical approaches to study sulfur starvation response in *S. elongatus* have shown that
408 photosynthesis is halted as phycobiliproteins are disassembled from the thylakoid membrane and
409 proteolyzed by the Clp protease complex to generate free amino acids such as cysteine (Baier et
410 al., 2014; Collier and Grossman, 1992; Karradt et al., 2008). Among the other known responses
411 to sulfur starvation are the upregulation of proteins involved in sulfate transport CysA, CysT,
412 CysW, and SbpA (Green et al., 1989; Laudenbach and Grossman, 1991). Cyanobacteria are
413 assimilatory sulfate reducers and thus, sulfate is sequentially reduced to sulfite and sulfide by the
414 APS/PAPS pathway, which is then proceeded by the synthesis of L-cysteine via serine-O-
415 acetyltransferase and cysteine synthase (Kopriva et al., 2008; Schmidt, 1990; Schmidt and
416 Christen, 1978).

417

418 Here we report that *S. elongatus* cells deprived of sulfate dramatically upregulate the Srpl
419 encapsulin and its cysteine desulfurase cargo. Furthermore, it is interesting to note that
420 cyanobacteria that possess Srpl encapsulin genes are found in freshwater or brackish water, but
421 not marine environments (Supp. Table 4). Sulfate is often a limiting nutrient in freshwater
422 environments compared to marine habitats; therefore, the presence of Srpl exclusively in
423 freshwater cyanobacteria suggests Srpl could play a role in sulfur starvation response (Giordano
424 et al., 2005; Pilson, 2012; Tipping et al., 1998). Our biochemical characterization of this complex
425 showed it is capable of using free L-cysteine as a substrate. Given that the previously
426 characterized facets of the sulfur starvation pathway have been demonstrated to yield free
427 cysteine, our findings suggest a potential link between the Srpl encapsulin and the rest of the
428 known pathway. The physiological role of the Srpl encapsulin may be elucidated by determining
429 the fate of the sulfide group from cysteine after conversion to alanine by the cysteine desulfurase.
430 For example, the sulfur may be mobilized to a downstream sulfide carrier such as NifU or SufE to
431 be incorporated into iron-sulfur clusters or thio-cofactors (Black and Dos Santos, 2015).
432 Alternatively, the sulfide from cysteine may remain within the compartment in the form of
433 polysulfide. In this second model, the encapsulin may act as a storage cage for sulfur, similar to
434 how Family 1 encapsulins are thought to act as iron stores (Giessen et al., 2019; He et al., 2016).

435

436 **Homologs of Srpl are found in pathogens**

437 While this report is the first to recognize Srpl as an encapsulin, previous work has observed a role
438 for Srpl homologs in mycobacterial pathogenesis. Previous work on a Srpl homolog from both *M.*
439 *leprae* and *M. avium* has shown Srpl is the most antigenic protein in human leprosy patients
440 (Winter et al., 1995). Because of its ability to elicit a proliferative T-cell response in leprosy
441 patients, Srpl homologs have been proposed as a useful antigen for vaccine development in
442 disease-causing *Mycobacteria* (Abdellrazeq et al., 2018; Abdellrazeq et al., 2020; Leite et al.,
443 2015). In their search for candidate antigens from *M. avium* subsp. *paratuberculosis*, Leite and
444 colleagues enriched for a complex that was identified as MAP2121c and MAP2120c, the Srpl
445 shell and cysteine desulfurase homologs respectively (Leite et al., 2015). Our results here validate
446 the finding that these two proteins share a direct biochemical interaction. Moreover, we have
447 identified the N-terminal domain of the cysteine desulfurase to be essential for its interaction with
448 the shell and have presented structural evidence for the encapsulin shell residues with which the
449 cysteine desulfurase may interact. Hopefully our structural and biochemical characterization of
450 the compartment aids in future studies of the role of Srpl encapsulin in pathogenicity and host
451 immune response.

452

453 **The evolutionary origins of encapsulins and the prospect of additional undiscovered
454 families**

455 An evolutionary relationship between the encapsulins and Caudovirales bacteriophages is clear
456 given the shared HK97 fold of the capsid proteins. Exactly how the encapsulins and Caudovirales
457 bacteriophages are related, however, remains an open question (Koonin and Krupovic, 2018). It
458 is possible that the HK97 fold derives from a cellular ancestor and was then recruited by a virus-
459 like ancestor of Caudovirales phage (Krupovic and Koonin, 2017). Alternatively, the HK97 fold
460 was of viral origin and cellular hosts co-opted the compartments as organelles that enabled some
461 fitness benefit (Koonin and Krupovic, 2018; Krupovic and Koonin, 2017). These two scenarios
462 may not be mutually exclusive, and it is possible that the ancestry of the HK97 fold is intermingled
463 between the two systems with the interconversion of capsids functioning as Caudovirales phage
464 or prokaryotic encapsulins repeatedly over evolutionary history (Radford, 2015). Our identification
465 of Srpl and its homologs as members of an evolutionarily distinct encapsulin family may provide
466 further insights into the divergence and origin of prokaryotic nanocompartments. Already, the
467 breadth and diversity of known encapsulin systems is vast, yet it is likely that more await
468 discovery.

469 **Methods**

470

471 **Phylogenetic analysis of encapsulin genes**

472 Homologs of Srpl were compiled using NCBI BLASTp with query sequence WP_011055154.1
473 (*Synechococcus elongatus*). BLASTp searches were carried out in February 2020 and hits with
474 an E-value < 0.01 were collected and used in subsequent phylogenetic analysis. Sequences were
475 aligned using MAFFT v7.453 along with the outgroup sequence WP_004080898.1 (*Thermotoga*
476 *maritima*). The phylogenetic tree was generated from the MAFFT alignment using IQ-TREE
477 (Kalyaanamoorthy et al., 2017) with LG model, 4 gamma categories and allowing for invariant
478 sites and ultrafast bootstrap with 1000 replicates. Taxonomy metadata for the encapsulin
479 sequences were compiled using the NCBI protein database. Phylogenetic trees were visualized
480 and annotated using 'The Interactive Tree of Life v4' online server (Letunic and Bork, 2019).

481

482 Genome neighborhood analysis of the Family 2 encapsulin sequences was performed using the
483 Enzyme Function Initiative suite of web tools (Gerlt, 2017; Zallot et al., 2019). Sequences were
484 compiled with the Enzyme Similarity Tool (ESI) using WP_011055154.1 (*S. elongatus*) as the
485 query sequence. A Uniprot BLAST search was performed using ESI with an E value of 1E-5 and
486 a maximum of 10,000 sequences. The resulting dataset was then submitted to the Genome
487 Neighborhood Tool to identify the 10 genes upstream and downstream of every Family 2
488 encapsulin hit.

489

490 Secondary structure and disorder prediction of the encapsulin-associated cysteine desulfurase,
491 Synpcc7942_B2661, was performed using PsiPred4 and Disopred3 (Buchan and Jones, 2019;
492 Jones and Cozzetto, 2015). Sequence identity scores for homologs of Synpcc7942_B2661, were
493 determined by aligning sequences using Clustal Omega and analyzing results with Geneius Prime
494 Version 2019.2.1 (Sievers et al., 2011). Conserved motifs within the cysteine desulfurase
495 sequence homologs were determined using the MEME Suite 5.1.1 (Bailey et al., 2009). Using
496 Clustal Omega, the compiled cysteine desulfurase sequences were aligned and truncated to only
497 include the N-terminal domain sequence. These truncated sequences were then analyzed using
498 MEME to create sequence logos of the top occurring motifs.

499

500 **Molecular cloning, protein expression and purification**

501 All plasmids were constructed using either Gibson Assembly (NEB) or SLiCE (Zhang et al., 2012)
502 homology-based cloning strategies. Each construct was cloned into a pET-14-based destination
503 vector with a T7 promoter. These constructs were transformed into *E. coli* BL21 (DE3) LOBSTR
504 cells for protein expression (Andersen et al., 2013). Cells were grown in LB media containing 60
505 µg/mL kanamycin at 37°C, shaking at 250 rpm to an optical density (OD₆₀₀ = 0.5-0.6) before
506 lowering the temperature to 18°C, inducing with 0.5mM IPTG, and growing overnight. Liquid
507 cultures were harvested via centrifugation (4000 x g, 20 min, 4°C), flash frozen in liquid nitrogen,
508 and stored at -80°C for future use.

509

510 All cysteine desulfurase constructs used in enzyme activity and electron microscopy experiments
511 were purified using an N-terminal SUMO tag containing a poly-histidine sequence. Pellets were
512 resuspended in lysis buffer (25mM Tris-HCl pH 7.5, 150mM NaCl, 20mM imidazole)

513 supplemented with 0.1 mg/ml lysozyme and 1 U/mL Benzonase® Endonuclease (Millipore
514 Sigma). Sample was lysed with three passages through an Avestin EmulsiFlex-C3 homogenizer
515 and clarified via centrifugation (15,000 x g, 30 min, 4°C). The resulting supernatant was then
516 bound to HisPur™ Ni-NTA resin (ThermoFisher Scientific) for 1 hour at 4°C, followed by
517 application of the sample to a gravity column. The resin was then washed with 30 resin volumes
518 of wash buffer (25mM Tris-HCl pH 7.5, 150mM NaCl, 40mM imidazole) prior to eluting with 25mM
519 Tris-HCl pH 7.5, 150mM NaCl, 350mM imidazole. The eluate was then concentrated and desalted
520 into 25mM Tris-HCl pH 8, 150mM NaCl using Econo-Pac® 10DG desalting columns (Bio-Rad).
521 The SUMO tag was removed by adding SUMO-protease to the purified sample at a 1:200
522 (protease: purified protein) molar ratio and allowing cleavage overnight at 4°C. The sample was
523 then further purified by size exclusion chromatography using a Superose™ 6 Increase column
524 (GE Life Sciences) and fractions were analyzed by SDS-PAGE using 4-20% Criterion™
525 polyacrylamide gels (Bio-Rad) and visualized with GelCode Blue stain (ThermoFisher).
526

527 ***In vitro* loading of cargo into Srpl encapsulin**

528 To obtain sufficient quantities of the Srpl shell for *in vitro* loading experiments, the protein was
529 purified from *E. coli* inclusion bodies. Serendipitously, adding a C-terminal 6X-His tag to Srpl
530 yielded high quantities of insoluble shell protein. Purification, denaturation, and folding of shell
531 protein was performed as previously described (Palmer and Wingfield, 2012). Briefly, cell pellets
532 were resuspended in solution buffer (50mM Tris-HCl pH 8, 1% Triton-X100, 100mM NaCl, 10mM
533 DTT, 0.1 mg/ml lysozyme, and 1 U/mL Benzonase® Endonuclease) and lysed with an Avestin
534 EmulsiFlex-C3 homogenizer. The lysate was then centrifuged at 11,000 x g for 20 min at 4°C,
535 and the resulting pellet was resuspended in washing buffer A (50mM Tris-HCl pH 8, 0.5% Triton-
536 X100, 100mM NaCl, 10mM DTT) followed by sonication and centrifugation at 11,000 x g for 20
537 min, 4°C. The resulting pellet was then resuspended in washing buffer B (50mM Tris-HCl pH 8,
538 100mM NaCl, 10mM DTT) followed by sonication and centrifugation again at 11,000 x g for 20
539 min, 4°C. The pellet containing Srpl shell protein was then solubilized with extraction buffer
540 (50mM Tris-HCl pH 7.4, 6M guanidine hydrochloride, 50mM DTT), flash frozen and stored at -
541 80°C for future use.
542

543 Refolding was performed by 100-fold dilution in refolding buffer (50mM CAPS pH 10, 250mM
544 arginine, 150mM NaCl, 20% Glycerol, 10mM DTT). For *in vitro* cargo loading, refolding was
545 performed by adding cargo protein prior to shell protein in a 10:1, cargo: compartment ratio.
546 Sample was concentrated in an Amicon® stirred cell (Millipore Sigma) using a 10kDa MWCO
547 filter, followed by desalting into 50mM CAPS pH 10, 250mM arginine, 150mM NaCl. Subsequent
548 purification was performed using either a Superose™ 6 Increase column or a HiPrep™ 16/60
549 Sephacryl® S-500 HR (GE Life Sciences).
550

551 ***S. elongatus* PCC 7942 growth and sulfate deprivation**

552 *S. elongatus* PCC 7942 was grown in BG-11 media (Allen, 1968) at 30°C with shaking (185 rpm)
553 under white fluorescent lights at 60-100 µE. After the liquid culture reached log phase (OD₇₅₀ =
554 0.4-0.5), sulfate starvation was performed by centrifugation of liquid culture (5,000 x g, 20 min,
555 25°C), resuspension of cells in BG-11 media lacking sulfate (Collier and Grossman, 1992), and
556 repeated for a total of three washes. Control samples were washed and resuspended using

557 normal BG-11. Samples were then returned to the above growth conditions for continued growth
558 in sulfate dropout BG-11 media. Phycocyanin and chlorophyll levels were quantified by removing
559 1mL of culture at predetermined times and measuring 620 nm and 680 nm absorbance levels
560 respectively, normalized to cell density at 750 nm.

561
562 **Identification of protein complex upregulated under sulfate starvation**
563 Sulfate-starved and control *S. elongatus* PCC 7942 liquid cultures (50mL) were harvested via
564 centrifugation (4000 x g, 20 min, 4°C), flash-frozen in liquid nitrogen and stored at -80°C for future
565 processing. Pellets were lysed via sonication and clarified by centrifugation (15,000 x g, 20 min,
566 4°C). Clarified lysates were analyzed using 4-20% Criterion™ polyacrylamide gels (Bio-Rad) and
567 visualized by silver staining using Pierce™ Silver Stain Kit (ThermoFisher Scientific). Gel bands
568 were excised and sent to UC Davis Proteomics Core Facility. In-gel proteolytic digestion of the
569 samples was performed followed by LC/MS analysis with a Q Exactive™ Hybrid Quadrupole-
570 Orbitrap. Spectra were searched against the *S. elongatus* PCC 7942 proteome and analyzed
571 using Scaffold 4.

572
573 **Cysteine desulfurase activity**
574 Cysteine desulfurase activity was performed using a coupled enzyme assay with alanine
575 dehydrogenase. Reactions were carried out at 25°C in 25mM Tris-HCl pH 8, 150mM NaCl, 5mM
576 NAD⁺, 8 nM alanine dehydrogenase, 200 nM cysteine desulfurase, and varying L-cysteine
577 concentrations. Cysteine desulfurase concentration for compartment loaded and non-loaded
578 samples was determined by PLP absorbance at 420 nm. Activity was monitored by production of
579 NADH using an Infinite® M1000 plate reader (Tecan) with excitation at 340 nm and emission at
580 460 nm. Reactions excluding cysteine desulfurase were used as negative controls for background
581 subtraction. Activity data is reported as the initial rate of product formation over substrate
582 concentration and fitted with the Michaelis–Menten equation using GraphPad Prism 8.

583
584 **Negative Stain TEM**
585 Holo-SrPI and apo-SrPI samples were diluted to 300 nM in TEM Buffer (50mM CAPS pH 10,
586 250mM arginine, 150mM NaCl). 4uL of each sample was placed onto a 400-mesh continuous
587 carbon grid that had been glow discharged (Tergeo, Pie Scientific). After adsorption of the sample
588 onto the grid (2min at room temperature), the sample was stained in five successive rinses with
589 40uL droplets Uranyl Formate (UF; 2% w/v in water). To ensure stain was thick, and penetrated
590 the shell interior, the grids sat for 30sec with a droplet of UF. Grids were briefly side-blotted with
591 Whatman filter paper for 1 sec, leaving a very thin, but still visible, amount of stain still on the grid,
592 followed by air drying for 10 min. Grids were visualized with an FEI Tecnai F20 electron
593 microscope operating at 120 keV. For each construct, ~100 micrographs were collected on a
594 Gatan Ultrascan 4k CCD camera, at a magnification of 80,000x (1.37Å/pix) and a defocus range
595 from -0.5 to -2.0 µm defocus.

596
597 Each dataset was processed identically using RELION (Scheres, 2012). Briefly, CTF estimation
598 was performed using CTFFIND4 (Rohou and Grigorieff, 2015), and particles were picked using
599 RELION's built-in LoG autopicker. Roughly 5,000 particles were extracted for each dataset,
600 binned 4-fold, followed by 2D classification into 20 classes. All classes that resembled particles

601 (~80% of the initial particles picked), were selected for a final refinement without symmetry
602 imposed using a hollow sphere of 25 nm as a reference. Both apo and holo constructs gave a
603 final resolution estimate of ~18Å.

604

605 **CryoEM Sample Preparation, Data Acquisition and Processing**

606 Samples were prepared on UltrAuFoil 1.2/1.3 gold grids (Quantifoil). Grids were initially washed
607 with 2 drops of chloroform and allowed to air dry. Of note, no glow discharge step was performed.
608 A 2mg/mL solution of the Srpl encapsulin in TEM Buffer supplemented with 0.05% NP-40 was
609 applied to the grid, and immediately plunge-frozen in liquid ethane using a Vitrobot Mark IV (blot
610 force 5, 3 sec blot, 100% humidity, 4°C, 1 sec drain time). For microscope and collection
611 parameters see Supplemental Table 5. Briefly, the holo-Srpl sample was collected on a Titan
612 Krios, and the apo- and sfGFP- samples on Talos Arctica. Data was processed within the RELION
613 pipeline (Scheres, 2012), with defocus estimation using CTFFIND4 (Rohou and Grigorieff, 2015).
614 Particles were automatically picked with LoG-picker and processed in accordance with
615 Supplemental Figure 6-1.

616

617 **Atomic model Building and Refinement**

618 The final map for holo-Srpl was the highest resolution of all the states, and was therefore used
619 for model building. An atomic model was built into the density for one asymmetric unit of the Srpl
620 shell with COOT (Emsley et al., 2010), and then refined with nearest neighbors using the real
621 space refinement tool in PHENIX (Adams et al., 2010). The MTRIAGE program within PHENIX
622 was used to compute the model vs. map FSC, and HOLE was used to analyze the pores at the
623 5-fold symmetry axis (Smart et al., 1996). For the apo-Srpl and sfGFP-Srpl structures, the shell
624 density was indistinguishable compared to the holo-Srpl, so no model refinement was performed.
625 Instead, these maps were used to guide interpretation of additional density within the shell, and
626 to calculate difference maps between the holo- and apo- states using UCSF Chimera (Goddard
627 et al., 2018). Additionally, symmetry expansion and focused alignment-free 3D classification were
628 performed with RELION for all states. All coordinates and maps were visualized with UCSF
629 ChimeraX and Pymol (Goddard et al., 2018); The PyMOL Molecular Graphics System, Version
630 2.3.2 Shrödinger, LLC).

631

632 **Acknowledgements**

633 We thank Avi Flamholz and Cecilia Blikstad for helpful discussions and critical reading of the
634 manuscript. We acknowledge the UC Davis Proteomics Core Facility for mass spectrometry data
635 collection and the UC Berkeley Electron Microscope Laboratory for training with TEM. We thank
636 Patricia Grob and Daniel Toso for microscope support and Abhiram Chintangal for computational
637 support. This work was supported by a grant from the US Department of Energy (no. DE-
638 SC00016240) to D.F.S., B.L. was supported by an NSF-GRFP grant (no. 1106400), and E.N. is
639 a Howard Hughes Medical Institute Investigator.

640 **References:**

641 Abdellrazeq GS, Elnaggar MM, Bannantine JP, Park KT, Souza CD, Backer B, Hulubei V,
642 Fry LM, Khaliel SA, Torky HA, Schneider DA, Davis WC. 2018. A *Mycobacterium avium*
643 subsp. *paratuberculosis* *relA* deletion mutant and a 35 kDa major membrane protein
644 elicit development of cytotoxic T lymphocytes with ability to kill intracellular bacteria. *Vet*
645 *Res* **49**:53.

646 Abdellrazeq GS, Fry LM, Elnaggar MM, Bannantine JP, Schneider DA, Chamberlin WM,
647 Mahmoud AHA, Park K-T, Hulubei V, Davis WC. 2020. Simultaneous cognate epitope
648 recognition by bovine CD4 and CD8 T cells is essential for primary expansion of antigen-
649 specific cytotoxic T-cells following ex vivo stimulation with a candidate *Mycobacterium*
650 avium subsp. *paratuberculosis* peptide vaccine. *Vaccine*.

651 Adams PD, Afonine PV, Bunkóczki G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L-W,
652 Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ,
653 Richardson DC, Richardson JS, Terwilliger TC, Zwart PH. 2010. PHENIX: a
654 comprehensive Python-based system for macromolecular structure solution. *Acta*
655 *Crystallogr D Biol Crystallogr* **66**:213–221.

656 Akita F, Chong KT, Tanaka H, Yamashita E, Miyazaki N, Nakaishi Y, Suzuki M, Namba K,
657 Ono Y, Tsukihara T, Nakagawa A. 2007. The crystal structure of a virus-like particle from
658 the hyperthermophilic archaeon *Pyrococcus furiosus* provides insight into the evolution
659 of viruses. *J Mol Biol* **368**:1469–1483.

660 Allen MM. 1968. SIMPLE CONDITIONS FOR GROWTH OF UNICELLULAR BLUE-GREEN
661 ALGAE ON PLATES 1, 2. *J Phycol* **4**:1–4.

662 Andersen KR, Leksa NC, Schwartz TU. 2013. Optimized *E. coli* expression strain LOBSTR
663 eliminates common contaminants from His-tag purification. *Proteins: Struct Funct Bioinf*
664 **81**:1857–1861.

665 Baier A, Winkler W, Korte T, Lockau W, Karradt A. 2014. Degradation of phycobilisomes in
666 *Synechocystis* sp. PCC6803 evidence for essential formation of an NblA1/NblA2
667 heterodimer and its codegradation by a Clp protease complex. *J Biol Chem* **289**:11755–
668 11766.

669 Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS.
670 2009. MEME SUITE: tools for motif discovery and searching. *Nucleic Acids Res*
671 **37**:W202–8.

672 Black KA, Dos Santos PC. 2015. Shared-intermediates in the biosynthesis of thio-cofactors:
673 Mechanism and functions of cysteine desulfurases and sulfur acceptors. *Biochim*
674 *Biophys Acta* **1853**:1470–1480.

675 Buchan DWA, Jones DT. 2019. The PSIPRED Protein Analysis Workbench: 20 years on.
676 *Nucleic Acids Res* **47**:W402–W407.

677 Cameselle JC, Ribeiro JM, Sillero A. 1986. Derivation and use of a formula to calculate the
678 net charge of acid-base compounds. Its application to amino acids, proteins and
679 nucleotides. *Biochem Educ* **14**:131–136.

680 Cassidy-Amstutz C, Oltrogge L, Going CC, Lee A, Teng P, Quintanilla D, East-Seletsky A,
681 Williams ER, Savage DF. 2016. Identification of a Minimal Peptide Tag for in Vivo and in
682 Vitro Loading of Encapsulin. *Biochemistry* **55**:3461–3468.

683 Chen Y, Holtman CK, Magnuson RD, Youderian PA, Golden SS. 2008. The complete
684 sequence and functional analysis of pANL, the large plasmid of the unicellular
685 freshwater cyanobacterium *Synechococcus elongatus* PCC 7942. *Plasmid* **59**:176–192.

686 Chowdhury C, Chun S, Pang A, Sawaya MR, Sinha S, Yeates TO, Bobik TA. 2015.
687 Selective molecular transport through the protein shell of a bacterial microcompartment
688 organelle. *Proc Natl Acad Sci U S A* **112**:2990–2995.

689 Collier JL, Grossman AR. 1992. Chlorosis induced by nutrient deprivation in *Synechococcus*

690 sp. strain PCC 7942: not all bleaching is the same. *J Bacteriol* **174**:4718–4726.
691 Crowley CS, Cascio D, Sawaya MR, Kopstein JS, Bobik TA, Yeates TO. 2010. Structural
692 insight into the mechanisms of transport across the *Salmonella enterica* Pdu
693 microcompartment shell. *J Biol Chem* **285**:37838–37846.
694 Dos Santos PC. 2017. Chapter Seven - *B. subtilis* as a Model for Studying the Assembly of
695 Fe–S Clusters in Gram-Positive Bacteria In: David SS, editor. *Methods in Enzymology*.
696 Academic Press. pp. 185–212.
697 Duda RL, Teschke CM. 2019. The amazing HK97 fold: versatile results of modest
698 differences. *Curr Opin Virol* **36**:9–16.
699 Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of Coot. *Acta
700 Crystallogr D Biol Crystallogr* **66**:486–501.
701 Gerlt JA. 2017. Genomic Enzymology: Web Tools for Leveraging Protein Family Sequence–
702 Function Space and Genome Context to Discover Novel Functions. *Biochemistry*
703 **56**:4293–4308.
704 Giessen TW. 2016. Encapsulins: microbial nanocompartments with applications in
705 biomedicine, nanobiotechnology and materials science. *Curr Opin Chem Biol* **34**:1–10.
706 Giessen TW, Orlando BJ, Verdegaal AA, Chambers MG, Gardener J, Bell DC, Birrane G,
707 Liao M, Silver PA. 2019. Large protein organelles form a new iron sequestration system
708 with high storage capacity. *eLife* **8**. doi:10.7554/eLife.46070
709 Giessen TW, Silver PA. 2017. Widespread distribution of encapsulin nanocompartments
710 reveals functional diversity. *Nat Microbiol* **2**:17029.
711 Giordano M, Norici A, Hell R. 2005. Sulfur and phytoplankton: acquisition, metabolism and
712 impact on the environment. *New Phytol* **166**:371–382.
713 Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, Ferrin TE. 2018.
714 UCSF ChimeraX: Meeting modern challenges in visualization and analysis. *Protein Sci*
715 **27**:14–25.
716 Grant CR, Wan J, Komeili A. 2018. Organelle Formation in Bacteria and Archaea. *Annu Rev
717 Cell Dev Biol* **34**:217–238.
718 Green LS, Laudenbach DE, Grossman AR. 1989. A region of a cyanobacterial genome
719 required for sulfate transport. *Proc Natl Acad Sci U S A* **86**:1949–1953.
720 He D, Hughes S, Vanden-Hehir S, Georgiev A, Altenbach K, Tarrant E, Mackay CL,
721 Waldron KJ, Clarke DJ, Marles-Wright J. 2016. Structural characterization of
722 encapsulated ferritin provides insight into iron storage in bacterial nanocompartments.
723 *eLife* **5**. doi:10.7554/eLife.18972
724 Jones DT, Cozzetto D. 2015. DISOPRED3: precise disordered region predictions with
725 annotated protein-binding activity. *Bioinformatics* **31**:857–863.
726 Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder:
727 fast model selection for accurate phylogenetic estimates. *Nat Methods* **14**:587–589.
728 Karradt A, Sobanski J, Mattow J, Lockau W, Baier K. 2008. NblA, a key protein of
729 phycobilisome degradation, interacts with ClpC, a HSP100 chaperone partner of a
730 cyanobacterial Clp protease. *J Biol Chem* **283**:32394–32403.
731 Kartal B, de Almeida NM, Maalcke WJ, den Camp HJMO, Jetten MSM, Keltjens JT. 2013.
732 How to make a living from anaerobic ammonium oxidation. *FEMS Microbiol Rev* **37**:428–
733 461.
734 Kerfeld CA, Aussignargues C, Zarzycki J, Cai F, Sutter M. 2018. Bacterial
735 microcompartments. *Nat Rev Microbiol* **16**:277–290.
736 Kim D, Choi J, Lee S, Hyun H, Lee K, Cho K. 2019. Mutants defective in the production of
737 encapsulin show a tan-phase-locked phenotype in *Myxococcus xanthus*. *J Microbiol*
738 **57**:795–802.
739 Kim D, Chung J, Hyun H, Lee C, Lee K, Cho K. 2009. Operon required for fruiting body
740 development in *Myxococcus xanthus*. *J Microbiol Biotechnol* **19**:1288–1294.

741 Koonin EV, Krupovic M. 2018. The depths of virus exaptation. *Curr Opin Virol* **31**:1–8.

742 Kopriva S, Patron NJ, Keeling P, Leustek T. 2008. Phylogenetic Analysis of Sulfate

743 Assimilation and Cysteine Biosynthesis in Phototrophic Organisms In: Hell R, Dahl C,

744 Knaff D, Leustek T, editors. *Sulfur Metabolism in Phototrophic Organisms*. Dordrecht:

745 Springer Netherlands. pp. 31–58.

746 Krupovic M, Dolja VV, Koonin EV. 2019. Origin of viruses: primordial replicators recruiting

747 capsids from hosts. *Nat Rev Microbiol* **17**:449–458.

748 Krupovic M, Koonin EV. 2017. Multiple origins of viral capsid proteins from cellular

749 ancestors. *Proc Natl Acad Sci U S A* **114**:E2401–E2410.

750 Laudenbach DE, Grossman AR. 1991. Characterization and mutagenesis of sulfur-regulated

751 genes in a cyanobacterium: evidence for function in sulfate transport. *J Bacteriol*

752 **173**:2739–2750.

753 Leite FL, Reinhardt TA, Bannantine JP, Stabel JR. 2015. Envelope protein complexes of

754 *Mycobacterium avium* subsp. *paratuberculosis* and their antigenicity. *Vet Microbiol*

755 **175**:275–285.

756 Letunic I, Bork P. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new

757 developments. *Nucleic Acids Res* **47**:W256–W259.

758 Loiseau L, Ollagnier-de-Choudens S, Nachin L, Fontecave M, Barras F. 2003. Biogenesis of

759 Fe-S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine

760 desulfurase. *J Biol Chem* **278**:38352–38359.

761 Mangan NM, Flamholz A, Hood RD, Milo R, Savage DF. 2016. pH determines the energetic

762 efficiency of the cyanobacterial CO₂ concentrating mechanism. *Proc Natl Acad Sci U S*

763 **A** **113**:E5354–62.

764 McHugh CA, Fontana J, Nemecek D, Cheng N, Aksyuk AA, Bernard Heymann J, Winkler

765 DC, Lam AS, Wall JS, Steven AC, Hoiczyk E. 2014. A virus capsid-like

766 nanocompartment that stores iron and protects bacteria from oxidative stress. *EMBO J*

767 **33**:1896–1911.

768 Moesa HA, Wakabayashi S, Nakai K, Patil A. 2012. Chemical composition is maintained in

769 poorly conserved intrinsically disordered regions and suggests a means for their

770 classification. *Mol Biosyst* **8**:3262–3273.

771 Nicholson ML, Gaasenbeek M, Laudenbach DE. 1995. Two enzymes together capable of

772 cysteine biosynthesis are encoded on a cyanobacterial plasmid. *Mol Gen Genet*

773 **247**:623–632.

774 Nicholson ML, Laudenbach DE. 1995. Genes encoded on a cyanobacterial plasmid are

775 transcriptionally regulated by sulfur availability and CysR. *J Bacteriol* **177**:2143–2150.

776 Nichols RJ, Cassidy-Amstutz C, Chaijarasphong T, Savage DF. 2017. Encapsulins:

777 molecular biology of the shell. *Crit Rev Biochem Mol Biol* **52**:583–594.

778 Oltrogge LM, Chaijarasphong T, Chen AW, Bolin ER, Marqusee S, Savage DF. 2020.

779 Multivalent interactions between CsoS2 and Rubisco mediate α -carboxysome formation.

780 *Nat Struct Mol Biol*. doi:10.1038/s41594-020-0387-7

781 Outten FW, Wood MJ, Munoz FM, Storz G. 2003. The SufE protein and the SufBCD

782 complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway

783 for Fe-S cluster assembly in *Escherichia coli*. *J Biol Chem* **278**:45713–45719.

784 Palmer I, Wingfield PT. 2012. Preparation and Extraction of Insoluble (Inclusion-Body)

785 Proteins from *Escherichia coli*. *Curr Protoc Protein Sci*.

786 Pilson MEQ. 2012. *An Introduction to the Chemistry of the Sea*. Cambridge University

787 Press.

788 Radford D. 2015. Understanding the encapsulins: prediction and characterization of phage

789 capsid-like nanocompartments in prokaryotes.

790 Rahmanpour R, Bugg TDH. 2013. Assembly in vitro of *Rhodococcus jostii* RHA1 encapsulin

791 and peroxidase DypB to form a nanocompartment. *FEBS J* **280**:2097–2104.

792 Rohou A, Grigorieff N. 2015. CTFFIND4: Fast and accurate defocus estimation from
793 electron micrographs. *J Struct Biol* **192**:216–221.

794 Sampson EM, Bobik TA. 2008. Microcompartments for B12-dependent 1,2-propanediol
795 degradation provide protection from DNA and cellular damage by a reactive metabolic
796 intermediate. *J Bacteriol* **190**:2966–2971.

797 Scheres SHW. 2012. A Bayesian view on cryo-EM structure determination. *J Mol Biol*
798 **415**:406–418.

799 Schmidt A. 1990. 21 - Sulphur Metabolism: D. Cysteine Synthase In: Lea PJ, editor.
800 Methods in Plant Biochemistry. Academic Press. pp. 349–354.

801 Schmidt A, Christen U. 1978. A factor-dependent sulfotransferase specific for 3'-
802 phosphoadenosine-5'-phosphosulfate (PAPS) in the Cyanobacterium *Synechococcus*
803 6301. *Planta* **140**:239–244.

804 Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, Tandeau de
805 Marsac N, Rippka R, Herdman M, Sivonen K, Coursin T, Laurent T, Goodwin L, Nolan
806 M, Davenport KW, Han CS, Rubin EM, Eisen JA, Woyke T, Gugger M, Kerfeld CA.
807 2013. Improving the coverage of the cyanobacterial phylum using diversity-driven
808 genome sequencing. *Proc Natl Acad Sci U S A* **110**:1053–1058.

809 Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert
810 M, Söding J, Thompson JD, Higgins DG. 2011. Fast, scalable generation of high-quality
811 protein multiple sequence alignments using Clustal Omega. *Mol Syst Biol* **7**.

812 Singh H, Dai Y, Outten FW, Busenlehner LS. 2013. *Escherichia coli* SufE sulfur transfer
813 protein modulates the SufS cysteine desulfurase through allosteric conformational
814 dynamics. *J Biol Chem* **288**:36189–36200.

815 Smart OS, Neduvvelil JG, Wang X, Wallace BA, Sansom MS. 1996. HOLE: a program for the
816 analysis of the pore dimensions of ion channel structural models. *J Mol Graph* **14**:354–
817 60, 376.

818 Snijder J, Kononova O, Barbu IM, Utrecht C, Rurup WF, Burnley RJ, Koay MST,
819 Cornelissen JJLM, Roos WH, Barsegov V, Wuite GJL, Heck AJR. 2016. Assembly and
820 Mechanical Properties of the Cargo-Free and Cargo-Loaded Bacterial
821 Nanocompartment Encapsulin. *Biomacromolecules* **17**:2522–2529.

822 Sutter M, Boehringer D, Gutmann S, Günther S, Prangishvili D, Loessner MJ, Stetter KO,
823 Weber-Ban E, Ban N. 2008. Structural basis of enzyme encapsulation into a bacterial
824 nanocompartment. *Nat Struct Mol Biol* **15**:939–947.

825 Tipping E, Carrick TR, Hurley MA, James JB, Lawlor AJ, Loft S, Rigg E, Sutcliffe DW, Woof
826 C. 1998. Reversal of acidification in upland waters of the English Lake District. *Environ
827 Pollut* **103**:143–151.

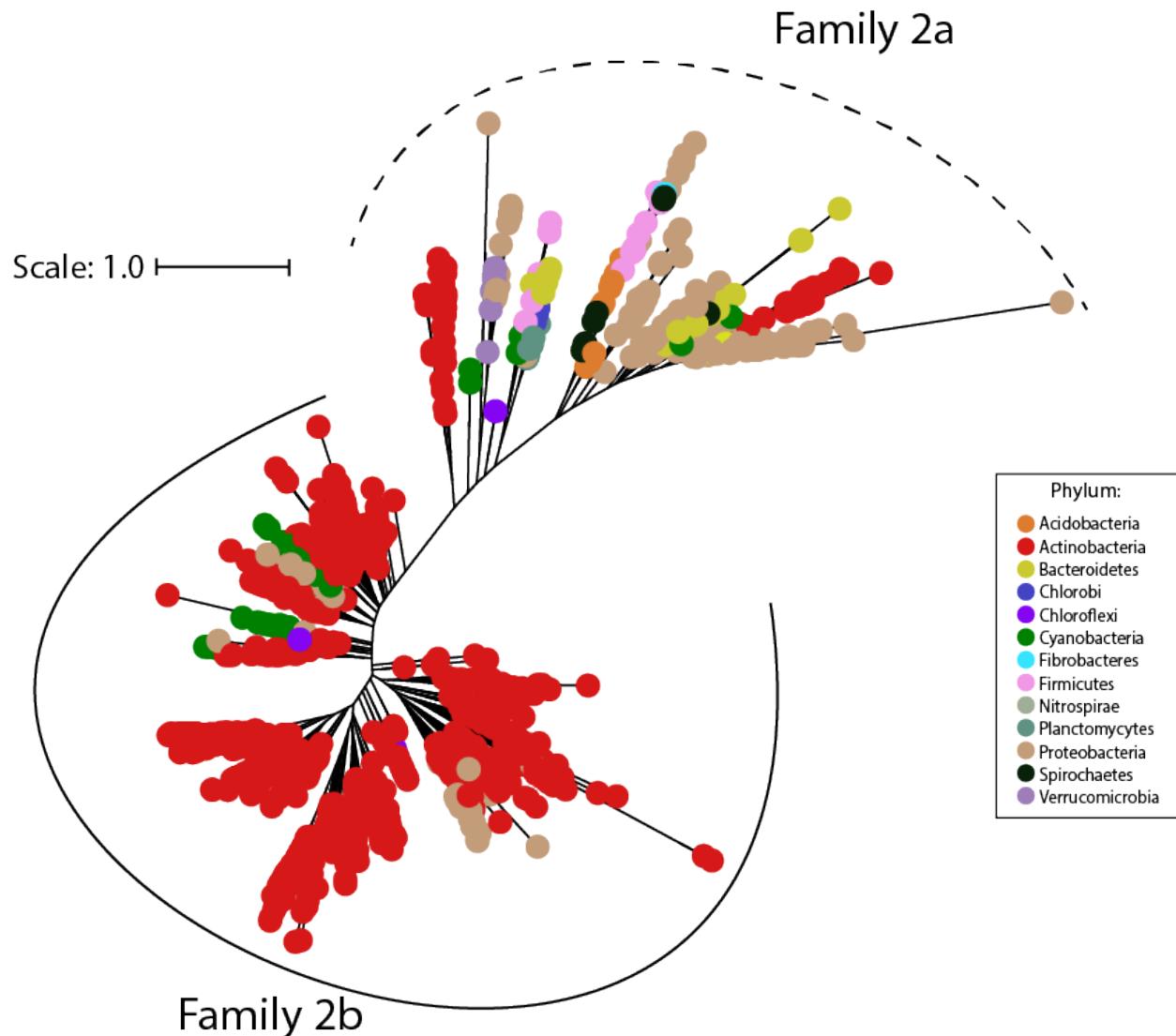
828 Varadi M, Guharoy M, Zsolyomi F, Tompa P. 2015. DisCons: a novel tool to quantify and
829 classify evolutionary conservation of intrinsic protein disorder. *BMC Bioinformatics*
830 **16**:153.

831 Williams EM, Jung SM, Coffman JL, Lutz S. 2018. Pore Engineering for Enhanced Mass
832 Transport in Encapsulin Nanocompartments. *ACS Synth Biol* **7**:2514–2517.

833 Winter N, Triccas JA, Rivoire B, Pessolani MC, Eigmeyer K, Lim EM, Hunter SW, Brennan
834 PJ, Britton WJ. 1995. Characterization of the gene encoding the immunodominant 35
835 kDa protein of *Mycobacterium leprae*. *Mol Microbiol* **16**:865–876.

836 Xing C-Y, Fan Y-C, Chen X, Guo J-S, Shen Y, Yan P, Fang F, Chen Y-P. 2020. A self-
837 assembled nanocompartment in anammox bacteria for resisting intracellular
838 hydroxylamine stress. *Sci Total Environ* **717**:137030.

839 Zallot R, Oberg N, Gerlt JA. 2019. The EFI Web Resource for Genomic Enzymology Tools:
840 Leveraging Protein, Genome, and Metagenome Databases to Discover Novel Enzymes
841 and Metabolic Pathways. *Biochemistry* **58**:4169–4182.


842 Zhang Y, Werling U, Edelmann W. 2012. SLiCE: a novel bacterial cell extract-based DNA

843

cloning method. *Nucleic Acids Res* **40**:e55.

844 **Supplementary Information:**

845

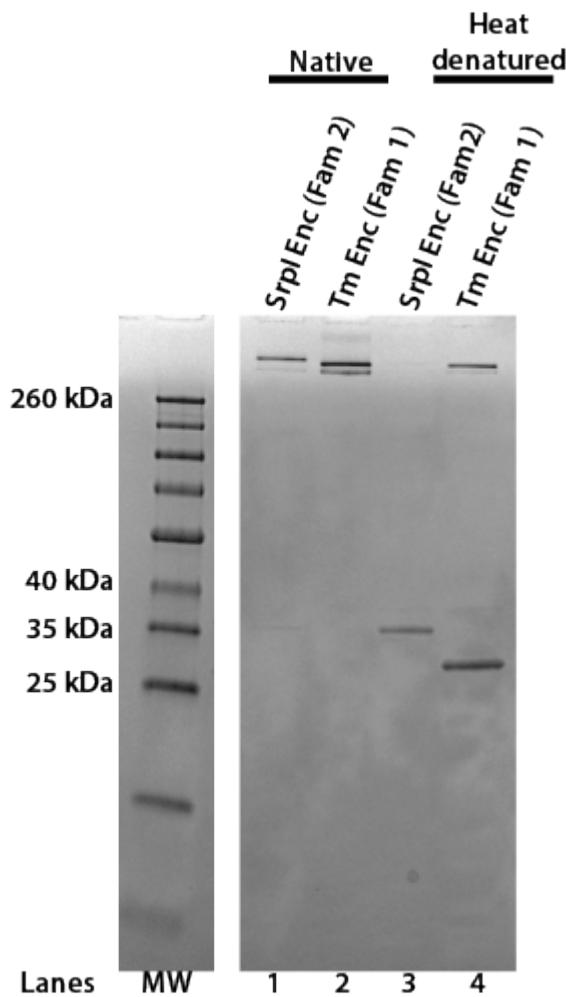
846

847

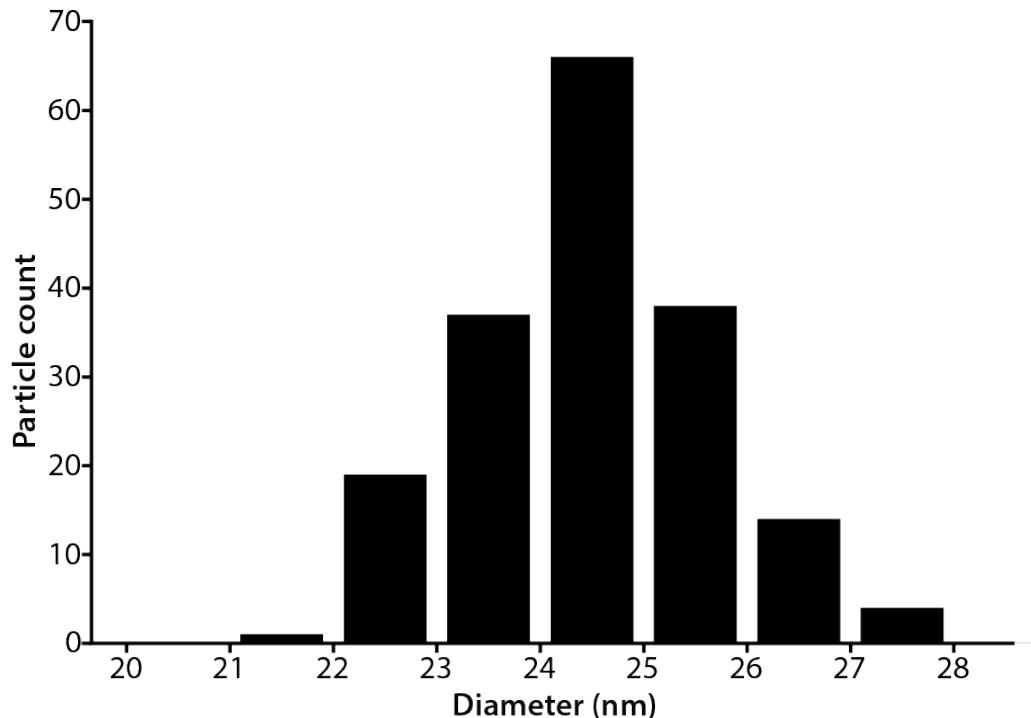
848


849

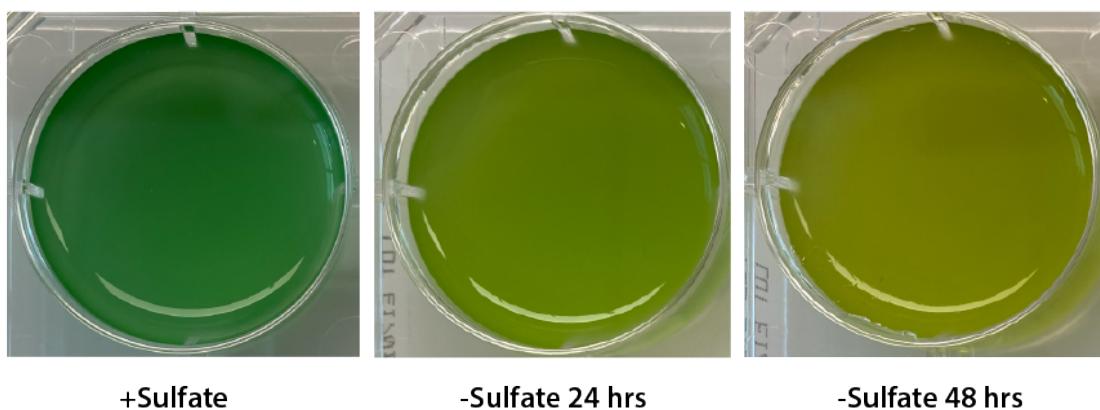
850


851

Supplementary Figure 1-1: Family 2 encapsulins can be divided into two phylogenetically distinct subfamilies. Maximum likelihood phylogenetic tree of 1383 members of Family 2 encapsulins. Family 2a (dashed line grouping) and Family 2b (solid line grouping) represent two subfamilies. Family 2 encapsulins are found throughout 13 different bacterial phyla and are distributed in a polyphyletic fashion. Scale bar, one substitution per site.

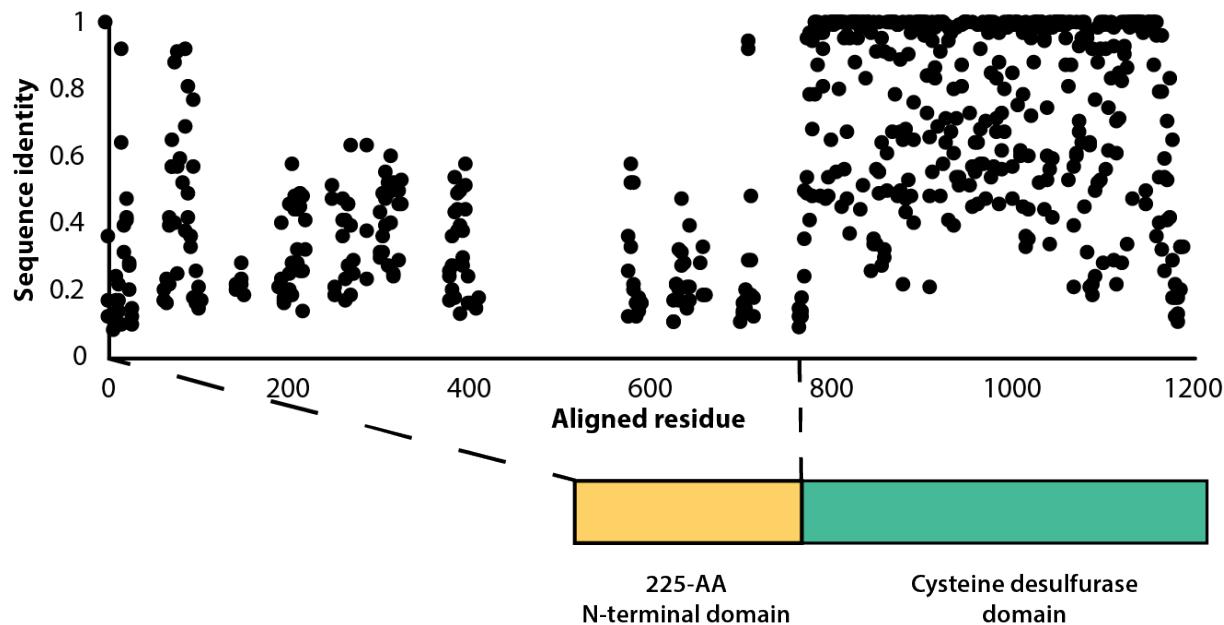

Family 2b genome neighborhood

852
853 **Supplementary Figure 1-2: Family 2b shell genes neighbor 2-methylisoborneol synthase or polyprenyl**
854 **diphosphate synthase.** Schematic of representative genomic arrangements for Family 2b shell genes determined
855 using the EFI-GNT web tool. One or both arrangements (A and B) may be found within a given genome. Family 2b
856 shell genes possess a Crp/Fnr transcriptional regulator domain (grey) within the shell gene.

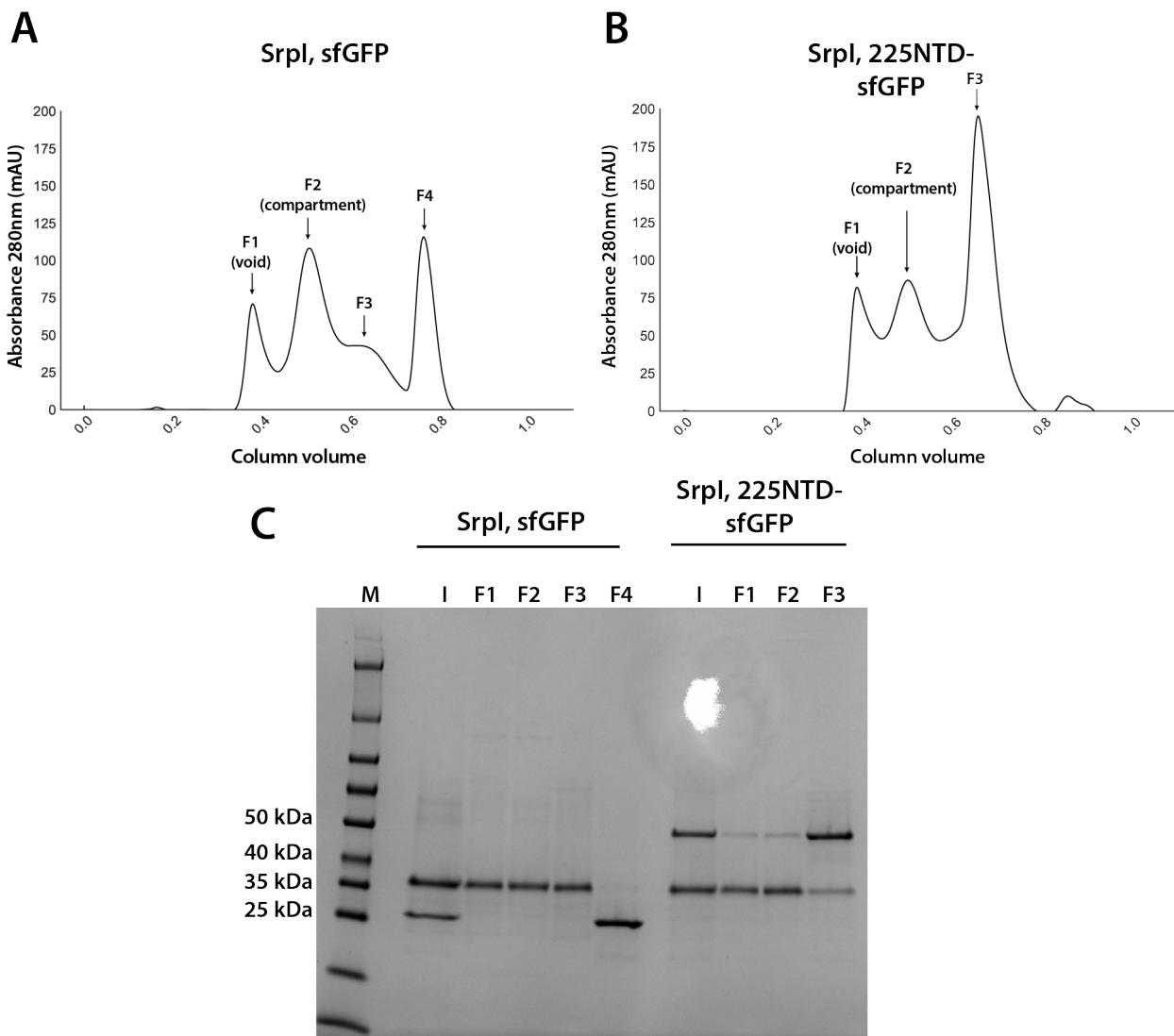


857
858 **Supplementary Figure 1-3: The Family 2 encapsulin, SrpI, forms a high molecular weight**
859 **complex similar to the Family 1 encapsulin from *T. maritima*.** SDS-PAGE analysis of
860 purified *S. elongatus* PCC 7942 Family 2 encapsulin (Srpi Enc) and *T. maritima* Family 1
861 encapsulin (Tm Enc). Lanes 1 and 2 correspond to samples that were not heat-denatured
862 (Native). Lanes 3 and 4 correspond to samples that were heat denatured at 95°C for 15
863 minutes. Molecular weight marker (MW): Spectra™ Multicolor Broad Range Protein Ladder.

864
865
866
867
868


Supplementary Figure 1-4: Size distribution of Srpl encapsulin. Diameter of purified Srpl encapsulin determined by negative stain transmission electron microscopy. Quantification of 180 particles from micrographs performed using FIJI image processing package.

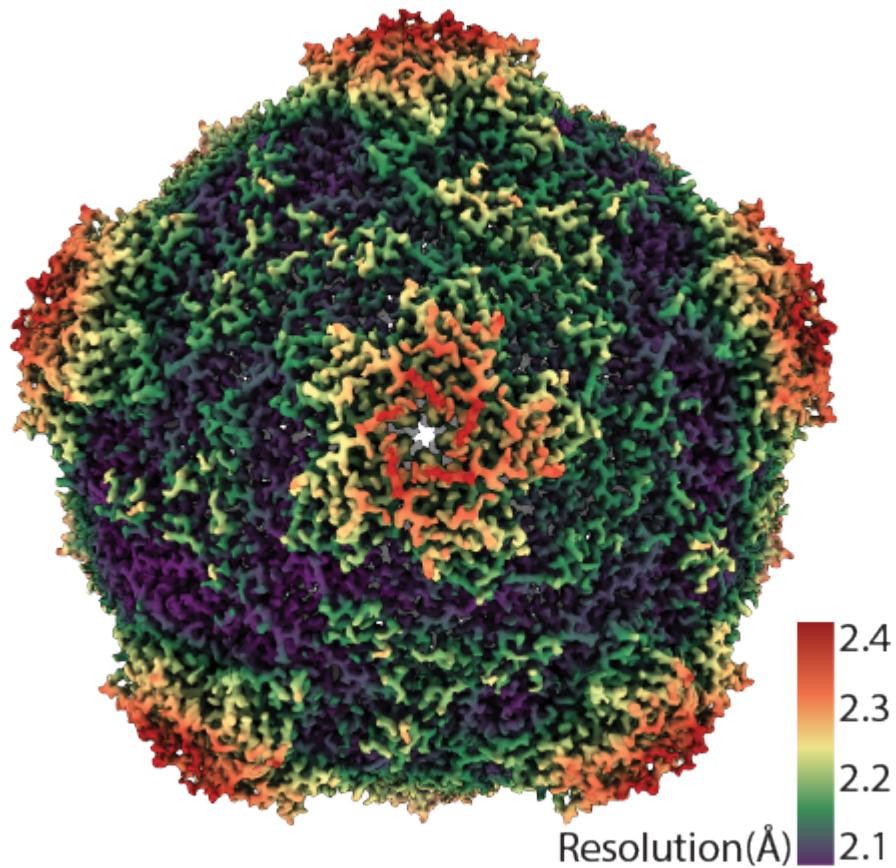
869
870 **Supplementary Figure 2-1: Chlorosis phenotype of sulfur-starved *S. elongatus* PCC 7942.**
871 Liquid cultures of *S. elongatus* PCC 7942 grown in nutrient replete medium (+Sulfate) or under
872 sulfate starvation for 24 hours and 48 hours.


Synpcc7942_2558	-----	0
Synpcc7942_1929	-----	0
Synpcc7942_1255	-----	0
Synpcc7942_B2661	-----	60
Synpcc7942_1738	-----	0
Synpcc7942_2558	-----	0
Synpcc7942_1929	-----	0
Synpcc7942_1255	-----	0
Synpcc7942_B2661	PTTSALAVPQSPATAIANVAPPSSIDERSLAQLAQAVLQDPQLASAIASIFPSVTLPTSA	120
Synpcc7942_1738	-----	0
Synpcc7942_2558	-----	0
Synpcc7942_1929	-----	0
Synpcc7942_1255	-----	0
Synpcc7942_B2661	SVPRSVPPSFLPSLVPTAPPIDEVGVIPHHQLPVSQPTPAGLQQTASSKSGSGFY	180
Synpcc7942_1738	-----	0
Synpcc7942_2558	-----	3
Synpcc7942_1929	-----	0
Synpcc7942_1255	-----	20
Synpcc7942_B2661	IDEQVETAIAALHSNLTVFPQLTTSSIPTLTGAHSAGAVGFDIHQVRDFFPILQERVNGR	240
Synpcc7942_1738	-----	27
Synpcc7942_2558	DPIYLDYHATTPVDSRVVTATMOPFWGEQFGNPASRSRHY--GLEAAAQVARETLATAI	61
Synpcc7942_1929	MSTYLDYSATTSMRPEVLERFTAQAQEWGNAAS-LHQW--GNRAALVLERSRQVVAALI	57
Synpcc7942_1255	---YFNYYGGQGPLSTAALTATIQTAF---ADSQQLGPFSLATGQRVEQISDRLLRTDALL	74
Synpcc7942_B2661	PLVYLDFAATNTQPKRQVAVIDRLSHYYQHENNSNIHRAAHELAA--RSTDAYEAAREQVRHFL	298
Synpcc7942_1738	PLVYLDNAATSQPKRQVATSLWDYYEGYNNSVHVRGVHTLSG--KATDAYEGARQKVRFI	85
Synpcc7942_2558	AA-QPEELIFCSGATEANNLAIKGVAETQHKGQHLITVATEHQAVLSPCRYLES-LGFQ	119
Synpcc7942_1929	QA-EPEAIAFSSGCTEDSNWAIPLSPYLAIDPRP-GHLIISAVEHSIAIRPAAAWLEQ-RGWQ	114
Synpcc7942_1255	QT-QSENITLTENVSVCN--IALWGVD-WQAGDRLLTDCEHPSVIAATAQIAQRFGE	130
Synpcc7942_B2661	NAASTEEVFVRGTTAEINLVAKSWGSQNLLKEGDEIVITWLEHHANIVPWQQLSAETGAR	358
Synpcc7942_1738	NAKTEQEIVYTRNASEAINLVAVSFGMNLFLQAGDEIILSAMHEHNSNLIWPWFQVAAKTGA	145
Synpcc7942_2558	-----	176
Synpcc7942_1929	-----	171
Synpcc7942_1255	-----	190
Synpcc7942_B2661	-----	415
Synpcc7942_1738	-----	202
Synpcc7942_2558	LTVLPVNS--QGLISIVEQVAALARPDITLVLSVMAANNEIGVLQPIIAIGALCRDRGVVF	232
Synpcc7942_1929	VTRLPVDR---SGRIQPADLASAVRPDTDLISVWQSEVGTIQPIAELAAIREHGLF	227
Synpcc7942_1255	LDIWPLQAAVVGAGDLTEAFAAQQLNSRTRLAISHVLWNWYGTWPLAAIAEQAHQRQDCLL	250
Synpcc7942_B2661	LRVVPVDD--YQGQRLDEYQKLLSDRTKIVSFTQVSNALGTITPAKEIIELAHRYGAKV	473
Synpcc7942_1738	LKFVGTE--TGQFDLEQFRSSLSDRTKLVSVVHVSNTLGCCNPVTEIQLAHAKGARV	260
Synpcc7942_2558	-----	276
Synpcc7942_1929	-----	271
Synpcc7942_1255	-----	310
Synpcc7942_B2661	-----	532
Synpcc7942_1738	-----	319
Synpcc7942_2558	EQ-----GLRAGTLAPALIVFGAQATELAIA--EQPTETLRLQTLRDRRLWQ	328
Synpcc7942_1929	ES-----GLRSGTPPIAAIAAFGEAAQLAAA--ELPHETARQLSRLRDLIA	327
Synpcc7942_1255	EKNTQGRPIRSKSDGRYYEIASTSAPYAGLSAIAQADYGTIEDRYNRSRQLAQWLWQ	357
Synpcc7942_B2661	IADVTFEKTVYQAPAPARFEAGTGTGIAADVLGALEYVQKIGL-EATAAYEHLLVHGT	584
Synpcc7942_1738	IADVFLDHATYADLPHKFEAGTAIGEAIALGAADYLTAIGM-DRIHAYEQQLTQHLFQ	260
Synpcc7942_2558	*. * -----	328
Synpcc7942_1929	-----	327
Synpcc7942_1255	-----	357
Synpcc7942_B2661	-----	584
Synpcc7942_1738	-----	375
Synpcc7942_2558	GLQAIQGLHLNQDPQQRLP---SNLNF5IE-GIDPSRLIQR---IRGAIAVSSGSACSS	387
Synpcc7942_1929	VLAQTPRLRLTGDPQIQLP---HHASFIAR-GTTGTSQQLVRAMNRLGFGISGGGSACNS	386
Synpcc7942_1255	SLOALPKVRCLATTLPQ---AGLISFQIDSSQSP---FKIVSHLEQGQLQIRS-----	387
Synpcc7942_B2661	LLS1QPLRRLIGTAPHK---AAVLFSVLE-GFSP---EAIGQALNREGIAVRAFHICAQ	626
Synpcc7942_1738	RRAEIPELTVYQGTPPEQDQRDRAALAAFTAG-AVHP---HDLSTILDQSGIAIRAGHHTQ	419
Synpcc7942_2558	* : . : * : * - . : .	387
Synpcc7942_1929	GNAEPSPHVLTAGRSPDLAHSLRIGLGRFTIAEIIDRTLEILIAIQAER-SRLTRHKK	386
Synpcc7942_1255	GRSQPSPVLLAMGYSPQEALAGIRFSLGRSTQLAEEAAIALRSALHSPQASLLSPA	387
Synpcc7942_B2661	-----	626
Synpcc7942_1738	-----	419
Synpcc7942_2558	G 388	0
Synpcc7942_1929	- 386	0
Synpcc7942_1255	- 387	0
Synpcc7942_B2661	- 626	0
Synpcc7942_1738	- 419	0

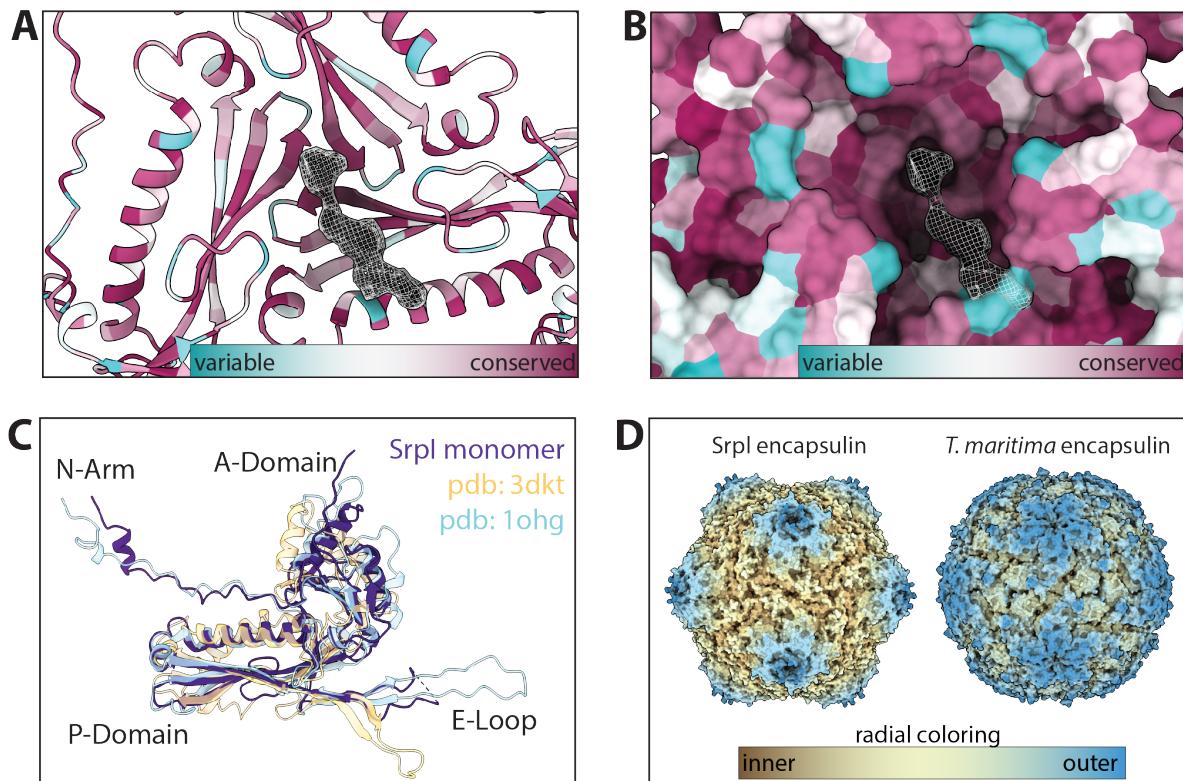
874 **Supplementary Figure 3-1: Srpl-associated cysteine desulfurase, CyD, possesses a unique N-terminal**
875 **domain that is absent in the four other cysteine desulfurase genes in the *S. elongatus* PCC 7942 genome.**
876 Multiple sequence alignment of the Srpl encapsulin-associated cysteine desulfurase (Synpcc7942_B2661) and the
877 other genomic cysteine desulfurases (Synpcc7942_2558, Synpcc7942_1929, Synpcc7942_1255,
878 Synpcc7942_1738). Alignment was performed using ClustalOmega. An asterisk (*) indicates a fully conserved
879 residue, a colon (:) indicates conservation between amino acids of strongly similar properties, and a period (.)
880 indicates conservation between amino acids of weakly similar properties.


881
882 **Supplementary Figure 3-2: Sequence conservation of the F2A encapsulin-associated cysteine desulfurase is**
883 **sparse throughout the disordered N-terminal domain.** Percent sequence identity from multiple sequence
884 alignment of 997 F2A encapsulin-associated cysteine desulfurase sequences.

885
886


887
888

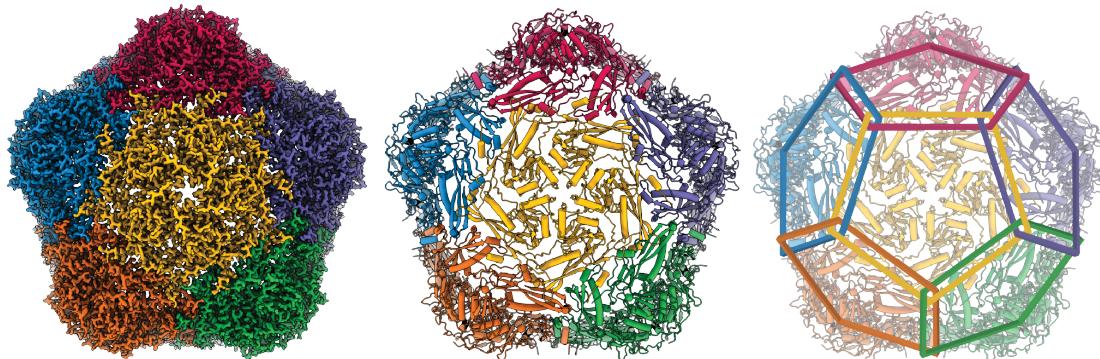
Supplementary Figure 4-1: Analysis of sfGFP and 225NTD-sfGFP loading into Srpl encapsulin. (A) and (B) size exclusion chromatogram of Srpl encapsulin shell protein (35 kDa) refolded in the presence of untagged sfGFP (27kDa) and 225NTD-sfGFP (50kDa) respectively using a Superose™ 6 Increase column (GE Life Sciences). Fractions are labeled F1-F4 (C) SDS-PAGE analysis of fractions from size exclusion (F1-4), the pre-size exclusion input (I), and a molecular weight marker (M).


894
895
896
897
898

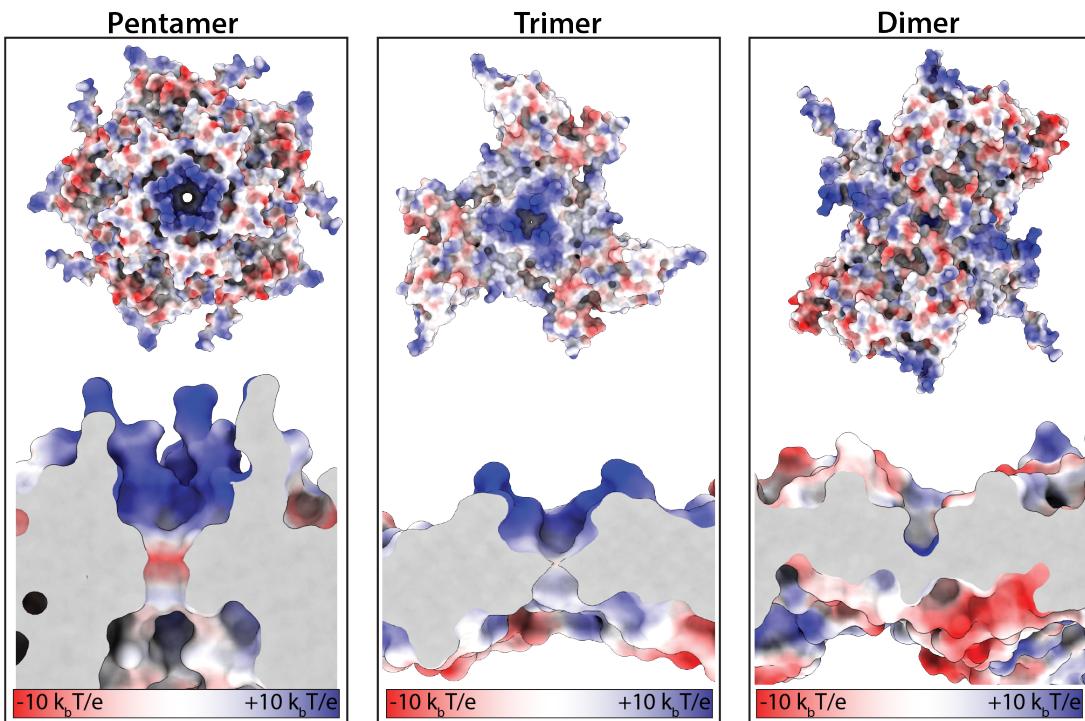
Supplementary Figure 6-1: Processing Pipeline for the Srpl encapsulin. Processing workflow within RELION that used to reconstruct the holo-Srpl structure. An identical approach was used for the apo-Srpl encapsulin. Once both these structures were determined, symmetry expansion and focused classification was used to compare subtle differences in the density (not shown, see Figure 6E).

899
900
901

Supplementary Figure 6-2: CryoEM resolution map of Srpl encapsulin.



902
903
904
905
906
907
908
909


Supplementary Figure 6-3: Secondary, Tertiary, and Quaternary homology between Srpl and other known encapsulins. (A) and (B) Sequence conservation of Family 2a encapsulins mapped onto the atomic model and surface display for the Srpl shell respectively (conservation was calculated via ConSurf). (C) single subunit of Srpl compared to other proteins with a known HK97 structure: The Family 1 encapsulin from *T. maritima* (pdb: 3DKT) and the HK97 bacteriophage capsid (pdb: 1OHG) (D) Radial coloring to show the spikes of the Srpl encapsulin morphology in comparison with the *T. maritima* encapsulin.

910
911
912

Chainmail topology of Srpl encapsulin

Supplementary Figure 6-4: Chainmail-like topography of Srpl. Coloring of individual subunits highlights the chainmail overlapping topology of the Srpl encapsulin.

913
914
915
916

Supplementary Figure 6-5: Electrostatic surface charges at the symmetry axes of the SrPI shell. Close up and slice-through views of the five-fold, three-fold, and two-fold axes. Surfaces colored according to electrostatic potential (red=negative, blue=positive).

917

Encapsulin Family	Count
Family 1	3023
Family 2	5540

918

919

920

Supplementary Table 1: Total counts of Family 1 and Family 2 encapsulins found in prokaryotic genomes.

921

Number of total Family 1 and Family 2 homologs compiled using NCBI BLASTp (E-value < 0.01). Accession IDs WP_004080898.1 (*T. maritima* encapsulin shell) and WP_011055154.1 (*S. elongatus* PCC 7942) encapsulin shell genes were used as Family 1 and Family 2 queries respectively. Results based on NCBI's Genome Information resource (February 2020).

924

925

Family 2a co-occurrence					
Shared name	Description	pfam	Co-occurrence	Median gene distance	% Occurrence
aminotran_5	Amino transferase class-V	PF00266	1208 / 1273	1	94.8939513
Hexapep	Bacterial transferase hexapeptide	PF00132	715 / 1273	2	56.16653574
Rhodanese	Rhodanese-like domain	PF00581	620 / 1273	3	48.70384918
BPD_transp_1	Binding-protein-dep	PF00528	483 / 1273	7	37.9418696
abc_tran	ABC transporter	PF00005	379 / 1273	6	29.77219167
HTH_1-LysR	Bacterial regulatory helix turn helix	PF00126-PF03466	338 / 1273	4	26.55145326
Hexapep-SATase	Bacterial transferase hexapeptide	PF00132-PF06426	297 / 1273	1	23.33071485
HTH_3	Helix-turn-helix	PF01381	287 / 1273	1	22.54516889
PALP	Pyridoxal-phosphate dependent enzyme	PF00291	287 / 1273	2	22.54516889
N/A	N/A	No assigned PFAM	1058 / 1273	6	82.48232522

926

927

Supplementary Table 2: Genome neighborhood analysis of Family 2a shell genes. Co-occurrence and median gene distance of genes found to neighbor Family 2a shell genes using the EFI-GNT web tool. Open reading frames neighboring Family 2a shell genes in the European Nucleic Acid (ENA) database are grouped by shared pfam values.

928

929

930

Family 2b co-occurrence table					
shared name	description	pfam	co-occurrence	median gene distance	% occurrence
acetyltransf_1	Acetyltransferase (GNAT) family	PF00583	463 / 2130	2	21.7370892
cNMP_binding	cyclic nucleotide-binding domain	PF00027	768 / 2130	1	36.05633803
Amindase_2	N-acetylmuramoyl-L-alanine amidase	PF01510	440 / 2130	1	20.657277
polyprenyl_synt	Polyprenyl synthase	PF00348	869 / 2130	1	40.79812207
PALP	Pyridoxal-phosphate dependent enzyme	PF00291	568 / 2130	3	26.66666667
sigma70 r3-Sigma70	Sigma-70 region3	PF04539-PF04542-PF04545	503 / 2130	6	23.66197183
Na_H_Exchanger	Sodium/hydrogen exchanger	PF00999	463 / 2130	3	21.7370892
az-UBP	Zn-finger in ubiquitin-hydrolases	PF02148	434 / 2130	4	20.37558685
N/A	N/A	No assigned PFAM	2088 / 2130	5	98.02816901

931

932

Supplementary Table 3: Genome neighborhood analysis of Family 2b shell genes. Co-occurrence and median gene distance of genes found to neighbor Family 2b shell genes using the EFI-GNT web tool. Open reading frames neighboring Family 2b shell genes in the European Nucleic Acid (ENA) database are grouped by shared pfam values.

933

934

NCBI Accession ID	Species	Environment
AJD58949.1	<i>Synechococcus</i> sp. UTEX2973	Freshwater
WP_011055154.1	<i>Synechococcus</i> sp.	Freshwater
QFZ92646.1	<i>Synechococcus elongatus</i> PCC11802	Freshwater
AZB72703.1	<i>Synechococcus elongatus</i> PCC11801	Freshwater
WP_015125275.1	<i>Synechococcus</i> sp.PCC6312	Freshwater
WP_002735851.1	<i>Microcystis aeruginosa</i>	Freshwater
TRU86312.1	<i>Microcystis novacekii</i> Mn_MB_F_20050700_S1	Freshwater
TRV47998.1	<i>Microcystis panniformis</i> Mp_GB_SS_20050300_S99	Freshwater
WP_104397895.1	<i>Microcystis aeruginosa</i>	Freshwater
GBE76399.1	<i>Microcystis aeruginosa</i> NIES-87	Freshwater
WP_061431234.1	<i>Microcystis aeruginosa</i>	Freshwater
REJ53903.1	<i>Microcystis aeruginosa</i> DA14	Freshwater
WP_002750434.1	<i>Microcystis</i> sp.	Freshwater
NCQ89664.1	<i>Microcystis aeruginosa</i> LG13-13	Freshwater
WP_002786081.1	<i>Microcystis aeruginosa</i>	Freshwater
WP_014276787.1	<i>Arthospira platensis</i>	Freshwater
WP_006670576.1	<i>Limnospira</i>	Freshwater
WP_152088332.1	<i>Arthospira platensis</i>	Freshwater
WP_006619903.1	<i>Arthospira platensis</i>	Freshwater
WP_054465623.1	<i>Planktothricoides</i> sp.SR001	Freshwater
WP_006625603.1	<i>Arthospira platensis</i>	Freshwater
WP_130756769.1	<i>Microcystis aeruginosa</i>	Freshwater
KEF42600.1	<i>Cyanobium</i> sp.CACIAM14	Freshwater
WP_106222825.1	<i>Aphanothece minutissima</i>	Freshwater
WP_015108669.1	<i>Cyanobium</i> sp.	Freshwater
WP_094554187.1	<i>Synechococcus</i> sp.1G10	Freshwater
WP_048016926.1	<i>Synechococcus</i> sp.GFB01	Freshwater
GAL91719.1	<i>Microcystis aeruginosa</i> NIES-44	Freshwater
WP_008180793.1	<i>Moorea producens</i>	Brackish water
WP_071103433.1	<i>Moorea producens</i>	Brackish water
WP_070391731.1	<i>Moorea producens</i>	Brackish water
WP_075897528.1	<i>Moorea bouillonii</i>	Brackish water
WP_008180789.1	<i>Moorea producens</i>	Brackish water
WP_071103431.1	<i>Moorea producens</i>	Brackish water

935
936
937
938
939

Supplementary Table 4: Family 2a shell genes are found in freshwater and brackish water cyanobacteria, but not marine cyanobacteria. NCBI BLASTp results of Family2a shell homologs found in cyanobacteria. Results based on NCBI's Genome Information resource (February 2020). Environment annotations based on the Joint Genome Institute (JGI) Integrated Microbial Genomes and Microbiomes (IMG/M) database and (Shih et al., 2013).

Data collection, 3D reconstruction, and refinement statistics.

Dataset	Holo-SrP1	Apo-SrP1	SrP1-sfGFP	Holo-SrP1 (neg stain)	Apo-SrP1 (neg stain)
Microscope	Titan Krios	Talos Arctica	Talos Arctica	Tecnai F20	Tecnai F20
Stage type	Autoloader	Autoloader	Autoloader	Side entry	Side entry
Voltage (kV)	300	200	200	120	120
Detector	Gatan K2	Gatan K3	Gatan K3	Gatan UltraScan	Gatan UltraScan
Data Collection Software	SerialEM	SerialEM	SerialEM	Legion	Legion
Acquisition mode	Super-resolution	Super-resolution	Super-resolution	CCD	CCD
Physical pixel size (Å)	0.575	0.569	0.569	1.37	1.37
Defocus range (μm)	1.0-2.5	1.0-2.5	1.0-2.5	0.4-1.5	0.4-1.5
Electron exposure (e ⁻ /Å ²)	35	40	40	50	50
Reconstruction	EMD-XXXX				
Session	19Jan30	19Sep22	19Apr09	19Jul09	19Jul09
Software	RELION 3.1	RELION 3.1	RELION 3.1	RELION 3.1	RELION 3.1
Particles picked	15,686	57,341	60,913	5,901	4,807
Particles final	11,980	34,425	36,618	5,901	4,807
Extraction box size (pixels)	512x512x512	360x360x360	360x360x360	256x256x256	256x256x256
Final pixel size (Å)	0.8625	1.14	1.14	5.48	5.48
Accuracy rotations (°)	0.24	0.36	0.34	1.1	1.3
Accuracy translations (Å)	0.29	0.4	0.4	1.35	1.5
Map resolution (Å)	2.2	3.1	3.3	~18	~18
Map sharpening B-factor (Å ²)	-35	-70	-70	NA	NA
Coordinate refinement					
Software	PHENIX				
Refinement algorithm	REAL SPACE				
Resolution cutoff (Å)	2.2				
FSC _{model-vs-map} =0.5 (Å)	2.3				
Model	PDB-XXXX				
Number of residues	280				
B-factor overall	20				
R.m.s. deviations					
Bond lengths (Å)	0.004				
Bond angles (°)	0.598				
Validation					
Molprobity clashscore	4.1				
Rotamer outliers (%)	0.8				
C _β deviations (%)	0.0				
Ramachandran plot					
Favored (%)	96.7				
Allowed (%)	3.3				
Outliers (%)	0.0				

940
941

Supplementary Table 5: Data collection, reconstruction, and processing statistics.