

1 Evidence for dosage compensation in *Coccinia grandis*, a plant with a highly
2 heteromorphic XY system
3

4 Cécile Fruchard¹, Hélène Badouin¹, David Latrasse², Ravi S. Devani³, Aline Muyle¹,
5 Bénédicte Rhoné¹, Susanne S. Renner⁴, Anjan K. Banerjee³, Abdelhafid Bendahmane²,
6 Gabriel A.B. Marais^{1,*}

7
8 1. *Laboratoire de Biométrie et Biologie Evolutive (LBBE), UMR5558, Université Lyon 1, 69622 Villeurbanne,*
9 *France.*

10 2. *Institute of Plant Sciences Paris Saclay (IPS2), University of Paris Saclay, 91405 Orsay, France.*

11 3. *Biology Division, Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India.*

12 4. *Systematic Botany and Mycology, University of Munich (LMU), Menzinger Str. 67, 80638 Munich,*
13 *Germany.*

14

15 * corresponding author: gabriel.marais@univ-lyon1.fr

16

17

17 Abstract

18 Some ~15.000 angiosperms are dioecious, but mechanisms of sex determination in plants
19 remain poorly understood. In particular, how Y chromosomes evolve and degenerate, and
20 whether dosage compensation evolves as a response, are matters of debate. Here we focus on
21 *Coccinia grandis*, a dioecious cucurbit with the highest level of X/Y heteromorphy recorded
22 so far. We identified sex-linked genes using RNA sequences from a cross and a model-based
23 method termed SEX-DETector. Parents and F1 individuals were genotyped and the
24 transmission patterns of SNPs then analysed. In the >1300 sex-linked genes studied, X-Y
25 divergence was 0.13 - 0.17, and substantial Y degeneration is implied by an average Y/X
26 expression ratio of 0.63 and an inferred gene loss on the Y of ~40%. We also found reduced
27 Y gene expression being compensated by elevated expression of corresponding genes on the
28 X and an excess of sex-biased genes on the sex chromosomes. Molecular evolution of sex-
29 linked genes in *C. grandis* is thus comparable to that in *Silene latifolia*, another dioecious
30 plant with a strongly heteromorphic XY system, and cucurbits are the fourth plant family in
31 which dosage compensation is described, suggesting it might be common in plants.

32

33 Key words

34 dioecy; sex chromosomes; heteromorphy; Y degeneration; dosage compensation; cucurbits

35

35 **Introduction**

36 Some 5 or 6% of the angiosperms, depending on the assumed total species number, have male
37 and female sporophytes, a sexual system termed dioecy, (Renner, 2014). Transitions from
38 other sexual systems towards dioecy are estimated to have occurred between 871 and 5,000
39 times independently (Renner, 2014). Chromosomes and sex determination have been studied
40 in few dioecious plants, however, and microscopically distinguishable (heteromorphic) sex
41 chromosomes have been reported in about 50 species only (Ming et al., 2011). An important
42 question is whether sex chromosomes evolve similarly in plants and animals. For example,
43 the evolution towards heteromorphy might be common between both lineages, with an
44 autosomal origin of the sex chromosomes, gradual recombination suppression between X and
45 Y chromosomes, and genetic degeneration of the Y chromosome (Charlesworth et al., 2005;
46 Bergero & Charlesworth, 2009; Ming et al., 2011; Muyle et al. 2017). Animal Y
47 chromosomes tend to shrink over time and can become tiny as in the old heteromorphic
48 systems of mammals and *Drosophila* (Charlesworth et al., 2005; Bergero & Charlesworth,
49 2009; Bachtrog, 2013 but see Mahajan et al., 2018). In plants, the size of the Y chromosomes
50 might evolve in a non-linear way, with Y chromosomes of intermediate age being larger than
51 their X counterparts, but very old Y chromosomes being smaller (Ming et al., 2011). Systems
52 with large Y chromosomes have not been found in animals and might be plant-specific; the
53 reason for this is unknown. *Silene latifolia* has one such system and has been intensively
54 studied (e.g. Filatov et al., 2000; Nicolas et al., 2005; Bergero et al., 2008; Cermak et al.,
55 2008; Marais et al., 2008; Chibalina & Filatov, 2011; Bergero & Charlesworth, 2011; Muyle
56 et al., 2012; Papadopoulos et al., 2015; Muyle et al., 2018; Rodríguez Lorenzo et al., 2018).
57 Studying more plant systems, in particular those with larger-than-X Y chromosomes, is
58 necessary to get a more precise picture of the evolution of heteromorphic sex chromosomes in
59 plants.

60

61 An important aspect of the evolution of animal sex chromosomes is dosage compensation,
62 which has been reported in old heteromorphic systems (Gu & Walters, 2017). The genetic
63 degeneration of the Y chromosome causes a global decrease of Y gene expression through
64 gene loss and gene silencing (Bachtrog, 2013). Without compensation, this phenomenon
65 would result in a dosage imbalance in males because many Y genes have reduced expression
66 or are not expressed at all, compared to females where both X copies are fully expressed (Gu
67 & Walters, 2017). Three such compensation mechanisms have been described: the
68 mammalian system, the *Drosophila* system, and the *C. elegans* system (Ercan, 2015). The
69 mechanism in fruit fly appears to be straightforward with a chromosome-wide doubling of X
70 expression in males, re-establishing the proper dosage (Ercan, 2015). The mammal and *C.*
71 *elegans* mechanisms are less straightforward, with an apparent doubling of expression on the
72 X chromosome in both sexes and then a mechanism to correct expression in
73 females/hermaphrodites (X-inactivation in mammals, downregulation of both Xs in *C.*
74 *elegans*; Ercan, 2015). In both lineages, dosage compensation seems to affect certain genes
75 only (Pessia et al., 2012, 2014; Mank, 2013; Albritton et al., 2014; Ercan, 2015; Veitia et al.,
76 2015; Gu & Walters, 2017). In birds, dosage compensation also is local, affecting only a few
77 dosage-sensitive genes (Arnold et al., 2008; Zimmer et al., 2016).

78

79 In plants, dosage compensation was first documented in *S. latifolia* (Muyle et al., 2012)
80 although its existence was initially disputed as different patterns were observed for X/Y gene
81 pairs and X-hemizygous genes (lacking Y copies) in RNA-seq-based studies (Chibalina
82 & Filatov, 2011; Muyle et al., 2012; Bergero et al. 2015). However, a study comparing sex-
83 linked genes found in BAC sequences and in RNA-seq data revealed that X-hemizygous
84 genes were probably under-represented in RNA-seq-based studies of *S. latifolia* (Blavet et al.,

85 2015). Partial genome sequencing of *S. latifolia* confirmed this finding and provided a large
86 set of X-hemizygous genes (Papadopoulos et al., 2015). This last study also confirmed that
87 partial dosage compensation does exist in *S. latifolia* and that a fraction of both the X/Y gene
88 pairs and X-hemizygous genes are compensated (Papadopoulos et al., 2015). Dosage
89 compensation in *S. latifolia* seems to be achieved through an upregulation of the maternal X
90 chromosome in both sexes, which is reminiscent of the scenario envisioned by Ohno (1967)
91 for the evolution of dosage compensation in mammals (Muyle et al., 2018). The precise
92 molecular mechanism remains unknown (Krasovec et al., 2019), but epigenetic studies
93 suggest that the two female X chromosomes bear different epigenetic marks, implying
94 different expression regulation (Siroky et al., 1998; Bacovsky et al., 2019). Additionally,
95 evidence for dosage compensation has been found in *Silene otites*, which has a ZW system
96 younger than the *S. latifolia* XY one (Martin et al., 2019), in *Rumex rothschildianus*, which
97 has an XY₁Y₂ system that is 8-10 My old (Crowson et al., 2017), and in *Cannabis sativa*,
98 which has an XY system that is 20-30 My old (Prentout et al., 2020). An important question is
99 whether dosage compensation is a general feature of plant sex chromosomes.

100
101 Here, we focus on *Coccinia grandis*, a species in the Cucurbitaceae with a large Y
102 chromosome (Kumar & Vishveshwaraiah, 1952; Sousa et al., 2012, 2016, 2017). *C. grandis* is
103 a perennial, tropical liana that can produce fruits in the first year but can reach stem diameters
104 of >8 cm and ages of at least 20 years. The genus comprises 25 species, all of them dioecious.
105 It belongs to the tribe Benincaseae, where its sister genus (*Diplocyclos*) consists of four
106 monoecious species (Holstein & Renner, 2011). The *C. grandis* Y chromosome comprises
107 about 200 Mb, making it four times larger than the X chromosome, mainly due to the
108 accumulation of transposable elements (TEs) and satellite repeats, resulting in a 10%
109 difference in the size of male and female genomes (Sousa et al., 2012, 2016, 2017). Plastid

110 and mitochondrial-like sequences also have accumulated on the *C. grandis* Y chromosome.
111 The repetitive fraction of the male and female genomes of *C. grandis* is mainly composed of
112 Ty1 copia and Ty3 gypsy LTR elements. Of these elements, five are found in much greater
113 abundance on the Y than on other chromosomes (Sousa et al., 2016). Despite this
114 heteromorphy, the species has been estimated to be only 3.1 My old based on a molecular-
115 clock model applied to a phylogeny with all 25 species (Holstein & Renner, 2011). *C. grandis*
116 males and females show no morphological differences except in their flowers, but between 2
117 and 8% of the genes appear to be differentially expressed between males and females (Devani
118 et al., 2017; Mohanty et al., 2017). The species is a promising system in which to study sex
119 chromosome evolution because of its relatively small genome size (~ 1 Gb) and its
120 phylogenetic proximity to *Cucumis* (Schaefer et al., 2009), which includes the fully
121 sequenced *Cucumis sativus* and *Cucumis melo* genomes (Huang et al., 2009; Garcia-Mas et
122 al., 2012; Ruggieri et al., 2018; Li et al., 2019). However, no sex-linked genes have been
123 identified so far and no reference genome (with identified sex chromosomes) is currently
124 available in *Coccinia*. Information about the extent of gene loss, the degradation of Y gene
125 expression, the existence of dosage compensation, the genomic distribution of sex-biased
126 genes is thus currently missing.

127
128 Here we identify sex-linked genes in *C. grandis* using a model-based method that we have
129 developed and termed SEX-DETector (Muyle et al., 2016) and which uses RNA-seq data to
130 genotype the parents and F1 individuals from a cross. For each SNP, the transmission from
131 parents to offspring of each allele is analysed. Sex-linkage or autosomal segregation types
132 have typical patterns that SEX-DETector is able to differentiate even when there are
133 genotyping errors. For example, a bi-allelic SNP in which one allele is transmitted exclusively
134 from father to sons, while the other is transmitted from both parents to all progeny will be

135 identified as an X/Y SNP (with the male-specific allele being the Y allele). The information
136 of all SNPs in a gene is then combined into a probability for the gene to be sex-linked. RNA-
137 seq-based segregation analysis is both relatively cheap and efficient, and has been applied in
138 several plant systems in which sex-linked genes have been identified successfully, initially
139 using empirical methods (Chibalina & Filatov, 2011; Bergero & Charlesworth, 2011; Muyle
140 et al., 2012; Hough et al., 2014; Michalovova et al., 2015). More recently, SEX-DEtector has
141 been applied in *Cannabis sativa*, *Mercurialis annua*, *Silene*, and *Vitis vinifera* (Muyle et al.,
142 2016, 2018; Zemp et al., 2017; Martin et al., 2019; Veltsos et al. 2019; Prentout et al. 2020;
143 Badouin et al. 2020). Based on the detected sex-linked genes, we aimed to estimate the age of
144 the sex chromosomes and test for Y degeneration, dosage compensation, and sex-biased genes
145 in *Coccinia grandis*.

146

147

148 Material and Methods

149

150 *Plant material*

151 RNA sequencing data were obtained from a cross between a male and a female individual of
152 the dioecious plant *C. grandis*, both grown in the experimental fields of IISER Pune, India.
153 Seeds from the cross were collected as soon as the fruits matured. The 24 seedlings raised
154 from these seeds took four to seven months to begin flowering, which allowed sexing of the
155 individuals. Flower buds at early developmental stages 3-4 (defined in Ghadge et al., 2014)
156 were sampled from plants being grown in the experimental fields. RNAs were isolated from 5
157 males (sons) and 5 females (daughters) from the F1 generation as well as from their parents.

158

159 *RNA sequencing*

160 The flower buds were sent to IPS2 Paris, France using RNA later ICE kits by Thermo Fisher.
161 Total RNA was extracted from 12 flower bud samples using Agilent's spin column
162 purification method, mRNA was isolated with Oligo-dT Beads from NEB and RNAseq
163 libraries were constructed with the Directional Kit from NEB. Sequencing was performed at
164 IPS2 Paris, France, with Illumina NextSeq500 following a paired-end protocol of library
165 preparation (fragment lengths 100-150 bp, 75 bp sequenced from each end). RNA samples
166 were checked for quality, individually tagged and sequenced (see Supplementary Table 1 for
167 library sizes).

168

169 *De novo transcriptome assembly*

170 A reference transcriptome was built for *C. grandis* using Trinity (Haas et al., 2013) on the
171 combined libraries of the 12 individuals (the parents and their ten offspring). For each
172 individual, 100% identical reads, assumed to be PCR duplicates, were filtered out using the
173 ConDeTri v2.3 trimming software (Smeds & Kunstner, 2011). Reads were then filtered out
174 for sequencing adapters and low quality using ea-utils FASTQ processing utilities v1.04.636
175 (Aronesty, 2011). Cleaned reads from all male and female individuals were combined and
176 assembled with Trinity version 2.4.0 with default settings (Haas et al., 2013). 276,225 contigs
177 were obtained. Poly-A tails were removed from contigs using PRINSEQ v0.20.4 (Schmieder
178 & Edwards, 2011) with parameters -trim_tail_left 5 -trim_tail_right 5. rRNA-like sequences
179 were removed using riboPicker version 0.4.3 (Schmieder et al., 2012) with parameters -i 90 -c
180 50 -l 50 and the following databases: SILVA Large subunit reference database, SILVA Small
181 subunit reference database, the GreenGenes database and the Rfam database. To ensure that X
182 and Y gametologs are assembled in consensus contigs (required for the SEX-DETector
183 analysis, see Muyle et al., 2016), Trinity components were merged using Cap3 (Huang &
184 Madan, 1999), with parameter -p 90 and custom perl scripts. Coding sequences were

185 predicted using Trinity TransDecoder version 3.0.1 (Haas et al., 2013) and including Pfam
186 domain searches as ORF retention criteria. This assembly included 128,904 ORFs. To avoid
187 mapping X and Y reads on separate contigs of the same gene, we chose to work on the
188 longest ORF predicted per Trinity isoforms, which resulted in a final set of 82,699 contigs
189 (see Table 1). BUSCO v3.0.2 (Benchmarking Universal Single-Copy Orthologs) was used to
190 assess the completeness of our transcriptome according to conserved gene content from the
191 Plant Dataset (Simao et al., 2015). Results are shown for full assembly with all ORFs and for
192 the longest ORF per Trinity isoforms, hereafter referred to as our reference transcriptome
193 (128,904 and 82,699 contigs respectively) in Supplementary Table 2.

194

195 *Functional annotation and Gene Ontology enrichment analysis*

196 *De novo* annotation of our transcriptome was performed using Trinotate v3.1.0 (Haas et al.,
197 2013) and resulted in 59,319 annotations for 82,699 contigs (71.73%). Gene Ontology (GO)
198 was assessed using GOSeq (Young et al., 2010) version 1.30.0 on R version 3.4.3 (2017-11-
199 30) to identify over or under-represented GO terms (p-value cutoff = 0.05).

200

201 *Inferring sex-linked contigs*

202 The raw Illumina reads were mapped on the reference transcriptome using BWA mapping (Li
203 et al., 2009) version 0.7.15 with following commands: bwa aln -n 5 and bwa sampe. Mapping
204 statistics are shown in Supplementary Table 3. Mapped reads were kept with Samtools
205 version 1.3.1 and individual genotypes were predicted with reads2snps version 2.0.64 with
206 paralog detection (Gayral et al., 2013; Tsagkogeorga et al., 2012), option -aeb that allows
207 alleles to have different expression levels, and -par 0 to avoid removal of paralogous positions
208 by the paraclean program that tends to filter out X/Y SNPs.

209

210 SEX-DETector (Muyle et al., 2016) version 1.0 (3rd September 2017) was used to infer
211 contig segregation types using a stochastic expectation maximization (SEM) algorithm. The
212 detected SNPs were filtered using Perl scripts to retrieve the autosomal or sex-linked SNPs,
213 when their posterior probability to be either autosomal or sex-linked was higher than 0.8. A
214 contig was then inferred as sex-linked if its global probability of being sex-linked was higher
215 than the probability of it being autosomal and if it at least had one sex-linked SNP without
216 genotyping error. Amongst sex-linked genes, X-linked contigs without a detectable
217 homologous Y-linked copy are called X-hemizygous. Sex-linked contigs with no Y
218 expression were considered as X-hemizygous, the rest as X/Y.

219

220 *Correcting mapping bias*

221 To avoid biases towards the reference allele in expression level estimates, a second mapping
222 was done with GSNAP (Wu & Nacu, 2010), a SNP-tolerant mapping software (see
223 Supplementary Table 3). A SNP file of X/Y SNPs identified in the first run of SEX-DETector
224 was produced with home-made perl scripts as described in Muyle et al. (2018). Raw Illumina
225 reads were mapped with GSNAP version 2017-11-15 and parameters -m 10 and -N 1. Only
226 uniquely mapped and concordant paired reads were kept for expression analysis. SEX-
227 DETector was run a second time on this new mapping, and the new inferences were used
228 afterwards for all analyses. No significant difference in the number of sex-linked inferences
229 was observed: 1,196 X/Y and 168 X-hemizygous contigs were found as shown in Table 2.

230

231 *Estimating the age of sex chromosomes*

232 The X and Y ORF sequences were produced by SEX-DETector using only X/Y segregating
233 SNPs, and pairwise dS was estimated by the codeml program implemented in the PAML suite
234 (Yang, 2007) version 4.8 (see Supplementary Figure 1). The age of the sex chromosomes can

235 be obtained from the X/Y gene pairs with the highest synonymous divergence (the first to
236 stop recombining, see Charlesworth et al., 2005; Bergero & Charlesworth 2009). To get age
237 estimates in millions years, we used three Brassicaceae molecular clocks: 1.5×10^{-8}
238 substitution/synonymous site/year, derived from an assumed divergence time of *Barbarea* and
239 *Cardamine* of 6.0 MYA (Koch et al., 2000), 7.1×10^{-9} substitutions/site/generation based on
240 spontaneous mutations in *Arabidopsis thaliana* (Ossowski et al., 2010), and 4×10^{-9}
241 substitutions/synonymous site/year, derived from a phylogeny calibrated with six Brassicales
242 fossils (Beilstein et al., 2010). We obtained the age estimates as follows: age (in years) =
243 dSmax / rate, using the molecular clock of Koch et al. (2000) and Beilstein et al. (2010), and
244 age (in number of generations) = dSmax / 2μ , using the molecular clock of Ossowski et al.
245 (2010) and assuming a *C. grandis* generation time of 1 to 5.5 years.

246

247 *Estimating gene loss*

248 X-hemizygous genes (X-linked genes without detectable Y copies) have been used to infer
249 the extent of gene loss on Y chromosomes. This only gives a rough idea of gene loss as X-
250 hemizygous genes inferred by SEX-DETector comprise both genes with deleted or silenced Y
251 copies (true lost Y genes) and genes with Y copies that are expressed in some tissues but not
252 in the one used for RNA-seq (false lost Y genes). Also, X-hemizygous contigs are inferred by
253 SEX-DETector from X polymorphism, as explained in Muyle et al., 2016, whereas X/Y
254 contig inference relies on fixed mutations. X-hemizygous contigs can therefore only be
255 detected in contigs with X polymorphism, resulting in their underestimation (Bergero &
256 Charlesworth, 2011). We corrected for this by using the number of X-hemizygous contigs
257 (168) relative to X/Y contigs with X polymorphism (424) that were listed in the output of
258 SEX-DETector. Premature stop codons were detected using a custom script on X and Y
259 alleles.

260

261 *Analysis of expression level differences between X and Y alleles*

262 **Allelic expression measurement.** Normalized allelic expression of sex-linked contigs was

263 computed as in Muyle et al. (2018) from SEX-DETector outputs. Expression of X and Y

264 alleles was computed using reads spanning diagnostic X/Y SNPs only and were normalized

265 using the library size and the number of studied SNPs in the contig. Normalized expression

266 levels were lower in males compared to females in autosomal contigs, as seen in

267 Supplementary Figure 2. This may be because a small subset of genes are very highly

268 expressed in developing male organs, as observed in other plants (e.g. Badouin et al., 2017),

269 resulting in an apparent lower expression of housekeeping genes after normalization for total

270 library size. We applied a correction coefficient to male expression using the ratio of median

271 male autosomal expression over median female autosomal expression, to have a comparable

272 median expression in males and females for autosomal contigs. The same ratio was then

273 applied to sex-linked contigs. The results of this correction are shown in Supplementary

274 Figures 2, 3 and 4. We used corrected expression levels to prepare Figure 1 and to perform all

275 downstream analyses.

276 **Analysis of dosage compensation in X-hemizygous contigs.** Contigs with $X_{\text{male}}/2X_{\text{female}}$

277 ratios above 8 or under 0.125 were excluded as in Muyle et al. (2012) because we do not

278 expect dosage compensation to occur in these sex-biased genes. To test for dosage

279 compensation, we filtered genes based on their \log_2 male-to-female expression ratio following

280 Mullon et al. (2015). X-hemizygous contigs that showed the same expression level in males

281 and in females, i.e. with of $\log_2(\text{male}/\text{female})$ of 0 \pm 0.2 were considered as compensated

282 and X-hemizygous contigs with twice as much expression in females compared to males, i.e.

283 with of $\log_2(\text{male}/\text{female})$ of -1 \pm 0.2 were considered as non-compensated (see Figure 2). A

284 wider range of $\log_2(\text{male}/\text{female})$ of \pm 0.5, as used in Zimmer et al. (2016) for dosage-

285 compensated contigs, had the same GO enrichment categories. A smaller range of +/- 0.1 had
286 not enough contigs per category to allow for a significant GO enrichment analysis.

287

288 *Identifying contigs with sex-biased expression.*

289 We used the R packages DESeq2 (Love et al., 2014) version 1.18.1, edgeR (McCarthy et al.,
290 2012; Robinson et al., 2010) version 3.20.8, and Limma-Voom (Law et al., 2014) version
291 3.34.8 in R version 3.4.3 (2017-11-30) to perform biased gene expression analysis between
292 males and females. DGE analysis was performed on the raw read counts (untransformed, not
293 normalized for sequencing depth). Contigs with a CPM (Count Per million) lower than 0.5
294 (corresponding to a count of 10) were filtered out. Regularized log-transformation of the
295 DESeq2 package was used to reduce variance of low read counts. Normalization with edgeR
296 was made with a tagwise dispersion and GLM normalization method (calcNormFactors,
297 estimateTagwiseDisp and glmLRT functions). With LimmaVoom, counts were fitted to a
298 linear model and differential expression was computed by empirical Bayes (lmFit and eBayes
299 functions).

300

301 Contigs identified with at least two methods with an FDR cutoff of 0.0001 were retained as
302 differentially expressed (see Supplementary Figure 5 and Supplementary Table 4). The three
303 methods do not have the same characteristics, and keeping contigs identified with at least two
304 methods as differentially expressed is more robust. DESeq2 and edgeR are based on the same
305 method, but edgeR has fewer false positives. LimmaVoom is very specific (see
306 Supplementary Figure 5), and therefore also has few false positives. The union of
307 intersections is a way to both remove false negatives of DESeq2 and EdgeR and retain true
308 positives that LimmaVoom tends to discard.

309

310 *Statistics*

311 Unless stated otherwise in the relevant sections, all statistical analyses and graphs were done
312 with R version 3.4.3 (R Core Team, 2014). Fisher's exact tests were two-tailed and p-values
313 were adjusted with the FDR method (Benjamini & Hochberg, 1995). Exact adjusted p-values
314 are provided for each test.

315

316

317 **Results**

318

319 *Sex-linked genes identified by SEX-DETector*

320 We assembled a *de novo* transcriptome for *C. grandis* with male and female reads (82,699
321 contigs, see Table 1). We used RNA-seq data from a *C. grandis* F1 cross mapped to our
322 reference transcriptome to identify genes located on the sex chromosomes (Supplementary
323 Table 1). The raw reads were mapped on open reading frames (ORF). A total of 45.76% reads
324 were mapped with standard mapping and 49.24% with SNP-tolerant mapping (see
325 Supplementary Table 3). We divided the contigs expressed in buds into autosomal, sex-linked
326 X/Y (defined as contigs having both X- and Y-linked alleles), and X-hemizygous contigs
327 (sex-linked, but with no Y-copy expression). These categories were inferred from single
328 nucleotide polymorphisms (SNPs) segregating in a family, using a probabilistic model (Muyle
329 et al., 2016). Out of the 82,699 contigs, 5,070 had enough informative SNPs to be assigned to
330 a segregation type, 3,706 were inferred as autosomal (73.10% of contigs with enough
331 informative SNPs), 1,196 as X/Y (23.59%), and 168 as X-hemizygous (3.31%) (see Table 2).

332

333 *Age of the C. grandis XY system*

334 Age estimates are based on the divergence between X and Y copies and three Brassicaceae
335 molecular clocks (see Table 3). We obtained a maximum dS of 0.17 in all contigs and of 0.13
336 in contigs longer than 1kb. The molecular clocks obtained from fossil-calibrated Brassicaceae
337 phylogenies (Koch et al., 2000; Beilstein et al., 2010) returned age estimates between 8.7 to
338 34.7 My old. The molecular clock obtained from *Arabidopsis thaliana* substitution rates
339 (Ossowski et al., 2010) returned estimates ranging from 9.3 to 12.1 My, when assuming a
340 generation time of 1 year. The true generation time of *C. grandis*, however, is unknown. One
341 year is the onset of sexual maturity in this plant and corresponds to a lower bound estimate of
342 the generation time. *Coccinia grandis* can reach 20 years in the wild, and individuals of 10
343 years are known from botanical gardens (S.S. Renner, pers. com). Assuming an average
344 generation time of 5.5 years (from the minimum value of 1 year and the conservative
345 maximum value of 10 years), yields much higher age estimates for XY divergence (see Table
346 3).

347

348 *Patterns of Y degeneration*

349 We looked for patterns of degeneration in our data. Males showed lower gene expression than
350 females for most of the genes, because a small subset of genes are very highly expressed in
351 developing male flower buds resulting in apparent lower mean expression after normalization
352 for total library size (Supplementary Figure 2). After correcting for this expression bias
353 between males and females (see Methods), we found that sex-linked genes are less expressed
354 in males than in females (see Supplementary Figures 2 and 4), Wilcoxon ranked test p-value =
355 2.57×10^{-8}). To refine our analysis of Y chromosome degeneration in *C. grandis*, we analysed
356 the allelic expression of genes inferred as sex-linked, which showed that Y-linked alleles were
357 significantly less expressed than X-linked alleles in males (see Figure 1, Wilcoxon ranked test
358 p-value = 3.06×10^{-13}). Lost Y genes can be detected by SEX-DETector when the Y copy is

359 absent or unexpressed and are assigned as X-hemizygous. But given that X-hemizygous
360 contigs can be inferred from segregation patterns only if there is polymorphism on the X
361 chromosome (Bergero & Charlesworth, 2011; Muyle et al., 2016; Materials and Methods),
362 their number may be underestimated when segregation patterns are analyzed. We corrected
363 for this as described in Materials and Methods, which resulted in a corrected rate of gene loss
364 of 39.62%. Another hallmark of degeneration is the presence of premature stop codons. We
365 detected 17 X (1.4%) and 56 Y (4.7%) alleles with a premature stop, implying that premature
366 stop codons are more abundant in Y alleles (Fisher's exact test p-value = 6.9×10^{-6}). These
367 observations clearly point to a significant level of genetic degeneration on the Y chromosome
368 in *C. grandis*.

369

370 *Patterns of dosage compensation*

371 To determine whether some genes are dosage-compensated, we first studied the \log_2 fold
372 change between male and female expressions. In the absence of dosage compensation, the
373 $X_{\text{male}}/2X_{\text{female}}$ expression ratio is expected to be 0.5, so the \log_2 of the ratio is expected to
374 be -1, because males (XY) have one X-linked copy and females (XX) have two. This is what
375 we observed for contigs that do not show reduced expression of the Y-linked allele relative to
376 the X-linked allele, i.e., that have a Y/X expression ratio close to 1 (median of \log_2
377 $X_{\text{male}}/2X_{\text{female}}$ ratio is -1.29 for contigs with $Y/X > 1$; see Figure 2). For contigs with
378 reduced Y expression (low Y/X ratios), we observed a higher $X_{\text{male}}/2X_{\text{female}}$ expression
379 ratio, which suggests that dosage compensation occurs for some genes (median of contigs
380 with $Y/X \leq 0.5$ is -0.85; see Figure 2). Finally, in X-hemizygous contigs, the distribution of
381 $X_{\text{male}}/2X_{\text{female}}$ expression ratio was bimodal, with a set of 31 contigs centered on a \log_2
382 $X_{\text{male}}/2X_{\text{female}}$ ratio of -1 (no compensation), and 23 contigs centered on 0 (total
383 compensation). This suggests that these two sets of genes exhibited respectively no

384 compensation and total compensation resulting in equal expression in males and females. This
385 trend is also present in a less visible pattern for X/Y contigs with low Y expression (see
386 Figure 2). To investigate dosage compensation further, we compared expression of X-linked
387 and Y-linked alleles in males and females for different Y/X expression ratio categories
388 (Figure 3), using female expression as a reference. We excluded 1% of the sex-linked contigs
389 that showed either an elevated Y expression (high Y/X ratios) or sex-biased X expression
390 (very high or very low $X_{\text{male}}/2X_{\text{female}}$ ratios, see Methods). The Y/X ratio was computed in
391 *C. grandis* males and averaged between individuals, and used as a proxy for Y degeneration.
392 In the absence of dosage compensation, $X_{\text{male}}/2X_{\text{female}}$ expression ratio is expected to be
393 0.5. Instead, we found that X expression in males increases with decreasing Y expression,
394 which results in similar expression levels of sex-linked contigs in both sexes and provides
395 further evidence for dosage compensation in *C. grandis*.

396
397 X/Y genes appeared to be depleted in hormone-related functions, such as response to ethylene
398 and negative regulation of ethylene biosynthetic process (GO:0009723 and GO:0010366). X-
399 hemizygous genes were depleted in dosage-sensitive functions such as macromolecular
400 complex, intracellular ribonucleoprotein complex, ribonucleoprotein complex, transferase
401 complex, and membrane protein complex (GO:0032991, GO:0030529, GO:1990904,
402 GO:1990234 and GO:0098796). However, these same dosage-sensitive functions were
403 enriched in X-hemizygous genes that show dosage compensation when compared to all sex-
404 linked genes, which suggests compensation targets dosage-sensitive genes.

405
406 *Genomic distribution of sex-biased genes*
407 We detected 3,453 sex-biased genes with edgeR, 4,881 with DESeq, and 538 with
408 LimmaVoom (Supplementary Figure 1). To establish a robust set of sex-biased genes we

409 retained genes that were identified as sex-biased with at least two methods (3,273 genes).
410 Among these, 2,682 (81.94%) were male-biased and 591 (18.06%) female-biased. Genes with
411 sex-biased expression were significantly over-represented among sex-linked genes (see
412 Supplementary Table 4, Fisher's exact test p-value $< 2.2 \times 10^{-16}$), with 241 out of 1,364 sex-
413 linked genes being sex-biased (17.67% of sex-linked genes, with respectively 13.42% and
414 4.25% having male and female-biased expression), and 206 out of 3,706 autosomal genes
415 being sex-biased (5.56% of them, 4.45% with male and 1.11% with female-biased
416 expression). Out of the sex-biased genes that were localized on the sex chromosomes, 228
417 (94.61%) had a X/Y segregation type (181 male-biased and 47 female-biased), and only 11
418 male-biased genes and 2 female-biased were X-hemizygous. X-hemizygous contigs were not
419 enriched for differentially expressed genes when compared to autosomal contigs (see
420 Supplementary Table 4, Fisher's exact test p-value = 0.2302), which might be due to the small
421 sample of X-hemizygous genes. Gene ontology analysis revealed several biological processes
422 that are significantly over-represented among female-biased genes and under-represented
423 among male-biased genes, or vice versa. GO categories related to pollen production were
424 enriched in male-biased genes, such as pectin catabolic process, pollen wall assembly,
425 sporopollenin biosynthetic process, pollen exine formation, pectin metabolic process,
426 pollination, anther wall tapetum development, pollen sperm cell differentiation, anther
427 development, rejection of self pollen, and regulation of pollen tube growth (GO:0045490,
428 GO:0010208, GO:0080110, GO:0010584, GO:0045488, GO:0009856, GO:0048658,
429 GO:0048235, GO:0048653, GO:0060320 and GO:0080092). Functions related to hormone
430 signaling were enriched in female-biased genes, such as response to auxin, auxin-activated
431 signaling pathway, regulation of ethylene-activated signaling pathway, brassinosteroid
432 mediated signaling pathway, auxin polar transport, auxin mediated signaling pathway
433 involved in phyllotactic patterning, ethylene receptor activity, ethylene binding, auxin

434 transport, jasmonic acid and ethylene-dependent systemic resistance, and ethylene mediated
435 signaling pathway (GO:0009733, GO:0009734, GO:0010104, GO:0009742, GO:0009926,
436 GO:0060774, GO:0038199, GO:0051740, GO:0038199, GO:0051740, GO:0060918 and
437 GO:0009871). These functional enrichments suggest that sex-biased expression may have
438 evolved to support contrasting biological functions in *C. grandis* females and males.

439

440

441 Discussion

442

443 *C. grandis* XY are of intermediate age, similarly to other highly heteromorphic plant systems
444 The divergence between X and Y copies in *C. grandis* reaches 0.13 to 0.17, and Brassicaceae-
445 derived molecular clocks returned age estimates from 8.7 to 34.7 My for their divergence (and
446 up to >50 My old, see Table 3). By contrast, a phylogeny that included 24 species of *Coccinia*
447 and six outgroup taxa, calibrated with the divergence time of *Coccinia* and *Diplocyclos* of 15
448 \pm 2.6 My, yielded a divergence time of *Coccinia grandis* from its sister species (whose sex
449 chromosomes have not been studied) of 3.1 My (Holstein & Renner, 2011). The other plant
450 species with a huge Y chromosome, *S. latifolia*, has been dated to 11.5 My old based on
451 mutation rate measurements (Krasovec et al., 2018) or instead <1 to 10 My using molecular
452 clocks (Nicolas et al., 2005: Brassicaceae and *Ipomoea* rates yield 5-10 My for the sex
453 chromosomes of *S. latifolia*; Rautenberg et al., 2012: fossil-calibrated Caryophyllaceae
454 phylogeny yields a divergence time of <1 My for *S. latifolia* and its sister clade). *Silene*
455 *latifolia* has a generation time of 1 year, and it is thus tempting to think that *C. grandis* sex
456 chromosomes should be as old or older than the ones of *S. latifolia*, unless mutation rate is a
457 lot higher in *C. grandis*, which would be unexpected (Krasovec et al., 2018).

458

459 *C. grandis* Y chromosome degeneration is moderate, with an unusually reduced Y expression
460 Our results suggest that not only is the Y chromosome of *C. grandis* accumulating repeats as
461 shown previously, but it is also losing genes and becoming silent. Out of the 1,364 sex-linked
462 genes, 168 did not have a Y-linked homolog, and we estimated a total gene loss of about 40%,
463 which is similar to what has been found in *S. latifolia* using a methodology similar to this
464 study and also others (Blavet et al., 2015; Papadopoulos et al., 2015; Muyle et al., 2016,
465 2018). The Y/X expression ratio, however, was lower than what has been found in *S. latifolia*
466 (0.63 vs. 0.77 respectively, see Muyle et al., 2012). The difference in size between the sex
467 chromosomes is larger in *C. grandis* compared to *S. latifolia* (Sousa et al., 2012), which might
468 indicate that the TE load is larger in the former. TEs trigger host defence mechanisms, such as
469 DNA methylation to silence them. This can affect genes close to TE insertions and reduce
470 their expression level (Hollister et al., 2011; Root, 2003). The possibly higher TE abundance
471 on the *C. grandis* Y chromosome might trigger a higher level of gene silencing and thus
472 explain its unusually low Y/X expression ratio. To test this idea further, the full sequences of
473 the sex chromosomes in *C. grandis* and a DNA methylation study of TEs and neighboring
474 genes would be needed.

475
476 *C. grandis* exhibit sex chromosome dosage compensation, a phenomenon observed in several
477 plant systems

478 When analysing the expression of X and Y copies in both sexes, we found that the reduction
479 of the Y copy was compensated by increasing expression of the X copy to maintain similar
480 expression of the pair in both sexes (Figure 3). This suggests that dosage compensation has
481 evolved in *C. grandis*. Again, a very similar pattern has been found in *S. latifolia* (Muyle et
482 al., 2012). Compensation is probably partial, and not all the sex-linked genes are compensated
483 (Figure 2), something also observed in *S. latifolia* (Papadopoulos et al., 2015). We mentioned

484 above that X-hemizygous genes are underrepresented in RNA-seq-based studies such as this
485 one, and conclusions about dosage compensation are therefore more difficult to draw for this
486 category of genes (discussed in Blavet et al., 2015). Here we found that the signal of dosage
487 compensation was weak in X-hemizygous genes when taken together (Figure 3) as observed
488 in *S. latifolia* with the same approach (Muyle et al., 2012). However, when looking at genes
489 individually as in Papadopoulos et al., (2015), we found evidence that some X-hemizygous
490 genes are fully compensated (see bimodal distribution in Figure 2D). Strikingly, those genes
491 are enriched in dosage-sensitive functions in agreement with findings in animals (Pessia et al.,
492 2012, 2014; Mank, 2013; Albritton et al., 2014; Ercan, 2015; Veitia et al., 2015; Zimmer et
493 al., 2016; Gu & Walters, 2017). Evidence for dosage compensation has been found so far in
494 Caryophyllaceae, Cannabaceae, and Polygonaceae (Muyle et al., 2012, 2018; Papadopolous et
495 al., 2015; Crowson et al., 2017; Martin et al., 2019; Prentout et al., 2020). Cucurbitaceae are
496 thus the fourth plant family in which dosage compensation is documented. Future work is
497 needed to find out whether dosage compensation relies on genomic imprinting as in *S.*
498 *latifolia* (Muyle et al., 2018) or on a different mechanism.

499

500 *Coccinia grandis* sex chromosomes are enriched in sex-biased genes

501 We found that 4% of the genes expressed in *C. grandis* floral buds are sex-biased
502 (Supplementary Table 4), with a total of 3,273 sex-biased genes identified (2,682 male-biased
503 and 591 female-biased), in agreement with prior studies on sex-biased genes in *C. grandis*
504 (Devani et al., 2017; Mohanty et al., 2017). Our results support enrichment for pollen
505 production-related functions in male-biased genes as previously found in *C. grandis* (Devani
506 et al., 2017; Mohanty et al., 2017) and in other plant systems (Muyle et al. 2017). Female-
507 biased genes, on the other hand, were significantly enriched for hormone-signaling functions.
508 Male-biased genes are also significantly more numerous than female-biased genes, a pattern

509 that is common in dioecious plants (Harkess et al. 2015; Zemp et al., 2016; Muyle et al.,
510 2017; Cossard et al., 2019, but see Darolti et al., 2018; Sanderson et al., 2019; Muyle, 2019).
511 Lastly, sex-biased genes were found both on autosomes and on sex chromosomes but the
512 latter were significantly enriched in such genes, again a common pattern in dioecious plants
513 (for review, see Muyle et al., 2017; see also Darolti et al., 2018; Sanderson et al., 2019). The
514 most probable hypothesis is that sexually antagonistic selection favors sex linkage of sex-
515 biased genes involved in sexual dimorphism, but further work to identify the footprints of
516 sexually antagonistic selection (such as in Zemp et al., 2016) will be needed to test this idea in
517 *C. grandis*.

518

519 Acknowledgments

520 This project was supported through the Agence Nationale de la Recherche (ANR) grant ANR-
521 14-CE19-0021-01 to GABM and AB.

522

523 Author contributions

524 The study was conceived and coordinated by GABM with input from AB and AKB. Funding
525 was secured by GABM, AB and SSR. The cross was done by RSD and AKB. Samples were
526 collected by RSD and AKB. Sequencing was done by DL and AB. CF and AM built the
527 reference transcriptome. HB performed the GO annotation. BR provided scripts and helped
528 interpreting the differential expression analysis. CF made all subsequent analyses and
529 prepared the figures. Data analysis and interpretation were done by CF, HB and GABM. CF,
530 GABM and SSR wrote the manuscript with input from all authors.

531

532 References

533 Albritton, S. E., Kranz, A. L., Rao, P., Kramer, M., Dieterich, C., & Ercan, S. (2014). Sex-biased gene
534 expression and evolution of the x chromosome in nematodes. *Genetics*, 197(3), 865-883.

535 Arnold, A. P., Itoh, Y., & Melamed, E. (2008). A bird's-eye view of sex chromosome dosage
536 compensation. *Annu. Rev. Genomics Hum. Genet.*, 9, 109-127.

537 Aronesty, E. (2011). Ea-utils: “Command-line tools for processing biological sequencing data”.
538 Available Online at: <https://expressionanalysis.github.io/ea-utils/>

539 Bachtrog, D. (2013). Y-chromosome evolution: emerging insights into processes of Y-chromosome
540 degeneration. *Nature Reviews Genetics*, 14(2), 113-124.

541 Bačovský, V., Houben, A., Kumke, K., & Hobza, R. (2019). The distribution of epigenetic histone
542 marks differs between the X and Y chromosomes in *Silene latifolia*. *Planta*, 250(2), 487-494.

543 Badouin, H., Gouzy, J., Grassa, C. J., Murat, F., Staton, S. E., Cottret, L., ... Langlade, N. B. (2017).
544 The sunflower genome provides insights into oil metabolism, flowering and asterid evolution.
545 *Nature*, 546(7656), 148–152. doi:10.1038/nature22380

546 Badouin, H., Velt, A., Gindraud, F., Flutre, T., Dumas, V., Vautrin, S., ... & Santoni, S. et al. (2020).
547 The wild grape genome sequence provides insights into the transition from dioecy to
548 hermaphroditism during grape domestication. *bioRxiv*.

549 Beilstein, M. A., Nagalingum, N. S., Clements, M. D., Manchester, S. R., & Mathews, S. (2010).
550 Dated molecular phylogenies indicate a Miocene origin for *Arabidopsis thaliana*. *Proc. Natl.
551 Acad. Sci. U.S.A.*, 107(43), 18724–18728.

552 Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful
553 approach to multiple testing. *Journal of the Royal statistical society: series B
554 (Methodological)*, 57(1), 289-300.

555 Bergero, R., & Charlesworth, D. (2011). Preservation of the Y transcriptome in a 10-million-year-old
556 plant sex chromosome system. *Curr. Biol.*, 21(17), 1470–1474.

557 Bergero, R., Charlesworth, D., Filatov, D. a, & Moore, R. C. (2008). Defining regions and
558 rearrangements of the *Silene latifolia* Y chromosome. *Genetics*, 178(4), 2045–53.

559 Bergero, R., Qiu, S., & Charlesworth, D. (2015). Gene loss from a plant sex chromosome system.
560 *Current Biology*, 25(9), 1234–1240.

561 Bergero, Roberta, & Charlesworth, D. (2009). The evolution of restricted recombination in sex
562 chromosomes. *Trends in Ecology & Evolution*, 24(2), 94–102. doi:10.1016/j.tree.2008.09.010

563 Blavet, N., Blavet, H., Muyle, A., Käfer, J., Cegan, R., Deschamps, C., ... Marais, G. (2015).
564 Identifying new sex-linked genes through BAC sequencing in the dioecious plant *Silene*
565 *latifolia*. *BMC Genomics*, 16(1), 546.

566 Cermak, T., Kubat, Z., Hobza, R., Koblizkova, A., Widmer, A., Macas, J., ... & Kejnovsky, E. (2008).
567 Survey of repetitive sequences in *Silene latifolia* with respect to their distribution on sex
568 chromosomes. *Chromosome Research*, 16(7), 961-976.

569 Charlesworth, D., Charlesworth, B., & Marais, G. (2005). Steps in the evolution of heteromorphic sex
570 chromosomes. *Heredity*, 95(2), 118-128.

571 Chibalina, M. V., & Filatov, D. A. (2011). Plant Y chromosome degeneration is retarded by haploid
572 purifying selection. *Curr. Biol.*, 21(17), 1475–1479.

573 Cossard, G. G., Toups, M. A., & Pannell, J. R. (2019). Sexual dimorphism and rapid turnover in gene
574 expression in pre-reproductive seedlings of a dioecious herb. *Annals of botany*, 123(7), 1119-
575 1131.

576 Crowson, D., Barrett, S. C. H., & Wright, S. I. (2017). Purifying and Positive Selection Influence
577 Patterns of Gene Loss and Gene Expression in the Evolution of a Plant Sex Chromosome
578 System. *Molecular Biology and Evolution*, 34(5), 1140–1154.

579 Darolti, I., Wright, A. E., Pucholt, P., Berlin, S., & Mank, J. E. (2018). Slow evolution of sex-biased
580 genes in the reproductive tissue of the dioecious plant *Salix viminalis*. *Molecular ecology*,
581 27(3), 694-708.

582 Devani, R. S., Sinha, S., Banerjee, J., Sinha, R. K., Bendahmane, A., & Banerjee, A. K. (2017). De
583 novo transcriptome assembly from flower buds of dioecious, gynomonoecious and chemically
584 masculinized female *Coccinia grandis* reveals genes associated with sex expression and
585 modification. *BMC Plant Biol.*, 17(1), 241.

586 Ercan, S. (2015). Mechanisms of x chromosome dosage compensation. *J Genomics*, 3, 1–19.

587 Filatov, D. A., Monéger, F., Negruțiu, I., & Charlesworth, D. (2000). Low variability in a Y-linked
588 plant gene and its implications for Y-chromosome evolution. *Nature*, 404(6776), 388-390.

589 Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G., González, V. M., ... & Alioto, T.
590 (2012). The genome of melon (*Cucumis melo* L.). *Proceedings of the National Academy of*
591 *Sciences*, 109(29), 11872-11877.

592 Gayral, P., Melo-Ferreira, J., Glémin, S., Bierne, N., Carneiro, M., Nabholz, B., ... Galtier, N. (2013).
593 Reference-free population genomics from next-generation transcriptome data and the
594 vertebrate-invertebrate gap. *PLoS Genetics*, 9(4), e1003457.

595 Ghadge, A. G., Karmakar, K., Devani, R. S., Banerjee, J., Mohanasundaram, B., Sinha, R. K., ...
596 Banerjee, A. K. (2014). Flower development, pollen fertility and sex expression analyses of
597 three sexual phenotypes of *Coccinia grandis*. *BMC Plant Biology*, 14(1), 325.

598 Gu, L., & Walters, J. R. (2017). Evolution of sex chromosome dosage compensation in animals: a
599 beautiful theory, undermined by facts and bedeviled by details. *Genome biology and*
600 *evolution*, 9(9), 2461-2476.

601 Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., ... & MacManes,
602 M. D. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity
603 platform for reference generation and analysis. *Nature protocols*, 8(8), 1494.

604 Harkess, A., Mercati, F., Shan, H. Y., Sunseri, F., Falavigna, A., & Leebens-Mack, J. (2015).
605 Sex-biased gene expression in dioecious garden asparagus (*Asparagus officinalis*). *New*
606 *Phytologist*, 207(3), 883-892.

607 Hollister, J. D., Smith, L. M., Guo, Y. L., Ott, F., Weigel, D., & Gaut, B. S. (2011). Transposable
608 elements and small RNAs contribute to gene expression divergence between *Arabidopsis*
609 *thaliana* and *Arabidopsis lyrata*. *Proceedings of the National Academy of Sciences*, 108(6),
610 2322-2327.

611 Holstein, N., & Renner, S. S. (2011). A dated phylogeny and collection records reveal repeated biome
612 shifts in the African genus *Coccinia* (Cucurbitaceae). *BMC Evolutionary Biology*, 11(1), 28.

613 Hough, J., Hollister, J. D., Wang, W., Barrett, S. C., & Wright, S. I. (2014). Genetic degeneration of
614 old and young Y chromosomes in the flowering plant *Rumex hastatus*. *Proc. Natl. Acad.*
615 *Sci. U.S.A.*, 111(21), 7713-7718.

616 Huang, S., Li, R., Zhang, Z., Li, L., Gu, X., Fan, W., ... & Ren, Y. (2009). The genome of the
617 cucumber, *Cucumis sativus* L. *Nature genetics*, 41(12), 1275-1281.

618 Huang, X., & Madan, A. (1999). CAP3: A DNA sequence assembly program. *Genome Research*, 9(9),
619 868–877.

620 Krasovec, M., Chester, M., Ridout, K., & Filatov, D. A. (2018). The mutation rate and the age of the
621 sex chromosomes in *Silene latifolia*. *Current Biology*, 28(11), 1832-1838.

622 Krasovec, M., Kazama, Y., Ishii, K., Abe, T., & Filatov, D. A. (2019). Immediate Dosage
623 Compensation Is Triggered by the Deletion of Y-Linked Genes in *Silene latifolia*. *Current*
624 *Biology*, 29(13), 2214-2221.

625 Koch, M. A., Haubold, B., & Mitchell-Olds, T. (2000). Comparative evolutionary analysis of chalcone
626 synthase and alcohol dehydrogenase loci in *Arabidopsis*, *Arabis*, and related genera
627 (Brassicaceae). *Mol. Biol. Evol.*, 17(10), 1483–1498.

628 Kumar, L. S., & Vishveshwaraiah, S. (1952). Sex mechanism in *Coccinia indica* Wight and Arn.
629 *Nature* 170: 330–331.

630 Law, C. W., Chen, Y., Shi, W., & Smyth, G. K. (2014). voom: Precision weights unlock linear model
631 analysis tools for RNA-seq read counts. *Genome Biol.*, 15(2), R29.

632 Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform.
633 *bioinformatics*, 25(14), 1754-1760.

634 Li, Q., Li, H., Huang, W., Xu, Y., Zhou, Q., Wang, S., ... & Zhang, Z. (2019). A chromosome-scale
635 genome assembly of cucumber (*Cucumis sativus* L.). *GigaScience*, 8(6), giz072.

636 Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for
637 RNA-seq data with DESeq2. *Genome Biol.*, 15(12), 550.

638 Mahajan, S., Wei, K. H. C., Nalley, M. J., Gibilisco, L., & Bachtrog, D. (2018). De novo assembly of
639 a young *Drosophila* Y chromosome using single-molecule sequencing and chromatin
640 conformation capture. *PLoS biology*, 16(7), e2006348.

641 Marais, G. A., Nicolas, M., Bergero, R., Chambrier, P., Kejnovsky, E., Monéger, F., ... &
642 Charlesworth, D. (2008). Evidence for degeneration of the Y chromosome in the dioecious
643 plant *Silene latifolia*. *Current Biology*, 18(7), 545-549.

644 Martin, H., Carpentier, F., Gallina, S., Godé, C., Schmitt, E., Muyle, A., ... & Touzet, P. (2019).

645 Evolution of young sex chromosomes in two dioecious sister plant species with distinct sex

646 determination systems. *Genome biology and evolution*, 11(2), 350-361.

647 Mank, J. E. (2013). Sex chromosome dosage compensation: definitely not for everyone. *Trends*

648 *Genet.*, 29(12), 677–683.

649 McCarthy, D. J., Chen, Y., & Smyth, G. K. (2012). Differential expression analysis of multifactor

650 RNA-Seq experiments with respect to biological variation. *Nucleic Acids Res.*, 40(10), 4288–

651 4297.

652 Michalovova, M., Kubat, Z., Hobza, R., Vyskot, B., & Kejnovsky, E. (2015). Fully automated pipeline

653 for detection of sex linked genes using RNA-Seq data. *BMC bioinformatics*, 16(1), 78.

654 Ming, R., Bendahmane, A., & Renner, S. S. (2011). Sex chromosomes in land plants. *Annual Review*

655 *of Plant Biology*, 62(1), 485–514.

656 Mohanty, J. N., Nayak, S., Jha, S., & Joshi, R. K. (2017). Transcriptome profiling of the floral buds

657 and discovery of genes related to sex-differentiation in the dioecious cucurbit *Coccinia grandis*

658 (L.) Voigt. *Gene*, 626, 395–406.

659 Mullon, C., Wright, A. E., Reuter, M., Pomiankowski, A., & Mank, J. E. (2015). Evolution of dosage

660 compensation under sexual selection differs between X and Z chromosomes. *Nat Commun*, 6,

661 7720.

662 Muyle, A. (2019). How different is the evolution of sex-biased gene expression between plants and

663 animals? A commentary on: ‘Sexual dimorphism and rapid turnover in gene expression in pre-

664 reproductive seedlings of a dioecious herb’. *Annals of botany*, 123(7), iv-v.

665 Muyle, A., Zemp, N., Deschamps, C., Mousset, S., Widmer, A., & Marais, G. A. (2012). Rapid de

666 novo evolution of X chromosome dosage compensation in *Silene latifolia*, a plant with young

667 sex chromosomes. *PLoS Biol.*, 10(4), e1001308.

668 Muyle, A., Zemp, N., Fruchard, C., Cegan, R., Vrana, J., Deschamps, C., ... Marais, G. A. B. (2018).

669 Genomic imprinting mediates dosage compensation in a young plant XY system. *Nature*

670 *Plants*, 4(9), 677–680. doi:10.1038/s41477-018-0221-y

671 Muyle, A., Käfer, J., Zemp, N., Mousset, S., Picard, F., & Marais, G. A. (2016). SEX-DETector: A
672 probabilistic approach to study sex chromosomes in non-model organisms. *Genome Biology
673 and Evolution*, 8(8), 2530–2543. doi:10.1093/gbe/evw172

674 Muyle, Aline, Shearn, R., & Marais, G. A. (2017). The Evolution of Sex Chromosomes and Dosage
675 Compensation in Plants. *Genome Biology and Evolution*, 9(3), 627–645.
676 doi:10.1093/gbe/evw282

677 Nicolas, M., Marais, G., Hykelova, V., Janousek, B., Laporte, V., Vyskot, B., ... Moneger, F. (2005).
678 A gradual process of recombination restriction in the evolutionary history of the sex
679 chromosomes in dioecious plants. *PLoS Biol.*, 3(1), e4.

680 Ohno, S. (1967) *Sex Chromosomes and Sex-linked Genes*. Springer, Berlin.
681
682 Ossowski, S., Schneeberger, K., Lucas-Lledo, J. I., Warthmann, N., Clark, R. M., Shaw, R. G., ...
683 Lynch, M. (2010). The rate and molecular spectrum of spontaneous mutations in *Arabidopsis
684 thaliana*. *Science*, 327(5961), 92–94.

685 Papadopoulos, A. S. T., Chester, M., Ridout, K., & Filatov, D. A. (2015). Rapid Y degeneration and
686 dosage compensation in plant sex chromosomes. *Proceedings of the National Academy of
687 Sciences*, 112(42), 13021–13026.

688 Pessia, E., Engelstadter, J., & Marais, G. A. (2014). The evolution of X chromosome inactivation in
689 mammals: the demise of Ohno's hypothesis? *Cell. Mol. Life Sci.*, 71(8), 1383–1394.

690 Pessia, E., Makino, T., Bailly-Bechet, M., McLysaght, A., & Marais, G. A. (2012). Mammalian X
691 chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive
692 genes on the X chromosome. *Proceedings of the National Academy of Sciences*, 109(14),
693 5346–5351.

694 Prentout, D., Razumova, O., Rhoné, B., Badouin, H., Henri, H., Feng, C., ... & Marais, G. A. (2020).
695 An efficient RNA-seq-based segregation analysis identifies the sex chromosomes of *Cannabis
696 sativa*. *Genome Research*, 30(2), 164–172.

697 Rautenberg, A., Sloan, D. B., Aldén, V., & Oxelman, B. (2012). Phylogenetic relationships of *Silene*
698 *multinervia* and *Silene* section *Conoimorpha* (Caryophyllaceae). *Systematic Botany*, 37(1),
699 226-237.

700 R Core Team. (2014). *R: A Language and Environment for Statistical Computing*. Vienna, Austria: R
701 Foundation for Statistical Computing. Retrieved from <http://www.R-project.org>

702 Renner, S. S. (2014). The relative and absolute frequencies of angiosperm sexual systems: Dioecy,
703 monoecy, gynodioecy, and an updated online database. *American Journal of Botany*, 101(10),
704 1588–1596.

705 Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for
706 differential expression analysis of digital gene expression data. *Bioinformatics*, 26(1), 139–
707 140. doi:10.1093/bioinformatics/btp616

708 Rodriguez Lorenzo, J. L. R., Hobza, R., & Vyskot, B. (2018). DNA methylation and genetic
709 degeneration of the Y chromosome in the dioecious plant *Silene latifolia*. *BMC genomics*,
710 19(1), 540.

711 Root, G. (2003). Evolution of dioecy and sex chromosomes via methylation driving Muller's ratchet.
712 *Biological Journal of the Linnean Society*, 80(2), 353–368.

713 Ruggieri, V., Alexiou, K. G., Morata, J., Argyris, J., Pujol, M., Yano, R., ... & Benhamed, M. (2018).
714 An improved assembly and annotation of the melon (*Cucumis melo* L.) reference genome.
715 *Scientific reports*, 8(1), 1-9.

716 Sanderson, B. J., Wang, L., Tiffin, P., Wu, Z., & Olson, M. S. (2019). Sex-biased gene expression in
717 flowers, but not leaves, reveals secondary sexual dimorphism in *Populus balsamifera*. *New*
718 *Phytologist*, 221(1), 527-539.

719 Schmieder, R., & Edwards, R. (2011). Quality control and preprocessing of metagenomic datasets.
720 *Bioinformatics*, 27(6), 863–864.

721 Schmieder, R., Lim, Y. W., & Edwards, R. (2012). Identification and removal of ribosomal RNA
722 sequences from metatranscriptomes. *Bioinformatics*, 28(3), 433–435.

723 Schaefer, H., Heibl, C., & Renner, S. S. (2009). Gourds afloat: a dated phylogeny reveals an Asian
724 origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events.
725 *Proceedings of the Royal Society B: Biological Sciences*, 276(1658), 843-851.

726 Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015).
727 BUSCO: Assessing genome assembly and annotation completeness with single-copy
728 orthologs. *Bioinformatics*, 31(19), 3210–3212. doi:10.1093/bioinformatics/btv351

729 Siroky, J., Ruffini Castiglione, M., & Vyskot, B. (1998). DNA methylation patterns of Melandrium
730 album chromosomes. *Chromosome Research*, 6(6), 441-446.

731 Smeds, L., & Kunstner, A. (2011). ConDeTri—a content dependent read trimmer for Illumina data.
732 *PLoS ONE*, 6(10), e26314.

733 Sousa, A., Bellot, S., Fuchs, J., Houben, A., & Renner, S. S. (2016). Analysis of transposable elements
734 and organellar DNA in male and female genomes of a species with a huge Y chromosome
735 reveals distinct Y centromeres. *Plant Journal*, 88(3), 387–396.

736 Sousa, A., Fuchs, J., & Renner, S. S. (2012). Molecular Cytogenetics (FISH, GISH) of *Coccinia*
737 *grandis* : A ca. 3 myr-Old Species of Cucurbitaceae with the Largest Y/Autosome Divergence
738 in Flowering Plants. *Cytogenetic and Genome Research*.

739 Sousa, A., Fuchs, J., & Renner, S. S. (2017). Cytogenetic comparison of heteromorphic and
740 homomorphic sex chromosomes in *Coccinia* (Cucurbitaceae) points to sex chromosome
741 turnover. *Chromosome Research*, 25(2), 191–200.

742 Tsagkogeorga, G., Cahais, V., & Galtier, N. (2012). The population genomics of a fast evolver: High
743 levels of diversity, functional constraint, and molecular adaptation in the tunicate *Ciona*
744 *intestinalis*. *Genome Biology and Evolution*, 4(8), 740–749.

745 Veitia, R. A., Veyrunes, F., Bottani, S., & Birchler, J. A. (2015). X chromosome inactivation and
746 active X upregulation in therian mammals: facts, questions, and hypotheses. *J Mol Cell Biol*,
747 7(1), 2–11.

748 Veltsos, P., Ridout, K. E., Toups, M. A., González-Martínez, S. C., Muyle, A., Emery, O., ... &
749 Marais, G. A. (2019). Early sex-chromosome evolution in the diploid dioecious plant
750 *Mercurialis annua*. *Genetics*, 212(3), 815-835.

751 Wu, T. D., & Nacu, S. (2010). Fast and SNP-tolerant detection of complex variants and splicing in
752 short reads. *Bioinformatics*, 26(7), 873-881.

753 Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. *Molecular Biology and*
754 *Evolution*, 24(8), 1586–1591. doi:10.1093/molbev/msm088

755 Young, M. D., Wakefield, M. J., Smyth, G. K., & Oshlack, A. (2010). Gene ontology analysis for
756 RNA-seq: accounting for selection bias. *Genome Biol.*, 11(2), R14.

757 Zemp, N., Tavares, R., Muyle, A., Charlesworth, D., Marais, G. A. B., & Widmer, A. (2016).
758 Evolution of sex-biased gene expression in a dioecious plant. *Nature Plants*, 2(11), 16168.

759 Zimmer, F., Harrison, P. W., Dessimoz, C., & Mank, J. E. (2016). Compensation of Dosage-Sensitive
760 Genes on the Chicken Z Chromosome. *Genome Biology and Evolution*, 8(4), 1233–1242.

761

761 Tables

762

763 **Table 1: Transcriptome assembly statistics of *C. grandis* flower buds.** Statistics in the
764 final Trinity transcriptome and the working transcriptome containing the longest ORF
765 predicted per Trinity isoform.

	Full Transcriptome	Longest ORF per isoform
Total contigs	128,904	82,699
Total assembled bases (bp)	103,275,123	27,290,670
Median contig length	552	836
Average contig length	801.18	836.83
Maximum contig length	16,296	16,296
Minimum contig length	297	297
N50	1,029	1,086
Total contigs longer than 1kb	30,795	21,587
GC content (%)	42.96	42.96

766

766
767 **Table 2: Results of the SEX-DETector pipeline on the *C. grandis* dataset.** Number of
768 contigs assigned by SEX-DETector to an autosomal, X/Y or X-hemizygous segregation type
769 (see Methods) before and after SNP-tolerant mapping (see Methods).

	SEX-DETector with BWA mapping	SEX-DETector with GSNAp SNP-tolerant mapping
Contigs in final assembly	82,699	82,699
Contigs with enough coverage to be studied	82,689	70,298
Contigs with enough informative SNPs to compute a segregation probability	4,320	3,801
Contigs assigned to an autosomal segregation type	2,889	3,706
Contigs assigned to a X-Y segregation type	1,239	1,196
Contigs assigned to a X-hemizygous segregation type	192	168

770

770

771 **Table 3: age estimates of the *C. grandis* XY system.** These estimates were obtained using
772 the maximum synonymous divergence between X and Y chromosomes and several molecular
773 clocks from Brassicaceae (see Methods). Estimates are shown in increasing order.

Molecular clocks	Age estimates of the sex chromosomes, with dS max = 0.17	Age estimates of the sex chromosomes, with dS max = 0.13
Koch et al. (2000), calibrated with an assumed divergence time of <i>Barbarea</i> and <i>Cardamine</i> of 6.0 My	11.3	8.7
Ossowski et al. (2010), generation time = 1 year, assumed for <i>Arabidopsis thaliana</i>	12.1	9.3
Ossowski et al. (2010), generation time = 1.5 year	18.2	13.9
Beilstein et al. (2010), calibrated with six Brassicales fossils	34.7	26.5
Ossowski et al. (2010), generation time = 5.5 year	66.8	51.1

774

775

775 Figure legends

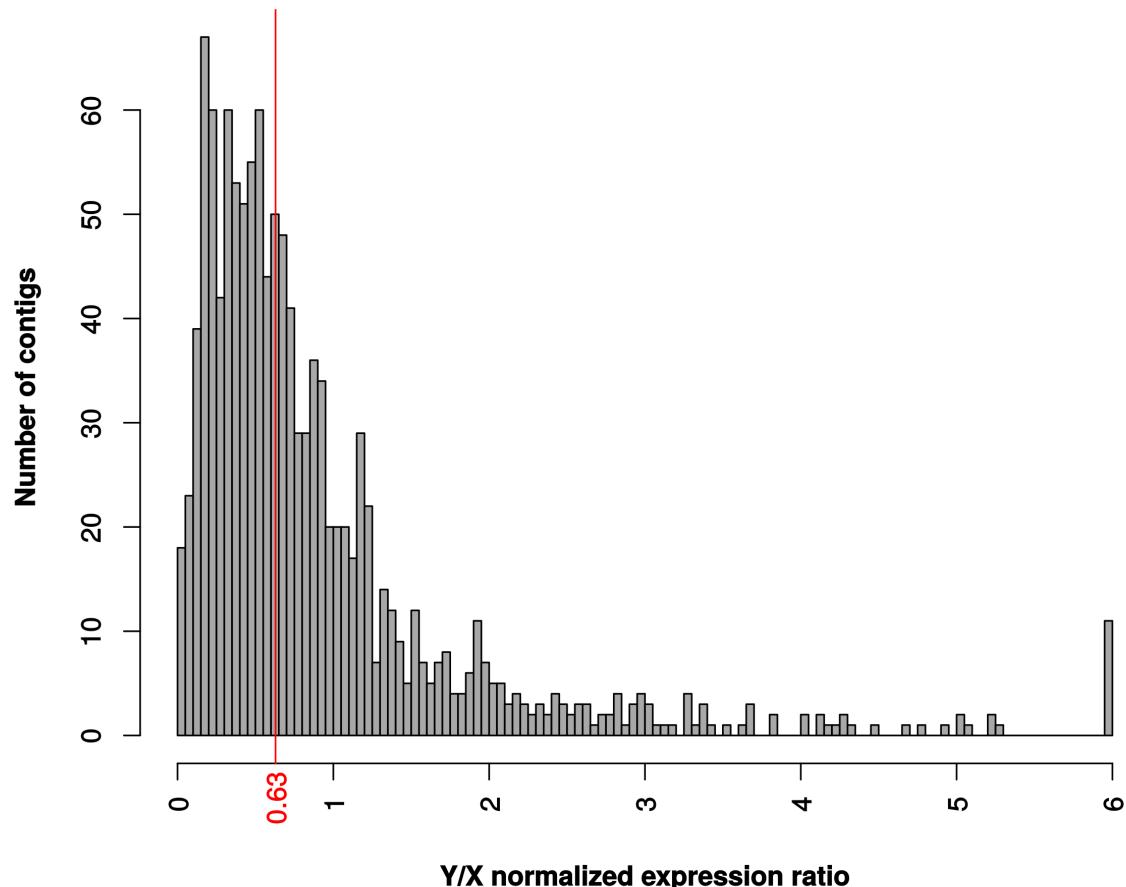
776

777 **Figure 1: Y/X expression ratio in *C. grandis*.** Distribution of normalized expression ratio
778 between X and Y alleles. Total Y and X read numbers were summed at sex-linked SNP
779 locations for each contig and normalized for each male separately (see Methods), then
780 averaged across males to obtain the Y/X ratio. The median is shown in red.

781

782 **Figure 2: X expression in males versus females in *C. grandis*.** Distribution of the ratio
783 between the expression of the single X in males and the two X copies in females (\log_2
784 $X_{\text{male}}/2X_{\text{female}}$) for all sex-linked contigs. Distributions are shown for Y/X expression ratio
785 categories in males: (A) $Y/X > 1$; (B) X/Y in $]0.5-1]$; (C) X/Y in $]0-0.5]$; (D) X-hemizygous
786 genes (no Y copy expression, see Methods). Total X read numbers were summed at sex-
787 linked SNP locations in each contig and normalized for each individual separately, then
788 averaged among males and females to get the $X_{\text{male}}/2X_{\text{female}}$ ratio (see Methods).
789 Distribution is shown in \log_2 scale with its density curve. Contigs with $X_{\text{male}}/2X_{\text{female}}$
790 ratios above 8 or under 0.125 were excluded, which reduced the dataset to 1,351 sex-linked
791 contigs. Sample sizes are: 0, 168; 0–0.5, 460 (8 outliers); 0.5–1, 389 (2 outliers); >1 , 334 (3
792 outliers). Medians are indicated for each Y/X ratio category.

793

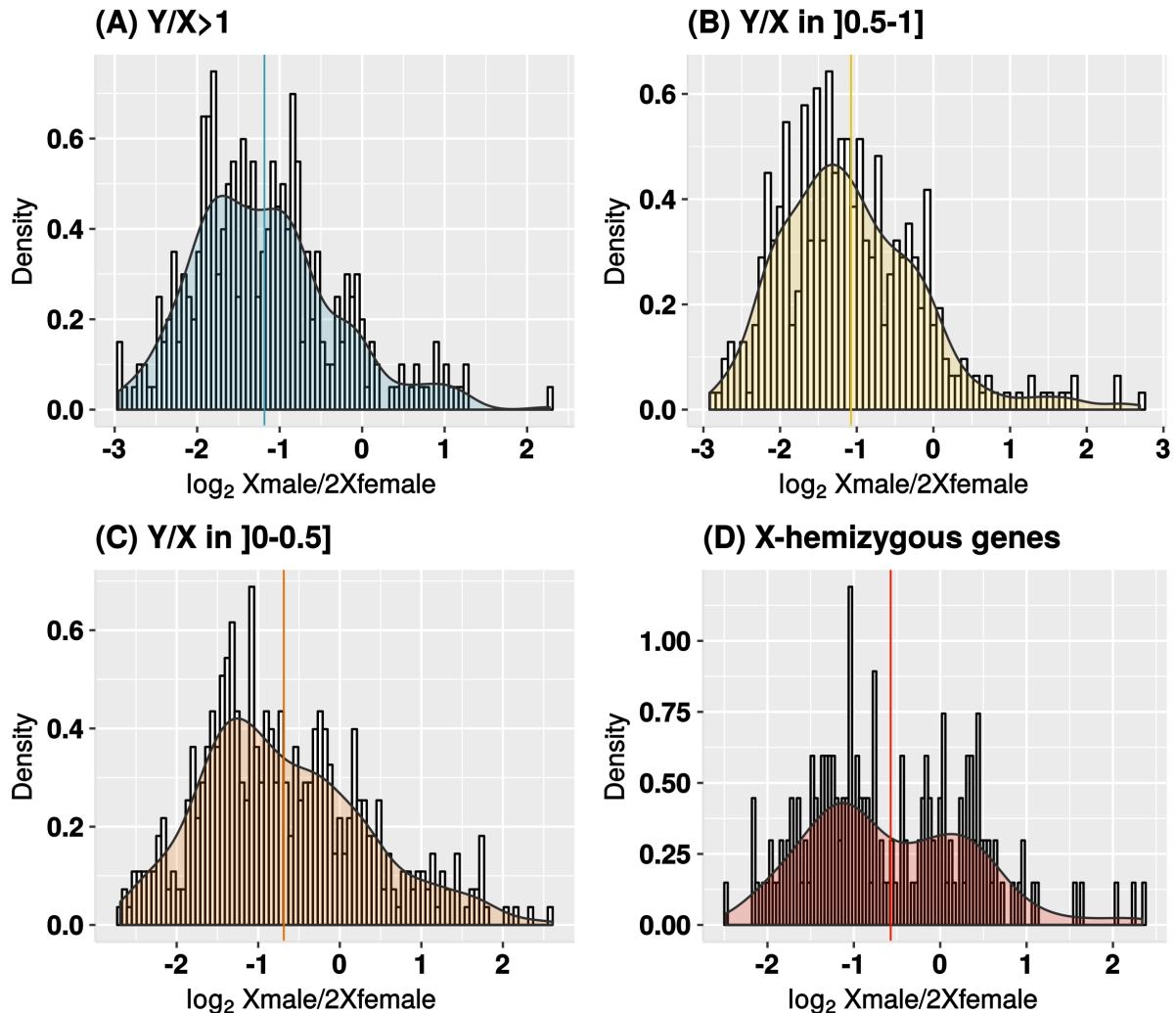

794

794
795 **Figure 3: Allele-specific expression of sex-linked genes in both sexes in *C. grandis*.**
796 Expression levels of sex-linked contigs in both sexes are shown for different Y/X expression
797 ratio categories. Total read numbers were summed at sex-linked SNP locations in each contig
798 and normalized for each individual separately; medians for all contigs and individuals of the
799 same sex were then obtained. XX females, median expression level of both X-linked alleles in
800 females; X males, median expression level of the single X-linked allele in males; Y males,
801 median expression level of the Y-linked allele in males; XY males, median expression level
802 of the X-linked plus Y-linked alleles in males. To compare different Y/X expression ratio
803 categories, medians were normalized using the XX expression levels in females. Sample sizes
804 are: 0, 168; 0–0.25, 207; 0.25–0.5, 261; 0.5–0.75, 243; 0.75–1, 148; 1–1.25, 108. Error bars
805 indicate 95% confidence intervals of the median.
806

806 Figures

807

808 Fig. 1

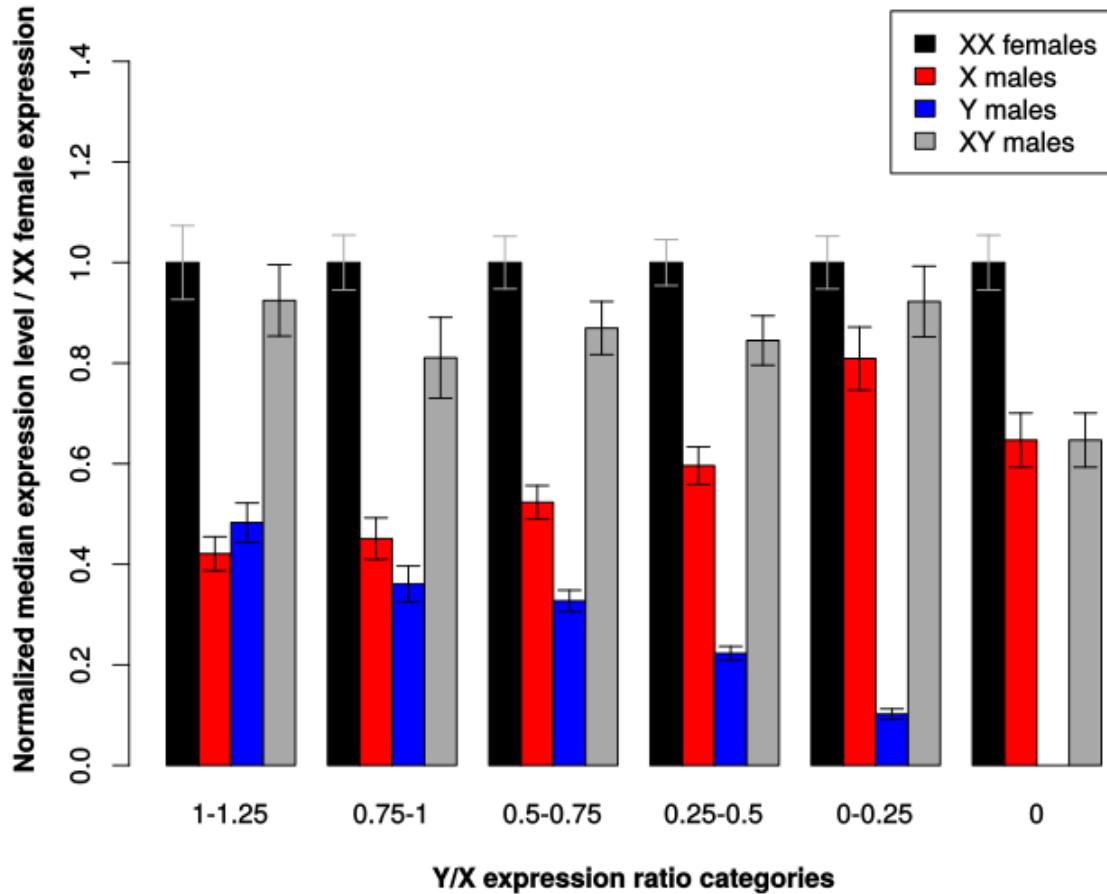

809

810

811

811

812 Fig. 2



813

814

814

815 Fig. 3

816

817

818

818 **Supplementary Material**

819

820 **Supplementary Table 1: Library sizes and statistics for RNA sequencing from *C. grandis***
821 **male and female flower buds.** Data characteristics before and after filtering out for
822 sequencing adapters and low quality.

	Total number reads	GC (%)	Total bases	Duplicates (%)	Total number reads	GC (%)	Total bases	Duplicates (%)
<i>C. grandis</i> 1 – father	71,230,290	45.55	5,413,502,040	24.85	62,168,386	45.36	4,724,687,045	19.93
<i>C. grandis</i> 2 – mother	81,477,288	43.86	6,192,273,888	25.94	67,354,070	43.55	5,118,780,884	19.20
<i>C. grandis</i> 3 – son	74,106,838	42.40	5,632,119,688	39.80	53,535,608	42.02	4,068,592,348	30.21
<i>C. grandis</i> 4 – son	85,096,602	42.67	6,467,341,752	40.49	58,127,652	42.34	4,417,567,083	30.05
<i>C. grandis</i> 5 – son	76,653,508	43.63	5,825,666,608	37.12	56,078,580	43.14	4,261,849,202	27.72
<i>C. grandis</i> 6 – son	77,798,734	44.55	5,912,703,784	35.52	58,797,412	44.19	4,468,480,916	26.74
<i>C. grandis</i> 7 – son	72,948,152	43.55	5,544,059,552	36.73	55,608,456	43.27	4,226,126,310	27.83
<i>C. grandis</i> 8 – daughter	95,001,666	45.20	7,220,126,616	25.83	79,158,198	44.69	6,015,873,957	18.45
<i>C. grandis</i> 9 – daughter	76,074,360	44.79	5,781,651,360	20.00	67,478,518	44.44	5,128,249,651	14.98
<i>C. grandis</i> 10 – daughter	83,484,940	44.85	6,344,855,440	20.44	73,348,162	44.50	5,574,328,675	15.09
<i>C. grandis</i> 11 – daughter	77,883,860	44.74	5,919,173,360	20.94	73,348,162	44.36	5,194,162,562	15.44
<i>C. grandis</i> 12 – daughter	85,273,198	44.66	6,480,763,048	18.62	75,439,724	44.42	5,733,285,393	14.08
Total	957,029,436	44.20	72,734,237,136	28.86	780,442,928	43.86	58,931,984,026	21.64

823

823

824 **Supplementary Table 2: BUSCO results for *C. grandis* flower bud transcriptomes.**

825 Assessment of transcriptome assembly completeness based on gene content from near-

826 universal single copy orthologs. Contents of the final Trinity transcriptome and the working

827 transcriptome containing the longest ORF predicted per Trinity isoform.

	Full Transcriptome	%	Longest ORF per isoform	%
Complete	1,115	77.43	1,033	71.74
Complete and single-copy	530	36.81	557	38.68
Complete and duplicated	585	40.63	476	33.06
Fragmented	176	12.22	193	13.40
Missing	149	10.35	214	14.86
Total groups searched	1,440		1,440	

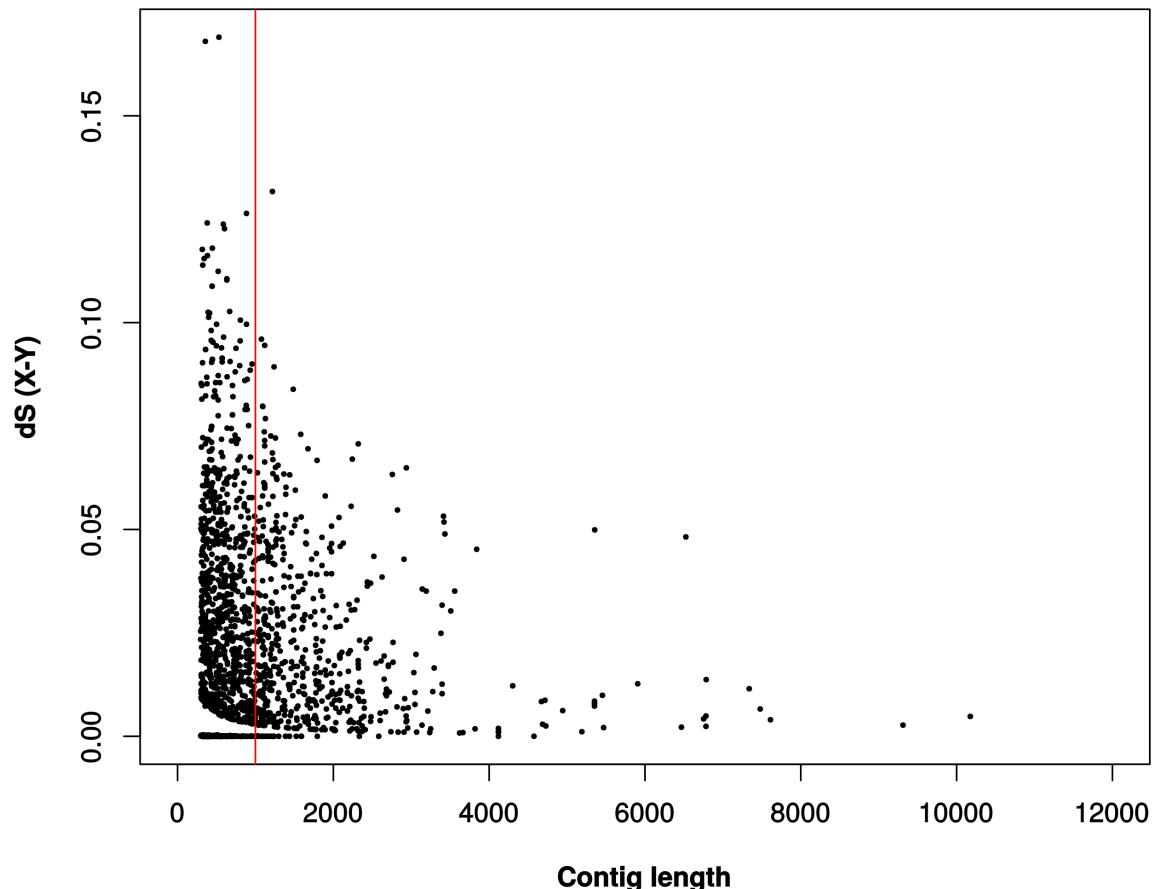
828

828
829 **Supplementary Table 3: Mapping statistics of all the samples.** Number of reads from the
830 *C. grandis* individuals mapping to the reduced transcriptome (the longest ORF predicted per
831 Trinity isoform, see Methods) with BWA and with GSNAP, a SNP-tolerant mapper. The male
832 offspring libraries had higher PCR duplication rates than the female libraries (35.52-0.49%
833 and 18.62-25.83% of raw reads respectively, see Supplementary Table 1) resulting in lower
834 mapping rates (36.49 compared to 49.42% with SNP-tolerant mapping).

		BWA		GSNAP	
	#reads	#mapped reads	% mapping	#mapped reads	% mapping
<i>C. grandis</i> 1 – father	71,230,290	38,454,717	53.99	41,111,554	57.72
<i>C. grandis</i> 2 – mother	81,477,288	34,954,495	42.90	37,572,482	46.11
<i>C. grandis</i> 3 – son	74,106,838	24,609,806	33.21	27,041,875	36.49
<i>C. grandis</i> 4 – son	85,096,602	31,121,997	36.57	33,923,437	39.86
<i>C. grandis</i> 5 – son	76,653,508	29,660,482	38.69	32,261,535	42.09
<i>C. grandis</i> 6 – son	77,798,734	35,416,940	45.52	38,445,259	49.42
<i>C. grandis</i> 7 – son	72,948,152	30,938,500	42.41	33,763,165	46.28
<i>C. grandis</i> 8 – daughter	95,001,666	45,792,447	48.20	49,016,666	51.60
<i>C. grandis</i> 9 – daughter	76,074,360	38,958,015	51.21	41,562,663	54.63
<i>C. grandis</i> 10 – daughter	83,484,940	43,255,348	51.81	46,118,479	55.24
<i>C. grandis</i> 11 – daughter	77,883,860	39,070,638	50.17	41,756,525	53.61
<i>C. grandis</i> 12 – daughter	85,273,198	45,684,988	53.57	48,644,666	57.05
Total	957,029,436	437,918,373	45.76	471,218,306	49.24

835

835

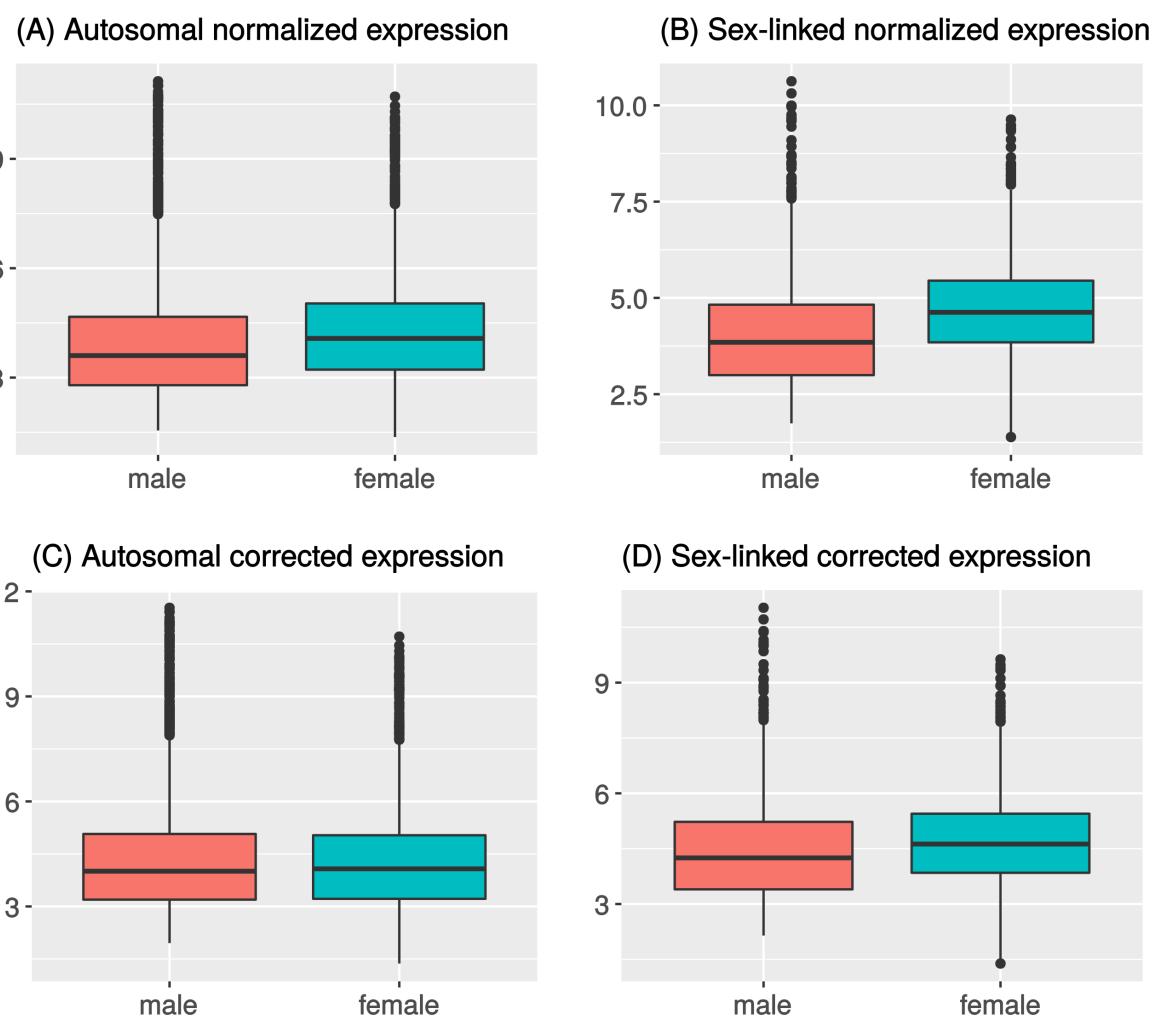

836 **Supplementary Table 4: Number of Differentially Expressed Genes (DEG) per gene**

837 **categories.**

	All		Autosomal		Sex-linked		X/Y		X-hemizygous	
	# contigs	%	# contigs	%	# contigs	%	# contigs	%	# contigs	%
All	82,699		3,706		1,364		1,196		168	
Differentially expressed	3,273	3.96	206	5.56	241	17.67	228	19.06	13	7.74
Male-biased	2,682	3.24	165	4.45	183	13.42	181	15.13	2	1.19
Female-biased	591	0.71	41	1.11	58	4.25	47	3.93	11	6.55

838

838
839 **Supplementary Figure 1: Distribution of pairwise synonymous divergence (dS) between**
840 **X and Y alleles in X/Y contigs.** The vertical line indicates contigs longer than 1kb.
841

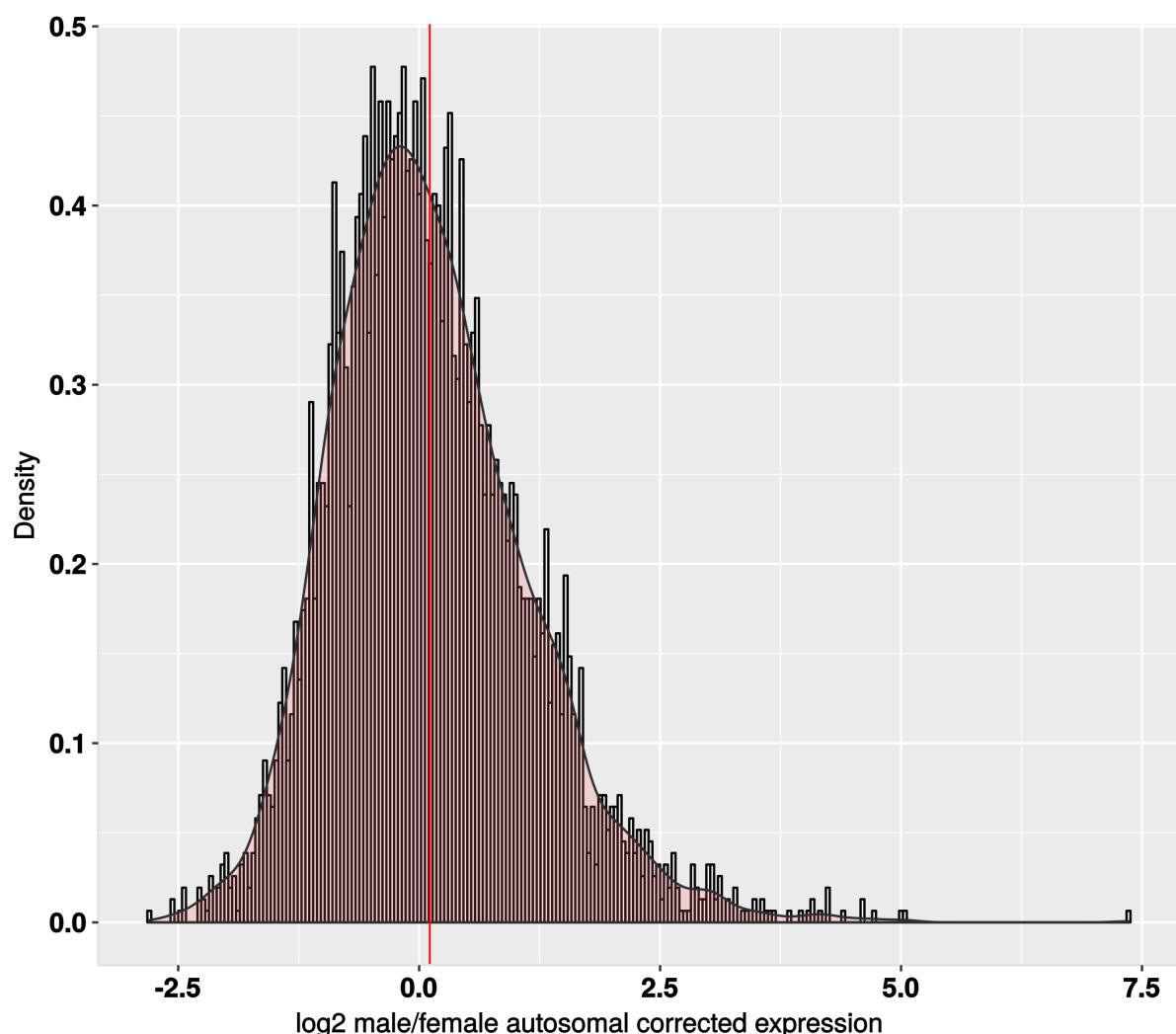


842

843

843
844 **Supplementary Figure 2: Expression levels of autosomal and sex-linked contigs in both**
845 **sexes before and after correction.** Total read numbers were summed at SNP locations in
846 each autosomal (A and C) and sex-linked (B and D) contig and normalized for each
847 individual separately; medians for all individuals of the same sex were then obtained.
848 Expression was corrected (C and D) using the autosomal median male/female ratio (see
849 Methods).

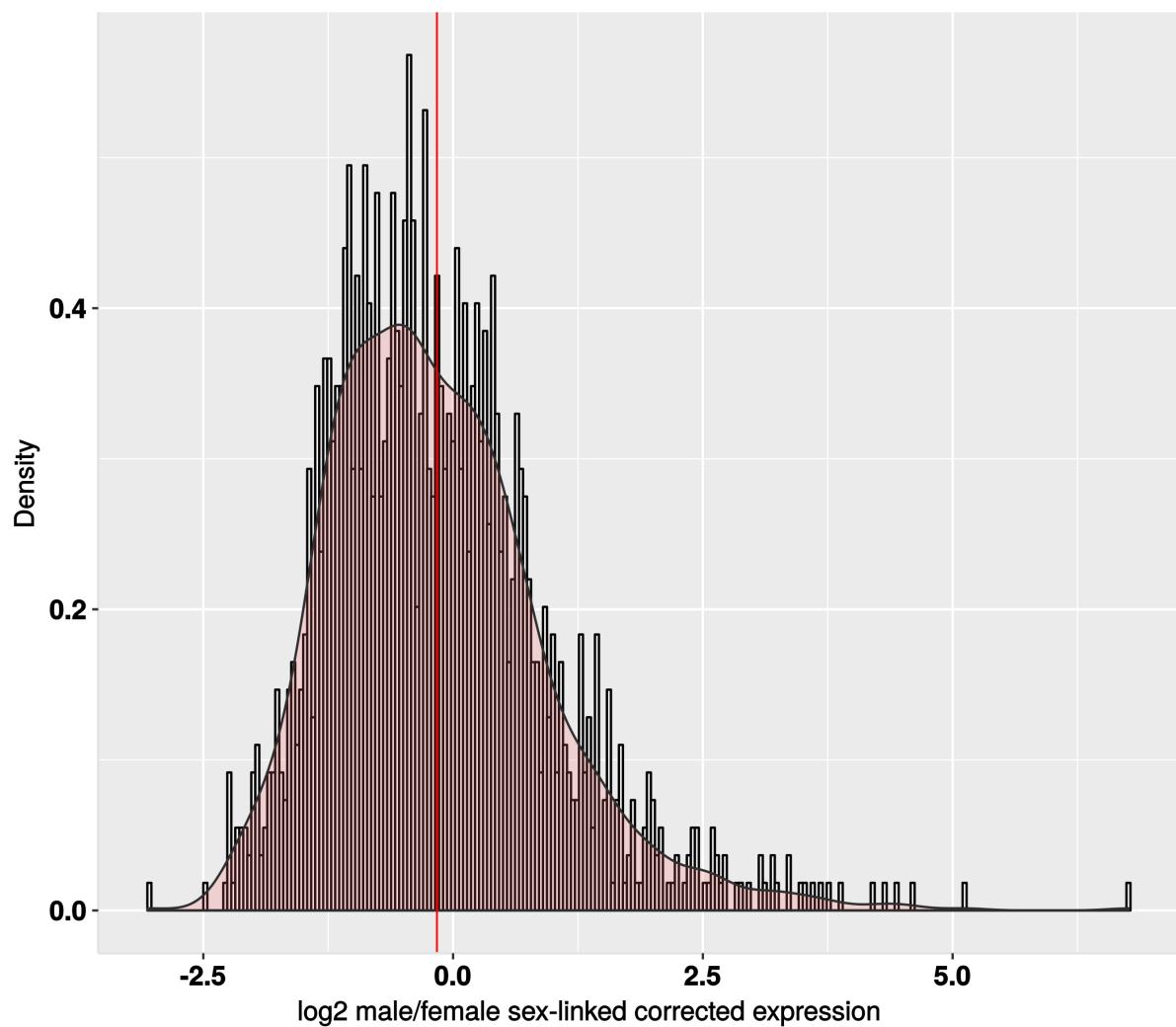
850



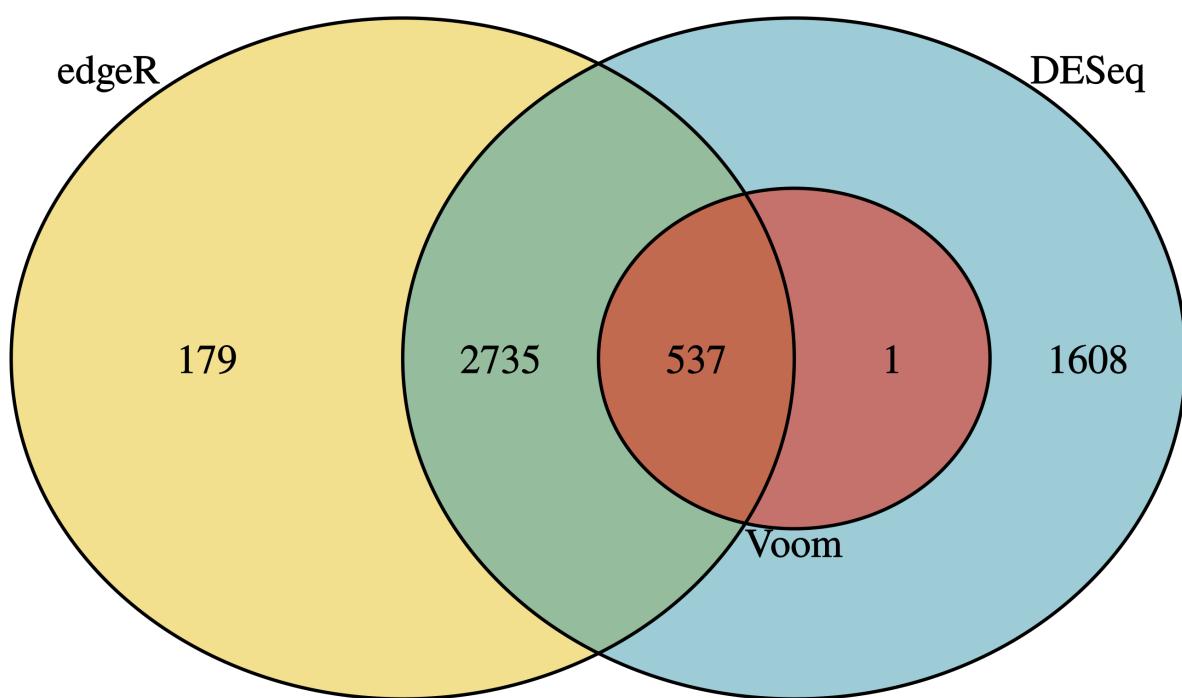
851

852

852
853 **Supplementary Figure 3: Male vs. female autosomal gene expression ratio after**
854 **correction.** Distribution of normalized expression difference between males and females in
855 autosomal contigs. Total read numbers were summed at autosomal SNP locations for each
856 contig and normalized for each individual separately, then averaged across sexes to obtain the
857 male/female ratio. Expression was corrected using the autosomal median male/female ratio.
858 Distribution is shown in \log_2 scale with its density curve. The median is shown in red.


859

860
861


861
862 **Supplementary Figure 4: Male vs. female sex-linked genes expression ratio after**
863 **correction.** Distribution of normalized expression difference between males and females in
864 sex-linked contigs. Total read numbers were summed at sex-linked SNP locations for each
865 contig and normalized for each individual separately, then averaged across sexes to obtain the
866 male/female ratio. Expression was corrected using the autosomal median male/female ratio.
867 Distribution is shown in \log_2 scale with its density curve. The median is shown in red.

868

869
870

870
871
872 **Supplementary Figure 5: Venn diagram of Differentially Expressed Genes identified by**
873 **DESeq2, edgeR, and LimmaVoom.** Number of genes with FDR <0.0001 for each method.
874 3,273 differentially expressed genes were identified by at least 2 methods.
875

876
877