

1 ***BrphyB* is critical for rapid recovery to darkness in mature *Brassica rapa***
2 **leaves**

3 Andrej A. Arsovski¹, Joseph E. Zemke¹, Morgan Hamm¹, Lauren Houston¹ Andrés
4 Romanowski², Karen J. Halliday², Nathalie Nesi³ and Jennifer L. Nemhauser¹

5 ¹Dept of Biology, University of Washington, Seattle, WA 98102

6 ²Institute for Molecular Plant Sciences, School of Biological Sciences, University of
7 Edinburgh, Edinburgh EH9 3BF, United Kingdom

8 ³IGEPP, INRA, Agrocampus Ouest, Université de Rennes, Université Bretagne-
9 Loire, 35650 Le Rheu, France.

10

11 **HIGHLIGHT**

12 *BrphyB* plays a central role in recovery from darkness and return to carbon fixation
13 by regulating photosynthesis and light response genes with those targeted to the
14 chloroplast especially affected.

15

16 **ABSTRACT**

17 Crop biomass and yield are tightly linked to how the light signaling network translates
18 information about the environment into allocation of resources, including
19 photosynthates. Once activated, the phytochrome (phy) class of photoreceptors
20 signal and re-deploy carbon resources to alter growth, plant architecture, and
21 reproductive timing. *Brassica rapa* has been used as a crop model to test for
22 conservation of the phytochrome–carbon network. *B. rapa phyB* mutants have
23 significantly decreased or absent CO₂-stimulated growth responses in seedlings, and
24 adult plants have reduced chlorophyll levels, photosynthetic rate, stomatal index, and
25 seed yield. Here, we examine the transcriptomic response of adult wild-type and
26 *BrphyB* leaves to darkening and recovery in light. Three days of darkness was
27 sufficient to elicit a response in wild type leaves suggesting a shift from carbon
28 fixation and nutrient acquisition to active redistribution of cellular resources. Upon a
29 return to light, wild-type leaves appeared to transcriptionally return to a pre-darkness
30 state restoring a focus on nutrient acquisition. Overall, *BrphyB* mutant plants have a
31 similar response with key differences in genes involved in photosynthesis and light
32 response which deviate from the wild type transcriptional dynamics. Genes targeted
33 to the chloroplast are especially affected. Adult *BrphyB* mutant plants had fewer,

34 larger chloroplasts, further linking phytochromes, chloroplast development,
35 photosynthetic deficiencies and optimal resource allocation.

36

37 **KEY WORDS:** Brassicaceae, chloroplast development, gene regulation, light
38 response, photosynthesis, phytochrome B.

39

40 INTRODUCTION

41 Light plays at least two distinct roles in shaping plant form and productivity. First,
42 light is essential for photosynthesis, which allows plants to convert the energy held in
43 photons into the high potential energy found in the chemical bonds of sugars.
44 Second, light provides information on how a plant can optimize its architecture to
45 maximize photosynthetic potential in a given environment. How these two light
46 systems are coordinated remains largely unknown, especially in mature leaves.

47 Limited light supply by an established canopy triggers a rapid shade-avoidance
48 response that is characterized by increased elongation growth rate of stems and
49 petioles, decreased leaf surface area and thickness, and delayed leaf yellowing
50 (Casal, 2012; Franklin and Whitelam, 2005). On the other hand, partial plant shading
51 or darkening will induce a range of responses between acclimation to leaf
52 senescence (Weaver and Amasino, 2001; Brouwer *et al.*, 2012). These processes
53 directly reduce the impact of shade or dark while additional responses such as
54 acclimation of the photosynthetic apparatus rather help to fine tune the use of
55 resources under shade/dark.

56 Plants use an array of photoreceptors to capture and transduce the light signal in
57 diverse responses known collectively as photomorphogenesis. Photoreceptors'
58 absorbance properties span most of the visible light spectrum, from the
59 phytochromes that absorb in the red (R)/far-red (FR) to the cytochromes and
60 phototropins that absorb in the blue/near-ultraviolet to the UV-receptors. Among
61 these, the phytochromes (phys) are among the best characterized (Chen *et al.*,
62 2004). Upon illumination, phys undergo conformational changes from an inactive (Pr)
63 to an active (Pfr) form (Fraser *et al.*, 2016), which is subsequently translocated into
64 the nucleus and participates in transcriptional regulation (Chen *et al.*, 2005; Castillon
65 *et al.*, 2007). Five *PHY* genes have been described in the *A.thaliana* genome
66 (*PHYA-PHYE*) with partial overlapping functions (reviewed in Chen *et al.*, 2004).

67 Phytochrome-dependent light signaling that initiates photomorphogenesis has been
68 extensively studied using the seedling model (reviewed in Arsovski *et al.*, 2012). In
69 addition, it is clear from work in *A.thaliana* that phytochromes control chloroplast
70 gene expression, as well as nuclear-encoded factors involved in chloroplast
71 development (Oh and Montgomery, 2014; Nevarez *et al.*, 2017). Recent studies in
72 *A.thaliana* and *Brassica rapa* showed that adult *phyB* mutants have reduced
73 chlorophyll levels, photosynthetic rate, and stomatal index. Work by a number of
74 groups has connected PhyB to biomass accumulation, carbon resource
75 management, seed yield and changes in metabolism across the plant life cycle
76 (Yang *et al.*, 2016; Krahmer *et al.*, 2018; Arsovski *et al.*, 2018; Wies *et al.*, 2019).

77 To date, most of our knowledge about the roles of phytochromes in the dark-to-light
78 transition primarily came from experiments focused on the de-etiolation process of
79 seedlings (Li *et al.*, 2011). This has left a gap in our understanding about the role of
80 phytochromes in light-activated transcription of genes in mature leaves. This is
81 important because several light-regulatory mechanisms essential for photosynthetic
82 efficiency and adaptation occur only in mature leaves. For example, Chory *et al.*
83 demonstrated that the primary role of phytochrome in greening *A. thaliana* plants is
84 in modulating the degree rather than the initiation of chloroplast development (Chory
85 *et al.*, 1989).

86
87 In this study, we investigated the effects of *phyB* on gene expression upon dark-to-
88 light transition in the mature leaf of *B. rapa* by comparing the transcriptomic
89 responses between wild-type and a *phyB* mutant. *B. rapa* is closely related to
90 *A.thaliana* (Wang *et al.*, 2011) but its leaves are significantly larger. Larger leaves
91 cause more self-shading, and, in combination with the longer life of *B. rapa*
92 compared to *A.thaliana*, there is more total demand for resources. As the *B. rapa*
93 genome contains only one *PhyB* ortholog and no likely ortholog for the closely
94 related *AtPhyD*, we took advantage of the *BrphyB3* mutant allele described
95 previously (Arsovski *et al.*, 2018). Wild-type and *BrphyB* leaves exhibited significant
96 overlaps in their transcriptomic response to dark and recovery; however, gene
97 ontology analyses pointed out important misregulations in *BrphyB* mutant for genes
98 involved in nitrogen metabolism, light harvesting and photosynthesis. Altogether
99 these results support a role for PhyB in chloroplast development and resource

100 allocation, and have implications for increasing the resource-efficiency of *Brassica*
101 crops.

102

103 MATERIALS AND METHODS

104

105 **Growth conditions of *B. rapa* adult plants**

106

107 The *B. rapa* wild-type R-o-18 and *BrphyB* mutants were originally from the John
108 Innes Center's RevGenUK resource. The *BrphyB*-3 previously described in Arsovski
109 *et al.*, 2018 was used for RNAseq experiments. *BrphyB*-1 was also previously
110 described in Arsovski *et al.*, 2018. Seeds were planted directly into our standard soil
111 mix of 1:1 Sunshine Mix #4 (SunGro Horticulture):vermiculite. Plants were grown in
112 2.6 liter square pots (McConkey Grower Products; Sumner, WA, USA) and bottom-
113 watered daily in long day conditions (16 h light, 8 h dark, $\sim 115 \mu\text{mol.m}^{-2}.\text{s}^{-1}$ light
114 intensity) in a Percival E-30B growth chamber (<https://www.percival-scientific.com/>)
115 set to 20°C. Experiments were conducted at 3 weeks and the plants were then
116 moved to growth room until seed harvest.

117

118 **Leaf sample preparation**

119

120 Three weeks after sowing, two developmentally matched leaves from each wild-type
121 and *BrphyB*-3 plant were tagged that corresponded to the first and second true
122 leaves. Samples were collected at ZT 5 using a standard hole punch (28 mm²
123 circular area of leaf blade tissue) with symmetrical harvest (a second hole punch on
124 the other side of the other side of the mid-vein of the same leaf) for chlorophyll
125 assay, chloroplast measurements and transcriptome analysis. Tissue from 3
126 individual plants was combined to make one biological replicate. At 3 weeks of age
127 the "Pre" sample was collected from the first leaf while the second one was covered
128 with tinfoil. 24 hours later the "24hr" sample was harvested from the uncovered leaf,
129 the same leaf that provided the "Pre" sample. Then, 48 hours later the tinfoil was
130 removed from the covered leaf and the "dark" samples were similarly collected.
131 Finally, 24 hours later the "recovery" samples were collected from this same leaf.
132 Samples were immediately flash frozen in liquid nitrogen (Fig.1). In total, three
133 biological replicates were collected in similar fashion.

134

135 **Chlorophyll measurement**

136

137 For chlorophyll measurement, ethanol extractions were done as in (Yang *et al.*,
138 2016). Determinations were run by measuring optical density at 645 nm and 665 nm
139 using an Epoch Microplate Spectrophotometer (www.bioteck.com). Values were
140 obtained using the following formulas: Chl *a*=5.21*A*₆₆₅–2.07*A*₆₄₅;
141 Chl *b*=9.29*A*₆₄₅–2.74*A*₆₆₅, for Chlorophyll A and B, respectively. Three individual
142 biological replicates were used for this assay.

143

144 **RNAseq**

145

146 Leaf tissue was disrupted with Zirconia/Silica beads for 1 minute in a
147 MiniBeadbeater-96 (BioSpec Products, Inc.) while frozen. After adding 500 μ L of
148 Lysis/Binding Buffer to each sample and vortexing until homogeneous, samples
149 were run on the MiniBeadbeater-96 for an additional minute. Following tissue
150 disruption samples were centrifuged at 16,000 x g for 10 minutes at 20 °C. For each
151 sample, a 50 μ L aliquot of the supernatant was added to 50 μ L of NEB RNA binding
152 buffer and mRNA isolated as per the NEBNext® Poly(A) mRNA Magnetic Isolation
153 Module manual.

154

155 RNA-seq libraries were prepared by using the Full Transcript mode YourSeq Dual
156 (FT & 3'-DGE) RNAseq Library Kit (Amaryllis Nucleics). A Bioanalyzer 2100 (Agilent,
157 High Sensitivity DNA Kit) was used for library quality control, to determine average
158 library size, and together with concentration data from a Qubit 2.0 Fluorometer (Life
159 Technologies, dsDNA High Sensitivity Assay Kit) to determine individual library
160 molarity and pooled library molarity. Pooled libraries were sequenced on a NextSeq
161 500 (Illumina, High Output v2 75 cycle kit) to yield single-read 80 bp reads.

162

163 FASTQ processing was performed by Amaryllis Nucleics (Oakland, CA). Sequence
164 files were preprocessed in two steps. A Python library (clipper.py,
165 <https://github.com/mfcovington/clipper>) was used to trim off the first 8 nucleotides of
166 each read to remove potential mismatches to the reference sequence caused by

167 annealing of a random hexamer required for library synthesis. Trimmomatic v0.36
168 (<http://www.usadellab.org/cms/?page=trimmomatic>) was used to remove adapter
169 sequences and trim or filter reads based on quality. The parameters used for
170 Trimmomatic were ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10 LEADING:3
171 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:50.

172 Preprocessed reads were mapped to the *Brassica rapa* v2.5 genomic reference
173 sequence
174 (http://brassicadb.org/brad/datasets/pub/Genomes/Brassica_rapa/V2.0/V2.5/Chr/Bra_paV2.5_Chr.fa.gz) using bowtie2. Read counts for each gene in the gene annotation
176 file
177 (http://brassicadb.org/brad/datasets/pub/Genomes/Brassica_rapa/V2.0/V2.5/Chr/Bra_paV2.5_Chr.gff.gz) were calculated using htseq-count (with the -s yes
179 parameter to enforce strand-specific alignment) from the HTSeq Python library
180 (<https://academic.oup.com/bioinformatics/article/31/2/166/2366196>;
181 <http://htseq.readthedocs.io/en/master/index.html>).

182

183 The package edgeR (Robinson *et al.*, 2010) was used to process the expression
184 matrix and identify differentially expressed genes between treatments and
185 genotypes. For the main analysis, the generalized linear model functionality of this
186 package, based on a negative binomial distribution model for gene expression was
187 used to identify differentially expressed genes. Genes were considered significantly
188 differentially expressed based on having a fold change greater than 2-fold up or
189 down between conditions, and a q-value (adjusted p-value by Benjamini-Hochberg
190 procedure - (Benjamini and Hochberg, 1995) less than 0.01.

191

192 Contrasts between the Pre and 24hr timepoints were used to identify genes that
193 could be exhibiting differential expression caused by wound response from the tissue
194 sampling rather than response to darkness and recovery. Genes identified in these
195 wound control contrasts were tagged but not excluded from the rest of the analysis.

196 Dispersion was estimated independently for the wound control contrasts based on
197 the Pre and 24hr timepoints only. This was done because using the dispersion
198 estimates from the main analysis, including the Dark and Recovery timepoints
199 resulted in biased p-value distributions due to the significant change in expression of

200 most genes in the dark timepoint as compared to the other timepoints (68% of genes
201 between wild type-Dark and wild type-Pre).

202

203 Complete data can be accessed from the Gene Expression Omnibus (GEO) under
204 the entry GSE135955.

205

206 **Venn diagrams and gene ontology (GO) analysis to prioritize the DEG**

207

208 To find differences between the wild-type and *phyB* response to darkness and re-
209 illumination we looked at sets of genes that were significantly changed in these
210 contrasts (darkened vs. pre or recovery vs. darkened) in one genotype but not the
211 other. For each up or down Venn-diagram used in the GO analysis, all genes which
212 either the wild-type or *BrphyB* mutant were greater (or less for down regulated Venn)
213 than the log fold change cutoff of 2 were considered. These genes were then put into
214 4 categories: wild-type significant only, *BrphyB* significant only, both wild-type and
215 *BrphyB* significant, and neither genotype significant.

216

217 To obtain a comprehensive list of all *B. rapa* presumptive orthologs in *A. thaliana* we
218 used each *B. rapa* protein as a query to perform local homology searches. Briefly, for
219 each protein in the *B. rapa* v2.5 proteome, the best *A. thaliana* hit was retrieved by
220 sequence similarity search using a local installation of the BlastP algorithm (Protein-
221 Protein BLAST 2.7.1+) of the NCBI tool BLAST
222 (<http://blast.ncbi.nlm.nih.gov/Blast.cgi>) against the *A. thaliana* ARAPORT11
223 proteome, with default parameters and the outfmt parameter set to 7 (to obtain a
224 tabular output with comment lines). This resulted in a collection of the best *A.*
225 *thaliana* hits for each *B. rapa* protein. This output was further processed to limit each
226 ortholog to the best hit, using a custom BASH script (available upon request). GO
227 term enrichment analysis was performed against the well annotated *A. thaliana*
228 genome using the PANTHER classification System (v.14.1 available at
229 <http://pantherdb.org/>; (Mi *et al.*, 2019)).

230

231

232 **Law 2018 comparison**

233

234 For the data in Table S3, we created a list by matching the *A. thaliana* gene IDs from
235 the (Law *et al.*, 2018) analysis up to the *B. rapa* genes they were found to be the
236 nearest homolog of (see GO analysis section above). We considered the genes that
237 were differentially expressed after 3 days (D3) of darkness applied on an
238 individualized leaf (IDL) or a whole plant (DP). *A. thaliana* genes that did not match
239 to *B. rapa* genes in our set were dropped from the comparison, *A. thaliana* genes with
240 multiple brassica homologs were listed multiple times in this list. The elements of this
241 list were then broken down into a Venn diagram based on whether they were
242 considered significantly differentially expressed up or down in our darkened vs. pre
243 contrast and Law's IDL_D3 and DP_D3 contrasts. Each category list was then
244 reduced to only contain unique *A. thaliana* IDs. These counts are displayed in Table
245 S3.

246

247 **RNA extraction and quantitative real-time PCR (qRT-PCR) analysis**

248 Expression analysis was performed using 4 biological replicate samples collected
249 identically as described for RNA sequencing. Each sample was immediately frozen
250 in liquid nitrogen and stored at -80 °C until processing. Frozen tissue was ground in
251 liquid nitrogen and total RNA was extracted using the GE Illustra RNA kit (GE Life
252 Sciences), and 2 µg of eluted RNA was used for cDNA synthesis employing iScript
253 (Bio-Rad). Samples were analyzed using SYBR Green Supermix (Bio-Rad) reactions
254 run in a C100 Thermal Cycler (Bio-Rad) fitted with a CFX96 Real-Time Detection
255 System (Bio-Rad). Relative expression levels were calculated using the formula
256 $(E_{target})^{-CP_{target}} / (E_{ref})^{-CP_{ref}}$ (Pfaffl, 2001) and normalized to the *B. rapa* *PP2A*
257 (*Brara.F00691*) reference gene. qPCR primer sequences are as follows: *BrPP2A*
258 (forward 5'-TCGGTGGTAACGCCCGAT-3'; reverse 5'-
259 CGACTCTCGTGGTCCCTCGC-3'); *BrMGT6* (*Brara.E02300*) (forward 5'-
260 CAGCATCCGCCACCGCAAGA-3'; reverse 5'-GCCTTCGCAACAACCGCAGC-3');
261 *BrRLK4* (*Brara.I00004*) (forward 5'- TCCGCCGTGCGATCTCTCT-3'; reverse 5'-
262 CCCGCTCCAAACGCTTGTCCA-3'); *BrPIF1* (forward 5'-
263 GCCACCACTTGCACCCCC-3'; reverse 5'- CCGCGGTTGGAGGAAGACCG-3').

264

265 **Code**

266 The R code used to generate all the analysis results is provided in supplement X and
267 can also be found on github.com/nemhauser-lab/brassica_rna_seq.

268

269 **Methods, Motif Enrichment**

270 A set of binding motifs for 619 *A.thaliana* transcription factors was downloaded from
271 plantTFDB (<http://planttfdb.cbi.pku.edu.cn/>), (Jin *et al.*, 2014, 2015, 2017). The RSAT
272 matrix clustering tool (http://rsat.eead.csic.es/plants/matrix-clustering_form.cgi
273 (Castro-Mondragon *et al.*, 2017) was used with default parameters to group the
274 motifs into 56 clusters based on similarity of aligned position weight matrices. Genes
275 that were significantly differentially expressed from conditions pre to dark, and from
276 dark to recovery were divided into groups depending on 3 factors: genotype,
277 direction of regulation (up or down), and whether they are annotated with the GO
278 term “chloroplast” (GO:0009507). The package “motifmatchr” (Schep, 2019) was
279 used to count the number of genes in each set with promoter sequences with
280 matches to each of the 619 motifs. Promoters sequences were defined as the 1000
281 base pairs immediately upstream of the gene start position as defined by the
282 genome annotation file. The fisher exact test was then used to determine if there
283 was significant enrichment for each motif between genes only significantly regulated
284 in WT and genes only significantly regulated in *BrphyB* in these sets. The raw p-
285 values from these tests were adjusted using the by Benjamini-Hochberg procedure
286 (Benjamini and Hochberg, 1995). Adjusted p-values of <0.01 were considered
287 significant.

288

289 All motifs found significant from these tests closely matched to three canonical motifs
290 described in the literature: the G-box motif CACGTG, the Evening Element
291 AGATATTTT, and the Telo-box motif AAACCCTAA. The proportions of promoters
292 with one or more exact matches to three canonical motifs were found for the gene
293 sets described above.

294

295 **Chloroplast Measurement**

296 Tissue was immediately cleared after collection and fixed using ClearSee solution as
297 described in (Kurihara *et al.*, 2015). Images were taken using a Leica TCS SP5 II
298 laser scanning confocal microscope (<https://www.leica-microsystems.com>).
299 Chloroplast number, area, and density were determined using ImageJ software.

300

301

302 **RESULTS**

303

304 **Mature *BrPhyB* mutant leaves have significant transcript reductions of**
305 **chloroplast targeted genes.**

306

307 Loss of phyB leads to significant reductions in both chlorophyll levels and rates of
308 photosynthesis in three-week-old *B. rapa* plants (Arsovski *et al.*, 2018). To further
309 understand the link between phyB, chloroplast development, and photosynthesis we
310 examined the transcriptomic response of mature leaves that were subjected to three
311 days of darkness before being reintroduced into the light. As part of this experiment
312 we first compared the transcriptome of three-week-old *B.rapa* wild type and *BrphyB*
313 leaves. Genes were considered differentially expressed if the fold change between
314 timepoints or genotypes was greater than 2, and the significance (adjusted p-value)
315 was less than 0.01. 114 genes were significantly upregulated in *BrphyB* leaves
316 compared to wild type. Unsurprisingly, these include *B.rapa* orthologs to *A.thaliana*
317 *LONG HYPOCOTYL IN FAR-RED(HFR1)*, *PHYTOCHROME INTERACTING*
318 *FACTOR 3-LIKE 1 (PIL1)*, *PHYTOCHROME-INTERACTING FACTOR 6 (PIF6)*, and
319 *INDOLE-3-ACETIC ACID INDUCIBLE 29(IAA29)*. 79 genes were significantly
320 downregulated in *BrphyB* leaves compared to the wild type. Gene Ontology (GO)
321 analysis of cellular location annotations showed a strong enrichment for the
322 chloroplast envelope, stroma, and photosystem II. These include *B.rapa* orthologs
323 for *A.thaliana* *PHOTOSYSTEM II SUBUNIT P*, *PHOTOSYSTEM II BY, LIGHT-*
324 *HARVESTING CHLOROPHYLL B-BINDING PROTEIN 3*, and *CHLOROPHYLL A/B*
325 *BINDING PROTEIN 1* (Table S1).

326

327 **Darkening of individual leaves for three days initiates resource reallocation**

328

329 Samples were taken from the first or second true leaf of three-week-old wild-type
330 and *BrphyB*-3 plants (hereafter termed “pre”). As a wounding control, a second
331 sample was taken from the “pre” leaves 24 hours later (hereafter termed “24hr”).
332 Leaves that were developmentally-matched with those selected for the “pre”
333 treatment were covered with foil. After three days, the foil was removed and the
334 “darkened” sample was collected immediately. The “recovery” sample was collected
335 from the same leaf 24 hours after this timepoint to capture the earliest stages of

336 recovery (Fig. 1A). Matching samples were collected from each leaf to assay
337 chlorophyll levels. At three weeks old, *BrphyB* mutants are visibly paler compared to
338 same aged wild-type plants, and have significantly reduced chlorophyll levels (Fig.
339 1B and Arsovski *et al.*, 2018). Three days of dark resulted in a 23% reduction of
340 chlorophyll levels in wild type leaves while levels remained low in the mutant. This is
341 consistent with similar experiments performed on individually darkened *A.thaliana*
342 leaves where total chlorophyll levels and protein decline was observed after two
343 days of darkness (Weaver and Amasino, 2001). The 24 hours of light exposure for
344 the recovery samples was not sufficient to restore chlorophyll levels in either wild-
345 type or *BrphyB*-3 leaves (Fig. 1B).

346

347 Extended darkness of leaves acts as a signal to initiate the organized breakdown
348 and remobilization of valuable resources to growing vegetative and reproductive
349 tissues (Himelblau and Amasino, 2001; Buchanan-Wollaston *et al.*, 2003; Lim *et al.*,
350 2007). We performed RNAseq analysis on the pre, 24hr, dark and recovery samples
351 to assess the specific response to darkness and return to light of mature leaves in *B.*
352 *rapa*. We began our analysis with the response to darkness, as previous studies in
353 *A. thaliana* had already shown that dark stress is accompanied by dramatic
354 transcriptional changes, as well as depletion of chlorophyll and large-scale
355 degradation of proteins (Guo *et al.*, 2004; Keech *et al.*, 2007; Law *et al.*, 2018). The
356 expression of 6852 *B.rapa* genes was significantly altered in leaves after three days
357 in darkness. Gene Ontology (GO) analysis of predicted *A. thaliana* orthologs showed
358 a pattern consistent with the overall expectations of metabolic reprogramming seen
359 in other species. The 3110 genes up-regulated in response to dark were mainly
360 involved with autophagy, catabolism, leaf senescence and vesicle fusion (Fig. 2A;
361 Table S2). Conversely, down-regulated genes were mainly involved in
362 photosynthesis, biosynthetic processes and plastid translation. Together, these data
363 suggest a shift from carbon fixation and nutrient acquisition to active redistribution of
364 cellular resources (Fig. 2B, Table S2).

365

366 A recent experiment in *A.thaliana* found that the effect of darkening individual leaves
367 was substantially similar to the effect of darkening whole plants, albeit with distinct
368 timing for peak differences in gene expression between the two treatments Law *et*
369 *al.*, 2018). When we compared our transcriptomic response to this dataset, we found

370 a substantial overlap. The highest similarity between the *B.rapa* dark response was
371 to *A.thaliana* individually darkened leaves for 3 days (IDL_3D). Of the genes
372 significantly up or down regulated in *A. thaliana* individually darkened leaves after 3
373 days, 46.7% had *B.rapa* homologs also significantly up or down regulated (in the
374 same direction) (Table S3). Shared *A. thaliana* genes upregulated in response to
375 dark were significantly enriched for GO terms such as autophagy, catabolic process,
376 and leaf senescence (Table S4). The darkening response in *B.rapa* was more
377 similar to that of individually darkened leaves than whole darkened plants in
378 *A.thaliana*. Of the genes found to be up/down regulated in individual leaves (IDL_D3)
379 but not whole darkened plants (DP_D3), 35.3% had *B.rapa* homologs with significant
380 change in the same direction, compared to 25.1% in whole darkened plant unique
381 genes (Table S3,4). In *A. thaliana*, 167 senescence-associated genes were shown to
382 change expression in response to darkening (Parlitz *et al.*, 2011). The *B.rapa*
383 orthologs of 103 of these genes do not show significant changes in response to dark.
384 Of the remaining 57 senescence-associated genes, 42 show a reversible pattern of
385 upregulation in the dark and downregulation upon re-illumination. 15 are ‘non-
386 reversible’, upregulated in the dark without significant changes upon a return to light
387 (Table S5).

388

389 Many of the genes that were regulated by returning the leaves to light were similar to
390 those already identified as light-responsive from experiments in seedlings. In *A.*
391 *thaliana*, expression of up to one-fourth of the whole genome is altered in seedlings
392 grown for 4 days in red light compared to those grown in the dark (Shi *et al.*, 2018).
393 These changes are largely mediated by a small group of transcription factor families
394 which include the PHYTOCHROME INTERACTING FACTORS (PIFs). Nearly 60%
395 of PIF-dependent, red light induced genes in *A. thaliana* seedlings have Gene
396 Ontology (GO) annotations indicating functions related to photosynthesis and
397 chloroplast (Leivar *et al.*, 2012). In *B.rapa* wild type leaves 3756 genes were
398 upregulated in the recovery condition when compared to the dark timepoint. The
399 most significantly enriched GO terms were response to light stimulus,
400 photosynthesis, translation and metabolism, suggesting a return to a pre-darkness
401 transcriptional state (Figure 3A, Table S2). The 3299 genes downregulated in
402 recovery compared to dark were mainly involved in catabolism, vesicle fusion and

403 transport, and protein degradation further supporting a shift from resource
404 remobilization towards nutrient acquisition (Figure 3B, Table S2).

405

406 ***BrphyB* is critical for full recovery response**

407

408 RNAseq analysis of *BrphyB* individually darkened leaves revealed an essentially
409 similar response to what was observed in wild-type plants. 7,994 genes were
410 differentially expressed in wild-type and *BrphyB*-3 leaves after 3 days of dark
411 treatment compared to the pre samples. The vast majority (81.8%) of this response
412 was shared between the genotypes (Fig. 2A, B). However, analysis of GO terms
413 significantly enriched in the uniquely wild-type or *BrphyB* differentially regulated gene
414 sets illustrated phyB-dependent responses to darkness. Unique wild-type enriched
415 terms were largely related to cellular responses to organic and inorganic
416 compounds, drugs and stress (Table S6). A closer look at these phyB-controlled
417 groups revealed orthologs to *A. thaliana* genes REVEILLE2, REVEILLE8, and
418 CIRCADIAN CLOCK ASSOCIATED1—all key transcriptional regulators of circadian
419 rhythm, auxin and stress response in *A. thaliana* and known to act downstream of
420 PhyB (Fig. 2A,C) (Alabadí *et al.*, 2001; Zhang *et al.*, 2007; Rawat *et al.*, 2011;
421 Farinas and Mas, 2011; Jiang *et al.*, 2016). *BrphyB* unique up-regulated genes were
422 enriched in genes associated with response to light, including *B. rapa* orthologs of
423 PHYTOCHROME INTERACTING FACTOR4, PHYTOCHROME INTERACTING
424 FACTOR5, PHYTOCHROME KINASE SUBSTRATE1 and CRYPTOCHROME 1
425 (Table S6, Fig. 2C).

426

427 PhyB-repressed genes are enriched for categories such as response to light
428 stimulus and cellular biosynthetic process, while those activated by phyB are
429 enriched for categories related to protein synthesis such as cysteine metabolic
430 process, translational elongation, and peptide biosynthesis (Fig. 2B). These include
431 *B. rapa* orthologs to three *A. thaliana* glutamate-ammonia ligases (GLUTAMINE
432 SYNTHASE 1;2, 1;3 and 1;4) with roles in nitrogen remobilization and seed yield
433 (Guan *et al.*, 2015), stress response and pollen viability (Ji *et al.*, 2019). In *B. rapa*,
434 *BrphyB* mutants have up to a 90% decrease in seed yield (Arsovski *et al.*, 2018);
435 however, we did not observe a difference in area or weight of seeds compared to
436 wild type (data not shown). This would suggest that plants are re-calibrating the

437 amount of resources available, and maintaining quality by partitioning them into a
438 smaller number of seeds.

439

440 While there is substantial overlap between the response of wild type and *BrphyB*
441 mutants to re-illumination (80.2% of the 7,765 genes are common to both
442 genotypes), there are also several key differences. To validate the RNAseq results,
443 we selected three genes whose expression in wild type was significantly
444 downregulated during darkening compared to pre followed by a significant
445 upregulation in recovery compared to darkening. qPCR of these genes was done in
446 wild-type, *BrphyB*-3, and an additional mutant allele *BrphyB*-1. Brara.E02555 is an
447 ortholog of the *A.thaliana* At3g15840 gene. In *A.thaliana* POST-ILLUMINATION
448 CHLOROPHYLL FLUORESCENCE INCREASE (PIFI) is a nuclear-encoded
449 chloroplast protein essential for NDH-mediated non-photochemical reduction of the
450 plastoquinone pool in chlororespiratory electron transport (Wang and Portis, 2007).
451 The *A.thaliana* orthologs RECEPTOR-LIKE PROTEIN KINASE 4 (RLK4) and
452 MAGNESIUM TRANSPORTER 6 (MGT6) are a Ser/Thr receptor-like protein kinase
453 expressed in the root and a magnesium transporter required for growth in
454 Magnesium limited conditions, respectively. The qPCR expression closely resembled
455 the RNAseq results for wild-type and *BrphyB*-3 and *BrphyB*-1 expression matched
456 that of *BrphyB*-3 for all three genes. *BrPIFI* expression decreases dramatically in
457 response to darkening in both wild-type and *BrphyB*-1 mutant leaves. However,
458 while *BrPIFI* expression increases in response to the leaf's return to light in wild-type,
459 it remains low in the mutant. Similarly, *BrRLK4* and *BrMGT6* expression increases in
460 recovery in wild-type leaves. However, in *BrphyB*-3 leaves expression of both
461 decreases 24 hours after the cover is removed from the leaf (Fig. S1) (Coello *et al.*,
462 1999; Wang and Portis, 2007).

463

464 *BrphyB* is required for rapid return to the full photosynthetically-active transcriptional
465 program. There are 404 genes up-regulated in recovery of only wild-type leaves.
466 These genes are mainly involved in light harvesting in Photosystem I,
467 photosynthesis, cellular carbohydrate catabolism and generation of precursor
468 metabolites and energy and are not upregulated in *BrphyB* leaves 24 hours after
469 return to light (Fig. 3A, Table S6). We previously showed that the expression *B.rapa*
470 GOLDEN2-LIKE 1 (BrGLK1) increases 70% in response to high CO² in wild type

471 seedlings but decreases in *BrphyB* mutants (Arsovski *et al.*, 2018). In *A.thaliana*
472 GLK1 is one of a pair of partially redundant transcription factors that affect the
473 expression of nuclear photosynthetic genes involved in chloroplast development
474 (Waters *et al.*, 2008, 2009; Kobayashi *et al.*, 2013). Here the *B.rapa* ortholog of
475 *A.thaliana* GOLDEN2-LIKE 2 is significantly upregulated upon return to light in wild
476 type but not *BrphyB* mutant leaves (Table S7). Closer examination of chloroplast
477 localized genes whose expression significantly changes in response to darkening
478 and recovery revealed a stark contrast in responsiveness between the two
479 genotypes. In response to darkening, 1861 chloroplast related genes were
480 significantly downregulated in either genotype. Of these, 94.7 % (1763 genes) were
481 unique to wild type leaves and were not significantly downregulated in the mutant.
482 Upon a return to light 1904 chloroplast localized genes were significantly upregulated
483 with 85.8% common to both genotypes. However, 131 localized genes were
484 upregulated only in wild type leaves while 140 were unique to the *BrphyB* mutant.
485 GO cellular component analysis identified 125 genes with predicted chloroplast-
486 localization that are up-regulated in wild-type but not *BrphyB* leaves during recovery.
487 *A.thaliana* Photosystem II genes such as LIGHT-HARVESTING CHLOROPHYLL B-
488 BINDING PROTEIN 3 (BraA10000990), LIGHT HARVESTING COMPLEX
489 PHOTOSYSTEM II SUBUNIT 6 (BraA09006187), LIGHT-HARVESTING
490 CHLOROPHYLL-PROTEIN COMPLEX II SUBUNIT B1(BraA05001183) and three
491 orthologs to *A.thaliana* CHLOROPHYLL A/B BINDING PROTEIN 1 (BraA04002510,
492 BraA07001020, BraA08002753) are upregulated on return to light only in wild type
493 leaves (Figure 3C, Table S7) .

494
495
496 Downregulated genes unique to wild type are enriched in annotations associated
497 with nuclear transport, ribosome biogenesis, and rRNA processing, while terms
498 including phototropism and regulation of primary metabolism, cellular biosynthesis
499 and nitrogen compound metabolism are enriched in the *BrphyB* unique
500 downregulated genes (Fig. 3B). This overall pattern suggests that *BrphyB* may be
501 required for effective monitoring and switching between carbon- and nitrogen-
502 demanding processes, and that this role may be essential for maximal reallocation of
503 resources to developing seeds.

504

505

506 ***BrphyB* leaves have regulatory motif differences in chloroplast related genes**
507 **and fewer, larger chloroplasts**

508

509 In the pre condition, the 79 genes significantly downregulated in *BrphyB* leaves
510 compared to the wild-type were enriched for localization to the chloroplast envelope,
511 stroma, and photosystem II (Table S1). The recovery condition created a sensitized
512 environment to detect the more immediate impacts of *BrphyB* on establishing or
513 maintaining the photosynthetic machinery. To investigate whether there were
514 regulatory differences in recovery between chloroplast and non-chloroplast genes in
515 wild-type and *BrphyB* leaves we examined the promoters (1Kb upstream for TSS) of
516 up and downregulated genes in recovery compared to dark. Genes with the GO
517 term 0009507: chloroplast were designated as 'chloroplast' and those without it 'non-
518 chloroplast'.

519

520 The frequency of three major motifs appeared to change in response to dark and in
521 recovery and between genotypes (Fig.S2A). The G-box element (CACGTC) is a
522 focal point of light-regulated gene expression. In vitro gel-shift, random DNA-binding
523 selection, and chromatin immunoprecipitation (ChIP) assays in *A.thaliana* show that
524 four PIFs (PIF1, PIF3, PIF4, and PIF5) bound to either a G-box (CACGTG) and/or an
525 E box (CANNTG) (Martínez-García *et al.*, 2000; Huq and Quail, 2002; Huq *et al.*,
526 2004; Hornitschek *et al.*, 2012). PIFs can also interact with other transcription factors
527 at the G-box, and these interactions modulate the PIF DNA-binding activity. PIF3
528 and PIF4 interact with BRASSINAZOLE-RESISTANT 1 (BZR1) and bind to the same
529 G-box DNA sequence element to regulate genes involved in the light and
530 brassinosteroid pathways (Oh *et al.*, 2012; Zhang *et al.*, 2013). PIF1 and PIF3 also
531 interact with the light-regulated activator ELONGATED HYPOCOTYL (HY5) at the
532 G-box where it can both promote PIF1/3 binding and compete for binding sites
533 (Chen *et al.*, 2013; Toledo-Ortiz *et al.*, 2014). When *B.rapa* leaves were returned to
534 light, 37% of chloroplast genes significantly upregulated in wild type but not *BrphyB*
535 leaves have a G-box in their promoter region compared to only 15% of non-
536 chloroplast genes. This is not the case with chloroplast genes upregulated only in
537 *BrphyB*. For these genes, there was essentially no difference in the number of genes

538 a G-box whether or not they were annotated as chloroplast-associated (chloroplast
539 genes: 13%, non-chloroplast genes: 16%) (Fig.S2B).

540

541 Differences were also present in the frequencies of Evening Element (AAAATATCT)
542 and Telobox motif (AAACCCTAA) in chloroplast-annotated genes between wild-type
543 and *BrphyB* leaves in recovery as well. The Evening Element (EE) motif is central to
544 circadian clock function and environmental and endogenous signal coordination in
545 *A.thaliana*. Key regulators of the circadian clock CIRCADIAN CLOCK
546 ASSOCIATED1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY) and REVEILLE 8
547 (RVE8) bind and regulate genes with EEs in their promoters (Harmer and Kay, 2005;
548 Hsu *et al.*, 2013). Among chloroplast-annotated genes, the EE motif was present in
549 promoter regions of 37% of genes which were significantly downregulated in *BrphyB*
550 but not wild type leaves, while only 7% of those downregulated in wild type but not
551 *BrphyB* had the same motif (Fig.S2C).

552

553 Short interstitial telomere motifs (telo boxes) are short sequences identical to plant
554 telomere repeat units. In *A.thaliana* and *O.sativa* genomes telo boxes are associated
555 with genes involved in the biogenesis of the translational apparatus (Gaspin *et al.*,
556 2010). Telo box motifs were enriched in the promoters of genes significantly
557 downregulated in wild type but not *BrphyB*, and genes significantly upregulated in
558 *BrphyB* but not wild type in recovery, 15% compared to 20%, respectively. Whereas,
559 of genes that were upregulated in wild type only, and genes downregulated in
560 *BrphyB* only in recovery, 5% and 7% respectively had Telo-box motifs in their
561 promoters. The differences between genes with and without the chloroplast GO
562 annotation was less noticeable for this motif than the other two. Together these
563 results point to a significant difference in the cis-regulatory landscape of *BrphyB*
564 leaves (Fig. S2D).

565

566 The chloroplast carries out many functions beyond photosynthetic carbon fixation
567 that are essential for metabolic homeostasis, including fatty acid synthesis and
568 fixation of nitrogen and sulfur (Lopez-Juez and Pyke, 2005). Mutants with reduced
569 phy function have significantly lower chlorophyll levels in *A.thaliana* and *B.rapa*
570 (Ghassemian *et al.*, 2006; Strasser *et al.*, 2010; Hu *et al.*, 2013; Arsovski *et al.*,
571 2018). It has been suggested that phyA is primarily responsible for chloroplast

572 maturation during de etiolation in *A.thaliana*, although there are some reports that
573 phyB might also be involved (McCormac and Terry, 2002; Xu *et al.*, 2019).

574

575 Our results, in combination with our earlier findings that *BrphyB* mutants had
576 reduced chlorophyll levels and photosynthetic rates, led us to hypothesize that
577 *BrphyB* might be required for normal chloroplast development. We found that
578 chloroplast density was significantly decreased in the mature leaves of the *BrphyB*
579 mutants. Wild-type leaves had an average of 466 chloroplasts per 0.5mm² compared
580 to 326 and 253 in *BrphyB*-1 and *BrphyB*-3, respectively (Fig. 4A, B ANOVA and
581 Tukey HSD multiple comparison test). Chloroplast area however was significantly
582 larger in *BrphyB*-3 and *BrphyB*-1 compared to wild type, 33.6 and 41.4 to 31.3 um²
583 respectively (Fig. 4C ANOVA and Tukey HSD multiple comparison test). In
584 *A.thaliana*, an investigation into photosynthetic, biochemical, and anatomical traits of
585 accumulation and replication of chloroplasts (arc) mutants found that fewer, enlarged
586 chloroplasts were less efficient at photosynthesis than more, smaller chloroplasts.
587 Photosynthetic rate and photosynthetic nitrogen use efficiency were significantly
588 lower in the mutants than their wild-types likely due to decreases in mesophyll
589 conductance and chloroplast CO₂ concentration (Xiong *et al.*, 2017). These
590 functional differences could explain the reduced ability of *BrphyB* leaves to rapidly
591 switch metabolic functions when exposed to darkness and again with the return to
592 light.

593

594 **DISCUSSION**

595

596 Human-driven climate change, and the associated changes in temperature,
597 atmospheric CO₂, and precipitation, are an urgent challenge for plant life on Earth.
598 Crop yield and global food security will depend on how individual crop species
599 respond to new and potentially more variable conditions. *B.rapa* is a laboratory crop
600 model that has been successfully used to study the plant response to environmental
601 change. phyB is emerging as a key regulator of carbon response and supply,
602 metabolism and biomass production (Yang *et al.*, 2016; Arsovski *et al.*, 2018). In
603 addition to a diminished high CO₂ response we previously showed that *B.rapa* phyB
604 mutants have reduced chlorophyll levels and photosynthetic rate (Arsovski *et al.*,
605 2018). In this work, we elicited a dark response in individual leaves and examined

606 the transcriptomic response of wild-type and *phyB* leaves as they are darkened and
607 were subsequently returned to light.

608

609 Wild-type *B.rapa* leaves darkened for three days have a significant upregulation of
610 genes involved in autophagy, catabolism and leaf senescence while large groups of
611 genes functioning in photosynthesis, metabolism and translation (Fig. 2A). This
612 senescence response and redistribution of cell resources is typical of the dark
613 response observed in various plant systems (Guo *et al.*, 2004; Brouwer *et al.*, 2012;
614 Song *et al.*, 2014; Law *et al.*, 2018; Sobieszczuk-Nowicka *et al.*, 2018). Upon return
615 to light upregulated and downregulated functional groups are essentially reversed.
616 Genes acting mainly in response to light stimulus, photosynthesis, translation and
617 metabolism were upregulated in leaves, while those with roles in catabolism, vesicle
618 fusion and transport, and protein degradation were downregulated 24 hours following
619 return to light (Fig. 3B). In many plants, leaf senescence is reversible in a limited
620 time span after senescence initiation, leading to ‘regreening’ of the leaves. For
621 example, a return to light following a 2 day dark period initiates a reconstitution of
622 photosynthetic capability in *A. thaliana* (Parlitz *et al.*, 2011).

623

624 While there is a significant overlap in the transcriptomic response to dark and
625 recovery between wild-type and *BrphyB* mutant leaves, there are important
626 categories of genes that may explain some of phenotypes associated with the
627 *BrphyB* mutant (Fig. 2,3). After three days of dark the orthologs of *A.thaliana*
628 PHYTOCHROME INTERACTING FACTORS 4 and 5 are only upregulated in the
629 *BrphyB* mutant suggesting a misregulation of the light response, as well as likely
630 impacts on hormone homeostasis. In *A. thaliana* PIFs/EIN3/HY5-regulated genes in
631 the dark were estimated to account for half of the light-directed transcriptome
632 changes (Shi *et al.*, 2018). In recovery, *BrphyB* mutant leaves lack the increased
633 transcription of genes involved in light harvesting and photosynthesis, including 125
634 chloroplast-targeted genes, and the mutants uniquely down-regulate genes involved
635 in phototropism suggesting possible “crossed-wires” from mismatches between
636 different photoreceptor responses (Fig. 3A). Together these finding may connect the
637 observed reduction of chlorophyll and photosynthetic rate (Arsovski *et al.*, 2018) and
638 fewer larger chloroplasts in *BrphyB* leaves compared to wild type.

639

640 Nitrogen is a critical resource that governs plant growth. The availability of nitrogen
641 to the roots plays a particularly significant role in constraining plant growth and crop
642 yield worldwide (Epstein and Bloom, 2005; Hirel *et al.*, 2011; Alvarez *et al.*, 2012).
643 Nitrogen deficiency is one of the endogenous and environmental factors that
644 regulates the onset of leaf senescence (Gregory, 1937; Mei and Thimann, 1984;
645 Masclaux-Daubresse *et al.*, 2007; Koeslin-Findeklee *et al.*, 2015). In *B.rapa*, nitrogen
646 availability limits growth increase in high CO₂ (Arsovski *et al.*, 2018). In dark-induced
647 leaf senescence nitrogen from senescing leaves is mobilized and transported to still
648 growing vegetative tissues. Wild type *B.rapa* plants darkened for 3 days show a
649 significant upregulation of genes involved in senescence, catabolism, and vesicle
650 transport while downregulation of genes involved in protein synthesis indicating and
651 active export of nitrogen resources (Supplementary File 1, 2). While *BrphyB* mutants
652 largely share this response, there is evidence that this resource allocation is altered.
653 After 3 days of dark phyB unique downregulated genes are significantly enriched for
654 GO terms related to protein synthesis suggesting either a delayed or prolonged
655 response compared to wild type. In recovery, *BrphyB* uniquely upregulated genes
656 are significantly enriched for translation and peptide biosynthesis, while wild type
657 unique genes are photosynthesis-related. *B.napus*, a close relative of *B.rapa* has
658 poor nitrogen use efficiency (Masclaux-Daubresse *et al.*, 2007; Xu *et al.*, 2012). Only
659 50–60% of the applied nitrogen is recovered in the plants and at the time of harvest
660 a relatively low 80% of the total plant nitrogen is localized in the seeds (Schjoerring
661 *et al.*, 1995; Jensen *et al.*, 1997; Malagoli *et al.*, 2005; Rathke *et al.*, 2006). Here
662 *BrphyB* mutants had a misregulation of genes orthologous to *A.thaliana*
663 GLUTAMINE SYNTHASE 1;2, 1;3 and 1;4 that play a role in seed yield and size
664 (Fig. 3C). While seeds at harvest were not significantly different from wild type in size
665 and weight, seed yield is dramatically reduced in the mutant (Arsovski *et al.* 2018). A
666 more detailed understanding of the phyB-regulated network holds the promise of
667 improved plant growth models and identification of new targets for engineering more
668 resource-efficient crops.

669

670 **Supplemental Figures**

671

672 Figure S1: qPCR validation.

673

674 Figure S2: Transcription factor motifs enriched in promoter regions.
675
676 Table S1: Gene expression comparison between *BrphyB* and wild type leaves in the
677 Pre condition.
678
679 Table S2: Gene Ontology comparison of differentially expressed genes between Pre
680 (P), Dark (D), and Recovery (R) in wild type and *BrphyB* leaves.
681
682 Table S3: A comparison of *A.thaliana* gene differentially expressed in whole
683 darkened plants or individually darkened leaves in response to 3 days of darkness
684 from Law et al., 2018 and *A.thaliana* orthologs of *B.rapa* genes differentially
685 expressed in Dark vs. Pre.
686
687 Table S4: Gene Ontology analysis of *A.thaliana* genes differentially expressed in
688 individually darkened leaves (IDL), or whole darkened plants (DP) from Law et al.
689 2018 and *A.thaliana* orthologs of *B.rapa* genes differentially expressed in Dark vs.
690 Pre. Sheets show *A.thaliana* IDs, gene model names, MapMan bins and descriptions
691 of common up or down regulated genes followed by GO annotations of those genes.
692
693 Table S5: A comparison of genes differentially expressed in dark and re-illumination
694 from Parlitz et al. 2018 and *A.thaliana* orthologs of *B.rapa* genes in Dark vs. Pre and
695 Recovery vs. Dark.
696
697 Table S6: Gene Ontology enrichment for DEGs common and unique to wild type and
698 *BrphyB* in pre (P), dark (D), and recovery (R) conditions.
699
700 Table S7: Differentially expressed genes in pre, dark and recovery. Significance
701 column denotes whether the significance is common to both wild type and *BrphyB* or
702 unique to either.
703

704 **Acknowledgements**

705 We thank Prof. Mark Stitt and Dr. Virginie Mengin for sharing their insights and
706 expertise, as well as the other members of the PHYTOCAL consortium, Nemhauser
707 and Imaizumi labs for feedback and discussion. We also thank the undergraduate
708 researchers from Dr Arsovski's Spring 2018 Special Field Topics class who carried
709 out protocol optimization and preliminary measurements of phenotypes presented
710 here: Ericka Budinich, Jonas Hill, Sean Hoeger, Katrin Hosseini, Nikhil Kaza, Winnie
711 Kwong, Kellen Larsen, Andrew Lui, Rohan Menon, Claudia Moroney, Anita Nguyen,
712 Arthur Sargent, Emma Stevens, and Nanami Tsumura. This work was supported by
713 the National Science Foundation participation in the ERA-CAPS program (IOS-
714 1539834).

715

716 **Figure 1: RNAseq experimental set-up (A).** At 3 weeks of age the “pre” sample
717 was collected from the first of the two developmentally matched leaves. Symmetrical
718 samples from the same leaf was collected for chlorophyll measurement. The second
719 matched leaf was covered with tinfoil at this time. 24 hours later the “24” sample was
720 harvested from the uncovered leaf, the same leaf that provided the “pre” sample. 48
721 hours later the tinfoil was removed from the covered leaf and the “dark” samples
722 were similarly collected. 24 hours later the “recovery” samples were collected from
723 this same leaf. Samples were immediately frozen in liquid nitrogen. Three biological
724 replicated were similarly collected. Total chlorophyll in Pre, dark, and recovery
725 samples, error bars are SE.

726

727 **Figure 2: Genes differentially expressed in dark.** A Gene Ontology (GO) analysis
728 of genes uniquely differentially expressed in wild type and *BrphyB* mutant leaves
729 following 72 hours of dark. A) Upregulated genes. B) Downregulated genes. C)
730 Expression values of 3 biological replicates in exemplar genes in Pre(P), Dark (D)
731 and Recovery (R).

732

733 **Figure 3: Genes differentially expressed on return to light.** A Gene Ontology
734 (GO) analysis of genes uniquely differentially expressed in wild type and *BrphyB*
735 mutant leaves 24 hours after return to light. A) Upregulated genes. B)
736 Downregulated genes. C) Expression values of 3 biological replicates in exemplar
737 genes in Pre(P), Dark (D) and Recovery (R).

738

739 **Figure 4 : BrphyB mutant plants have fewer and larger chloroplasts.** A.
740 Fluorescent images of chloroplasts in 3 week old *B.rapa* leaves. B. Chloroplast
741 density in same leaves as A. Chloroplast area of individual chloroplasts in same
742 plants as A. Lower case letters in B and C indicate significant difference (ANOVA
743 and Tukey HSD multiple comparison test; p<0.001)

744

References

Alabadí D, Oyama T, Yanovsky MJ, Harmon FG, Más P, Kay SA. 2001. Reciprocal regulation between TOC1 and LHY/CCA1 within the *Arabidopsis* circadian clock. *Science* (New York, N.Y.) **293**, 880–883.

Alvarez JM, Vidal EA, Gutiérrez RA. 2012. Integration of local and systemic signaling pathways for plant N responses. *Current Opinion in Plant Biology* **15**, 185–191.

Arsovski AA, Galstyan A, Guseman JM, Nemhauser JL. 2012. Photomorphogenesis. *The Arabidopsis Book / American Society of Plant Biologists* **10**.

Arsovski AA, Zemke JE, Haagen BD, Kim S-H, Nemhauser JL. 2018. Phytochrome B regulates resource allocation in *Brassica rapa*. *Journal of Experimental Botany* **69**, 2837–2846.

Benjamini Y, Hochberg Y. 1995. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society. Series B (Methodological)* **57**, 289–300.

Brouwer B, Ziolkowska A, Bagard M, Keech O, Gardeström P. 2012. The impact of light intensity on shade-induced leaf senescence: Light-dependent induction of leaf senescence. *Plant, Cell & Environment* **35**, 1084–1098.

Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D. 2003. The molecular analysis of leaf senescence--a genomics approach. *Plant Biotechnology Journal* **1**, 3–22.

Casal JJ. 2012. Shade avoidance. *The Arabidopsis Book* **10**, e0157.

Castillon A, Shen H, Huq E. 2007. Phytochrome Interacting Factors: central players in phytochrome-mediated light signaling networks. *Trends in Plant Science* **12**, 514–521.

Castro-Mondragon JA, Jaeger S, Thieffry D, Thomas-Chollier M, van Helden J. 2017. RSAT matrix-clustering: dynamic exploration and redundancy reduction of transcription factor binding motif collections. *Nucleic Acids Research* **45**, e119–e119.

Chen M, Chory J, Fankhauser C. 2004. Light signal transduction in higher plants. *Annual Review of Genetics* **38**, 87–117.

Chen M, Tao Y, Lim J, Shaw A, Chory J. 2005. Regulation of phytochrome B nuclear localization through light-dependent unmasking of nuclear-localization signals. *Current biology: CB* **15**, 637–642.

Chen D, Xu G, Tang W, Jing Y, Ji Q, Fei Z, Lin R. 2013. Antagonistic basic helix-loop-helix/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in *Arabidopsis*. *The Plant Cell* **25**, 1657–1673.

Chory J, Peto CA, Ashbaugh M, Saganich R, Pratt L, Ausubel F. 1989. Different Roles for Phytochrome in Etiolated and Green Plants Deduced from Characterization of *Arabidopsis thaliana* Mutants. *The Plant Cell* **1**, 867–880.

Coello P, Sassen A, Haywood V, Davis KR, Walker JC. 1999. Biochemical characterization and expression of RLK4, a receptor-like kinase from *Arabidopsis thaliana*. *Plant Science* **142**, 83–91.

Epstein E, Bloom AAJ. 2005. *Mineral Nutrition Of Plants: Principles And Perspectives*. Sinauer Associates, Incorporated.

Farinas B, Mas P. 2011. Functional implication of the MYB transcription factor RVE8/LCL5 in the circadian control of histone acetylation. *The Plant Journal: For Cell and Molecular Biology* **66**, 318–329.

Franklin KA, Whitelam GC. 2005. Phytochromes and shade-avoidance responses in plants. *Annals of Botany* **96**, 169–175.

Fraser DP, Hayes S, Franklin KA. 2016. Photoreceptor crosstalk in shade avoidance. *Current Opinion in Plant Biology* **33**, 1–7.

Gaspin C, Rami J-F, Lescure B. 2010. Distribution of short interstitial telomere motifs in two plant genomes: putative origin and function. *BMC Plant Biology* **10**, 283.

Ghassemian M, Lutes J, Tepperman JM, Chang H-S, Zhu T, Wang X, Quail PH, Lange BM. 2006. Integrative analysis of transcript and metabolite profiling data sets to evaluate the regulation of biochemical pathways during photomorphogenesis. *Archives of Biochemistry and Biophysics* **448**, 45–59.

Gregory FG. 1937. Mineral Nutrition of Plants. *Annual Review of Biochemistry* **6**, 557–578.

Guan M, Møller IS, Schjoerring JK. 2015. Two cytosolic glutamine synthetase isoforms play specific roles for seed germination and seed yield structure in *Arabidopsis*. *Journal of Experimental Botany* **66**, 203–212.

Guo Y, Cai Z, Gan S. 2004. Transcriptome of *Arabidopsis* leaf senescence. *Plant, Cell and Environment* **27**, 521–549.

Harmer SL, Kay SA. 2005. Positive and Negative Factors Confer Phase-Specific Circadian Regulation of Transcription in *Arabidopsis*. *The Plant Cell* **17**, 1926–1940.

Himelblau E, Amasino RM. 2001. Nutrients mobilized from leaves of *Arabidopsis thaliana* during leaf senescence. *Journal of Plant Physiology* **158**, 1317–1323.

Hirel B, Tétu T, Lea PJ, Dubois F. 2011. Improving Nitrogen Use Efficiency in Crops for Sustainable Agriculture. *Sustainability* **3**, 1452–1485.

Hornitschek P, Kohnen MV, Lorrain S, et al. 2012. Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly

controlling auxin signaling. *The Plant Journal: For Cell and Molecular Biology* **71**, 699–711.

Hsu PY, Devisetty UK, Harmer SL. 2013. Accurate timekeeping is controlled by a cycling activator in *Arabidopsis* (J Chory, Ed.). *eLife* **2**, e00473.

Hu W, Franklin KA, Sharrock RA, Jones MA, Harmer SL, Lagarias JC. 2013. Unanticipated regulatory roles for *Arabidopsis* phytochromes revealed by null mutant analysis. *Proceedings of the National Academy of Sciences of the United States of America* **110**, 1542–1547.

Huq E, Al-Sady B, Hudson M, Kim C, Apel K, Quail PH. 2004. Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis. *Science (New York, N.Y.)* **305**, 1937–1941.

Huq E, Quail PH. 2002. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in *Arabidopsis*. *The EMBO journal* **21**, 2441–2450.

Jensen LS, Christensen L, Mueller T, Nielsen NE. 1997. Turnover of residual 15N-labelled fertilizer N in soil following harvest of oilseed rape (*t* *Brassica napus* L.). *Plant and Soil* **190**, 193–202.

Ji Y, Li Q, Liu G, Selvaraj G, Zheng Z, Zou J, Wei Y. 2019. Roles of Cytosolic Glutamine Synthetases in *Arabidopsis* Development and Stress Responses. *Plant and Cell Physiology* **60**, 657–671.

Jiang Z, Xu G, Jing Y, Tang W, Lin R. 2016. Phytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in *Arabidopsis*. *Nature Communications* **7**, 12377.

Jin J, He K, Tang X, Li Z, Lv L, Zhao Y, Luo J, Gao G. 2015. An *Arabidopsis* Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors. *Molecular Biology and Evolution* **32**, 1767–1773.

Jin J, Tian F, Yang D-C, Meng Y-Q, Kong L, Luo J, Gao G. 2017. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. *Nucleic Acids Research* **45**, D1040–D1045.

Jin J, Zhang H, Kong L, Gao G, Luo J. 2014. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. *Nucleic Acids Research* **42**, D1182–D1187.

Keech O, Pesquet E, Ahad A, Askne A, Nordvall D, Vodnala SM, Tuominen H, Hurry V, Dizengremel P, Gardeström P. 2007. The different fates of mitochondria and chloroplasts during dark-induced senescence in *Arabidopsis* leaves. *Plant, Cell & Environment* **30**, 1523–1534.

Kobayashi K, Sasaki D, Noguchi K, et al. 2013. Photosynthesis of Root Chloroplasts Developed in *Arabidopsis* Lines Overexpressing GOLDEN2-LIKE Transcription Factors. *Plant and Cell Physiology* **54**, 1365–1377.

Koeslin-Findeklee F, Rizi VS, Becker MA, Parra-Londono S, Arif M, Balazadeh S, Mueller-Roeber B, Kunze R, Horst WJ. 2015. Transcriptomic analysis of nitrogen starvation- and cultivar-specific leaf senescence in winter oilseed rape (*Brassica napus* L.). *Plant Science: An International Journal of Experimental Plant Biology* **233**, 174–185.

Krahmer J, Ganpudi A, Abbas A, Romanowski A, Halliday KJ. 2018. Phytochrome, Carbon Sensing, Metabolism, and Plant Growth Plasticity. *Plant Physiology* **176**, 1039–1048.

Kurihara D, Mizuta Y, Sato Y, Higashiyama T. 2015. ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. *Development* (Cambridge, England) **142**, 4168–4179.

Law SR, Chrobok D, Juvany M, et al. 2018. Darkened leaves use different metabolic strategies for senescence and survival. *Plant Physiology*, pp.00062.2018.

Leivar P, Tepperman JM, Cohn MM, Monte E, Al-Sady B, Erickson E, Quail PH. 2012. Dynamic Antagonism between Phytochromes and PIF Family Basic Helix-Loop-Helix Factors Induces Selective Reciprocal Responses to Light and Shade in a Rapidly Responsive Transcriptional Network in *Arabidopsis*. *The Plant Cell* **24**, 1398–1419.

Li J, Li G, Wang H, Wang Deng X. 2011. Phytochrome signaling mechanisms. *The Arabidopsis Book* **9**, e0148.

Lim PO, Kim HJ, Gil Nam H. 2007. Leaf Senescence. *Annual Review of Plant Biology* **58**, 115–136.

Lopez-Juez E, Pyke KA. 2005. Plastids unleashed: their development and their integration in plant development. *The International Journal of Developmental Biology* **49**, 557–577.

Malagoli P, Laine P, Rossato L, Ourry A. 2005. Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (*Brassica napus*) from stem extension to harvest: I. Global N flows between vegetative and reproductive tissues in relation to leaf fall and their residual N. *Annals of Botany* **95**, 853–861.

Martínez-García JF, Huq E, Quail PH. 2000. Direct targeting of light signals to a promoter element-bound transcription factor. *Science (New York, N.Y.)* **288**, 859–863.

Masclaux-Daubresse C, Purdy S, Lemaitre T, Pourtau N, Taconnat L, Renou J-P, Wingler A. 2007. Genetic variation suggests interaction between cold acclimation and metabolic regulation of leaf senescence. *Plant Physiology* **143**, 434–446.

McCormac AC, Terry MJ. 2002. Light-signalling pathways leading to the co-ordinated expression of HEMA1 and Lhcb during chloroplast development in *Arabidopsis thaliana*. *The Plant Journal: For Cell and Molecular Biology* **32**, 549–559.

Mei H-S, Thimann KV. 1984. The relation between nitrogen deficiency and leaf senescence. *Physiologia Plantarum* **62**, 157–161.

Mi H, Muruganujan A, Huang X, Ebert D, Mills C, Guo X, Thomas PD. 2019. Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). *Nature Protocols* **14**, 703.

Nevarez PA, Qiu Y, Inoue H, Yoo CY, Benfey PN, Schnell DJ, Chen M. 2017. Mechanism of Dual Targeting of the Phytochrome Signaling Component HEMERA/pTAC12 to Plastids and the Nucleus. *Plant Physiology* **173**, 1953–1966.

Oh S, Montgomery BL. 2014. Phytochrome-dependent coordinate control of distinct aspects of nuclear and plastid gene expression during anterograde signaling and photomorphogenesis. *Frontiers in Plant Science* **5**, 171.

Oh E, Zhu J-Y, Wang Z-Y. 2012. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. *Nature Cell Biology*.

Parlitz S, Kunze R, Mueller-Roeber B, Balazadeh S. 2011. Regulation of photosynthesis and transcription factor expression by leaf shading and re-illumination in *Arabidopsis thaliana* leaves. *Journal of Plant Physiology* **168**, 1311–1319.

Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. *Nucleic Acids Research* **29**, e45.

Rathke G-W, Behrens T, Diepenbrock W. 2006. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (*Brassica napus* L.): A review. *Agriculture, Ecosystems & Environment* **117**, 80–108.

Rawat R, Takahashi N, Hsu PY, Jones MA, Schwartz J, Salemi MR, Phinney BS, Harmer SL. 2011. REVEILLE8 and PSEUDO-RESPONSE REGULATOR5 form a negative feedback loop within the *Arabidopsis* circadian clock. *PLoS genetics* **7**, e1001350.

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics (Oxford, England)* **26**, 139–140.

Schep A. 2019. *motifmatchr: Fast Motif Matching in R*.

Schjoerring JK, Bock JGH, Gammelvind L, Jensen CR, Mogensen VO. 1995. Nitrogen incorporation and remobilization in different shoot components of field-grown winter oilseed rape (*Brassica napus* L.) as affected by rate of nitrogen application and irrigation. *Plant and Soil* **177**, 255–264.

Shi H, Lyu M, Luo Y, Liu S, Li Y, He H, Wei N, Deng XW, Zhong S. 2018. Genome-wide regulation of light-controlled seedling morphogenesis by three families of transcription factors. *Proceedings of the National Academy of Sciences* **115**, 6482–6487.

Sobieszczuk-Nowicka E, Wrzesiński T, Bagniewska-Zadworna A, Kubala S, Rucińska-Sobkowiak R, Polcyn W, Misztal L, Mattoo AK. 2018. Physio-Genetic Dissection of Dark-Induced Leaf Senescence and Timing Its Reversal in Barley. *Plant Physiology* **178**, 654–671.

Song Y, Yang C, Gao S, Zhang W, Li L, Kuai B. 2014. Age-Triggered and Dark-Induced Leaf Senescence Require the bHLH Transcription Factors PIF3, 4, and 5. *Molecular Plant* **7**, 1776–1787.

Strasser B, Sánchez-Lamas M, Yanovsky MJ, Casal JJ, Cerdán PD. 2010. *Arabidopsis thaliana* life without phytochromes. *Proceedings of the National Academy of Sciences of the United States of America* **107**, 4776–4781.

Toledo-Ortiz G, Johansson H, Lee KP, Bou-Torrent J, Stewart K, Steel G, Rodríguez-Concepción M, Halliday KJ. 2014. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. *PLoS genetics* **10**, e1004416.

Wang J-G, Chen C-H, Chien C-T, Hsieh H-L. 2011. FAR-RED INSENSITIVE 219 modulates CONSTITUTIVE PHOTOMORPHOGENIC 1 activity via physical interaction to regulate hypocotyl elongation in *Arabidopsis*. *Plant Physiology*.

Wang D, Portis AR. 2007. A novel nucleus-encoded chloroplast protein, PIFI, is involved in NAD(P)H dehydrogenase complex-mediated chlororespiratory electron transport in *Arabidopsis*. *Plant Physiology* **144**, 1742–1752.

Waters MT, Moylan EC, Langdale JA. 2008. GLK transcription factors regulate chloroplast development in a cell-autonomous manner. *The Plant Journal: For Cell and Molecular Biology* **56**, 432–444.

Waters MT, Wang P, Korkaric M, Capper RG, Saunders NJ, Langdale JA. 2009. GLK Transcription Factors Coordinate Expression of the Photosynthetic Apparatus in *Arabidopsis*. *The Plant Cell* **21**, 1109–1128.

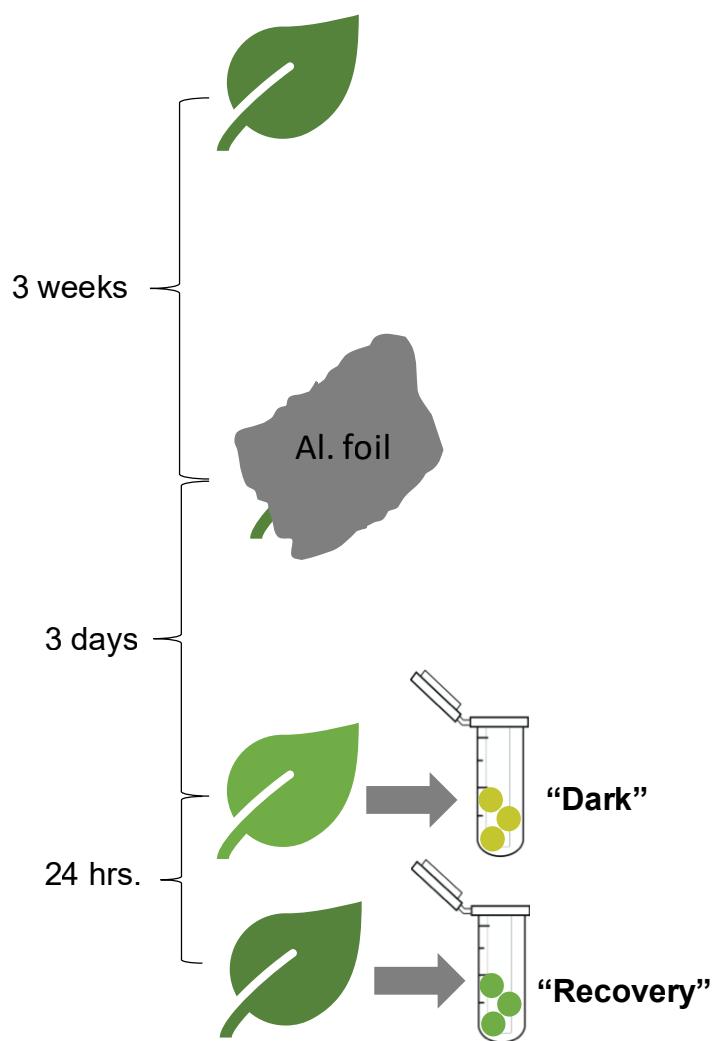
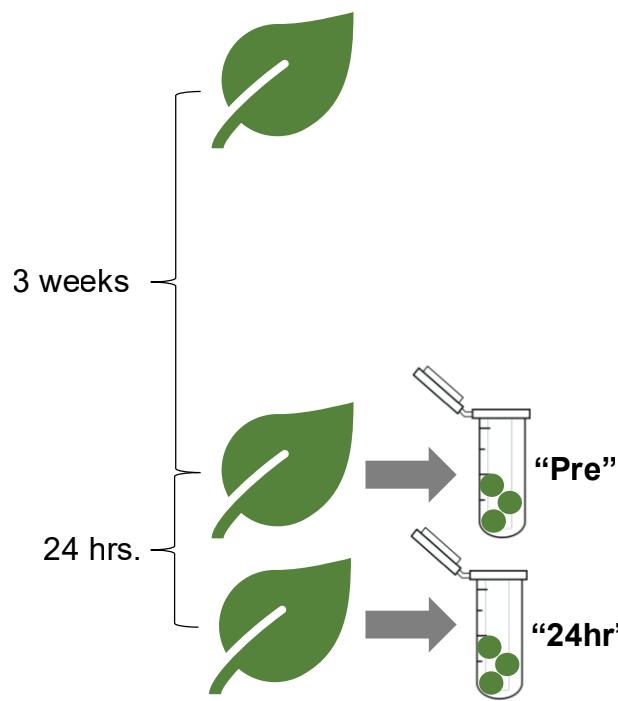
Weaver LM, Amasino RM. 2001. Senescence Is Induced in Individually Darkened *Arabidopsis* Leaves, but Inhibited in Whole Darkened Plants. *Plant Physiology* **127**, 876–886.

Wies G, Mantese AI, Casal JJ, Maddonni GÁ. 2019. Phytochrome B enhances plant growth, biomass and grain yield in field-grown maize. *Annals of Botany* **123**, 1079–1088.

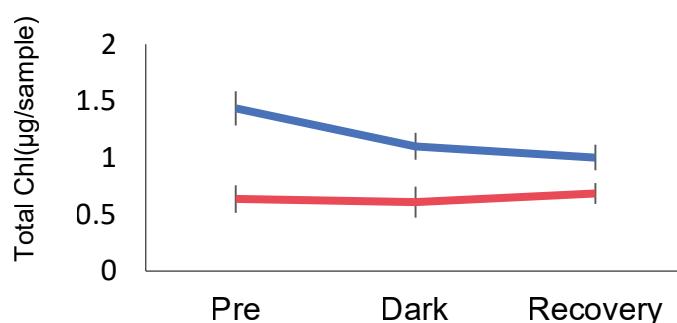
Xiong D, Huang J, Peng S, Li Y. 2017. A few enlarged chloroplasts are less efficient in photosynthesis than a large population of small chloroplasts in *Arabidopsis thaliana*. *Scientific Reports* **7**, 5782.

Xu MY, Dong Y, Zhang QX, Zhang L, Luo YZ, Sun J, Fan YL, Wang L. 2012. Identification of miRNAs and their targets from *Brassica napus* by high-throughput sequencing and degradome analysis. *BMC genomics* **13**, 421.

Xu D, Marino G, Klingl A, Enderle B, Monte E, Kurth J, Hiltbrunner A, Leister D, Kleine T. 2019. Extrachloroplastic PP7L Functions in Chloroplast Development and Abiotic Stress Tolerance1[OPEN]. *Plant Physiology* **180**, 323–341.

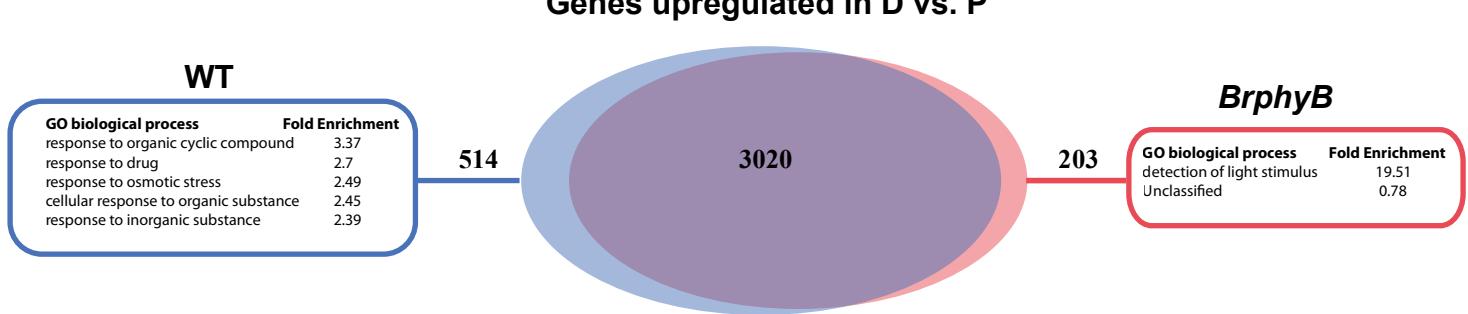


Yang D, Seaton DD, Krahmer J, Halliday KJ. 2016. Photoreceptor effects on plant biomass, resource allocation, and metabolic state. *Proceedings of the National Academy of Sciences* **113**, 7667–7672.

Zhang X, Chen Y, Wang ZY, Chen Z, Gu H, Qu LJ. 2007. Constitutive expression of CIR1 (RVE2) affects several circadian-regulated processes and seed germination in *Arabidopsis*. *The Plant journal* □: for cell and molecular biology **51**, 512–525.


Zhang Y, Mayba O, Pfeiffer A, Shi H, Tepperman JM, Speed TP, Quail PH. 2013. A Quartet of PIF bHLH Factors Provides a Transcriptionally Centered Signaling Hub That Regulates Seedling Morphogenesis through Differential Expression-Patterning of Shared Target Genes in *Arabidopsis*. *PLOS Genetics* **9**, e1003244.

A

Leaf 1 Leaf 2



B

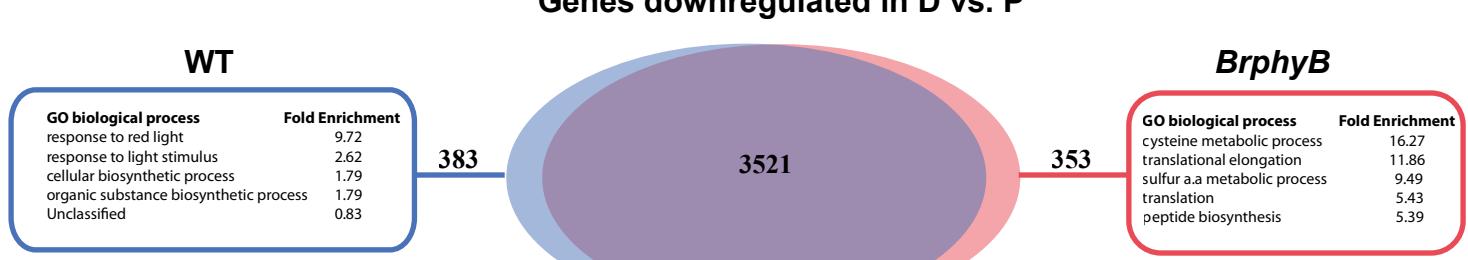
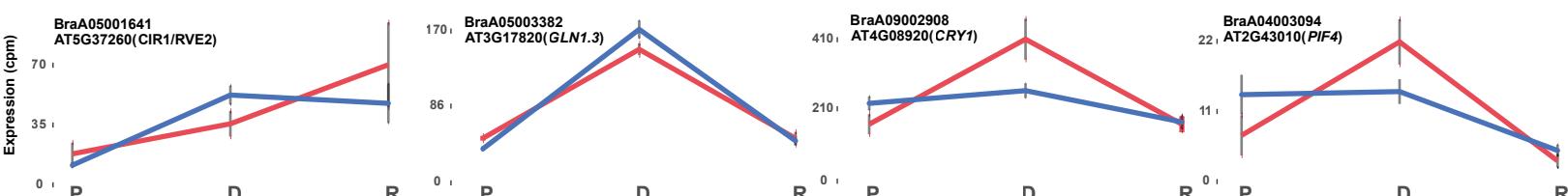
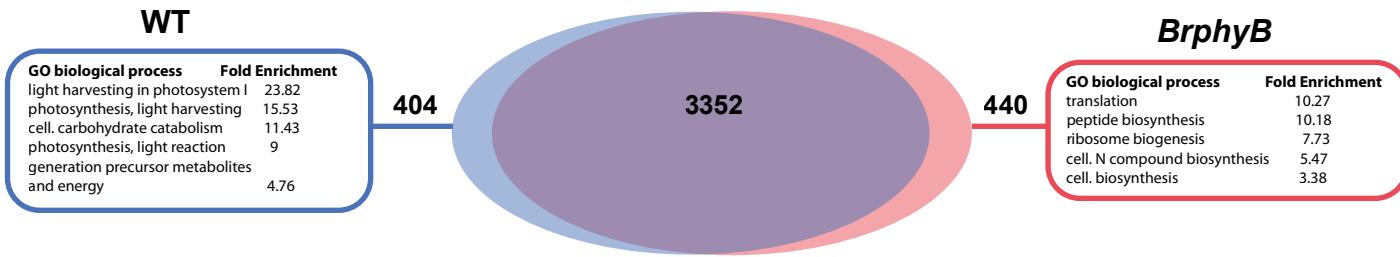


Figure 1: RNAseq experimental set-up (A). At 3 weeks of age the "pre" sample was collected from the first of the two developmentally matched leaves. Symmetrical samples from the same leaf was collected for chlorophyll measurement. The second matched leaf was covered with tinfoil at this time. 24 hours later the "24" sample was harvested from the uncovered leaf, the same leaf that provided the "pre" sample. 48 hours later the tinfoil was removed from the covered leaf and the "dark" samples were similarly collected. 24 hours later the "recovery" samples were collected from this same leaf. Samples were immediately frozen in liquid nitrogen. Three biological replicated were similarly collected. Total chlorophyll in Pre, dark, and recovery samples, error bars are SE.


A

B



C

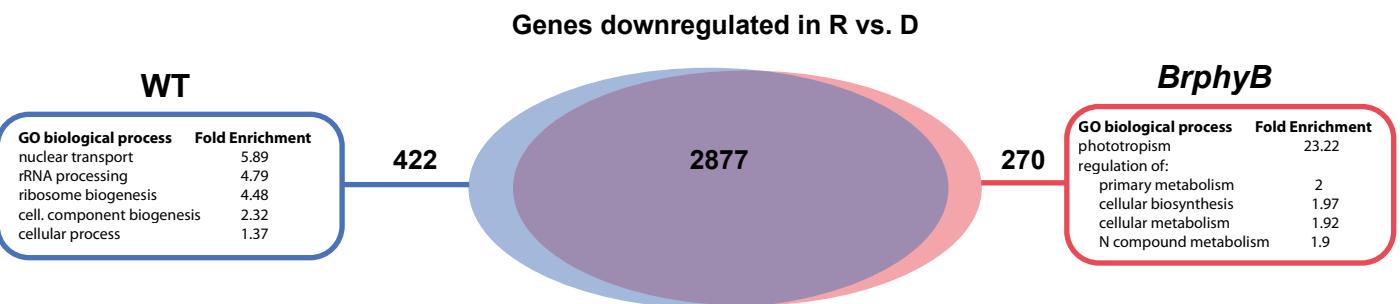
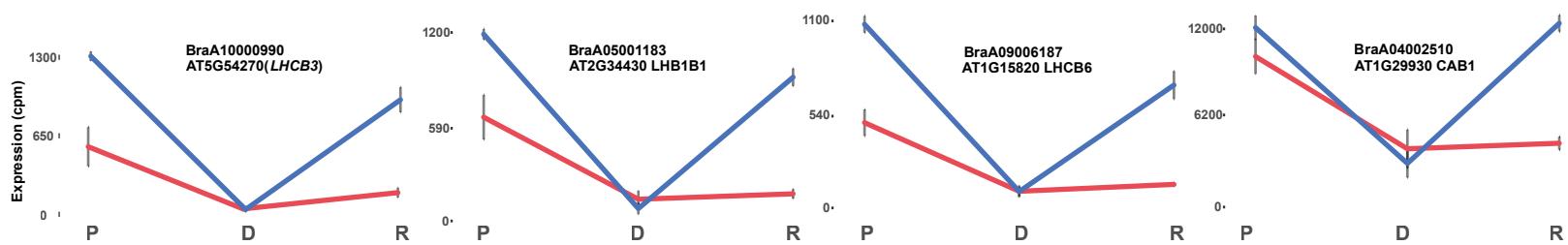
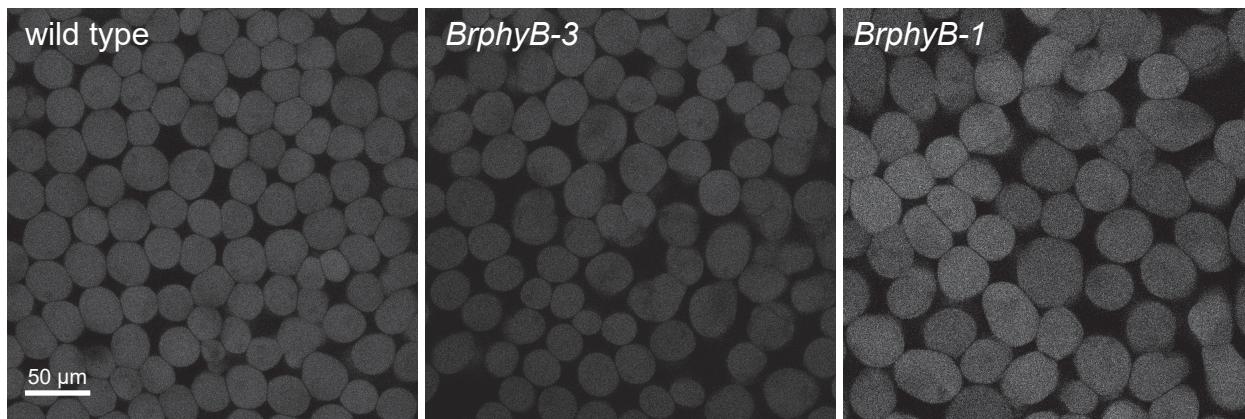


Figure 2: Genes differentially expressed in dark. A Gene Ontology (GO) analysis of genes uniquely differentially expressed in wild type and *BrphyB* mutant leaves following 72 hours of dark. A) Upregulated genes. B) Downregulated genes. C) Expression values of 3 biological replicates in exemplar genes in Pre(P), Dark (D) and Recovery (R).


A

B



C

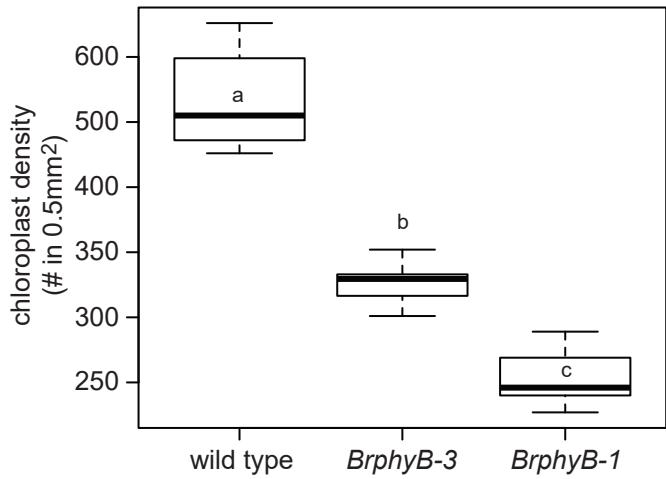


Figure 3: Genes differentially expressed on return to light. A Gene Ontology (GO) analysis of genes uniquely differentially expressed in wild type and *BrphyB* mutant leaves 24 hours after return to light. A) Upregulated genes. B) Downregulated genes. C) Expression values of 3 biological replicates in exemplar genes in Pre(P), Dark(D) and Recovery(R).

A

B

C

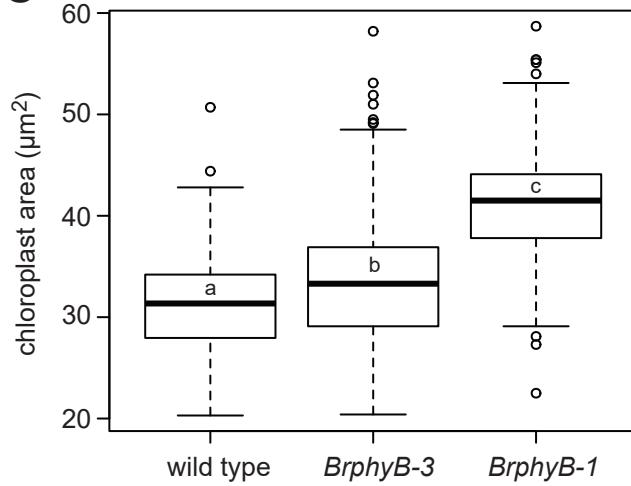


Figure 4 : *BrphyB* mutant plants have fewer and larger chloroplasts. A. Fluorescent images of chloroplasts in 3 week old *B.rapa* leaves. B. Chloroplast density in same leaves as A. Chloroplast area of individual chloroplasts in same plants as A. Lower case letters in B and C indicate significant difference (ANOVA and Tukey HSD multiple comparison test; $p < 0.001$)