
Learning What a Good Structural Variant Looks Like

Murad Chowdhury 1 Ryan M. Layer 1 2

Abstract

Structural variations (SVs) are an important class
of genetic mutations, yet SV detectors still suffer
from high false-positive rates. In many cases, hu-
mans can quickly determine whether a putative
SV is real by merely looking at a visualization
of the SV’s coverage profile. To that end, we
developed Samplot-ML, a convolutional neural
network (CNN) trained to genotype genomic dele-
tions using Samplot visualizations that incorpo-
rate various forms of evidence such as genome
coverage, discordant pairs, and split reads. Using
Samplot-ML, we were able to reduce false posi-
tives by 47% while keeping 97% of true positives
on average across several test samples.

1. Introduction
Structural variants (SV), which include large (≥ 50 base
pairs) deletions, duplications, insertions, inversions and
translocations, are responsible for most variation in the hu-
man population and cause a number of genetic diseases
(Weischenfeldt et al., 2013). Unfortunately, SV callers often
suffer from a high false positive rate, so steps must be taken
to filter SV call sets.

Many SVs can be validated by manually inspecting the
aligned reads around the called region. Samplot (Layer,
2020) was developed for such a purpose and provides a visu-
alization of alignments in a given locus for a set of samples.
For samples sequenced by Illumina paired-end sequencing,
Samplot incorporates multiple forms of evidence to help
determine the validity of a putative SV call:

1. Genome coverage The number of reads aligned to the
reference genome at each position across the region of
interest. Low signal in the region spanning the reported
breakpoints can be evidence of a deletion.
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2. Discordant read pairs Paired-end reads that deviate
too far from the mean insert size. Clusters of these
discordant pairs often span an SV breakpoint.

3. Split Reads Reads with sequences that map to differ-
ent regions of the reference genome. These reads also
cluster around breakpoints and confer better spatial
resolution than discordant pairs.

Identifying a reported deletions as a false positive becomes
easy and fast with these visualization tools (Belyeu et al.,
2018). Unfortunately, manual curation of SV callsets is
simply not feasible since typical SV callsets can contain
thousands of regions. In this paper, we present Samplot-ML,
a convolutional neural network (CNN) model built on top of
Samplot to be able to automatically genotype putative SVs.
While Samplot-ML inherently supports any SV type, the cur-
rent model only includes deletions. There are too few called
duplications, insertions, inversions, and translocations in the
available data to train a high-quality model. For example,
the 1,000 Genomes Project phase 3 SV call set included
40,922 deletions, 6,006 duplications, 162 insertions, 786
inversions, and no translocations. We expect this limitation
to be temporary. The workflow for Samplot-ML is simple.
Given a whole genome sequenced (WGS) sample (BAM or
CRAM) as well as a set of putative deletions (VCF), images
of each region are generated using Samplot. Samplot-ML
then re-genotypes each call based on its image. The result
is a call set where most false postives are flagged. Using
Samplot-ML, we demonstrate a 47% reduction in false posi-
tives while keeping 97% of true positives on average across
samples from the Genome in a Bottle (GiaB) project (Zook
et al., 2019) and the Human Genome Structural Variation
(HGSV) consortium (Chaisson et al., 2019). Code and mod-
els for Samplot-ML are open source and freely available at
github.com/mchowdh200/samplot-ml.

2. Related Work
SV-Plaudit As described above, Samplot makes it easy
to be able to verify whether or not a putative SV is a True
positive. SV-Plaudit (Belyeu et al., 2018) is a framework
built on top of Samplot and Amazon Web Services to enable
manual curation of SVs using a simple web interface. SV-
plaudit can output a score for each reported SV based on
how many annotators labelled a region as a true positive or
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Figure 1. Top: Samplot images depicting SV calls. Low coverage,
and discordant read pairs (black lines), are evidence of a deletion.
Bottom: Typical workflow for Samplot-ML.

false positive.

Duphold Many SV callers make use of discordant and
split reads but do not incorporate depth of coverage.
Duphold (Pedersen & Quinlan, 2019) is a heuristic-based
method for filtering false-positive duplications and deletions.
For each input region, Duphold computes a variety of met-
rics, including DHFFC (Duphold Flanking Fold Change),
which, as the name suggests, computes the fold change
in coverage between the reported region and the flanking
regions.

SV2 SV2 (Antaki et al., 2018) is a support vector machine
trained on SV data from the 1000 Genomes Project (1000
Genomes Project Consortium et al., 2015) that genotypes
duplications and deletions. SV2 extracts various features
from each region such as depth of coverage, number of
discordant/split reads, and the heterozygous SNV ratio.

3. Methods
3.1. Training Set

Our model was trained on data from 1,000 Genomes Project
(1kg)(1000 Genomes Project Consortium et al., 2015), in-
cluding the phase three SV call set and the newer high
coverage alignments. We excluded individuals present in or
related to individuals in our test sets (NA12878, NA12891,
NA12892, HG00512, HG00513, HG00731, HG00732,

NA19238, NA19239)

True Positive Regions Heterozygous and homozygous
deletions were sampled from the GRCh38 liftover of the
phase 3 integrated SV map (Sudmant et al., 2015). Although
this set contains high confidence SV calls, there were still a
few false positives. To minimize the possibility of sampling
a false positive, we filter this set using Dupholds DHFFC
metric (ie. remove regions with DHFFC > 0.7). After
filtering, we sampled 150,000 heterozygous deletions and
50,000 homozygous deletions.

True Negative Regions Care must be taken to sample
“true negatives” properly. Before choosing a negative set,
we must consider the use case of our model. In practice,
our model will remove false positives from the output set of
an SV caller or genotyper. That means that our model will
encounter two different classes of regions: those containing
real SVs and edge cases that confused the SV caller’s filters.
While we could have sampled regions from homozygous
reference samples in the 1kg calls (i.e., samples without
deletions) to get “true negatives”, these regions would have
had very few discordant alignments and level depths of cov-
erage. Crucially, they would look nothing like the regions
that we would want our model to filter.

We took a more principled approach to pick true negatives.
Many SV callers have the option to provide a set of “ex-
clude regions”, which prevents the caller from considering
potentially problematic regions of the genome (Li, 2014).
Since these regions are enriched for false positives, we used
these regions’ calls as our true negatives. To get variants
in these regions, we recalled SVs on the 1kg high cover-
age alignments using Lumpy(Layer et al., 2014) with SV-
Typer(Chiang et al., 2015). We then selected areas in the
resultant calls that intersected problematic regions. To en-
sure that no true positives were selected, we filtered out
regions with a DHFFC ≤ 0.7. Finally, to construct our set
of true negatives, we took roughly 35,000 “exclude regions”
and 15,000 homozygous reference regions from the 1kg call
SV call set.

3.2. Test Sets

For testing, we used alignments from four individuals from
Genome in a Bottle (HG002) and the Human Genome
Structural Variation consortium (HG00514, HG00733,
NA19240). For HG002, we obtained the alignements
from (Pedersen & Quinlan, 2019) and used the GiaB
v0.6 gold standard vcf (Zook et al., 2019) as our truth
set. For HG00514, HG00733, NA19240, we obtained
alignments from ftp://ftp.1000genomes.ebi.
ac.uk/vol1/ftp/data_collections/hgsv_
sv_discovery/data/ and the truth set vcf from ftp:
//ftp.ncbi.nlm.nih.gov/pub/dbVar/data/
Homo_sapiens/by_study/genotype/nstd152.
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3.3. Image generation

To generate images in both the training and test sets, we
used the following samplot command: samplot.py -c
$chrom -s $start -e $end --min mqual 10
-t DEL -b $bam -o $out file -r $fasta
Where chrom, start, end are the genomic region, bam
is the alignment file, and fasta is the reference genome
file. Additionally, for SVs with length > 5000 bases, we
added --zoom 1000 which only shows 1000 bp centered
around each breakpoint. After an image is generated, we
crop out the plot text and axes using imagemagik (The
ImageMagick Development Team). Finally, before input
into Samplot-ML, the vertical and horizontal dimensions
are reduced by a factor of eight.

3.4. Model

Samplot-ML is a resnet (He et al., 2015) like model that
takes a Samplot image of a putative deletion SV as input and
predicts whether it is homozygous reference, heterozygous,
or homozygous alternate. For model details, see Figure 2.

3.5. Training Procedure

From our training set, we held out regions from chromo-
somes 1, 2, and 3 to use as a validation set. To train
our model, we used stochastic gradient descent with warm
restarts (SGDR) (Loshchilov & Hutter, 2017). The initial
learning rate was 0.2 and decayed with a cosine annealing
schedule. The initial restart period was set to two epochs
and doubled after each restart. We trained for 50 epochs, and
kept the model with the best validation loss after training
was complete.

3.6. Testing Procedure

To evaluate the efficacy of Samplot-ML we called SVs
and genotyped deletions using both Lumpy/SVTyper and
Manta (Chen et al., 2016) on each of our test samples.
We then filtered both Lumpy and Manta callsets with
Duphold (rejecting calls with DHFFC ≤ 0.7), SV2, and
Samplot-ML. To compare the filtered call sets, with their
respective gold standards we used Truvari (tru, 2020),
which compares regions in VCFs based on percent overlap
as well as breakpoint accuracy. We used the following
truvari command: truvari -b $truth set -c
$filtered call set -o $out dir --sizemax
1000000 --sizemin 300 --sizefilt 270
--pctovl 0.6 --refdist 20.

4. Results
Using Samplot-ML, we were able to reduce false positives
by 47% while preserving 97% of true positives on average

Figure 2. Samplot-ML model architecture. GeLU refers to the
Gaussian error linear unit (Hendrycks & Gimpel, 2018).

across all test samples, consistently matching or beating
Duphold and SV2 in F1 scores. For more detailed compar-
isons see Table 1 and Figure 3

5. Conclusion
We present Samplot-ML, a convolutional neural network
model that filters out potential false-positive deletions in SV
call sets. Samplot-ML outperformed Duphold and SV2.

In many ways training a CNN to discriminate between differ-
ent classes of images is relatively straightforward, given the
current state of the art. The real challenge is in selecting pos-
itive and negative training examples that accurately reflect
what real-world users will ask the model to classify. Data
repositories like the 1,000 Genomes Project and ENCODE
provide VCF or BED files that describe where genomic
features occur (e.g., structural variants, regulatory elements,
etc.). In the context of our classification task, these are good
positive training examples. But, to accurately distinguish
between a true positive and a false positive, we must also
sample good negative examples.

In genome feature detection broadly, and SV detection
specifically, negatives far outnumber positives. To achieve
maximum classification performance, collecting negative
training examples must be given as much consideration as
any other aspect of the machine learning architecture. Just
as it is highly unlikely that any genomic detection algo-
rithm would return a random genomic region as a putative
event, we cannot expect that randomly sampled areas of the
genome that do not overlap true positives will be good nega-
tive examples. Special care must be taken to sample from
regions enriched with edge cases that pass detection filters
but do not contain true positives. By incorporating putative
false positive areas of the genome, we were able to improve
the performance of Samplot-ML immensely because these
regions strongly resembled the types of false positives that
were being made by SV callers.
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Figure 3. True positive and false postive comparisons between all methods.

Sample Caller Filter TP FP FN Precision Recall F1

HG002

Lumpy/SVTyper

None 1787 452 893 0.798 0.667 0.72
DHFFC 1764 276 916 0.865 0.658 0.747
SV2 880 83 4012 0.914 0.180 0.301
Samplot-ML 1758 273 922 0.866 0.656 0.746

Manta

None 1708 265 972 0.866 0.637 0.734
DHFFC 1687 175 993 0.906 0.629 0.743
SV2 799 41 4093 0.951 0.163 0.279
Samplot-ML 1699 187 981 0.901 0.634 0.744

HG00514

Lumpy/SVTyper

None 1860 860 858 0.684 0.684 0.684
DHFFC 1837 596 881 0.755 0.676 0.713
SV2 811 652 1907 0.554 0.298 0.388
Samplot-ML 1803 372 915 0.829 0.663 0.737

Manta

None 1779 502 939 0.780 0.654 0.712
DHFFC 1759 328 959 0.843 0.647 0.731
SV2 748 345 1970 0.684 0.275 0.393
Samplot-ML 1751 221 967 0.888 0.644 0.747

HG00733

Lumpy/SVTyper

None 1236 1066 1505 0.537 0.451 0.490
DHFFC 1216 760 1525 0.615 0.443 0.520
SV2 842 760 1899 0.526 0.307 0.388
Samplot-ML 1181 517 1560 0.696 0.431 0.532

Manta

None 1774 455 967 0.796 0.647 0.714
DHFFC 1753 306 988 0.851 0.640 0.730
SV2 707 317 2034 0.690 0.258 0.376
Samplot-ML 1736 204 1005 0.895 0.633 0.741

NA19240

Lumpy/SVTyper

None 1494 1070 1711 0.583 0.566 0.518
DHFFC 1470 801 1735 0.647 0.459 0.537
SV2 1025 708 2180 0.591 0.320 0.415
Samplot-ML 1414 628 1791 0.692 0.441 0.539

Manta

None 2067 520 1138 0.799 0.645 0.714
DHFFC 2054 359 1151 0.851 0.641 0.731
SV2 855 362 2350 0.703 0.267 0.387
Samplot-ML 2019 272 1186 0.881 0.630 0.735

Table 1. Complete Samplot-ML comparison statistics.
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