

1 GC content ms v4e: 8 May 2020
2

3 **Using GC content to compare recombination patterns on the sex chromosomes and
4 autosomes of the guppy, *Poecilia reticulata*, and its close outgroup species**

5
6
7 **Authors:**

8 Deborah Charlesworth (ORCID iD 0000-0002-3939-9122), Yixin Zhang, Roberta Bergero, Chay
9 Graham ¹, Jim Gardner, Lengxob Yong ²

10
11 Institute of Evolutionary Biology, School of Biological Sciences,
12 University of Edinburgh, West Mains Road, EH9 3LF, U.K.

13
14 ¹University of Cambridge, Department of Biochemistry, Sanger Building, 80 Tennis Ct Rd,
15 Cambridge CB2 1GA, UK

16
17 ²Centre for Ecology and Conservation, University of Exeter, Penryn, Falmouth, Cornwall,
18 TR10 9FE, UK

19
20
21
22
23 Corresponding author: Deborah.Charlesworth@ed.ac.uk
24
25
26
27
28

29 **Summary/Abstract**

30 Genetic and physical mapping of the guppy (*P. reticulata*) have shown that recombination
31 patterns differ greatly between males and females. Crossover events occur evenly across
32 the chromosomes in females, but in male meiosis they are restricted to the tip furthest from
33 the centromere of each chromosome, creating very high recombination rates per
34 megabase, similar to the high rates in mammalian sex chromosomes' pseudo-autosomal
35 regions (PARs). We here used the intronic GC content to indirectly infer the recombination
36 patterns on guppy chromosomes. This is based on evidence that recombination is
37 associated with GC-biased gene conversion, so that genome regions with high
38 recombination rates should be detectable by high GC content. Using intron sequences,
39 which are likely to be under weak selection, we show that almost all guppy chromosomes,
40 including the sex chromosome (LG12) have very high GC values near their assembly ends,
41 suggesting high recombination rates due to strong crossover localisation in male meiosis.
42 Our test does not suggest that the guppy XY pair has stronger crossover localisation than
43 the autosomes, or than the homologous chromosome in a closely related fish, the platyfish
44 (*Xiphophorus maculatus*). We therefore conclude that the guppy XY pair has not recently
45 undergone an evolutionary change to a different recombination pattern, or reduced its
46 crossover rate, but that the guppy evolved Y-linkage due to acquiring a male-determining
47 factor that also conferred the male crossover pattern. The results also identify the
48 centromere ends of guppy chromosomes, which were not determined in the guppy genome
49 assembly.

50

51 **Introduction**

52 The guppy, *Poecilia reticulata*, is an important organism for testing when and how
53 recombination suppression between the sex chromosome pair evolved. One hypothesis is
54 that the main cause of the evolution of recombination suppression between members of
55 sex chromosome pairs is sexually antagonistic (SA) selection acting at a gene linked gene to
56 the sex-determining gene, and maintaining a polymorphic state; the resulting two-locus
57 polymorphism creates a selective force for closer linkage between the sex-determining
58 locus and the gene with the SA polymorphism (Charlesworth and Charlesworth 1980; Bull
59 1983; Rice 1987). The guppy seems ideal for investigating this hypothesis, because sexually

60 antagonistic male coloration polymorphisms are present in natural populations of the
61 species; these are inferred to benefit males during mating while harming both sexes by
62 increasing predation (Haskins, et al. 1961; Lindholm and Breden 2002). Moreover, the guppy
63 sex chromosomes probably evolved recently, since the homologous chromosome is
64 autosomal in outgroup species (see below). Suppressed recombination could therefore be
65 evolving currently (Wright, et al. 2017; Bergero, et al. 2019; Gordon, et al. 2017)).

66 An alternative to the SA polymorphism hypothesis is that strong crossover localisation in
67 guppy male meiosis is an ancestral state, and the appearance of a male-determining factor
68 on a chromosome (the guppy LG12) led to instant isolation of most of this chromosome
69 from its X chromosomal counterpart. This alternative can explain findings in European tree
70 frogs (Berset-Brändli, et al. 2008). In the guppy, it is consistent with genetic mapping results
71 that revealed sex differences in recombination patterns in three of the 22 autosomes, as
72 well as the XY pair in guppies, with strong localisation of crossovers to terminal regions in
73 males; LG9 and LG18 show a sex difference in crossover patterns similar to that seen for the
74 XY pair, and results from LG1 were also consistent (Bergero, et al. 2019). Cytological data
75 using MLH1 foci in testis cells showed that crossovers were highly localised to the
76 chromosome termini in male meiosis, and is not specific to the sex chromosome pair
77 (Lisachov, et al. 2015), though such experiments do not provide information about female
78 meiosis. It is plausible that a sexually dimorphic crossover pattern could represent an
79 ancestral state, as crossovers tend to be localised at the terminal regions of chromosomes in
80 male meiosis in several organisms. With the development of molecular markers and
81 genome sequences, it is becoming increasingly possible to estimate genetic maps and
82 compare them with physical maps, and describe species' recombination patterns and any
83 sexual dimorphism that may exist in these patterns (Hinch, et al. 2014). Sexually dimorphic
84 crossover patterns (or "heterochiasmy"), with crossover events on many chromosomes
85 being more localised in male than female meiosis, have recently been described in fish,
86 including the threespine stickleback (Sardell and Kirkpatrick 2019) and fugu (Kai, et al.
87 2011).

88 To test between these hypotheses about crossover localisation in the guppy, two
89 approaches are possible. First, one can test whether crossover localisation in male meiosis is
90 stronger on the sex chromosome pair, compared with the autosomes, and, second, one can

91 test whether localisation is stronger in the guppy, compared with the pattern on
92 homologous chromosomes of suitable outgroup species. Genome-wide heterochiasmy does
93 not exclude the possibility that suppressed XY recombination evolved to prevent crossing
94 over between the male-determining region and SA male coloration factors, as it is possible
95 that the changes that achieved the present XY crossover pattern affected all the
96 chromosomes. The second type of comparison, with closely related species, can test
97 whether this is likely.

98 Here, we used high-throughput genetic mapping and analyses of genome sequence data to

99 (1) confirm that crossovers are highly localised in physically small terminal regions of all
100 the guppy chromosomes,

101 (2) test whether localisation is stronger in the guppy pseudo-autosomal region (PAR) of
102 partial sex-linkage, compared with other chromosome 12 regions, and whether all
103 guppy autosomes show this pattern, and

104 (3) compare localisation patterns with those in two outgroup species whose genome
105 sequences are available, *Poecilia picta* and *Xiphophorus maculatus* (the platyfish), to
106 test whether the localisation is stronger in the guppy. If not, this would suggest that
107 the pattern of crossovers in the guppy is an ancestral state, and has not evolved in
108 response to this species having evolved an XY sex chromosome pair between which
109 recombination is very rare.

110 The guppy, *Poecilia reticulata*, has 23 chromosomes, making it difficult estimate male and
111 female crossover patterns on all chromosomes. Closely related species that are suitable as
112 outgroups have similar numbers. Rather than attempting to estimate genetic maps for so
113 many chromosomes from multiple species, we studied a genomic signal that can detect
114 genome regions in which the sequences are subject to unusually high rates of
115 recombination, the GC content. Recombination is accompanied by gene conversion. Studies
116 of sequence changes in crossover and non-crossover meiotic products in mammals
117 (Arbeitshuber, et al. 2015) show that recombination-related gene conversion in
118 heterozygotes is biased towards G and C alleles (this process is known as GC-biased gene
119 conversion, abbreviated to gBGC). Any such bias will cause the GC content at weakly
120 selected or neutral sites in genomes to be positively correlated with local recombination

121 rates, and such correlations have been detected for intron sequences and 3rd codon
122 positions in coding sequences in numerous species, including humans and other mammals,
123 birds, rhabditid worms and insects, and plants (Galtier, et al. 2001; Marais and Galtier 2003;
124 Galtier 2004; Galtier, et al. 2009; Lesecque, et al. 2013; Liu, et al. 2018). In yeast,
125 *Saccharomyces cerevisiae* (Birdsell 2002), the correlation is complicated by mutational bias
126 acting to cause sequence changes in the direction opposite to those due to and gBGC, and
127 the rarity of heterozygotes in populations, and its effects may be slight at the genome-wide
128 level (Harrison and Charlesworth 2011; Liu, et al. 2018).

129 Regions with extremely high crossover rates in one sex, have large GC differences from the
130 rest of the genome, based on yeast recombination hotspots (Mieczkowski, et al. 2006) and
131 physically small pseudo-autosomal regions (PARs) of sex chromosomes (Rouyer, et al. 1986;
132 Hinch, et al. 2014). Most strikingly, in the mouse, a gene has been found that spans the PAR
133 boundary (i.e. part of it is in the distal chromosome region of homology between X and Y
134 chromosomes, while the rest of the gene is fully sex-linked). The exons and introns from the
135 PAR part are more GC-rich than the fully sex-linked part of the gene (Marais and Galtier
136 2003). Rather than being an evolutionary consequence of local crossover rates, such
137 correlations might instead reflect a process by which GC content controls crossover rates
138 (Mieczkowski, et al. 2006; Liu, et al. 2018), or a tendency for GC-rich sequences, including
139 CpG islands to evolve in highly recombinogenic genome regions (Han, et al. 2008). However,
140 a region of moderate GC content that was recently transposed into the mouse PAR has been
141 found to experience very frequent recombination, indicating that the recombination rate is
142 not, at least in this case, a consequence of high GC content (Morgan, et al. 2019). If the
143 recombination rate is very high in a region, even in just one of the two sexes, it can
144 therefore lead to high GC content, and this evolutionary consequence will be detectable in
145 sequence data from both sexes. To gain an understanding of recombination rate patterns,
146 and differences in these patterns between different guppy chromosomes and sex
147 chromosome regions, and between these and the patterns in related fish species, we
148 therefore analysed GC content in the guppy, and homologous sequences of related species.
149 To avoid, as far as possible, other factors that can influence GC content, we focused on the
150 GC content of introns of guppy genes.

151 Recombination is also mutagenic (Lercher and Hurst 2002; Arbeithuber, et al. 2015;
152 Halldorsson, et al. 2019; Kessler, et al. 2020). This effect leads to the further consequence of
153 higher numbers of substitutions per site in high-recombination regions, compared with the
154 rest of the genome, and the GC-biased region of the mouse gene that spans the PAR
155 boundary gene indeed also evolves much faster than the fully sex-linked part (Galtier 2004).
156 Such a substitution rate difference is also detected in pseudo-autosomal genes of the
157 human and ape sex chromosomes (Filatov and Gerrard 2003), and in birds (Rousselle, et al.
158 2018). We therefore also analysed substitutions between guppy genes, and their
159 orthologues in related species, and compared the rates between regions with local very high
160 recombination rates and other genome regions.

161

162 **Results**

163 *Chromosome homologies in the species studied*

164 The analysis described in the Methods section identifies the platyfish homologues of most
165 guppy chromosomes, which mostly consist almost exclusively of sequences from single
166 platyfish chromosomes, with small contributions from other chromosomes (see the folder
167 “GUPPY-platy chromosome homologies” under Dryad **doi number to be added**), and
168 Supplementary Table S1 summarizes the homologies for the 20 guppy chromosomes where
169 they were clear-cut. Seven guppy chromosome assemblies appear to include substantial
170 portions from more than a single platyfish chromosome. Excluding the guppy chromosome
171 2, which is known to be a fusion between two chromosomes that are separate in *X.*
172 *maculatus* (Künstner, et al. 2017), the other such chromosomes are the guppy LGs 6, 8, 9, 14
173 and 19, and LG16 has a small anomaly (see the Dryad folder “GUPPY-platy chromosome
174 homologies”). For example, LG9 largely corresponds to the platyfish chromosome 12, but a
175 region of about 14% of the 34 Mb chromosome (around 5 Mb, near the zero end of the
176 assembly) is assembled on the platyfish chromosome 11 (Supplementary Figure S1). These
177 instances may be due to assembly errors, or could be genuine genomic rearrangements
178 (some errors are detected in our genetic mapping, see Supplementary Figures S7 and S9,
179 also unpublished results of Charlesworth et al. 2020 and Fraser et al. 2020). Assembly error
180 could account for the result for the guppy chromosome 7: the large region at the right
181 possibly assembled in an inverted order (see the Dryad folder “PNG+TRACE_G (dot plots)”).

182 may explain why, in the family where the largest number of SNPs can be mapped (LAH), a
183 set of SNPs in the middle of the assembly co-segregate, and the SNPs on both sides of them
184 are assigned to recombining regions. The homology is, however, clear for the guppy XY pair,
185 LG12, which is homologous to chromosome 8 of the platyfish and to chromosome 12 of *P.*
186 *picta*.

187

188 *GC content of first introns versus other introns*

189 Before testing for a relationship between GC content and physical position, we first
190 established that the values for first introns do not differ from those of other introns
191 (Supplementary Table S1). First introns of genes are often under stronger selective
192 constraint than other introns. As reviewed by Park (2014), the most 5' introns have
193 distinctive properties in several organisms, and a class of "intron-mediated enhancers"
194 regulating gene expression level are known, are located unexpectedly often within mouse
195 first introns; first introns also tend to be longer than other introns and have the greatest
196 sequence conservation in several taxa, including *Drosophila* (Marais, et al. 2005) and
197 humans (Park, et al. 2014). Strong purifying selection might therefore act, and might
198 maintain low GC values, even in genome regions with high rates of recombination.

199 There was no significant for any guppy chromosome (Wilcoxon signed-rank test, $p > 0.1$)
200 apart from a small difference for LG10 (median of first introns = 0.372, versus 0.368 for other
201 introns, Wilcoxon signed-rank test, $p < 0.0005$). For the platyfish, 23 chromosomes had non-
202 significant results, while a small difference was detected for chromosome 23 (the medians
203 for first and other introns were 0.364 and 0.362, respectively; this is not significant after
204 False Discovery Rate correction). The results described below are therefore based on the GC
205 values for all introns of each gene.

206

207 *Change-point analysis of intron GC content and determination of centromere positions in the*
208 *guppy and the platyfish*

209 We used change-point analysis (see Methods) to test which chromosomes show significant
210 changes in GC content, and to estimate the positions where the changes occur, and their
211 magnitudes. All but four guppy chromosomes, and all but three in the platyfish, had a

212 prominent spike in GC content at one end of the chromosome (Supplementary Figure S2;
213 Supplementary Figure S3 shows the relationships of the species studied).

214 The centromere regions were not identified in the published genome assemblies of either
215 the guppy (Kunstner *et al.*, 2016) or the platyfish, but can be identified based on the GC
216 analysis Assuming that the spikes in intronic GC values indicate terminal recombining
217 regions of these acrocentric chromosomes, the other ends should represent the
218 centromeres (LG2 showed a spike in the middle of the chromosome, perhaps indicating a
219 signal retained from the pre-fusion period of its evolution). Among the 22 other guppy
220 chromosomes, 19 have clear terminal spikes, 5 at the start of the assembly, and 15 at the
221 end (Table 1); only a few chromosomes have no large change. In the 21 platyfish
222 chromosomes with clear spikes, 15 had elevated CG at the start, versus 6 at the end of the
223 assembly (Supplementary Table S2). For 17 chromosomes, the same end was identified as
224 the centromere end in both species, taking account of the fact that, for some chromosomes,
225 the genes assigned the lowest assembly positions in the platyfish are homologous to genes
226 with the highest positions in the guppy assembly (see Supplementary Table S2).

227 In the guppy, significant changes in GC_{intron} values were detected for 17 chromosomes
228 (Table 1). For all except three of these (LGs 4, 8 and 19), the region of elevated GC occupied
229 less than 8% of the chromosome's total length. Chromosomes 4 and 8, had high GC in 19
230 and 10% of the chromosome, respectively, and the changepoint is uncertain for LG19,
231 where the signal was weak. Overall, therefore, most guppy chromosomes show signals
232 consistent with strongly localized recombination in one or both sexes. There is no clear
233 difference between the guppy sex chromosome, LG12, and the autosomes. The high GC
234 identified by our change-point analysis for LG12 occupies the terminal 4.3% of this
235 chromosome (Figure 1), similar to the results for several other chromosomes (see Figure 4
236 below); overall, 7 guppy autosomes have smaller regions of high GC_{intron} , and 10 have larger
237 regions (Table 1). The total assembled sequence length of LG12 is 26.4 Mb (Kunstner *et al.*,
238 2016), and the location of its major change in GC content indicates that, consistent with our
239 previous genetic mapping results (Bergero, et al. 2019), only about 1.15 Mb of the terminal
240 end of the chromosome undergoes crossovers.

241 Figure 1 about here

242

243 *Gene density*

244 We tested the possibility that GC differences might be related to local gene densities, since
245 coding sequences have higher GC than introns. In the human genome, the GC content is
246 positively correlated with gene density (Payseur and Nachman 2002). However, we found
247 no such effect in the guppy introns (Supplementary Table S3); the table shows that only 6
248 guppy chromosomes show significant relationships, and these all indicate negative, not
249 positive correlations. The high GC content at the chromosome termini in the guppy
250 therefore does not appear to be caused by an enrichment of coding sequences.

251

252 *Analyses of *P. picta* introns*

253 We next examined intron sequences in *P. picta*, the closest relative of the guppy
254 (Supplementary Figure S3), using low coverage sequencing data. Our analysis used the
255 female with the highest coverage (about 13-fold, see Methods section). Although the intron
256 GC content patterns are much less clear than in the guppy and platyfish, elevated values are
257 clearly visible at one end of many the chromosomes (Supplementary Figure S4), and agree
258 very well with those in the guppy, including identifying the same four or five chromosomes
259 that showed no terminal GC spikes, guppy LGs 3, 14, 17, 22 and 23 (Supplementary Figure
260 S2, and Table S2; the full results for *P. picta* are shown in a folder named “Picta
261 INTRONIC_GC” in Dryad **doi number to be added**). The recovery of a signal when using the
262 guppy as a reference for assembling/analysing reads from this species suggests that the
263 signal is unlikely to be specific to the guppy lineage. We did not attempt change-point
264 analyses, but tested whether this species also has statistically significant changes by
265 Wilcoxon signed rank tests for each chromosome, comparing the median intronic GC
266 proportion between the tips where GC spikes were detected in the guppy, and the
267 remainder of the chromosome. Significant one-tailed test results were obtained when the
268 tips of each chromosome were defined by various different percentage cut-off values; for
269 the terminal 10%, $P = 0.00013$, for 5% or 2% it was 0.0011, and results for the means were
270 similar.

271

272 *GC in coding sequences*

273 A less clear pattern is expected in coding regions than for intronic GC, given that selection
274 on codon usage may affect such sites (Labella, et al. 2019), and also because GC content is
275 generally higher in coding regions than introns, as reviewed by Beauclair (2019), making
276 increases less likely to be detected. Nevertheless, GC in third codon positions (GC3 values)
277 also show significant increases at the ends of many guppy chromosomes. Change-points
278 were detected only at the right-hand ends of seven LGs (1, 6, 8, 10, 11, 13 and 15), and the
279 left-hand ends of the three LGs 16, 19 and 21; these all agree with the chromosome end
280 with the GC_{intron} spike. Change-point analysis detects a slightly, but significantly, higher value
281 at the tip of LG12 (Figure 2); figures for the other chromosomes, many of which show
282 clearer signals of elevated GC3, are in files “GC3 CPA guppy” and “GC3 CPA platyfish” in
283 Dryad).

284 Figure 2 about here

285

286 *Comparisons with change-points in the platyfish*

287 In the platyfish, all 24 chromosomes have detectable change points, unlike the guppy result
288 (Supplementary Table S4A). Excluding chromosomes such as LG14, which also has too weak
289 a signal in the guppy to estimate a change-point, see Table 1), we can compare the change-
290 point locations in 18 chromosome homologues of these two species (Figure 3). When a large
291 increase in GC_{intron} values is detected in either species, it is mainly near the end of a
292 chromosome (Figure 4). The chromosome ends also show an excess of decreases in GC
293 (three guppy chromosomes have such decreases exceeding 5%, and 5 platyfish
294 chromosomes, see Supplementary Table S4B). Although it is likely that these regions include
295 more assembly errors than other parts of the chromosomes, this seems unlikely to account
296 for this effect.

297 Figures 3 and 4 about here

298

299 Four guppy chromosomes (LGs 5, 11, 15 and 21) have substantially more proximal change-
300 point locations in the platyfish homologues, while the homolog of the guppy LG4 has a
301 substantially more distal location (though the assemblies of this chromosome in the two
302 species differ too much to be reliably compared, see the folder of dot plots in Dryad). A
303 different change-point analysis, “ruptures” (see Methods) did not change the inferred

304 centromere ends or the chromosomes showing no clear GC spikes (in both species). The
305 estimated change-point locations were also similar, except that LG15 showed a smaller
306 difference between the two species, and eight LGs had change-points substantially more
307 proximal in the guppy than the platyfish. We therefore conclude that the guppy does not
308 show any consistent tendency to have more terminal GC spikes. Proximal changes from low
309 to high GC content are unlikely to indicate regions with very high recombination rates,
310 because counts of MLH1 foci show that guppy chromosomes rarely have more than one
311 crossover per bivalent (Lisachov, et al. 2015), and our genetic maps never greatly exceed 50
312 cM for any linkage groups in meiosis of males or females (Bergero *et al.*, 2019). They could
313 reflect local recombination hotspots not in the terminal regions of platyfish chromosomes,
314 particularly in the platyfish, as map lengths estimates in *Xiphophorus* are larger than in the
315 guppy (Walter, et al. 2004), suggesting that many chromosomes may often have multiple
316 crossovers, not just one at the terminus (see discussion below).

317 The difference in change-point locations between the two species was tested by a paired
318 Wilcoxon Rank Sign test of the median change point locations in terms of the percentage of
319 the chromosome occupied by the high GC region. For five chromosomes, two consecutive
320 change points were detected (Supplementary Table S4B). Using the most distal change-
321 point for all chromosomes, the median and mean values for the guppy are 3.3% and 4.8%,
322 versus 4.8% and 8.8% for the platyfish, which is not a significant difference ($P = 0.172$); using
323 the more proximal of the two consecutive change points for the five chromosomes with two
324 successive change-points, the differences between the species is again non-significant ($P =$
325 0.122). Overall, the data from both species strongly suggest terminal localization of
326 recombination in both species, and do not support any major genome-wide increased
327 localization in the guppy. The slightly more extreme crossover localisation in the guppy
328 compared with platyfish is not a significant difference.

329

330 *Synonymous divergence between species*

331 To test whether the inferred high recombination regions of guppy chromosomes also show
332 the expected signal of higher mutation rate than other regions of the same chromosomes
333 (see Introduction), we estimated synonymous site divergence (K_s) values between guppy
334 and platyfish coding sequences; intron sequences are less reliably alignable, and were not

analysed. Figure 5 shows estimates for LG12, using two different models (see Methods section). The two models that use simple corrections for the saturation expected under high divergence, NG and LPB, gave very similar results, and neither showed clear spikes in divergence at the chromosome ends (Figure 5). With the GY model, however, significantly elevated values are detected at the ends of chromosomes, as expected for a model designed for high divergence (Figure 5; results for all guppy chromosomes are shown in Supplementary Figure S5). One-tailed Wilcoxon tests indicate a highly significant overall tendency for terminal regions of the chromosomes to have high K_s whether we compare the 10% of the assembly most distant from the inferred centromere, or when comparing smaller terminal regions with the centromere-proximal 95%, 97% or 99% regions; in all cases $P < 0.0006$ for the medians, and 0.0002 for the mean values. Thus the chromosome ends display the high divergence expected if recombination rates are high and recombination is mutagenic.

348 Figure 5 about here

349

350 Comparison with high-throughput genetic mapping results for guppy autosomes

To test whether the GC spikes detected on the guppy chromosomes correspond with regions of frequent crossing over, we compared their genetic maps with the GC patterns, using high-throughput SNP genotyping data in guppy families (described in detail in Charlesworth et al. 2020), and examining the results for genic SNPs that are informative in meiosis of the male parent. When the data for a chromosome included such SNPs near both ends of the assembly (Supplementary Figure S6), we recorded the end that showed the crossovers. We used results from female meiosis to check that the regions mapped include genes that belong to the chromosome under study, rather than occasional mis-assembly of a gene that belongs on another chromosome, which would produce spurious signals on crossing over. Other types of assembly errors, such as inversion of a physically large region, are unlikely to create disagreements between the GC spike positions and the regions where crossovers are detected. For example, a highly recombining tip wrongly assembled in the middle of the chromosome should also yield a GC spike in a middle region, which was not seen (Supplementary Figure S2).

365 Overall, five guppy chromosomes have GC spikes that are weak (LGs 3 and 17) or
366 undetectable (LGs 14, 22 and 23), and we thus have no clear prediction about which end of
367 the guppy chromosome is the centromere, and which end is expected to show
368 recombination events. Such cases could be due to terminal regions being missing from the
369 assemblies of some or all of these chromosomes; however, for most chromosomes few
370 sequences present in the platyfish assembly appear to be missing from the guppy. The
371 exceptions are both termini of LG2, the right-hand ends of guppy LGs 9 and 14, the latter
372 with no GC signal, LG16, and the left-hand end of LG21 (see file “PNG+TRACE_G (dot plots)”
373 in the Dryad folder). Of the 19 chromosomes where GC spikes are detected (even if not
374 significant in change-point tests), 13, including LG12 which is not shown here, show a
375 recombining region at the predicted end, while 6 chromosomes do not (Supplementary
376 Table S2). However, in at least one of the 6 sibships, 6 LGs show apparent recombination in
377 the middle of the assembly, as well as at the expected end (see Supplementary Table S5,
378 Figure S7, and the file “Autosomal segregation (6 fams HT results)” in the Dryad folder). For
379 some of these chromosomes (LGs 5, 7, 8, 10, 16 and 23), crossing over patterns in male
380 meiosis may be similar to those in females.

381

382 **Discussion and Conclusions**

383 *Crossover patterns in the guppy and related fish*

384 Our results concerning crossing over are consistent with cytogenetic observations on guppy
385 in testis cells. Crossovers on both autosomes and sex chromosomes show terminal
386 localization (Lisachov, et al. 2015). Consistent with this, genetic mapping results in families
387 from multiple guppy natural populations (Bergero *et al.*, 2019), found that crossing over in
388 male meiosis is very frequent in the terminal 1-2 Mb of the XY chromosome (LG12) most
389 distant from the centromere, but very rare elsewhere, and that several autosomes show
390 similar crossover localization in male meiosis.

391 Our inference that crossover patterns are similar on most other guppy chromosomes, and in
392 related species, is indirect, using analysis of GC in introns, similar to the analysis of GC in
393 third positions of codons used to infer recombination differences in bird sex chromosomes
394 (Xu, et al. 2019). The basis of our inference is that high rates in meiosis of one (or both)
395 sexes are expected to result in high GC values in the genome sequences of both sexes,

396 allowing us to use data from the published guppy genome assembly from a sequenced
397 female. If regions of high GC content in these fish are consequences of evolution under high
398 recombination rates in male meiosis, like those detected in the LG12 PAR by genetic
399 mapping, the causative high crossover rates should be restricted to males. Such analyses
400 cannot tell us whether the sexes differ or not. These terminal regions could have much
401 lower rates in female meiosis, as our genetic mapping suggests (Bergero, et al. 2019).
402 Finding high GC in the chromosome regions where high male crossover rates are detected in
403 our genetic maps for the species cannot exclude the possibility that other factors also
404 contribute to elevated GC levels, as reviewed in the Introduction section. However, we
405 found that elevated GC levels at guppy chromosome tips are accompanied by elevated
406 synonymous site substitution rates, as expected if recombination is mutagenic (as also
407 reviewed in the Introduction). This observation suggests that high recombination rates are
408 indeed likely to be involved, rather than these guppy genome regions having special
409 properties that have selected for high GC levels, or unusually high gene densities (which, as
410 explained above, our tests do not find). However, the high GC levels might not be due to GC-
411 biased gene conversion, as it is also possible that high GC directly causes higher
412 recombination rates than occur in genome regions with lower GC levels, as has been
413 demonstrated in experiments in yeast (Kiktev, et al. 2019).
414 Overall, our results are consistent with our previous findings suggesting that crossovers in
415 guppy male meiosis are often restricted to physically small regions of many chromosomes,
416 and that LG12 is not exceptional. Therefore, if the sexual dimorphism in crossing over
417 evolved to restrict recombination of the Y chromosome with the X, perhaps due to the Y
418 carrying sexually antagonistic factors such as male coloration factors, any such evolutionary
419 change was probably not specific to the XY pair.
420 The localization of crossovers in male meiosis in all guppy populations tested suggests that
421 this pattern probably evolved before the establishment of any male coloration
422 polymorphisms that evolved within individual populations (Bergero, et al. 2019). If so, it
423 might be similar in closely related fish species. Our intron GC content analysis indeed
424 suggests similar GC spikes in *X. maculatus*, the platyfish, and in the even closer relative, *P.*
425 *picta*, and GC changes do not occur nearer the centromere in the platyfish than in the guppy
426 (Figure 4). The two chromosomes where the platyfish does not show strongly terminal GC

427 spikes are not conclusive evidence for less terminal crossover localization, or for the unlikely
428 possibility that crossovers are strongly localized to physically small internal chromosome
429 regions, because, as mentioned above, assembly errors are possible. In the absence of a
430 male genetic map in the platyfish, we cannot distinguish between these and true
431 differences in arrangements in these species. The GC content differences affect a very large
432 number of sites, and suggest that a very high recombination rate in these terminal
433 chromosome regions has persisted for a long evolutionary time. The high rate probably
434 affects the terminal region uniformly (rather than there being a hotspot near the PAR
435 boundary), as the most terminal scaffold mapped has a uniformly high GC content (see
436 Supplementary Figures S8A and S9). However, we cannot exclude the possibility that there
437 could have been subtle changes in either the platyfish or the guppy lineage that the intron
438 GC values cannot detect (Supplementary Figure S8B).

439 Although no genetic map has been estimated from crosses within the platyfish, mapping of
440 microsatellite markers in a large progeny of an cross between *Xiphophorus* species did not
441 suggest a consistent sex difference (Walter, et al. 2004). Many LGs had female maps exceed
442 50 cM, suggesting that multiple crossovers might occur on at least some chromosomes,
443 unlike the single crossovers in the guppy (see above). The lengths of the maps suggest that
444 terminal regions are often included, including any regions with high recombination rates in
445 males, but the genome had not yet been sequenced and so genetic and physical lengths
446 could not be compared to determine crossover localization patterns. A more recent genetic
447 map also used an inter-species cross, and mapped RAD markers, whose positions in the
448 genome assembly are known (Amores, et al. 2014); however, the map was estimated from
449 an F1 female, and distorted segregation ratios also affected the map. The two genetic maps
450 from females do not yield correlated map lengths for the chromosomes (the r^2 value for a
451 linear regression is only 0.009). It is possible that the interstitial crossovers could result from
452 displacement to these regions due to rearrangements elsewhere on the chromosomes in
453 these hybrids, as such effects are produced in heterozygotes for rearrangements (Mary, et
454 al. 2018), which can also change the relative proportions of crossover and non-crossover
455 outcomes (Crown, et al. 2018). Overall, given these uncertainties, the *Xiphophorus* maps do
456 not contradict our results suggesting terminal localization of crossovers on platyfish
457 chromosomes, but suggest a need for more mapping using crosses among *X. maculatus*

458 individuals; it remains possible that the crossover pattern has changed in the lineage leading
459 to either *Xiphophorus* (adding interstitial crossover events), or to the guppy (with loss of
460 even occasional interstitial events). We therefore conclude that extreme crossover
461 localization probably did not evolve recently in the guppy lineage, but may represent an old-
462 established situation with very extensive pericentromeric regions showing low crossover
463 rates in male meiosis.

464

465 *When did the sex difference in recombination evolve?*

466 Heterochiasmy, however, is probably weaker in the more distantly related fish medaka,
467 *Oryzias latipes*, as genetic mapping in this species suggests that only the sex-determining
468 region itself fails to recombine in male meiosis, while most regions of the sex chromosome
469 may be pseudoautosomal (Kondo, et al. 2001). The same applies in several cichlid fish, in
470 which analyses of F_{ST} between the sexes yielded clearly localized regions that show signals
471 of complete sex-linkage, and extensive pseudo-autosomal regions e.g. (Gammerdinger and
472 Kocher 2018), implying that recombination occurs in male meiosis in the latter. The state in
473 the guppy and its closest relatives therefore probably evolved after the split with the
474 cichlids and *Oryzias* species, though it remains uncertain when the change occurred.

475 Our evidence that crossing over in male meiosis is highly localized to the tips of many guppy
476 chromosomes, and similarly localized in the platyfish (very likely also in males only),
477 supports our previous proposal that the guppy Y could have arisen by an event that brought
478 a male-determining factor onto a chromosome in an ancestral species with such sexually
479 dimorphic crossing over, and that this event simultaneously produced the male-specific
480 crossover pattern, instantly isolating this chromosome from its homolog and creating an
481 “XY” pair (Bergero, et al. 2019), without any evolutionary change in the sexual dimorphism
482 in crossing over in the guppy.

483

484 *Evolution of recombination patterns versus sex-limited expression*

485 Most guppy male coloration traits are Y-linked, but those that are partially sex-linked show
486 male-limited expression (Lindholm and Breden 2002). The concentration of male coloration
487 genetic factors on the guppy LG12 is consistent with theoretical models showing that

488 complete or close partial linkage to the sex determining locus is favorable for the spread of
489 sexually antagonistic factors in populations, other things being equal (Jordan and
490 Charlesworth 2012). If, as just suggested, recombination was already rare in males, the
491 coloration factors that became established in populations may have had time to evolve
492 male-limited expression. Testosterone treatment experiments reveal that almost all females
493 in natural guppy populations from low-predation localities in four Trinidad rivers carry
494 coloration factors that they do not normally express (Haskins, et al. 1961; Gordon, et al.
495 2012). In females from high-predation sites, the proportions were consistently lower, but
496 still high (between < 10% up to 80%); these polymorphic factors may be rarer in males from
497 these populations, so the difference need not suggest any difference in the control of
498 expression of the traits studied. As the coloration factors have not yet been identified, their
499 frequencies are currently difficult to estimate.

500 Sexually antagonistic selection may be involved in the evolution of sex chromosomes
501 through selection for reduced recombination, but resolving conflicts by evolution of sex
502 differences in gene expression may also be important when alleles that are beneficial in one
503 sex spread, and the other sex experiences deleterious effects. It has been suggested that
504 this might have prevented the evolution of suppressed recombination with the sex-
505 determining locus, accounting for the maintenance of large partially sex-linked regions in
506 Paleognathous birds (Vicoso, et al. 2013), whereas in Neognathous birds ZW recombination
507 has become suppressed, perhaps due to selection generated by partially sex-linked SA
508 polymorphisms. This idea appeared to be supported by estimates suggesting that many emu
509 PAR genes show sex biased expression, but this is probably not the case (Xu, et al. 2019).
510 Nevertheless, expression evolution of partially sex-linked SA genes could indeed lessen or
511 eliminate the selection pressure for closer linkage. Given our evidence that the guppy
512 crossover pattern is similar to that in the platyfish, it may be interesting in the future to
513 study expression of genes on the guppy sex chromosome.

514

515 **Methods**

516 **Fish samples, DNA extraction and genetic mapping**

517 Genetic mapping data were obtained by high-throughput genotyping (SeqSNP) experiments,
518 using SNPs ascertained from our own resequencing study of Trinidadian guppies (10 males

519 and 6 females) sampled from a natural population (Bergero, et al. 2019). We selected an
520 excess of SNPs at both ends of each chromosomal assembly for genotyping, in order to
521 maximize the chance of detecting crossover events in male meiosis, assuming that these
522 events might be localized in the chromosomal termini. The guppy families used for the high-
523 throughput SNP genotyping are described in Charlesworth et al. (2020).

524 Genomic DNA for genotyping was extracted using the Echolution Tissue DNA Kit (BioEcho,
525 Germany). For SNP ascertainment for SeqSNP genotyping, we identified genic sequences
526 found in all 16 *P. reticulata* individuals sampled from a captive population recently collected
527 from a natural site with a high predation rate in the Aripo river, Trinidad (Bergero, et al.
528 2019). The SNPs to be targeted were selected from within coding sequences, with the
529 criterion that about 50 bp of sequence flanking each such SNP should also be coding
530 sequence, in order to maximise the chance that the sequence would amplify in diverse
531 populations, and to minimise the representation of SNPs in repetitive sequences. To further
532 avoid repetitive sequences, the SNPs were chosen to avoid ones whose frequencies in the
533 ascertainment sample were 0.5 in both sexes. The SNPs and their locations in the guppy
534 genome assembly are listed in the file “Autosomal segregation (6 fams HT results)” **in Dryad**
535 (**doi to be added**). The experiments were carried out by LGC Genomics (LGC Genomics
536 GmbH, Ostendstraße 25, 12459 Berlin, Germany, www.lgcgroup.com/genomics). As
537 expected, the primers work well for most targeted sequences.

538 The SNP genotype data were analysed for the autosomes as well as the guppy XY pair,
539 chromosome 12. For each chromosome, we examined the progeny genotypes and recorded
540 the locations of crossover events, in order to show which regions co-segregated in male
541 meiosis, and which recombined. When the data for a chromosome included SNPs
542 informative in male meiosis near both ends of the assembly (Supplementary Figure S6), we
543 recorded which end of the assembly showed the crossovers, for comparison with the
544 positions of elevated GC content (estimated as described below). Maps based on the IAH
545 family, with the most informative markers, were estimated using LepMap3 (Rastas 2017)
546 and are shown in Supplementary Figure S7.

547

548 **Analyses of genome sequences**

549 **Preparation of datasets**

550 The female guppy genome assembly and annotation files were obtained from the NCBI
551 Annotation Release 101 (GenBank under accession number GCF_000633615.1). There are
552 22 pairs of autosomes and one sex chromosome pair. The southern platyfish (*Xiphophorus*
553 *maculatus*) genome assembly, with 24 chromosome pairs, was downloaded from NCBI
554 Annotation Release 102 (under accession number GCF_002775205.1 at the GenBank). The
555 GFF3 files for both species were downloaded from Ensembl (release 97), to provide gene
556 names and sequences, and the exon and intron locations for each transcript in the longest
557 transcript for each gene, as many guppy genes are annotated with multiple transcripts.
558 Scripts for the analyses are deposited in Dryad, under accession number **XXXX [to be**
559 **added]**.

560

561 **Intron GC content analysis in *P. reticulata* and *X. maculatus*, including determining
562 chromosome homologies between the two species**

563 For each gene, the coordinates of the exon ends were converted to yield the intron
564 positions, and the intron sequences of every gene from each chromosome were retrieved
565 from the genomic assembly, and their GC content values were calculated using the code in
566 the file 'maincode.py' deposited in Dryad. Genes with no introns were not included. The set
567 of genes from LG12, the XY pair, includes 824 genes with at least one intron (56 of which had
568 just a single intron), and 44 with no introns (the numbers for other chromosomes are given
569 in Supplementary Table S1). For genes with more than a single intron, the GC values for all
570 introns were pooled, as the values for first introns did not differ significantly from those of
571 other introns in either the guppy or platyfish (see Results section).

572 We note that the assemblies of guppy and platyfish chromosome homologues show
573 multiple breaks in synteny, which may be true rearrangements between these species, or
574 could, in some or all cases, represent assembly errors (Supplementary Figure S1 and files in
575 Dryad folder "PNG+TRACE_G (dot plots)"). As discussed in the Results section, assembly
576 errors that incorrectly order genes on a chromosome can lead to elevated GC values in the
577 incorrect chromosome region; in addition, genes assigned to the wrong chromosome will
578 produce a false appearance of crossing-over within the chromosome. We assessed the
579 latter possibility by comparing the gene contents of the guppy and platyfish chromosomes,
580 following the approach described by (Schartl, et al. 2013). This revealed few indications of

581 such problems (files in Dryad folder “GUPPY-platy chromosome homologies”).
582 Supplementary Figure S1 shows the example with the largest such region we detected: most
583 of LG6 corresponds to the platyfish chromosome 2, but a region of several Mb corresponds
584 to part of the platyfish chromosome 3 (most of which corresponds to the guppy LG16).

585

586 *P. picta*

587 Sequences were made available from the lab or Cameron Ghalambor. Reads were first
588 stringently quality controlled as follows. The reads were processed for adapters with
589 Trimmomatic ILLUMINACLIP. ‘Standard’ settings of 2:30:10 were used, allowing at most two
590 mismatches in the adapter seed, and quality cutoffs of 30 and 10 for paired or unpaired
591 reads, respectively; only paired reads were retained. Trailing Ns at the starts and ends of
592 reads were removed, as were trailing sections with quality < 3. A sliding window of size 4
593 was applied to the read, and clipped if mean quality, as assessed by fastqc analysis, dropped
594 below 15. Reads of shorter than 108 bp were discarded. Next, the reads were aligned to the
595 guppy reference genome sequence, using BWA mem (Li and Durbin 2010) with the default
596 settings. The alignment was converted to BAM format with Samtools, then sorted and
597 indexed. As a further quality control, only reads that mapped as a pair correctly were
598 retained; optical or PCR duplicates, and reads with mapping quality ≤ 30 , were discarded.
599 Introns were called from the guppy GFF3 annotation from Ensembl using the ‘-addintrons’
600 option of GenomeTools (http://genometools.org/tools/gt_gff3.html), and the output was
601 processed to produce a bed file with the intron regions of each guppy chromosome based
602 on the GFF3 chromosomal annotation.

603 The intronic bed file was sorted, and bedtools map was used to concatenate all reads from a
604 single individual *P. picta* female that mapped to a given intron in the chromosomal
605 alignment, and the proportion of GC bases was computed for each intron.

606 The individual chosen for analysis was AWCSU02 / N705 / AK 403; CAR_H female; identifier
607 number 7 (for comparison with other experiments). This female was selected due to having
608 coverage roughly 3-fold higher than other individuals in the same population. The increased
609 coverage was not due to over-representation of repeats or regions of poor quality
610 sequence: the library reduction during quality control was similar to that for most other
611 individuals; for example, the RPK of LG12 in this female dropped from ~ 56 to ~ 55 after

612 Trimmomatic processing, similar to the decrease from ~18 to ~17 for the female with
613 identifier number 6 who was typical of the population. The observed differences in GC
614 content between chromosome regions might nevertheless be inaccurate, but there is no
615 reason to suspect any systematic difference that could cause the differences we observe.
616 First, regions with extreme base composition, in either direction, generally have low
617 coverage in PCR-based sequences such as those analyzed (Benjamini and Speed 2012), and
618 the resulting lower representation of such regions will increase the variance in GC content.
619 Second, our fastqc analysis allowed the inclusion of many AC and GT repeat sequence that
620 just passed the 0.1 threshold. Finally, repetitive regions tend to be AT-rich, and if they were
621 preferentially excluded from our analysis, the overall GC content might be over-estimated;
622 however, this seems unlikely to affect differences in GC between introns of genes in
623 different chromosome regions.
624 Our analysis retained the longest isoform of the coding sequence for each gene, and
625 analysed only the introns based on this isoform. To do this, the table of GC proportions per
626 intron for this female was filtered to exclude introns with more than one read, and
627 redundancy removal was enacted to remove those with the same start site, and keep those
628 with the longest isoform (latest end point), and those with the same end site, again keeping
629 the longest isoform (earliest start site).

630

631 **Change-point analysis**

632 We visualized the GC values along the guppy chromosomes using the LOESS package (Jacoby
633 2000) in R (Ihaka and Gentleman 1996) to plot smoothed lines and 95% confidence
634 intervals. To examine the significance of the changes, we used the cumSeg package
635 (Muggeo and Adelfio 2010) in R to detect change-points in the GC content in the
636 chromosome assemblies. This change-point analysis software is designed for analysis of
637 genome sequences, and it estimates the number and location of significant change points
638 using a non-parametric test, and plots the mean value of the quantity of interest (here, GC
639 content) in each segment identified. For most chromosomes, we applied model 3, which
640 yields the best estimates. For a few chromosomes in the guppy or platyfish where no clear
641 change-point was identified, model 2 were also used. When two consecutive change points
642 were detected, we tested for differences between the species either by choosing the most

643 distal of the change-points to compare, or the more proximal one of the two.
644 Supplementary Table S4 shows the five chromosomes where the results differ. Because
645 different change-point analysis approaches yield differing results, we also applied a
646 different method, Pelt, implemented in the “ruptures” package (arXiv:1801.00826); we
647 used the “Pelt” method, because this estimates the number of breakpoints, rather than the
648 user specifying a fixed number, with the default parameter values (Truong, et al. 2020).

649

650 **GC3 values in exon sequences**

651 To examine whether coding sequences also show evidence for GC-biased gene conversion in
652 regions with high recombination rates, we also computed the GC3 (G+C in the third
653 positions of codons) for the exon sequences of the genes whose introns were analysed. The
654 coding sequences were extracted using the GFF annotation together with the genome
655 sequence of each chromosome using a Python script from R. Ness (University of Toronto).
656 The Python module GC123 from the Biopython SeqUtils package (Cock, et al. 2009) was
657 used to calculate the GC3 value for each gene.

658

659 **Gene density analysis**

660 The gene densities for each guppy chromosome were estimated from the ‘genomicDensity’
661 package in R using sliding windows of size of 500,000 bp and a 250,000 bp gap, and the
662 intronic GC content of genes in each window.

663

664

665 **Estimating between-species divergence for orthologous genes**

666 To estimate divergence between guppy and platyfish sequences, and to understand the
667 relationships between the species studied, we compared genes on homologous
668 chromosomes, determined as described above. We used BLAT v38 to find orthologues by
669 reciprocal best hits between sequences of guppy cDNAs with chromosomes assigned in the
670 female assembly, versus cDNAs from the complete genome sequences of the platyfish or
671 *Gambusia affinis*. After amino acid sequence alignment using MAFFT (Katoh and Standley
672 2013), the resulting DNA sequences were analyzed using PAML software, to estimate
673 synonymous site divergence (K_s) values summarised in Supplementary Figure S2.

674 Divergence analysis was also done to test whether the mutation rate is higher in regions
675 with high GC content than other chromosome regions, based on substitutions between the
676 guppy and platyfish. For this, orthologous gene pairs were found using reciprocal BLAST of
677 coding sequences from the two species available from the NCBI repository; to avoid
678 paralogous genes, as far as possible, and to relate the divergence values to the genes'
679 chromosomal locations, the BLAST tests were conditioned on each being present on the
680 homologous chromosomes of the other species, as determined using the NUCmer function
681 of MUMmer 3.0 (Kurtz, et al. 2004). Reciprocal best hit pairs were selected based on the e-
682 value, score and identity by parsing the output of both files from the BLAST. Finally, as the
683 guppy and platyfish are diploid, many sites in the coding sequences have codes indicating
684 heterozygosity, we assigned one of the two bases randomly at each heterozygous site. Since
685 the synonymous site divergence between the two species is generally < 10%
686 (Supplementary Figure S2A), our estimates of raw sequence divergence will be only slightly
687 affected by neglecting intra-species differences. The resulting single coding sequences for
688 each gene were then aligned in MAFFT version 7, using the default settings (Katoh and
689 Standley 2013). Each alignment was checked manually, and a few obviously unreliable
690 segments were discarded, including incomplete coding sequence in either species, pairs
691 with stop codons detected in either sequence, and sequences whose total the length was
692 not a multiple of three (overall 5.1% of sequences were excluded from the analysis, and the
693 percentages from each chromosome were similar, see numbers in Supplementary Table S2).

694 The alignments after filtering were used to estimate divergence for each gene, using the
695 KaKs_Calculator 2.0 software (Wang, et al. 2010) to estimate K_s values for genes with known
696 positions in the guppy chromosomes. We applied the three following models: NG (Nei and
697 Gojobori, 1986), LPB (Li, 1993; Pamilo and Bianchi, 1993), and the GY (Goldman and Yang
698 1994) codon-based model, which corrects for saturation. Although saturation is unlikely
699 over the evolutionary times separating these species (see Results section and
700 Supplementary Figure S2A), correction may be necessary for detecting local genome regions
701 with unusually high divergence, which could characterize regions with very high
702 recombination rates (see Introduction section).

703
704 **Acknowledgements:** The project was supported by ERC grant number 695225 (GUPPYSEX).
705 We thank A.J. Wilson and D.P. Croft (University of Exeter) for help with collecting samples of

706 wild *P. reticulata* from Trinidad, and animal technicians at U. Exeter (Cornwall campus) for
707 fish husbandry and maintenance. We also thank Dr. R.W. Ness (University of Toronto) for
708 assistance with analysis of annotated genome sequences, and Dr. Cameron Ghalambor
709 (Colorado State University) for sharing *P. picta* genome sequences.

710

711 REFERENCES

712 Amores A, Catchen J, Nanda I, Warren W, Walter R, Schartl M, Postlethwait JH. 2014. A RAD-
713 Tag genetic map for the Platypus (*Xiphophorus maculatus*) reveals mechanisms of
714 karyotype evolution among Teleost fish. *Genetics* 197:625-641.

715 Arbeitshuber B, Betancourt AJ, Ebner T, Tiemann-Boege I. 2015. Crossovers are associated
716 with mutation and biased gene conversion at recombination hotspots. *Proceedings of*
717 *the National Academy of Sciences of the United States of America* 112:2109–2114.

718 Beauclair L, Rame C, Arensburger P, Piegu B, Guillou F, Dupont J, Bigot Y. 2019. Sequence
719 properties of certain GC rich avian genes, their origins and absence from genome
720 assemblies: case studies. *BMC Genomics* 20:734.

721 Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful
722 approach to multiple testing. *Journal of the Royal Statistical Society. Series B*
723 (Methodological) 57:289–300.

724 Benjamini Y, Speed TP. 2012. Summarizing and correcting the GC content bias in high-
725 throughput sequencing. *Nucleic Acids Research* 40:e72.

726 Bergero R, Gardner J, Bader B, Yong L, Charlesworth D. 2019. Exaggerated heterochiasmy in
727 a fish with sex-linked male coloration polymorphisms. *Proceedings of the National*
728 *Academy of Sciences of the United States of America* 116:6924-6931.

729 Berset-Brändli L, Jaquiéry J, Broquet T, Ulrich Y, Perrin N. 2008. Extreme heterochiasmy and
730 nascent sex chromosomes in European tree frogs. *Proceedings of the Royal Society of*
731 *London B*. 275:1577-1585.

732 Birdsell JA. (xerox co-authors). 2002. Integrating genomics, bioinformatics, and classical
733 genetics to study the effects of recombination on genome evolution. *Molecular Biology*
734 *and Evolution* 19:1181-1197.

735 Bull JJ. 1983. *Evolution of Sex Determining Mechanisms*. Menlo Park, CA:
736 Benjamin/Cummings.

737 Charlesworth D, Charlesworth B. 1980. Sex differences in fitness and selection for centric
738 fusions between sex-chromosomes and autosomes. *Genetical Research (Cambridge)*
739 35:205-214.

740 Cock P, Antao T, Chang J, Chapman B, Cox C, Dalke A, Friedberg I, Hamelryck T, Kauff F,
741 Wilczynski B, et al. 2009. Biopython: freely available Python tools for computational
742 molecular biology and bioinformatics. *Bioinformatics*.

743 Crown K, Miller D, Sekelsky J, Hawley R. 2018. Local inversion heterozygosity alters
744 recombination throughout the genome. *Current Biology* 28:2984.

745 Filatov DA, Gerrard DT. 2003. High mutation rates in human and ape pseudoautosomal
746 genes. *Gene* 317:67-77.

747 Galtier N. 2004. Recombination, GC-content and the human pseudoautosomal boundary
748 paradox. *Trends in Genetics* 20:347–349.

749 Galtier N, Duret L, Glémén S, Ranwez V. 2009. GC-biased gene conversion promotes the
750 fixation of deleterious amino acid changes in primates. *Trends in Genetics* 25:1-5.

751 Galtier N, Piganeau G, Mouchiroud D, Duret L. 2001. GC-content evolution in mammalian
752 genomes: the biased gene conversion hypothesis. *Genetics* 159:907-911.

753 Gammerdinger W, Kocher T. 2018. Unusual diversity of sex chromosomes in African Cichlid
754 fishes. *Genes* 9:480.

755 Gordon SP, López-Sepulcre A, Reznick DN. 2012. Predation-associated differences in sex-
756 linkage of wild guppy coloration. *Evolution* 66:912-918.

757 Gordon SP, López-Sepulcre A, Rumbo D, Reznick DN. 2017. Rapid changes in the sex linkage
758 of male coloration in introduced guppy populations. *American Naturalist* 189:196-200.

759 Halldorsson B, Palsson G, Stefansson OA, Jonsson H, Hardarson MT, Eggertsson HP,
760 Gunnarsson B, Oddsson A, Halldorsson GH, Zink F, et al. 2019. Characterizing mutagenic
761 effects of recombination through a sequence-level genetic map. *Science* 363:aau1043.

762 Han L, Su B, Li W. 2008. CpG island density and its correlations with genomic features in
763 mammalian genomes. *Genome Biology* 9:R79.

764 Harrison R, Charlesworth B. 2011. Biased gene conversion affects patterns of codon usage
765 and amino acid usage in the *Saccharomyces* senso-strictu group of yeasts. *Molecular
766 Biology and Evolution* 28:117-129.

767 Haskins C, Haskins EF, McLaughlin J, Hewitt RE. 1961. Polymorphisms and population
768 structure in *Lebistes reticulatus*, an ecological study. In: Blair WF, editor. *Vertebrate
769 Speciation*. Austin, TX: University of Texas Press. p. 320-395.

770 Hinch AG, Altemose N, Noor N, Donnelly P, Myers SR. 2014. Recombination in the human
771 pseudoautosomal region PAR1. *PLoS Genet* 10:e1004503.

772 Ihaka R, Gentleman R. 1996. R: a language for data analysis and graphics. *Journal of
773 Computational and Graphical Statistica* 5:299–314.

774 Jacoby W. 2000. Loess:: a nonparametric, graphical tool for depicting relationships between
775 variables. *Electoral Studies* 19:577–613.

776 Jordan C, Charlesworth D. 2012. The potential for sexually antagonistic polymorphism in
777 different genome regions. *Evolution* 66:505–516.

778 Kai W, Kikuchi K, Tohari S, Chew S, Tay A, Fujiwara A, Hosoya S, Suetake H, KNaruse, Brenner
779 S, et al. 2011. Integration of the genetic map and genome assembly of fugu facilitates
780 insights into distinct features of genome evolution in teleosts and mammals. *Genome
781 Biology and Evolution* 3:424-442.

782 Katoh K, Standley DM. 2013. MAFFT Multiple Sequence Alignment Software version 7:
783 Improvements in performance and usability. *Molecular Biology and Evolution* 30:772–
784 780.

785 Kessler MD, Loesch DP, J.A. Perry, Heard-Costa NL, Taliun D, Cade BE, Wang H, M Daya,
786 Ziniti J, Datta S, et al. 2020. De novo mutations across 1,465 diverse genomes reveal
787 mutational insights and reductions in the Amish founder population. *Proceedings of the
788 National Academy of Sciences of the United States of America* 117:2560-2569.

789 Kiktev DA, Sheng Z, Lobachev KS, Petes TD. 2019. GC content elevates mutation and
790 recombination rates in the yeast *Saccharomyces cerevisiae*. *Proceedings of the National
791 Academy of Sciences of the United States of America* 115:E7109-E7118;

792 Kondo M, Nagao E, Mitani H, Shima A. 2001. Differences in recombination frequencies
793 during male and female meioses of the sex chromosomes of the medaka, *Orzyias
794 latipes*. *Genet. Res.* 78:23-30.

795 Künstner A, Hoffmann M, Fraser BA, Kottler VA, Sharma E, Weigel D, Dreyer C. 2017. The
796 genome of the Trinidadian guppy, *Poecilia reticulata*, and variation in the Guanapo
797 population. *PLOS ONE* 11:e0169087.

798 Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg S. 2004.
799 Versatile and open software for comparing large genomes. *Genome Biology* 5:R12.

800 Labella A, Opulente D, Steenwyk J, Hittinger C, Rokas A. 2019. Variation and selection on
801 codon usage bias across an entire subphylum. *PLoS Genetics* 15:e1008304.

802 Lercher MJ, Hurst LD. 2002. Human SNP variability and mutation rate are higher in regions
803 of high recombination. *Trends in Genetics* 18:337-340.

804 Lesecque Y, Mouchiroud D, Duret L. 2013. GC-biased gene conversion in yeast is specifically
805 associated with crossovers: molecular mechanisms and evolutionary significance.
806 *Molecular Biology and Evolution* 30:1409-1419.

807 Li H, Durbin R. (Li2010 co-authors). 2010. Fast and accurate long-read alignment with
808 Burrows-Wheeler transform. *Bioinformatics* 26.

809 Lindholm A, Breden F. 2002. Sex chromosomes and sexual selection in Poeciliid fishes.
810 *American Naturalist* 160:S214-S224.

811 Lisachov A, Zadesenets K, Rubtsov N, Borodin P. 2015. Sex chromosome synapsis and
812 recombination in male guppies. *ZEBRAFISH* 12:174-180.

813 Liu H, Huang J, Sun X, J Li, Hu Y, Yu Y, GN Liti, Tian D, Hurst L, Yang S. 2018. Tetrad analysis in
814 plants and fungi finds large differences in gene conversion rates but no GC bias. *Nature
815 Ecology and Evolution* 2:164-173.

816 Marais G, Galtier N. 2003. Sex chromosomes: how X-Y recombination stops. *Current Biology*
817 13:R641-643.

818 Marais G, Nouvellet P, Keightley P, Charlesworth B. 2005. Intron size and exon evolution in
819 *Drosophila*. *Genetics* 170:481-485.

820 Mary N, Barasc H, Ferchaud S, A Priet, Calgaro A, Loustau-Dudez A, N Bonnet, Yerle M,
821 Ducos A, Pinton A. 2018. Meiotic recombination analyses in pigs carrying different
822 balanced structural chromosomal rearrangements. *PLOS ONE* 11:e0154635.

823 Mieczkowski P, Dominska M, Buck M, Gerton J, Lieb J, Petes TD. 2006. Global analysis of the
824 relationship between the binding of the *Bas1p* transcription factor and meiosis-specific
825 double-strand DNA breaks in *Saccharomyces cerevisiae*. *Molecular and Cell Biology*
826 26:1014-1027.

827 Morgan AP, T.A. Bell, Crowley JJ, Villena FP-Md. 2019. Instability of the pseudoautosomal
828 boundary in house mice. *Genetics* 212:469-487.

829 Muggeo V, Adelfio G. 2010. Efficient change point detection for genomic sequences of
830 continuous measurements. *Bioinformatics* 27:161-166.

831 Park S, Hannenhalli S, Choi S. 2014. Conservation in first introns is positively associated with
832 the number of exons within genes and the presence of regulatory epigenetic signals.
833 *BMC Genomics* 15:526.

834 Payseur BA, Nachman MW. 2002. Gene density and human nucleotide polymorphism. *Mol.
835 Biol. Evol.* 19:336-340.

836 Rastas P. 2017. Lep-MAP3: robust linkage mapping even for low-coverage whole genome
837 sequencing data. *Bioinformatics* 33:3726-3732.

838 Rice WR. 1987. The accumulation of sexually antagonistic genes as a selective agent
839 promoting the evolution of reduced recombination between primitive sex-
840 chromosomes. *Evolution* 41:911-914.

841 Rousselle M, Laverré A, Faivre N, Nabholz B, Galtier N. 2018. Influence of recombination and
842 GC-biased gene conversion on the adaptive and non-adaptive substitution rate in
843 mammals vs. birds. *Molecular Biology and Evolution* 36:458-471.

844 Rouyer F, Simmler M, Johnsson C, Vergnaud G, Cooke H, Weissenbach J. 1986. A gradient of
845 sex linkage in the pseudoautosomal region of the human sex-chromosomes. *Nature*
846 319:291-295.

847 Sardell J, Kirkpatrick M. 2019. Sex differences in the recombination landscape. *American*
848 *Naturalist*.

849 Schartl M, Walter R, Shen Y, Garcia T, Catchen J, Amores A, Braasch I, Chalopin D, Volff J-N,
850 Lesch K-P, et al. 2013. The genome of the platyfish, *Xiphophorus maculatus*, provides
851 insights into evolutionary adaptation and several complex traits. *Nature Genetics*
852 45:567-572.

853 Truong C, Oudre L, Vayatis N. 2020. Selective review of offline change point detection
854 methods. *Signal Processing* 167:107299.

855 Vicoso B, Kaiser V, Bachtrog D. 2013. Sex-biased gene expression at homomorphic sex
856 chromosomes in emus and its implication for sex chromosome evolution. *Proceedings*
857 *of the National Academy of Sciences of the United States of America* 110:6453-6458.

858 Walter RB, Rains JD, Russell JE, Guerra TM, C. Daniels, Johnston DA, Kumar J, Wheeler A,
859 Kelnar K, Khanolkar VA, et al. 2004. A microsatellite genetic linkage map for
860 *Xiphophorus*. *Genetics* 168:363-372.

861 Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. 2010. KaKs_Calculator 2.0: a toolkit incorporating
862 gamma-series methods and sliding window strategies. *Genomics Proteomics*
863 *Bioinformatics* 8:77-80.

864 Wright A, Darolti I, Bloch N, Oostra V, Sandkam B, Buechel S, Kolm N, Breden F, Vicoso B,
865 Mank J. 2017. Convergent recombination suppression suggests a role of sexual conflict
866 in guppy sex chromosome formation *Nature Communications* 8:14251.

867 Xu L, Sin S, Grayson P, Edwards S, Sackton T. 2019. Evolutionary dynamics of sex
868 chromosomes of Paleognathous birds. *Genome Biology and Evolution* 11:2376–2390.

869

870

871 Table 1. Inferred centromere ends of guppy chromosomes, based on GC_{intron} spikes at the
872 opposite chromosome ends, implying that those ends had high levels of recombination, and
873 therefore cannot be the centromere ends. The table also shows the location of statistically
874 significant GC change points in the guppy and platyfish; to enable the comparison, these are
875 shown as percentages of the chromosome length, because the estimated chromosome sizes
876 differ slightly in the two species. Chromosomes showing large differences in change-point
877 locations between the species are shown in bold font in the right-hand two columns.
878

Linkage group	Inferred centromere location		Location of GC change point (% of chromosome length to left of most proximal significant change)	
	Based on genetic map	Based on GC spike	Guppy	Platypus
1	Left hand end	Left hand end	97.86	95.54
2	—	Middle	96.98	93.74
3	Unclear	Left hand end (weak signal)	Not estimated	95.86
4	Right hand end	Right hand end	80.78	98.72
5	Right hand end	Right hand end	94.89	81.94
6	Left hand end	Left hand end	98.46	96.03
7	Unclear	Left hand end (weak signal)	96.89	94.43
8	Middle	Left hand end	89.85	91.89
9	Left hand end	Left hand end	97.23	93.33
10	Unclear	Left hand end	96.09	97.68
11	Left hand end	Left hand end	95.72	50.13
12 (XY pair)	Left hand end	Left hand end	95.68	95.15
13	Left hand end	Left hand end	Not estimated	95.32
14	Middle	Left hand end (weak signal)	Not estimated	44.21
15	Left hand end	Left hand end	98.48	87.36
16	Middle, left	Right hand end?	96.59	98.05
17	Left hand end	Left hand end (weak signal)	92.20	92.91
18	Left hand end	Left hand end (weak signal)	Not estimated	72.13
19	Right hand end	Right hand end (weak signal)	83.72	94.76
20	Left hand end	Left hand end	92.73	90.54
21	Right hand end	Right hand end	93.41	78.21
22	Left hand end	No signal	Not estimated	95.45
23	Middle, left	No signal	Not estimated	98.87

879

880 **Figure legends**

881

882 **Figure 1.** GC content of the guppy X chromosome. The circle symbols show the GC values for
883 the introns of individual genes, and green horizontal lines show the change-points detected
884 by our analysis (see text), with a large change detected near the right-hand end of the
885 chromosome, and two small changes in other locations.

886

887 **Figure 2.** GC3 content of guppy X-linked coding sequences. The figure shows the GC3 value
888 for each gene plotted against its position along the chromosome for guppy sex
889 chromosomes (LG12).

890

891 **Figure 3.** Comparison between GC content of introns in genes of the guppy LG12 (black
892 dots) and the homologous platyfish chromosome (chromosome 8, blue circles).

893

894 **Figure 4.** Comparison of intronic GC content change-point sizes for all guppy chromosomes
895 and platyfish (blue circles and red triangles, respectively). The y axis shows the sizes of all
896 changes detected, in either direction (the three changes detected for the sex chromosome
897 pair are indicated). Because the chromosomes are of varied sizes, the x axis shows the
898 locations of all changes detected by our analyses, as percentages of the relevant lengths of
899 the chromosomes, and the chromosomes are oriented with the inferred centromeric end at
900 the left, when this could be determined (see text).

901

902 **Figure 5.** Synonymous site divergence (K_s values) between the guppy and platyfish for genes
903 on the guppy sex chromosome pair, LG12. The different colours show K_s values obtained
904 using three different models (see the Methods section; blue represents the LPB and NG
905 models, which are indistinguishable, and red shows the GY estimates. The horizontal lines
906 denote the values inferred by change-point analysis.

907

908 **Supplementary Figures**

909

910 **Supplementary Figure S1.** Homologies between sequences on the guppy LG9 and on platyfish
911 chromosomes, showing the region discussed in the text where most genes in the LG9 assembly appear in
912 the platyfish chromosome 12 assembly, but a more or less contiguous set appear on 11.

913

914 **Supplementary Figure S2.** Intron GC content values for all guppy chromosomes, with changepoints
915 indicated. The y axis shows the GC content of each intron-containing gene, and the x axis shows the
916 assembly positions of the genes whose introns were used.

917

918 **Supplementary Figure S3.** Relationships between the species used in GC intron analyses. A. Synonymous
919 site divergence between the guppy versus the platyfish, *Xiphophorus maculatus*, and *P. picta*. B.
920 Schematic diagram of the relationships based on relative synonymous site divergence values, to show
921 that *P. picta* is a closer outgroup than the platyfish.

922

923 **Supplementary Figure S4.** GC content of introns in *P. picta* genes with homologs on the guppy LG12.
924 Because the *P. picta* assembly is not contiguous, each dot represents an individual intron. The pattern is
925 therefore less clear than for the guppy, where we pooled introns for each gene (see Figure S2). The red
926 line shows smoothed GC content values (based on a smooth spline with 1/250 the maximum degrees of
927 freedom for each chromosome).

928

929 **Supplementary Figure S5.** Ks values estimated by the Goldman-Yang method (see Methods section of
930 main text). Values are shown for all guppy chromosomes.

931

932 **Supplementary Figure S6.** Regions of each guppy chromosome with high-throughput mapping data
933 informative in male meiosis (left) and meiosis of the dam (right). In the diagram for the sire meiosis, the
934 red dots indicate the five guppy chromosomes whose left-hand assembly end has the GC spike, when a
935 spike was detected, and blue dots indicate chromosomes for which no spike was detected; all other
936 chromosomes had a spike at the right-hand end of the assembly, except that a middle region spike was
937 also detected for the fusion chromosome, LG2.

938

939 **Supplementary Figure S7.** High-throughput genetic maps of all guppy chromosomes with adequate
940 numbers of SNP markers (see Figure S6).

941

942 **Supplementary Figure S8.** Possible patterns of crossovers, and the expected GC patterns. A. Crossovers
943 could occur uniformly across the region where they occur, or be localised. B. If crossovers occur
944 uniformly across a large recombining region, the GC content will be only slightly higher in the region. If,
945 however, they occur exclusively in a physically small region, the recombination rate will be very high, and
946 a large increase in GC is expected.

947

948 **Supplementary Figure S9.** High GC content in a scaffold that is unplaced in the guppy assembly,
949 NW_007615031.1, but that we found to be located at the terminus of the guppy sex chromosome pair
950 (unpublished result in Charlesworth et al. 2020).

951

952

953

954 **Supplementary Tables**

955

956 **Supplementary Table S1.** Gene numbers analyzed for guppy and platyfish chromosomes, and
957 comparisons between first introns and other introns, for genes with more than a single intron.

958

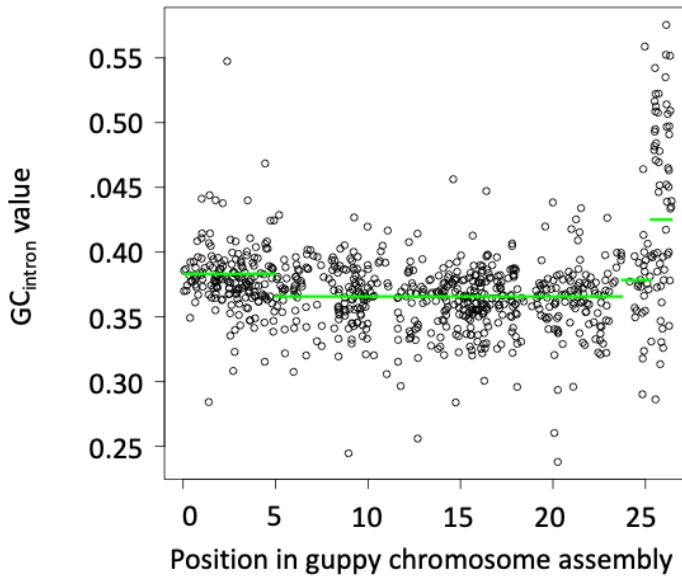
959 **Supplementary Table S2.** Information about centromere positions, where they could be determined, and
960 numbers of genes analyzed for divergence between these two species (columns O to Q). The guppy
961 chromosomes are shown at the left, and the chromosome homologies with the platyfish, together with

962 the guppy chromosome sizes. The centromere positions are inferred to be at the chromosome ends
963 opposite the ends with the GC spikes; the spike positions in the guppy, *P. picta* and the platyfish
964 chromosomes are shown in columns I, J and K. Some platyfish chromosome assemblies start at the
965 opposite end from the guppy assemblies, as indicated in column L. Column M indicates whether the
966 analysis identifies the same end of the chromosome as the centromere in the two species, or not, taking
967 such “reversals” into account.

968

969 **Supplementary Table S3.** Tests for correlations between gene densities on each guppy chromosome and
970 GC intron content.

971


972 **Supplementary Table S4.** List of all change-points detected in the guppy and the platyfish.

973

974 **Supplementary Table S5.** Summary of crossover locations on guppy autosomes, and GC spikes.

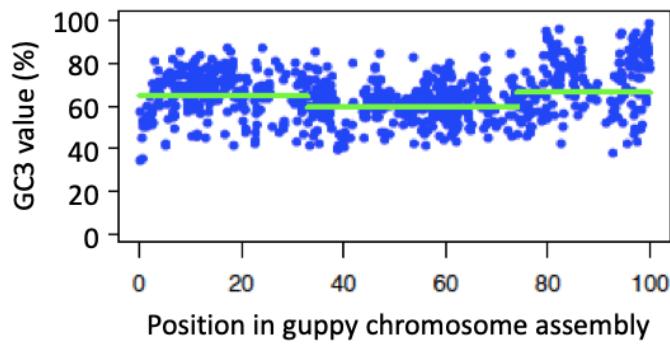

975

Figure 1

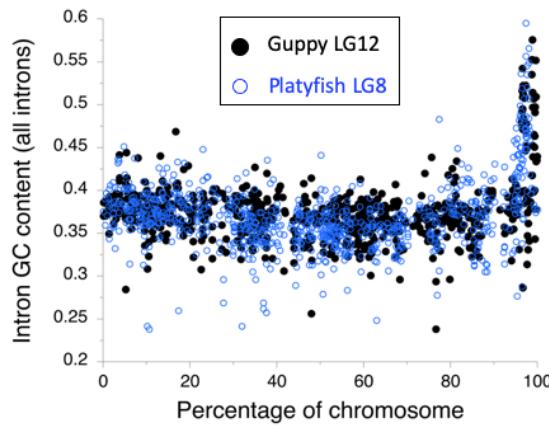

Figure 1. GC content of the guppy X chromosome. The circle symbols show the GC values for the introns of individual genes, and green horizontal lines show the change-points detected by our analysis (see text), with a large change detected near the right-hand end of the chromosome, and two small changes in other locations.

Figure 2

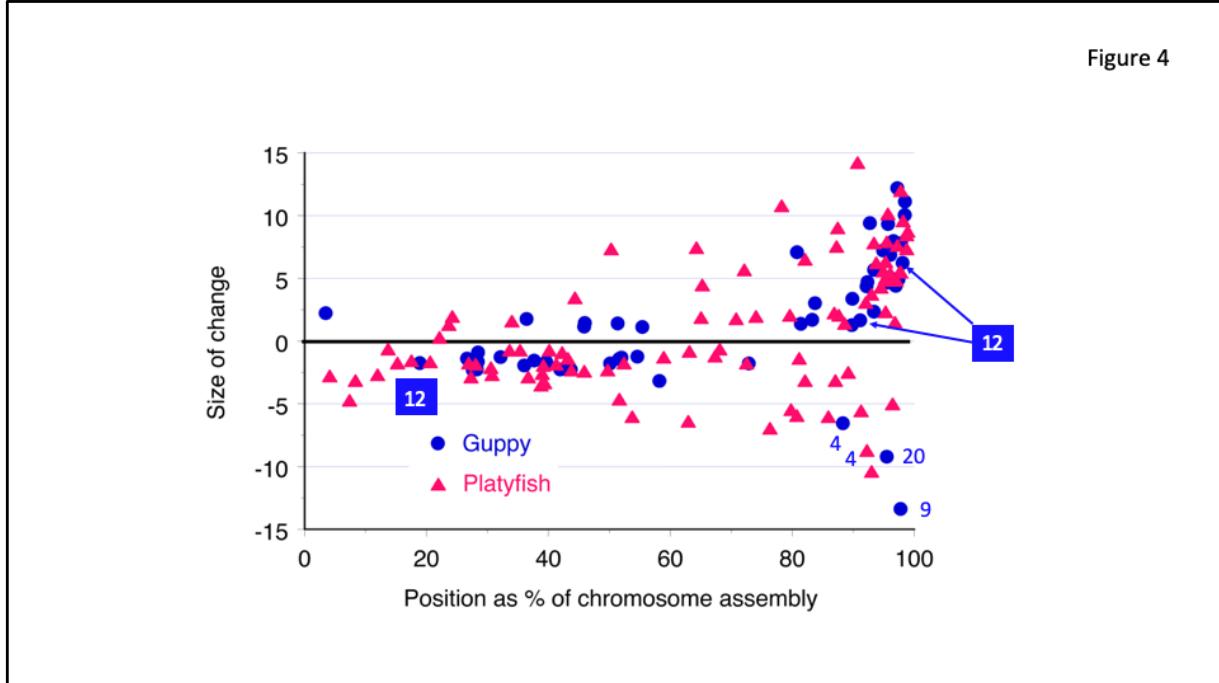


Figure 2. GC3 content of guppy X-linked coding sequences. The figure shows the GC3 value for each gene plotted against its position along the chromosome for guppy sex chromosomes (LG12).

Figure 3

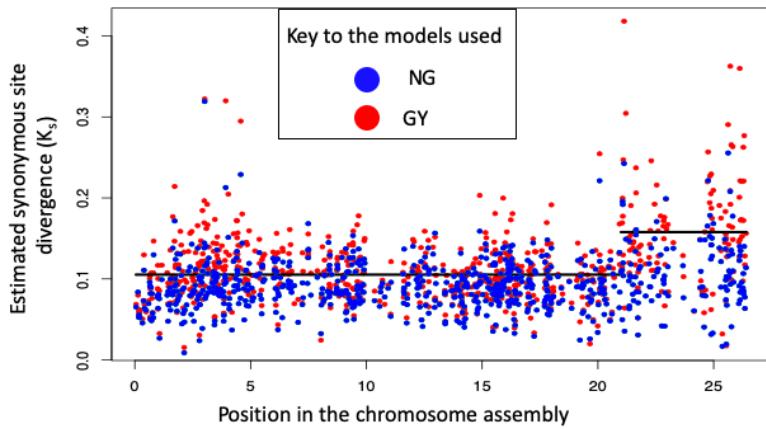


Figure 3. Comparison between GC content of introns in genes of the guppy LG12 (black dots) and the homologous platyfish chromosome (chromosome 8, blue circles).

Figure 4. Comparison of intronic GC content change-point sizes for all guppy chromosomes and platypus (blue circles and red triangles, respectively). The y axis shows the sizes of all changes detected, in either direction (the three changes detected for the sex chromosome pair are indicated). Because the chromosomes are of varied sizes, the x axis shows the locations of all changes detected by our analyses, as percentages of the relevant lengths of the chromosomes, and the chromosomes are oriented with the inferred centromeric end at the left, when this could be determined (see text).

Figure 5

Figure 5. Synonymous site divergence (K_s values) between the guppy and platyfish for genes on the guppy sex chromosome pair, LG12. The different colours show K_s values obtained using three different models (see the Methods section; blue represents the LPB and NG models, which are indistinguishable, and red shows the GY estimates. The horizontal lines denote the values inferred by change-point analysis.