

1 gEL DNA, a cloning- and PCR-free method
2 for CRISPR-based multiplexed genome
3 editing

4

5

6

7 Paola Randazzo¹, Jean-Marc Daran¹, Pascale Daran-Lapujade^{1, #}

8

9 Department of Biotechnology, Delft University of Biotechnology, van der Maasweg 9, 2629HZ
10 Delft, The Netherlands

11

12 # Corresponding author

13 p.a.s.daran-lapujade@tudelft.nl

14 +31 15 278 9965

15

16

17 **Abstract**

18 Even for the genetically accessible yeast *Saccharomyces cerevisiae*, the CRISPR/Cas DNA editing
19 technology has strongly accelerated and facilitated strain construction. Several methods have
20 been validated for fast and highly efficient single editing events and diverse approaches for
21 multiplex genome editing have been described in literature by means of Cas9 or Cas12a
22 endonucleases and their associated gRNAs. The gRNAs used to guide the Cas endonuclease to
23 the editing site are typically expressed from plasmids using native PolII or PolIII RNA polymerases.
24 These gRNA-expression plasmids require laborious, time-consuming cloning steps, which
25 hampers their implementation for academic and applied purposes. In this study, we explore the
26 potential of expressing gRNA from linear DNA fragments using the T7 RNA polymerase (T7RNAP)
27 for single and multiplex genome editing in *S. cerevisiae*. Using Cas12a, this work demonstrates
28 that transforming short, linear DNA fragments encoding gRNAs in yeast strains expressing
29 T7RNAP promotes highly efficient single DNA editing. These DNA fragments can be custom-
30 ordered, which makes this approach highly suitable for high-throughput strain construction. This
31 work expands the CRISPR-toolbox for large-scale strain construction programs in *S. cerevisiae* and
32 promises to be relevant for other, less genetically accessible yeast species.

33 [Introduction](#)

34 The bacterial-derivative CRISPR-Cas technology is nowadays the most commonly used tool for
35 microbial genome engineering. For the eukaryotic model and industrial workhorse
36 *Saccharomyces cerevisiae*, several CRISPR-based methodologies have been developed aiming at
37 fast and efficient single editing event (1-4). Two Class II bacterial endonucleases, Cas9 and Cas12a
38 (also known as Cpf1) have been functionally characterized for DNA editing ranging from point
39 mutation to heterologous pathway integration (4-6). While diverse Cas9- and Cas12a-mediated
40 approaches for multiplex genome editing have been described in literature (reviewed in (7)),
41 multiplex genome editing still requires substantial efforts for the CRISPR tools to be built. The
42 RNA molecules designed to guide the endonuclease towards the editing site (gRNAs) are typically
43 cloned in and expressed from plasmids. In most published works so far, multiplex editing relies
44 on the parallel transformation of multiple plasmids carrying a single or two gRNAs. However, this
45 approach is limited by the number of available marker-based plasmid backbones (4,8-12). More
46 recently, several successful examples have shown that several gRNAs can be expressed from a
47 single gRNA-array, using different tricks to release the mature gRNAs (3,5,6,13-17). However,
48 complexity of these gRNA expression cassettes and their tailored sequence design may be
49 difficult to synthesize and requires laborious and time-consuming cloning steps, therefore
50 hindering the workflow for strain construction. To date, few attempts have been developed to
51 circumvent gRNA cloning for genome editing of microbes in general and of *S. cerevisiae* in
52 particular.
53 The most straightforward, cloning-free strategy would rely on the delivery of the gRNA in the
54 form of a short, linear DNA fragment. Such short DNA fragments could easily be synthetized as

55 oligonucleotides and delivered as mixture in any desired gRNA combination for multiplex
56 targeting of DNA sites. Such a cost-effective and versatile approach would be highly suited for
57 high-throughput, multiplex genome engineering of strains. Transient expression of linear DNA
58 carrying gRNA expression cassettes has been previously shown to enable Cas9-mediated DNA-
59 editing (9,18). However, these approaches systematically require a first *in vitro* step for the
60 construction of vectors from which the linear DNA is produced by PCR amplification (Fig. 1). In
61 eukaryotes, gRNAs are transcribed either by RNA polymerase III (RNAPolIII) or by RNA Polymerase
62 II (RNAPolII) promoter, this latter being flanked by self-processing ribozymes or tRNAs that
63 prevent unwanted processing of the gRNAs (16,17). A recent report has shown that functional
64 gRNAs can also be transcribed in different yeasts by the RNA polymerase from bacteriophage T7
65 (T7RNAP) localized in the nucleus (19). Delivered as plasmid DNA, the T7RNAP-transcribed gRNAs
66 have been used to guide Cas9 for genome editing and dCas9 for transcriptional regulation.
67 The present work introduces the gEL DNA method, a novel, utterly cloning and PCR-free genome
68 editing tool, based on the gRNA Expression from short, Linear double-stranded DNA oligos by the
69 T7RNAP (Fig. 2). Comparing Cas9 and Cas12a, this study demonstrates that Cas12a enables
70 efficient single and multiplexed DNA editing from custom-ordered oligonucleotides of 87 nt in *S.*
71 *cerevisiae*. Next to gRNA *in silico* design, the only steps required for genome editing are
72 transformation and screening. Highly suited for high-throughput strain construction, the gEL DNA
73 method does not require prior knowledge on the transcription machinery of the host microbe
74 (e.g. RNA processing and promoters) and thereby promises to facilitate DNA editing in less
75 genetically accessible microbes.

76

77 **Materials and Methods**

78 **Strains and cultivation conditions**

79 All *S. cerevisiae* strains used in this study (Table 1) were derived from the CEN.PKbackground
80 strain (20). Yeast cells were grown at 30 °C in shake flasks on rotary shaker (200 rpm) or on agar
81 plates (20 g l⁻¹). Complex medium contained 10 g l⁻¹ of yeast extract, 20 g l⁻¹ of peptone and 20
82 g l⁻¹ of glucose (YPD). YPD was supplemented with nourseothricin (100 mg l⁻¹), geneticin (G418)
83 (200 mg l⁻¹) or hygromycin B (200 mg l⁻¹) to select transformants. Minimal synthetic media were
84 prepared as previously described (21). SMD medium contained 5 g l⁻¹ of (NH₄)₂SO₄, 3 g l⁻¹ of
85 KH₂PO₄, 0.5 g l⁻¹ of MgSO₄·7H₂O, 1 ml l⁻¹ of a trace element solution, supplemented with 20 g l⁻¹
86 of glucose and 1 ml l⁻¹ of a vitamin solution. SMD-urea included 6.6 g l⁻¹ K₂SO₄, 3.0 g·l⁻¹ KH₂PO₄,
87 0.5 g l⁻¹ MgSO₄·7H₂O, 1 mL l⁻¹ trace elements solution, supplemented with 20 g l⁻¹ of glucose, 1
88 ml l⁻¹ of a vitamin solution and 2.3 g l⁻¹ CH₄N₂O (22). For selection of transformants carrying the
89 *amdS* marker cassette, ammonium sulfate in SMD was substituted with 10 mM acetamide and
90 6.6 g L⁻¹ K₂SO₄ (SM-Ac) (23). Plasmids were propagated in *Escherichia coli* XL1-Blue cells (Agilent
91 Technologies, Santa Clara, CA), after growth in Lysogeny broth (LB; 10 g l⁻¹ tryptone, 5 g l⁻¹ yeast
92 extract, 10 g l⁻¹ NaCl) liquid culture (180 rpm) or solid medium (20 g l⁻¹ agar) supplemented with
93 chloramphenicol (25 mg l⁻¹), spectinomycin (100 mg l⁻¹) or ampicillin (100 mg l⁻¹) at 37 °C. When
94 required, plasmids from yeasts isolates were removed accordingly to described procedures (4).
95 All *S. cerevisiae* and *E. coli* stocks were prepared by aseptically adding 30% v/v of glycerol to
96 exponentially growing cultures. Aliquoted cell stocks were stored at -80 °C.

97 **Molecular biology techniques**

98 Yeast genomic DNA used for cloning purposes was isolated using the YeaStar genomic DNA kit
99 (Zymo Research, Irvine, CA) according to manufacturer's instructions. Diagnostic PCR was
100 performed using DreamTaq DNA polymerase (Thermo Fisher Scientific, Walthman, MA). For
101 cloning and sequencing purposes, PCR products were obtained using Phusion® High-Fidelity DNA
102 Polymerase (Thermo Fisher Scientific). Primers were ordered as PAGE or desalted purified
103 oligonucleotides (Table S1) from Sigma-Aldrich (St Louis, MO). Annealed oligos were quantified
104 by BR ds DNA kit using Qubit spectrophotometer (Invitrogen, Carlsbad, CA). DNA fragments were
105 separated by electrophoresis on 1% (w/v) or 2% (w/v) agarose gels, depending on the fragment
106 size. PCR products were purified using GenElute™ PCR Clean-Up Kit (Sigma-Aldrich), after
107 restriction digestion of the PCR mixture with DpnI (Thermo Fisher Scientific) for removal of
108 circular templates. When required, DNA fragments were excised from gel and purified using
109 Zymoclean™ Gel DNA Recovery Kit (Zymo Research, Irvine, CA). Plasmids were isolated from *E.*
110 *coli* cultures using Sigma GenElute™ Plasmid Miniprep kit (Sigma-Aldrich).

111 **Entry-vector plasmids construction**

112 All plasmids used in this study are listed in Table 2.

113 The pUD565 plasmid (24), a GFP dropout (GFPdo) entry vector compatible with Yeast Toolkit
114 parts (25), was ordered as synthetic gene from GeneArt (Thermo Fisher Scientific). GFPdo entry
115 vectors for cloning of transcriptional unit were constructed following the Bsal Golden Gate
116 reaction protocol described by Lee *et al.* (25). The GFPdo pGGKd018 plasmid was obtained by
117 assembly of part plasmids pYTK002, pYTK047, pYTK067, pYTK077, pYTK082, pYTK085. The GFPdo

118 pGGKd034 plasmid was constructed by assembly of part plasmids pYTK002, pYTK047, pYTK067,
119 pYTK079, pYTK082, pYTK083. The GFPdo pUDE810, an entry vector for Cas12a-crRNAs, was
120 constructed by Golden Gate assembly of pre-annealed primers 12647-12648 with the following
121 PCR generated fragments: the pGGKd018 backbone with primers 12799-12800; the *SNR52*
122 promoter amplified from the pMEL13 template (4) using primers 12645-13546; the GFPdo
123 cassette bearing specific overhangs (GATC and ATCC) obtained by PCR amplification of primers
124 13547-12644 on pYTK047 (25).

125 **Construction of the dual Cas-expressing strain IMX1752**

126 The construct for genomic integration of *cas9* gene consisted of a paired expression cassettes for
127 introduction of *Streptococcus pyogenes cas9* nuclease and the *natNT2* marker into the *SGA1*
128 locus (4) . First, the *natNT2* marker was PCR amplified from pUG-natNT2 (Addgene plasmid
129 #110922, (26)) using primers 10297 and 10298. This PCR product was cloned via Golden Gate
130 together with pre-annealed primer pairs 10293-10294 and 10295-10296, and Yeast toolkit
131 plasmids pYTK013, pYTK036, pYTK051, pYTK082, pYTK083 (25), resulting in plasmid pUDE483.
132 The Cas9-natNT2 integration cassette was obtained by enzyme restriction of pUDE483 using
133 EcoRI. The restriction mix was directly transformed into *S. cerevisiae* using the lithium acetate
134 transformation protocol (27). Transformants were selected on YPD supplemented for
135 nourseothricin. A single isolate, which was renamed IMX1714 (Table 1), was submitted to an
136 additional transformation for the genomic integration of the Cas12a nuclease. For this, the
137 sequence of *Francisella novicida cas12a* was amplified from pUDC175 (Addgene plasmid
138 #103019, (5)) using primers 13553-13554. The obtained PCR product, carrying 60bp homology
139 flanks to the X-2 integration site (28), was transformed in IMX1714 as previously described in

140 (27), together with plasmid pUDR573 (29) for Cas9-mediated targeting at this genomic site.
141 Transformants were selected on SM-Ac plates. Correct genomic integrations were confirmed by
142 diagnostic PCR using primers listed in Table S1. After removal of the gRNA expression plasmid,
143 the dual Cas9/Cas12a *S. cerevisiae* strain was stocked as IMX1752.

144 **Construction of the T7RNAP^{K276R}-expressing strain IMX1905**

145 First, the T7RNAP^{K276R} sequence was PCR amplified from plasmid pRS315-nls-T7-RNAP (Addgene
146 plasmid #33152) (30) using primers 13543 and 13544, and the obtained PCR fragment stably
147 cloned into entry vector pUD565, resulting in part plasmid pGGKp172. The T7RNAP^{K276R}
148 transcriptional unit was assembled by Golden Gate cloning into plasmid pGGKd034, together
149 with part plasmids pGGKp035 (*TDH3p*) and pGGKp039 (*TEF1t*) (24), leading to plasmid pUDE866.
150 For genomic integration of the T7RNAP^{K276R}, the previously characterized YPRC τ 3 site of *S.*
151 *cerevisiae* genome was chosen as recipient locus (31). Thus, a gRNA for Cas12a-mediated editing
152 at this site was designed accordingly to guidelines provided in Swiat *et al.* (5). The gRNA for
153 integration in YPRC τ 3 was ordered as oligos 14142-14143 containing specific overhangs for
154 Golden Gate assembly (GATC and ATCC). Oligo annealing and cloning into pUDE810 plasmid
155 resulted in the crRNA-expressing plasmid pUDR477. Amplification of the T7RNAP^{K276R} integrative
156 cassette was carried out on pUDE866 plasmid using primers 14022 and 14023, which contain
157 repair ends of 60 bp homologous to the YPRC τ 3 locus. This generated PCR fragments were co-
158 transformed with plasmid pUDR477 into IMX1752 cells, as previously described (27). Yeast cells
159 were selected on solid YPD plates supplemented with G418. Diagnostic PCR was performed on a
160 single colony isolate, plasmid was recycled and the constructed strain was renamed IMX1905.

161 **Construction of T7RNAP mutants (IMX2030, IMX2031, IMX2032) and T7RNAP-**

162 **overexpressing strains (IME459, IME475)**

163 In order to alter the T7RNAP protein sequence, the *T7RNAP* gene of IMX1905 was *in vivo* mutated

164 by means of the CRISPR-Cas9 editing machinery. A single gRNA was chosen for targeting the

165 sequence surrounding DNA encoding amino acids at positions 266 and 276 (corresponding to 276

166 and 286 if considering the NLS) (Figure S3). For this, oligo 14284 was Gibson assembled by

167 bridging to the pMEL13 (4) backbone, which was previously PCR amplified using primers 6005-

168 6006. The obtained plasmid was renamed pUDR506. Repair oligos (Table S1) consist of 120-bp

169 surrounding the T7RNAP targeted sequence with SNPs for P266L and/or R276K mutations, and

170 carrying a silent mutation at the PAM sequence to avoid reiterative cutting. Plasmid pUDR506

171 and each double-stranded repair oligos were co-transformed into competent IMX1905 cells (27).

172 Transformants were plated on YPD agar supplemented with G418. Screening of eight selected

173 colonies was performed by SNP genotyping with primers listed in Table S1, following previously

174 described procedures for SNP scoring (32). After SNPs validation and Sanger sequencing of the

175 mutated T7RNAP sequence (Figure S3), strains were stocked as follow: IMX2030 (*T7RNAP*^{P266L},

176 ^{K276R}) was renamed after the P266L amino acid substitution; IMX2031 (*wtT7RNAP*) expresses the

177 wild-type T7RNAP, where the arginine at position 276 is changed into the native lysine; IMX2032

178 (*T7RNAP*^{P266L}) resulted from simultaneous mutations of proline and arginine at positions 266 and

179 277 for the respective amino acid change in leucine and lysine.

180 For the *T7RNAP*^{K276R} overexpression, the dual Cas-expressing strain IMX1752 was transformed

181 with plasmid pUDE866, following standard practice (27). Transformants were selected on YPD

182 plates supplemented with hygromycin B and the strain was renamed as IME459. In parallel,

183 transformation of IMX1752 with the empty vector pGGKd034 leaded to the control strain
184 IME460. To overexpress the T7RNAP^{P266L} variant, the gene sequence of strain IMX2032 was PCR
185 amplified from its isolated genomic DNA, using primers 10753 and 10768. The obtained PCR
186 product was cloned by Golden Gate assembly into the episomal entry plasmid pGGKd034. The
187 obtained plasmid, renamed pUDE911, was therefore transformed into IMX1752, transformants
188 plated on selective YPD hygromycin B media and selected colonies stocked as IME475.

189 **Construction of gRNA expression cassettes**

190 The gRNA cassettes for evaluation of *ADE2* deletion efficiencies mediated by Cas12a or Cas9
191 nucleases were prepared using the highly-efficient *ADE2*-3 (5) or the *ADE2.y* (1) gRNAs,
192 respectively. Each gRNA cassette was expressed from high-copy plasmid and comprised the gRNA
193 sequence left-flanked by the RNAPolIII-dependent *SNR52p*, the minimal *T7p*
194 'TAATACGACTCACTATA' (*S.T7p*) or an extended *T7p* 'GCCGGGAATTAAATACGACTCACTATA'
195 (*L.T7p*), with respective terminator sequences at the right flank. For the Cas12a-mediated
196 targeting of other genes, previously characterized gRNAs were expressed as single gRNA-
197 expressing cassette or as in an array-like arrangement: *HIS4* (*HIS4-4*), *PDR12* (*PDR12-3*) or *CAN1*
198 (*CAN1-4* or *CAN1-3*) (5).

199 All single gRNA-expressing plasmids were assembled by Gibson assembly reaction using the
200 NEBuilder® HiFi DNA Assembly Master Mix (New England Biolabs). Depending of the plasmid
201 features, the backbone of the pUDE810 plasmid was amplified using different primer couples for
202 specific homology overhangs. The backbone for assembly of Cas12a-gRNAs with *SNR52p/SUP4t*
203 flanks was obtained by PCR amplification with primers 12710-5793. For T7RNAP-mediated
204 expression of gRNAs via Cas12a, plasmid backbone was obtained by PCR amplification using

205 either primers 14274-13713 (*S.T7p/T7t*) or 14275-13713 (*L.T7p/T7t*). Plasmid pUDE759 was
206 assembled by *SNR52p/SUP4t* backbone fragment with annealed oligos 12713-12714. Single
207 oligos were used for the Gibson assembly of Cas12a-gRNAs cassettes by single-stranded DNA
208 bridging to each individual PCR-originated backbone fragments: the *SNR52p/SUP4t* derivatives
209 pUDR482 (primer 14282), pUDR483 (primer 13750), pUDR484 (primer 14283), pUDR715 (primer
210 17328), pUDR716 (primer 17329), pUDR717 (primer 17330), pUDR718 (primer 17331); the
211 *S.T7p/T7t*-related plasmids pUDR485 (primer 14280), pUDR486 (primer 13751), pUDR487
212 (primer 14281), pUDR488 (primer 13572); the *L.T7p/T7t* cognate plasmids pUDR489 (primer
213 14276), pUDR490 (primer 14277), pUDR491 (primer 14278) and pUDR492 (primer 14279).
214 For assembly of Cas9-gRNAs under *SNR52p*, the amplified pUDE810 backbone with
215 *SNR52p/SUP4t* edges was mixed with annealed oligos 15508-15509 and the single-stranded oligo
216 14426 in a Gibson reaction, resulting in plasmid pUDR585. For Cas9-gRNAs expressed by T7RNAP,
217 T7-edged plasmid backbones were PCR amplified using primers 14274-15287 (*S.T7p/sgRNA-T7t*)
218 or 14275-15287 (*L.T7p/sgRNA-T7t*), generating a dsDNA fragment that additionally contains a
219 partial sequence of the gRNA scaffold for Cas9. Gibson assemblies of annealed oligos 15290-
220 15291 to either the *S.T7p/sgRNA-T7t* or *S.T7p/sgRNA-T7t* PCR-generated backbones were
221 performed to obtain plasmids pUDR579 and pUDR581, respectively.
222 The control array of gRNAs expressed by plasmid pUDR692 was ordered as synthetic gene from
223 GeneArt (Thermo Fisher Scientific). *SNR52* promoter and gRNA design principles previously
224 elucidated were used (5). The synthetic gRNA array was flanked by Bsal sites and assembled by
225 Golden Gate cloning into pGGKd018.

226 **Delivery of gRNA expression cassettes for single gene deletion in *S. cerevisiae***

227 Each gRNA expression cassette was transformed together with 1 μ g of double-stranded deletion
228 repair (Table S1) in exponentially growing *S. cerevisiae* cells ($\sim 2 \times 10^7$ cells ml $^{-1}$), accordingly to the
229 lithium acetate transformation protocol (27). Genome editing via *in vitro* assembly described in
230 Table 3 was prepared by transforming IMX1905 with 500 ng (~ 150 fmols) of each gRNA
231 expression plasmid. For genome editing achieved via *in vivo* plasmid assembly, two linear PCR
232 fragments were delivered with the transformation mix in IMX1905: i) 150 fmols of the specific
233 gRNA cassette, systematically amplified from the respective *in vitro* constructed plasmid using
234 primers 14584-14585; ii) 150 fmols of the linearized marked 2 μ backbone with 60 bp homology
235 to each gRNA cassette, obtained from the amplification of pUDE810 with primers 11571-12378.
236 To evaluate genome editing via delivery of linear gRNA expression cassette, each amplified gRNA
237 cassette (150 fmols) was transformed with either 500 ng of circular pGGKd018 plasmid or with
238 equimolar amount of two PCR fragments for the split plasmid selection using pGGKd018. These
239 amplicons, having homologies for *in vivo* recircularization of the plasmid, were obtained by PCR
240 amplification with primers 6815-9340 and primers 2398-12097.

241 All transformations were plated on selective YPD medium supplemented with G418. Efficiency of
242 *ADE2* deletion is measured as number of red colonies on total CFU. For editing of other sites,
243 diagnostic PCR was performed on a number of selected colonies using primer listed in Table S1.

244 **Preparation of gDNAs and genome editing via gEL DNA**

245 Sequences of deletion repair fragments and gDNAs are listed as forward and reverse
246 oligonucleotides in Table S1. Each forward and reverse oligo were mixed in equimolar amount,
247 heated for 5 minutes at 95°C and cooled down to room temperature. As only exception, Cas9-

248 mediated editing using gDNA with long T7 promoter was obtained by PCR amplification of two
249 overlapping primers, the gRNA-specific forward for *ADE2.y* (16745) and the universal reverse
250 carrying the Cas9-gRNA scaffold (16746). Concentrations of each double-stranded annealed
251 oligos were measured for all pre-annealed oligos or the non-purified PCR-derived gDNA. 1 μ g of
252 each deletion repair and 4 μ g of respective gDNA were mixed to 500 ng of split pGGKd18 plasmid
253 for selection purposes and transformed into competent T7RNAP-expressing yeast cells
254 accordingly to standard procedure (27). Transformants were selected on YPD plates
255 supplemented with G418 if transforming a T7RNAP genomically integrated strains (IMX1905,
256 IMX2030, IMX2031, IMX2032), or with G418 and hygromycin B if transforming a T7RNAP-
257 overexpressing strains (IME459, IME475). Plasmid-base controls for multiplex via Cas12a gRNA-
258 arrays were performed accordingly to Swiat *et al.* (5). Diagnostic PCR of selected colonies was
259 done using primers listed in Table S1.

260 **Growth rate measurement**

261 Strains were cultivated in 96-well plates containing SMD medium or SMD-urea supplemented
262 with hygromycin B (30°C, 250 rpm). Growth was monitored by measuring optical density at 660
263 nm at regular time intervals using the Growth Profiler 960 (Enzysscreen B.V., Heemstede, The
264 Netherlands). Maximum specific growth rates (μ_{\max}) were calculated using the equation 1: $X=X_0$
265 $e^{\mu t}$ in which μ indicates the exponential growth rate, from four independent biological cultures.

266 **Secondary structure prediction**

267 The RNA secondary structure was predicted with the RNAstructure Web Server
268 (<https://rna.urmc.rochester.edu/RNAstructureWeb/>) (33). Temperature was set to 30°C (303.15
269 K). Self-folding free energy are obtained via the same webtool.

270 **Results**

271 **T7RNAP-expressing *S. cerevisiae* as a platform strain for Cas-mediated genome editing**

272 For T7 RNA polymerase-(T7RNAP) based expression of gRNAs, the bacteriophage T7RNAP,
273 previously functionally expressed in the yeast nucleus, was chosen (30). Flanked by the strong
274 and constitutive *TDH3* promoter and *TEF1* terminator, T7RNAP was integrated in the genome of
275 a *S. cerevisiae* strain from the CEN.PK family that constitutively expressed both Cas9 and Cas12a
276 (strain IMX1752; Table 1). Sanger sequencing of the resulting strain IMX1905 revealed a missense
277 mutation in the coding sequence of the T7RNAP as compared to the canonical sequence
278 (<https://www.uniprot.org/uniprot/P00573>), which resulted in the replacement of a lysine by an
279 arginine at the amino acid 276 of the polymerase (corresponding to amino acid 286 when
280 considering the NLS) (Fig. S1). As the strain characterized by Dower and Rosbash (30) contained
281 the same amino acid substitution and was proven to be functional in yeast, we decided to keep
282 this variant (from now on referred to as T7RNAP^{K276R}) to test the gEL DNA approach.

283 Physiological characterization revealed that IMX1905, co-expressing T7RNAP^{K276R}, Cas9 and
284 Cas12a, grew as fast as the prototrophic control strain CEN.PK113-7D in chemically defined
285 medium supplemented with glucose as sole carbon source (specific growth rate of $0.42 \pm 0.01 \text{ h}^{-1}$
286 ¹ for IMX1905 and $0.45 \pm 0.01 \text{ h}^{-1}$ for CEN.PK113-7D) (Fig. 3). Expression of T7RNAP is therefore
287 not toxic for *S. cerevisiae*.

288 T7RNAP enables gRNA expression from linear and circular DNA and promotes Cas9- and

289 Cas12a-mediated DNA editing in *S. cerevisiae*

290 The activity of the T7RNAP^{K276R} in *S. cerevisiae* was evaluated by measuring the DNA editing

291 efficiency of Cas9 and Cas12a guided by gRNAs expressed from T7 promoter. Two different T7

292 promoter lengths were tested, the minimal T7 promoter of 17 bp (TAATACGACTCACTATA;

293 referred to as S.T7p), and an extended T7 promoter sequence of 27 bp

294 (GCCGGGAATTAAATACGACTCACTATA; referred to as L.T7p) known to improve the stability of the

295 T7RNAP-promoter complex *in vitro* (34). T7RNAP^{K276R}-driven gRNA expression was compared

296 with gRNA expression from the RNAPolIII-dependent SNR52 promoter, largely adopted by the

297 yeast community for CRISPR-Cas editing (1,5). Downstream all three promoters, at the initially

298 transcribed region (ITS), a guanine triplet was added to increase the T7RNAP transcriptional

299 activity (35). As previously reported for Cas9 (19), the addition of this guanine triplet strongly

300 improved T7RNAP-mediated expression for Cas12a-based DNA editing (Fig. S2). Disruption of

301 ADE2, leading to a red colony phenotype, was used to assess editing efficiency (36) in strain

302 IMX1905 (Table 1). Spacers previously shown to guide Cas9 and Cas12a to ADE2 with high

303 efficiency were chosen (1,5). Cas9 and Cas12a have different requirements for functionality,

304 which results to different compositions and size of the DNA cassette encoding the gRNA (from

305 now on called gRNA cassette) (Table 3). The ADE2.y gRNA for Cas9 was used in its standard

306 chimeric form including the trans-acting RNA (tracrRNA) (1). The ADE2-3 gRNA for Cas12a was

307 reduced to the minimal 19 nt-long spacer enclosed by the matured direct repeats (DR), as

308 recently described (37). Thanks to Cas12a minimal requirements for DNA targeting and editing

309 (no tracrRNA, small DR and spacer), the gRNA cassette for Cas12a were substantially smaller than
310 those for Cas9 (Table 3).

311 The most popular method for gRNA delivery is via *in vitro* assembly of the gRNA expression
312 cassette on a plasmid, and transformation of this circular plasmid to yeast. As expected,
313 expression of the gRNA cassette from *SNR52p* using this delivery method led to high efficiency in
314 editing of the *ADE2* gene in all colonies tested with both Cas9 and Cas12a (Table 3A). Conversely,
315 *T7RNAP^{K276R}*-based gRNA expression resulted in extremely low editing efficiency with Cas12a
316 (4.6% ± 0.2% for the short and 8.2% ± 3.2% for the long T7 promoter) and null or negligible editing
317 with Cas9 (Table 3A). Next to delivering a ready-made gRNA plasmid, two parts, one carrying the
318 gRNA and the other the selection marker, were transformed into yeast. These two parts were
319 flanked by 60 bp homologous sequences to enable *in vivo* circularization upon transformation.
320 This delivery method enabled the transient availability of the gRNA cassette as linear DNA
321 fragment. While reducing editing efficiency for *SNR52p*-based gRNA expression by ca. 10%, this
322 method substantially increased *ADE2* editing by *T7RNAP^{K276R}*-mediated expression of gRNAs for
323 both Cas9 and Cas12a (Table 3B). Editing by Cas9 remained extremely low (around 1%), while up
324 to 20% of the colonies displayed the disruption of *ADE2* by Cas12a (Table 3B). Next, to test
325 whether the gRNA could be solely expressed from a linear DNA molecule, the gRNA cassette was
326 delivered as double-stranded DNA fragment. A plasmid carrying a selectable marker was
327 transformed in parallel for selection purposes. With this delivery method, editing efficiency with
328 *RNAPolIII*-mediated gRNA expression was dramatically reduced to ca. 10% with both Cas9 and
329 Cas12a (Table 3C). Editing efficiency for *T7RNAP^{K276R}*-based gRNA expression was also reduced,
330 but still detectable with ca 6% when using Cas12a. It has been shown that the efficiency of Cas9-

331 mediated DNA editing can be increased by supplying a split plasmid during transformation,
332 presumably by offering a selective advantage to cells that are proficient in homology directed
333 repair (HDR) (9). Accordingly, a two-fold increase in *ADE2* editing efficiency was measured with
334 both Cas9 and Cas12a when the gRNA were transcribed by RNAPolIII (Table 3C and D). However,
335 using a circular or a split plasmid did not affect DNA editing for T7RNAP^{K276R}-expressed gRNAs
336 (Table 3C and D). The split marker approach combined with linear DNA delivery of the gRNA
337 described in Table 3D was nonetheless kept for the following experiments.

338 Altogether these data demonstrate that gRNAs can be expressed from circular and linear DNA
339 using the T7RNA^{K276R} polymerase in *S. cerevisiae*. Additionally, Cas12a leads to higher DNA editing
340 efficiency than Cas9 when guided by T7RNAP^{K276R}-expressed gRNAs. In all experiments, the long
341 T7 promoter consistently led to two- to three-fold higher editing efficiencies than the short T7
342 promoter, suggesting that L.T7p drives higher gRNA expression (Table 3A and B). While delivery
343 of gRNAs in the form of short linear DNA fragments enabled DNA editing, the observed editing
344 efficiencies were low and required further optimization to turn the gEL DNA approach into an
345 attractive and competitive DNA editing technique.

346 **Improving the efficiency of the T7RNAP^{K276R}-based gEL DNA technique by optimizing the
347 gDNA design**

348 Aiming for cloning-free genome editing, the gEL DNA technique relies on the simple utilization of
349 customized double-stranded DNA oligos (referred to as gDNAs) for the *in vivo* T7RNAP^{K276R}-
350 mediated expression of gRNAs. To reduce synthesis costs and increase compatibility with high-
351 throughput strain construction, the size of the gDNA should be as small as possible and should

352 not exceed 120 nt, the standard size limit of commercial, custom-made oligomers. In this respect,
353 Cas12a presents a clear advantage as its gRNAs consists of a smaller structural part (DR) than the
354 one required for DNA targeting by Cas9 (gRNA scaffold). Consequently, the small size of Cas12a
355 gRNAs gives more flexibility in gDNA design regarding length of T7 transcriptional elements and
356 presence of terminal DR or T7 terminator. Conversely, a minimal gDNA configuration for Cas9-
357 mediated editing containing the S.T7p and the chimeric gRNA is 119-nt long (Fig. 4), which does
358 not leave room for additional, potentially useful parts such as a longer T7 promoter or a T7
359 terminator. As previously, a triplet of guanine was appended to the T7 promoter for all tested
360 gDNA.

361 For Cas9, two gDNA configurations were tested, one with the short and one with the long T7
362 promoter, followed by the *ADE2.y* spacer and the gRNA scaffold (Fig. 4A). As compared to the
363 design presented in Table 3, no T7 terminator was added at the end of the gDNA. While the pre-
364 annealed S.T7p gDNA can be directly transformed into IMX1905, the longer L.T7p gDNA (129 bp)
365 had to be obtained by a preliminary PCR reaction using two primers with overlapping homologies
366 (see Material and Methods section). Both gEL DNA configurations did enable Cas9-mediated DNA
367 editing, marginal for the S.T7p (2.6% editing efficiency, Fig. 4A-i) but substantial for the L.T7p
368 (21% editing efficiency, Fig. 4A-ii).

369 Six different gDNA configurations for the *ADE2-3* target were tested for Cas12a-mediated editing,
370 differing in the size of T7 promoter and terminator as well as in the addition of a terminal DR and
371 a T7 terminator (Fig. 4B). After simple pre-annealing of two complementary oligos *in vitro*, each
372 gDNA was directly transformed into strain IMX1905. These data revealed that the terminal DR is
373 important for efficient editing of *ADE2* irrespective to the presence of the T7 terminator, and that

374 the presence of a T7 terminator is not required (Fig. 4B). They also further confirmed that the
375 long version of the T7 promoter markedly increased DNA editing efficiency (Fig. 4B, i-ii). This
376 design optimization enabled to increase the DNA editing efficiency to 60%, relying on the very
377 simple transformation of yeast with a 87 nt-long oligonucleotide. This simple and efficient design,
378 represented in Fig. 4B-ii, was implemented for the rest of the work with Cas12a.

379 The editing efficiencies shown in Fig. 4 were substantially higher for both Cas9 and Cas12a than
380 those reported in Table 3D, in which a similar approach with linear gDNA delivery together with
381 a split plasmid was used. This increased efficiency most probably resulted from the higher
382 amount of gDNA used for the experiments presented in Fig. 4 (300 to 400-fold higher), which
383 suggested that the abundance of delivered gDNA might be a key element for efficient DNA editing
384 using gEL DNA.

385 **Improving the efficiency of the gEL DNA technique by optimizing sequence and expression
386 levels of the T7RNAP**

387 To further explore whether gDNA, and consequently gRNA availability might be limiting editing
388 efficiency, gDNA transcription efficiency by the T7RNAP was explored. To this end, three
389 additional T7RNAP variants were tested. All three variants were constructed from IMX1905, by
390 inserting point mutations in the T7RNAP^{K276R} gene. In the first variant the K276R mutation was
391 reverted into the wild-type T7RNAP (wtT7RNAP, strain IMX2031). The second variant carried the
392 P266L mutation, known to reduce abortive transcription *in vitro* (38) (T7RNAP^{P266L}, IMX2032) and
393 the third variant carried the two mutations (T7RNAP^{P266L, R276K}, strain IMX2030). When tested with
394 Cas12a, all four variants enabled DNA editing with a significantly higher efficiency for T7RNAP^{P266L}

395 (Fig. 5), while T7RNAP^{K276R} and T7RNAP^{P266L, R276K} showed the lowest DNA editing efficiency (Fig.
396 5), suggesting that the K276R substitution is deleterious for T7RNAP transcription efficiency.
397 To further enhance gDNA transcription efficiency, the expression level of the T7RNAP was
398 increased. The strains IME459 and IME475 were constructed by transformation with episomal
399 plasmids harbouring the T7RNAP^{R276K} and the T7RNAP^{P266L} variants, respectively. While
400 expression of T7RNAP from a single, integrated gene copy did not affect growth of *S. cerevisiae*
401 (Fig. 3), expression from episomal vectors significantly reduced the growth rate when compared
402 to a control strain carrying an empty episomal vector ($0.29 \pm 0.01 \text{ h}^{-1}$ for IME459, $0.27 \pm 0.01 \text{ h}^{-1}$
403 for IME475 and $0.41 \pm 0.00 \text{ h}^{-1}$ for the control strain IME460, Fig. 3; Table 1). Overexpressing of
404 either T7RNAP strongly increased the DNA editing efficiency by Cas12a, approaching 100% when
405 using T7RNAP^{P266L} (Fig. 5). Overexpression of T7RNAP^{P266L} also increased DNA editing efficiency
406 by Cas9, as compared to a single copy of T7RNAP^{K276R}, but to a lesser extent (increase by 10%,
407 Fig. 5). The gEL DNA approach remained much more efficient with Cas12a than with Cas9
408 (maximum efficiencies of 96% and 29%, respectively, Fig. 5)

409 Altogether these results revealed that the expression levels of the T7RNAP and consequently
410 gRNA availability, play a key role for successful DNA editing by Cas12a in the gEL DNA system.

411 **gEL DNA enables Cas12a-mediated multiplex genome editing in *S. cerevisiae***
412 To test for multiplex genome editing, four gRNAs targeting *CAN1*, *HIS4*, *PDR12* and *ADE2*,
413 previously shown to lead to 100% DNA editing efficiency by Cas12a when expressed from a
414 RNAPolIII promoter, were selected ((5), Fig. 6A). As done for the *ADE2-3* target used for singleplex
415 gEL DNA, these four additional gRNAs were shortened to a 19 bp-long spacer as compared to the
416 previously described plasmid-based constructs (5). Oligos carrying the gDNA design shown in Fig.

417 4B-ii were ordered for each gRNA (Table S1) and transformed in duplex or quadruplex to IME475
418 overexpressing the T7RNAP^{P266L}. Duplex targeting of *ADE2* and *HIS4* revealed that a vast majority
419 of tested clones were edited (14 out of 16) and that 63% of the clones carried a double deletion
420 (Fig. 6B). Out of the clones with single editing, none carried a single *HIS4* deletion, while duplex
421 editing with *ADE2* was clearly a frequent event (Fig. S4). Quadruplex targeting resulted in a
422 substantial fraction of clones without any editing (34%, Fig. 6C). The fraction of clones with a
423 single editing event was very similar for duplex and quadruplex editing (25 and 30%,
424 respectively). 23% and 13% of the clones carried double and triple editing, respectively and
425 quadruplex editing was not observed (Fig. 6C). Remarkably, none of the tested clones displayed
426 editing in *CAN1* (Fig. S5), suggesting that the *CAN1*-4 gRNA failed to guide Cas12a to the targeted
427 site. This lack of targeting might be explained by the fact that the *CAN1*-4 gRNA contained an
428 additional guanine triplet and was six nucleotides shorter than the *CAN1*-4 gRNA originally tested
429 by Swiat and co-workers. To test this hypothesis, the *CAN1*-4 gDNA (GGG at his 5' and a 19 bp-
430 long spacer) was expressed from a plasmid with the *SNR52* promoter and tested for editing
431 efficiency. Out of eight selected colonies, none resulted in a *CAN1* deletion (Fig. S6), a complete
432 loss in editing efficiency that is likely due to the disruption of the gRNA stem-loop structure (Fig.
433 6D). A new *CAN1* spacer with a predicted secondary structure displaying the gRNA stem-loop was
434 therefore selected for *CAN1* targeting (*CAN1*-3 (5), Fig. 6D). Expressed from a plasmid with the
435 *SNR52* promoter, *CAN1*-3 led to 100% *CAN1* editing with Cas12a (Fig. 6D). However, when tested
436 for multiplexing using the gEL DNA, *CAN1*-3 rarely led to editing of *CAN1* by Cas12a (Fig. 6E). A
437 single *CAN1* editing event was observed out of 30 clones tested (Fig. S7) and, remarkably, this
438 event was concomitant with the editing of the three other targets, leading to a single clone with

439 quadruple DNA editing (Fig. 6E). In the quadruplex editing experiments with *CAN1-4* and *CAN1-*
440 3, the fraction of clones with single, double and triple DNA editing was comparable (roughly 30,
441 25 and 10% respectively, Fig. 6).

442 Following the approach described by Swiat and coworkers, two cRNA arrays were tested for
443 quadruplex genome editing. Both plasmids carried the *HIS4-4*, *ADE2-3* and *PDR12-3* gRNAs, but
444 pUDE735 expressed *CAN1-4* (Fig. S5) while pUDR692 expressed *CAN1-3* (Fig. S7). As previously
445 observed, the number of colonies obtained after transformation was extremely low (below ten
446 colonies), as compared to the number of colonies obtained for quadruplex editing with the gEL
447 DNA approach (over 150 colonies).

448 **Discussion**

449 The future of the CRISPR-Cas-based genome editing heads towards the development of fast and
450 low- cost methodologies for strain construction. The gEL DNA approach presented in this study
451 expands the CRISPR-Cas genome editing toolbox of *S. cerevisiae* with an entirely cloning-free and
452 very efficient strategy for single or double genetic modification in *S. cerevisiae*. By simply
453 transforming pre-annealed 87-long, complementary DNA oligonucleotides into competent yeast
454 cells, cost and time of strain construction can be reduced to their bare minimum. Any chosen
455 gRNA cassette can be delivered independently or in combination with other gRNA cassettes,
456 making this technique very versatile and highly suitable for high-throughput, combinatorial strain
457 construction. Akin to other CRISPR-based techniques for genome engineering increasing the
458 number of simultaneously targeted sites strongly affects the efficiency of multiplexed gEL DNA
459 (Table S2, Fig. 6) (7). The results obtained in this study suggest that this efficiency can be further
460 enhanced. For instance, increasing T7RNAP and gDNA abundance substantially increased
461 singleplex gene editing (Fig. 4, Fig. 5), indicating that gRNA abundance is a key factor for efficient
462 DNA editing. While the toxicity of plasmid-borne T7RNAP expression showed that its abundance
463 cannot be further increased in *S. cerevisiae*, the efficiency of the gEL DNA could be further
464 enhanced by T7RNAP protein engineering or by expression of DNA-dependent RNAP variants
465 from other bacteriophages (*i.e.* T3, SP6 or K11) that are able to transcribe from short promoters
466 and from linear DNA templates (39-41). Another aspect to consider is the stability of the gDNA.
467 While other methods deliver gRNA in the form of plasmids that are very stable *in vivo*, the linear
468 nature of the gDNA make it prone to degradation by native exonucleases. Further studies should
469 explore the stability of gDNA and gRNA during transformation and test whether chemical

470 stabilization of the linear gDNA (by phosphorotioate derivatives or 2'-ribose modification for
471 instance (42,43)) enhances gRNA availability and thereby DNA editing. There are therefore
472 several promising avenues to further improve multiplex DNA editing with the gEL DNA approach.

473 Out of the five gRNA tested in this study, one failed to guide Cas12a for gene editing. Remarkably,
474 for this guide (*CAN1-4*) the folding prediction suggested the whole disruption of the direct repeat
475 as a consequence of the 5'-addition of the guanine triplet, while the other four guides displayed
476 typical gRNA secondary structures with the required stem-loop structure (Fig. 6 and Table S3)
477 (44). In agreement with these observations, a recent study about the Cas12a-gRNA functionality
478 suggests that the disruption of the direct repeat pseudoknot structure by pairing to the spacer
479 sequence might lead to loss of gRNA targeting ability (37). Additionally, inhibition of the gRNA
480 processing and consequently of Cas12a activity seems to be due to the positional effect of a
481 stable secondary structure flanking the direct repeat (45). It has been recently advised that the
482 terminator should be spaced-out by a 24 nt-long spacer to avoid steric effects with the
483 pseudoknot formation and thereby allow correct gRNA folding (37). Our findings support these
484 theories, since a gRNA flanked by the short, 30-nt T7 terminator sequence that lacks the stem-
485 loop structure has a 1.8-fold higher *ADE2* editing efficiency than a gRNA with the longer, 47-nt
486 T7 terminator (Fig. 4B, iv-v). Prediction of the gRNA structure is therefore essential to optimize
487 Cas12a-based DNA editing with the gEL approach.

488 Despite efforts to improve editing with both Cas9 and Cas12a, the latter proved to be more
489 efficient for DNA editing with the gEL DNA method. The causes for Cas9 lower efficiency remain
490 to be elucidated, but the observation that increasing T7RNAP abundance hardly affects DNA

491 editing by Cas9 (increased by 1.4%; Fig. 5) suggests that gRNA abundance is not the factor
492 impairing Cas9 activity. While the length of the gDNA might be another obstacle for Cas9
493 implementation with the gEL DNA approach, it could be overcome by expressing the tracrRNA
494 separately from the gRNA (3).

495 In conclusion, the gEL DNA methodology is not only an extremely valuable tool for genome
496 editing in *S. cerevisiae*, but has a yet greater potential thanks to its portability to other organisms.
497 Expression of gRNAs using the host machinery or *in vivo* burden of gRNA-expression plasmids can
498 present serious obstacles for CRISPR/Cas9 based editing (2,46-49). By introducing a T7RNAP and
499 gDNA oligos, the gEL DNA approach dissociates gRNA production from the host polymerase and
500 from plasmid templates, thereby entirely removing these obstacles.

501 **Supplementary data**

502 Supplementary Data are available at online.

503 **Acknowledgment**

504 We thank Melanie Wijsman and Ewout Knibbe for constructing strains IMX1714 and IMX1752,
505 respectively, and Sofia Dashko for cloning plasmid pGGKd034.

506 **Funding**

507 This research received funding from the Netherland Organization of Scientific Research (NWO)
508

509 **Tables**

510 **Table 1 – *Saccharomyces cerevisiae* strains used in this study**

Strain	Relevant genotype	Origin	511
CEN.PK113-7D	MAT α <i>MAL2-8c SUC2</i>	(20)	
IMX1714	MAT α <i>MAL2-8c SUC2 sga1Δ::SpCas9-natNT2</i>	This study	
IMX1752	MAT α <i>MAL2-8c SUC2 sga1Δ::SpCas9-natNT2, X-2(*)::FnCpf1</i>	This study	
IMX1905	MAT α <i>MAL2-8c SUC2 sga1Δ::SpCas9-natNT2, X-2(*)::FnCpf1</i> YPRC τ 3Δ::T7RNAP ^{K276R}	This study	514
IMX2030	MAT α <i>MAL2-8c SUC2 sga1Δ::SpCas9-natNT2, X-2(*)::FnCpf1</i> YPRC τ 3Δ::T7RNAP ^{P266L,K276R}	This study	
IMX2031	MAT α <i>MAL2-8c SUC2 sga1Δ::SpCas9-natNT2, X-2(*)::FnCpf1</i> YPRC τ 3Δ::T7RNAP	This study	510
IMX2032	MAT α <i>MAL2-8c SUC2 sga1Δ::SpCas9-natNT2, X-2(*)::FnCpf1</i> YPRC τ 3Δ::T7RNAP ^{P266L}	This study	517
IME459	MAT α <i>MAL2-8c SUC2 sga1Δ::SpCas9-natNT2, X-2(*)::FnCpf1</i> pUDE866	This study	519
IME460	MAT α <i>MAL2-8c SUC2 sga1Δ::SpCas9-natNT2, X-2(*)::FnCpf1</i> pGGKd034	This study	521
IME475	MAT α <i>MAL2-8c SUC2 sga1Δ::SpCas9-natNT2, X-2(*)::FnCpf1</i> pUDE911	This study	522

(*)Integration site at 194944-195980 of Chromosome X from Mikkelsen *et al.* (28).

523

524

525

Table 2 – List of plasmids used in this study

Plasmid	Genotype ^a	Reference
pUG-natNT2	amp ^R natMX	(26), Addgene #110922
pYTK002	cam ^R ConLS	(25), Addgene #65109
pYTK013	cam ^R <i>TEF1p</i>	(25), Addgene #65120
pYTK036	cam ^R <i>SpCas9</i>	(25), Addgene #65143
pYTK047	cam ^R GFPdo	(25), Addgene #65154
pYTK051	cam ^R <i>ENO1t</i>	(25), Addgene #65158
pYTK067	cam ^R ConR1	(25), Addgene #65174
pYTK077	cam ^R KanMX	(25), Addgene #65184
pYTK079	cam ^R HygR	(25), Addgene #65186
pYTK082	cam ^R 2 μ m	(25), Addgene #65189
pYTK083	amp ^R ColE1	(25), Addgene #65190
pYTK085	spec ^R ColE1	(25), Addgene #65192
pUDE483	2 μ m amp ^R <i>TEF1p::SpCas9::ENO1t</i>	This study
pUDC175	<i>CEN6/ARS4</i> amp ^R <i>TRP1 TEF1p::FnCas12a::CYC1t</i>	(5), Addgene #103019
pUDR573	2 μ m amp ^R amdSYM sgRNA-X-2	(29)
pRS315-nls-T7-RNAP	<i>CEN6/ARS4</i> amp ^R <i>LEU2 TDH3p::T7RNAP^{K276R}::TDH3t</i>	(30), Addgene #33152
pUD565	cam ^R GFPdo part entry vector	GeneArt
pGGKp172	cam ^R <i>T7RNAP^{K276R}</i>	This study
pGGKp035	cam ^R <i>TDH3p</i>	(24)
pGGKp039	cam ^R <i>TEF1t</i>	(24)
pGGKd034	2 μ m amp ^R HygR GFPdo	This study
pUDE866	2 μ m amp ^R HygR <i>TDH3p::T7RNAP^{K276R}::TEF1t</i>	This study
pUDR477	2 μ m spec ^R KanMX crYPRt3.3	This study
pGGKd018	2 μ m spec ^R KanMX GFPdo	This study
pMEL13	2 μ m amp ^R KanMX sgRNA-CAN1.Y	(4), Euroscarf P30782
pUDE810	2 μ m spec ^R KanMX <i>SNR52p::GFPdo::SUP4t</i>	This study
pUDE759	2 μ m spec ^R KanMX <i>SNR52p::crADE2-3s::SUP4t</i>	This study
pUDR482	2 μ m spec ^R KanMX <i>SNR52p::G-crADE2-3s::SUP4t</i>	This study
pUDR483	2 μ m spec ^R KanMX <i>SNR52p::GG-crADE2-3s::SUP4t</i>	This study
pUDR484	2 μ m spec ^R KanMX <i>SNR52p::GGG-crADE2-3s::SUP4t</i>	This study
pUDR485	2 μ m spec ^R KanMX <i>S.T7p::crADE2-3s::T7t</i>	This study
pUDR486	2 μ m spec ^R KanMX <i>S.T7p::G-crADE2-3s::T7t</i>	This study
pUDR487	2 μ m spec ^R KanMX <i>S.T7p::GG-crADE2-3s::T7t</i>	This study
pUDR488	2 μ m spec ^R KanMX <i>S.T7p::GGG-crADE2-3s::T7t</i>	This study
pUDR489	2 μ m spec ^R KanMX <i>L.T7p::crADE2-3s::T7t</i>	This study
pUDR490	2 μ m spec ^R KanMX <i>L.T7p::G-crADE2-3s::T7t</i>	This study
pUDR491	2 μ m spec ^R KanMX <i>L.T7p::GG-crADE2-3s::T7t</i>	This study
pUDR492	2 μ m spec ^R KanMX <i>L.T7p::GGG-crADE2-3s::T7t</i>	This study
pUDR585	2 μ m spec ^R KanMX <i>SNR52p::GGG-sgRNA-ADE2.Y::SUP4t</i>	This study
pUDR579	2 μ m spec ^R KanMX <i>S.T7p::GGG-sgRNA-ADE2.Y::T7t</i>	This study
pUDR581	2 μ m spec ^R KanMX <i>L.T7p::GGG-sgRNA-ADE2.Y::T7t</i>	This study
pUDR506	2 μ m amp ^R KanMX gRNA-T7RNAP	This study
pUDE911	2 μ m amp ^R HygR <i>TDH3p::T7RNAP^{P266L}::TEF1t</i>	This study
pUDE710	2 μ m KanMX amp ^R <i>SNR52p::crADE2-3.crHIS4-4::SUP4t</i>	(5), Addgene #103020
pUDE735	2 μ m KanMX amp ^R <i>SNR52p::crCAN1-4.crHIS4-4.crPDR12-3.crADE2-3::SUP4t</i>	(5), Addgene #103024
pUDR692	2 μ m KanMX amp ^R <i>SNR52p::crCAN1-3.crHIS4-4.crPDR12-3.crADE2-3::SUP4t</i>	This study
pUDR715	2 μ m spec ^R KanMX <i>SNR52p::GGG-crHIS4-4s::SUP4t</i>	This study
pUDR716	2 μ m spec ^R KanMX <i>SNR52p::GGG-crPDR12-3s::SUP4t</i>	This study
pUDR717	2 μ m spec ^R KanMX <i>SNR52p::GGG-crCAN1-4s::SUP4t</i>	This study
pUDR718	2 μ m spec ^R KanMX <i>SNR52p::GGG-crCAN1-3s::SUP4t</i>	This study

^a 'sgRNA' denotes single-guide RNA used by Cas9, 'cr' refers to crRNA for Cas12a. The presence of an 's' following the crRNA indicates that a shorter spacer of 19 nt is used, otherwise the spacer size is 25 nt.

527 Table 3 – Comparing gRNA delivery methods

528

529 Cas9- and Cas12a-mediated DNA editing efficiency in IMX1905 (Table 1) transformed with different delivery methods
530 for gRNA-expression cassette. A) *in vitro* pre-assembled plasmids; B) *in vivo* assembly after co-transformation of
531 gRNA expression cassette and marker backbone with homology flanks; C) co-transformation of gRNA expression
532 cassette with circular empty plasmid (pGGKd018); D) co-transformation of gRNA expression cassette with split empty
533 plasmid (pGGKd018). The gRNA cassettes specific for Cas9 and Cas12a editing are depicted at the left of the table
534 (*p*, promoter; DR, direct repeat; *t*, terminator) and their respective length in bp is reported. These were compared
535 for expression under the RNAPolIII-dependent SNR52*p* (pUDR585 for Cas9, pUDR484 for Cas12a), the T7RNAP-
536 dependent 17bp-long S.T7*p* (pUDR579 for Cas9, pUDR488 for Cas12a) or the T7RNAP-dependent 27bp-long L.T7*p*
537 (pUDR581 for Cas9, pUDR492 for Cas12a). Editing efficiency is expressed as percentage of red colonies (*ade2*⁻). Data
538 represent the average and standard deviation of biological triplicates.
539

	<i>prom</i>	<i>term</i>	Size of gRNA cassette (bp)	<i>ade2</i> ⁻ frequency (%)			
				A. <i>in vitro</i> assembly	B. <i>in vivo</i> assembly	C. circular plasmid	D. split plasmid
gRNA cassette for Cas9							
	SNR52	SUP4	401	100.0 ± 0.0	90.7 ± 1.7	11.4 ± 4.0	23.8 ± 6.6
	S.T7	T7	166	0.0 ± 0.0	0.6 ± 0.4	–	–
	L.T7	T7	176	0.2 ± 0.2	1.2 ± 0.9	0.0 ± 0.0	0.0 ± 0.0
gRNA cassette for Cas12a							
	SNR52	SUP4	359	100.0 ± 0.0	87.1 ± 4.5	12.3 ± 3.8	30.7 ± 5.2
	S.T7	T7	124	4.6 ± 0.2	7.8 ± 3.8	–	–
	L.T7	T7	134	8.2 ± 3.2	20.1 ± 4.9	5.7 ± 1.9	6.7 ± 2.9

540

541

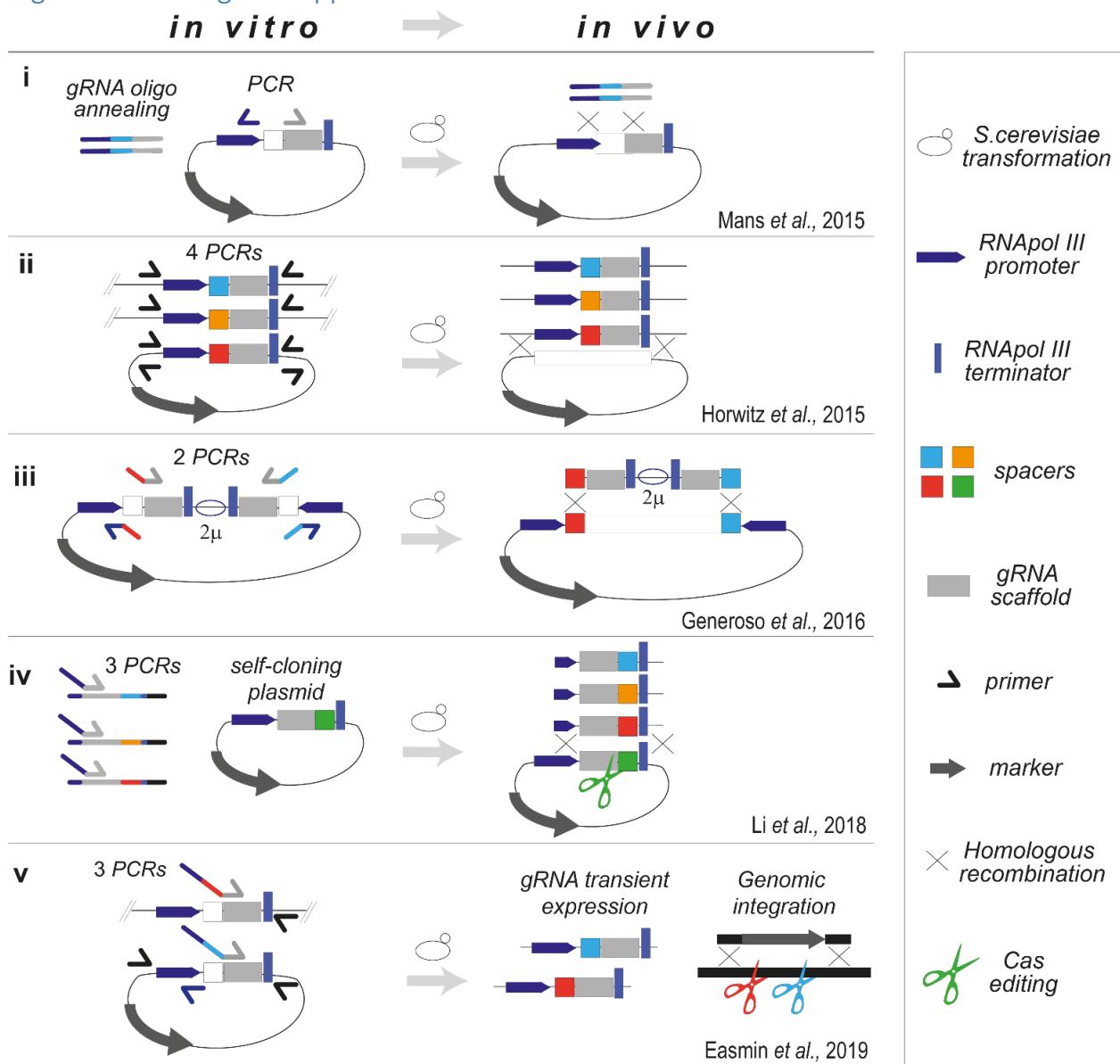
542 **Figure legends**

543

544 **Figure 1: cloning-free approaches for CRISPR/Cas-aided DNA editing.** Overview of
545 methodologies based on delivery of linear DNA templates for gRNAs expression in *S. cerevisiae*.
546 *In vitro* sample preparations and *in vivo* events upon transformation are described. Number of
547 PCR reactions are quoted. Features are depicted in the legend at the right handside of the figure.

548 **Figure 2: Schematic overview of the gEL DNA approach.** 1, *in silico* design and ordering of gDNA
549 cassettes (87 bp) and repair DNA (120 bp) as oligos. 2, transformation with the double-stranded
550 (ds) gDNA expression cassettes (2a), the ds repair DNA fragments and an empty, split plasmid
551 carrying a marker of choice. 3, expression of the gRNA by the T7RNAP. 4, targetted DNA editing
552 by Cas12a (Cas12a). 5, repair of the ds DNA break via homologous recombination using the repair
553 DNA fragments.

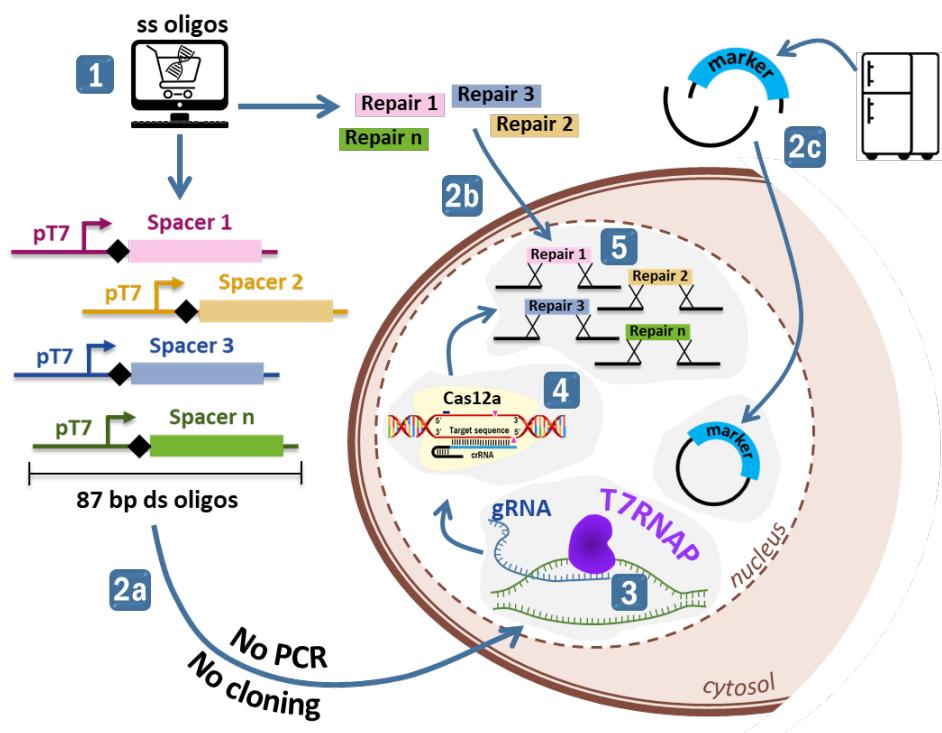
554 **Figure 3: Physiological characterization of *S. cerevisiae* strains expressing T7RNAP.** Maximum
555 specific growth rates (μ_{\max}) of *S. cerevisiae* constitutively expressing T7RNAP^{K276R}, Cas9 and
556 Cas12a (IMX1905) and its control strain (CENPK.113-7D), or *S. cerevisiae* strains overexpressing
557 T7RNAP^{K276R} (IME459) or T7RNAP^{P266L} (IME475) and its control strain carrying a 2 μ m multi-copy
558 empty vector (IME460). Strains were cultivated in 96-well plate containing chemically defined
559 medium supplemented with glucose as sole carbon source. Data points represent average and
560 mean deviations of four biological replicates. * $P < 0.025$, ** $P < 0.001$, Student's *t*-test was
561 calculated compared to respective control strains CENPK.113-7D or IME460.


562 **Figure 4: Optimization of Cas9 and Cas12a gDNA design.** Editing efficiency of *ADE2* in strain
563 IMX1905 transformed with gDNAs for cloning-free, T7RNAP-driven expression of gRNA. A) gDNA
564 configurations for Cas9-mediated genome editing and respective editing efficiencies. B) gDNA
565 configurations for Cas12a-mediated genome editing and their respective editing efficiencies. The
566 size of each gDNA is specified on the right of the respective graph bar. Editing efficiency is
567 expressed as percentage of red colonies (*ade2*⁻) over the total number of colonies. Values
568 represent the average and standard deviations of data obtained from three independent
569 biological replicates.

570 **Figure 5: Comparison of Cas9 and Cas12a editing efficiency with T7RNAP variants.** Efficiency of
571 *ADE2* editing by Cas12- or Cas9-mediated gEL DNA in T7RNAP mutant or overexpression strains:
572 IMX1905 (K276R); IMX2031 (wild-type, *wt*); IMX2032 (P266L); IMX2030 (P266L_K276R); IME459
573 (K276R overexpression, \geq K276R); IME475 (P266L overexpression, \geq P266L). For Cas12a,
574 transformed gDNA corresponds to annealed 15093-15094 oligos. For Cas9, transformed gDNA
575 was obtained by PCR-derived fragment using overlapping primers 16745-16746. Editing
576 efficiency is expressed as percentage of red colonies (*ade2*⁻). Values represent the average and
577 standard deviations of data obtained from independent biological duplicates. * $P < 0.05$, ** $P <$
578 0.025, *** $P < 0.001$, Student's *t*-test was calculated compared to respective control strain
579 IMX1905 (K276R).

580 **Figure 6: Multiplex genome editing by Cas12a-mediated using the gEL DNA approach. (A)**
581 Targeted sites for deletion of *ADE2* (*ADE2-3*, green), *HIS4* (*HIS4-4*, orange), *PDR12* (*PDR12-3*,
582 cyan) and *CAN1* (*CAN1-4*, pink; *CAN1-3*, violet) genes. (B) Percentage of transformants obtained
583 from double gDNAs delivery: *ADE2-3* and *HIS4-4*. (C) Fraction of selected colonies upon
584 transformation with four gDNAs: *ADE2-3*, *HIS4-4*, *PDR12-3* and *CAN1-4*. (D) Verification of single
585 editing efficiency of *CAN1* targets expressed from plasmid pUDR717 (*CAN1-4*) or pUDR718
586 (*CAN1-3*), with prediction of gRNAs secondary structure. (E) Fraction of selected colonies upon
587 transformation with four gDNAs: *ADE2-3*, *HIS4-4*, *PDR12-3* and *CAN1-3*. Number of verified
588 clones is indicated between brackets and diagnostic PCRs are reported in Supplementary Figures
589 ([Fig. S4](#), [S5](#), [S6](#)). Zero (0Δ), single (1Δ), double (2Δ), triple (3Δ) or quadruple (4Δ) deletion are
590 indicated at the outside ends of each fraction. Type of obtained deletions are specified with the
591 respective colour of the target. Number of colonies are also stated next to each depiction.
592 Prediction of the gRNA stem-loop for Cas12a recognition is highlighted by a red square.

593 **Figures**

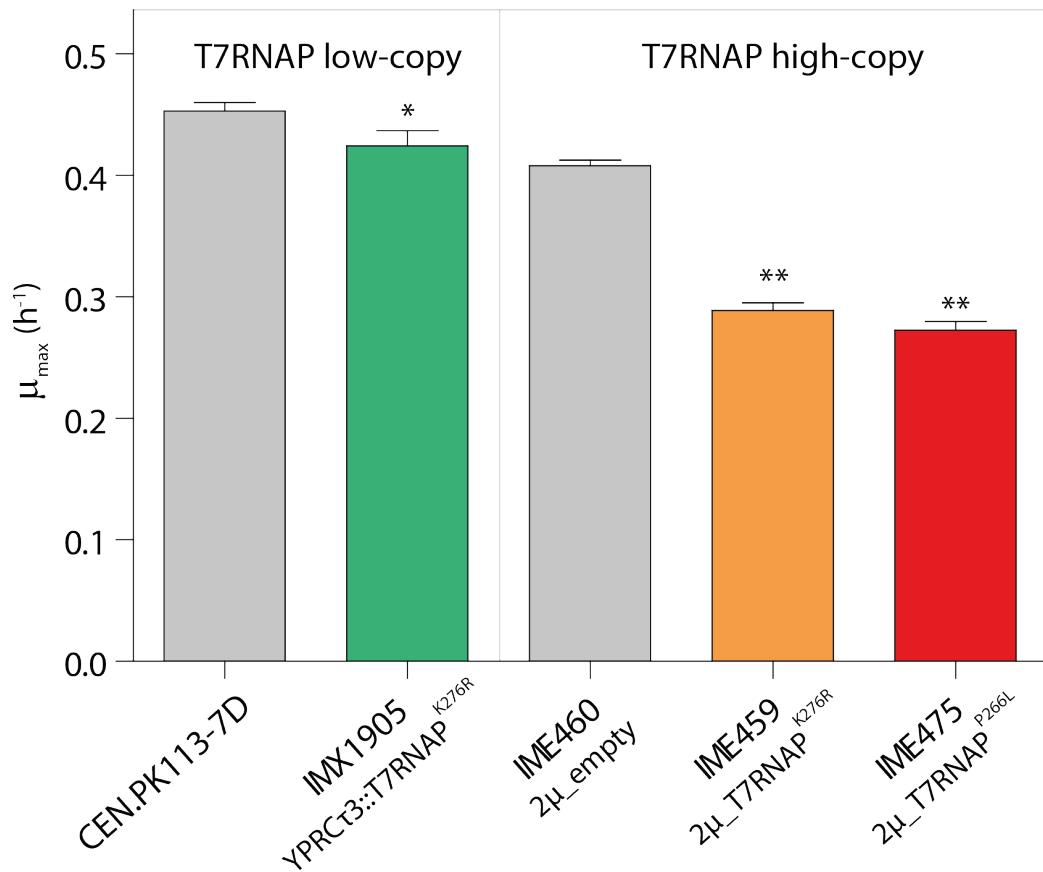

594 **Figure 1 – Cloning-free approaches**

595
596

597 Figure 2 – Schematic overview of the gEL DNA approach

598

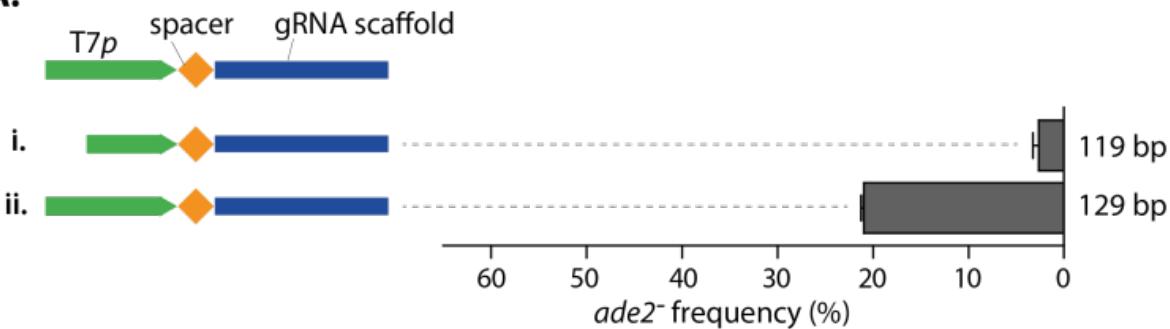
599

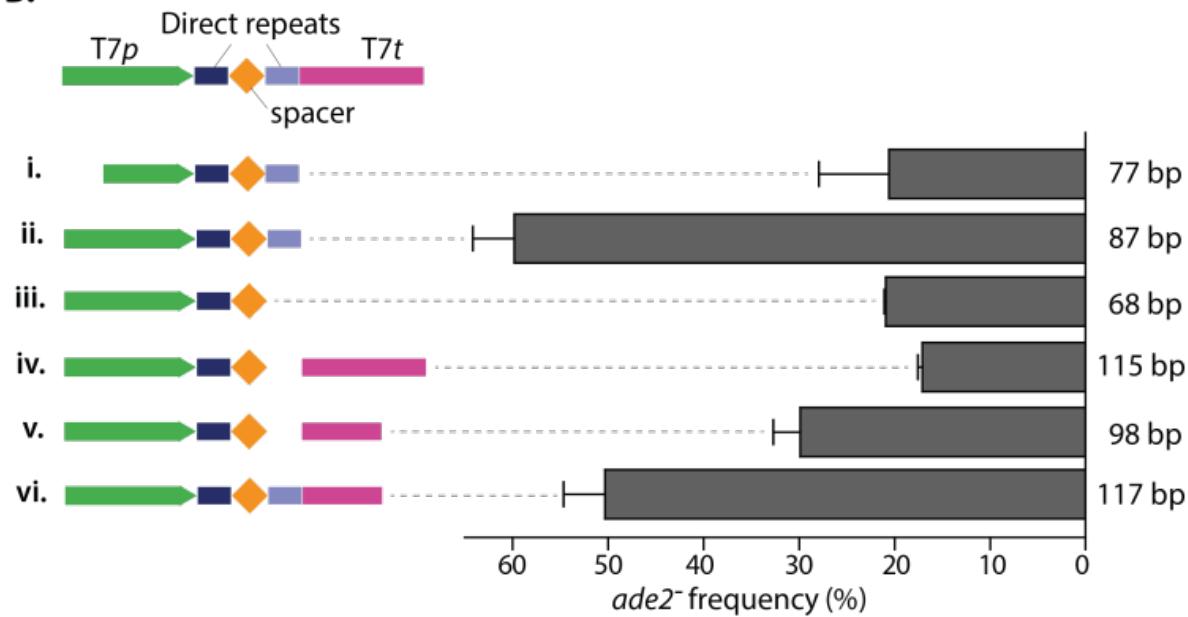

600

601

602

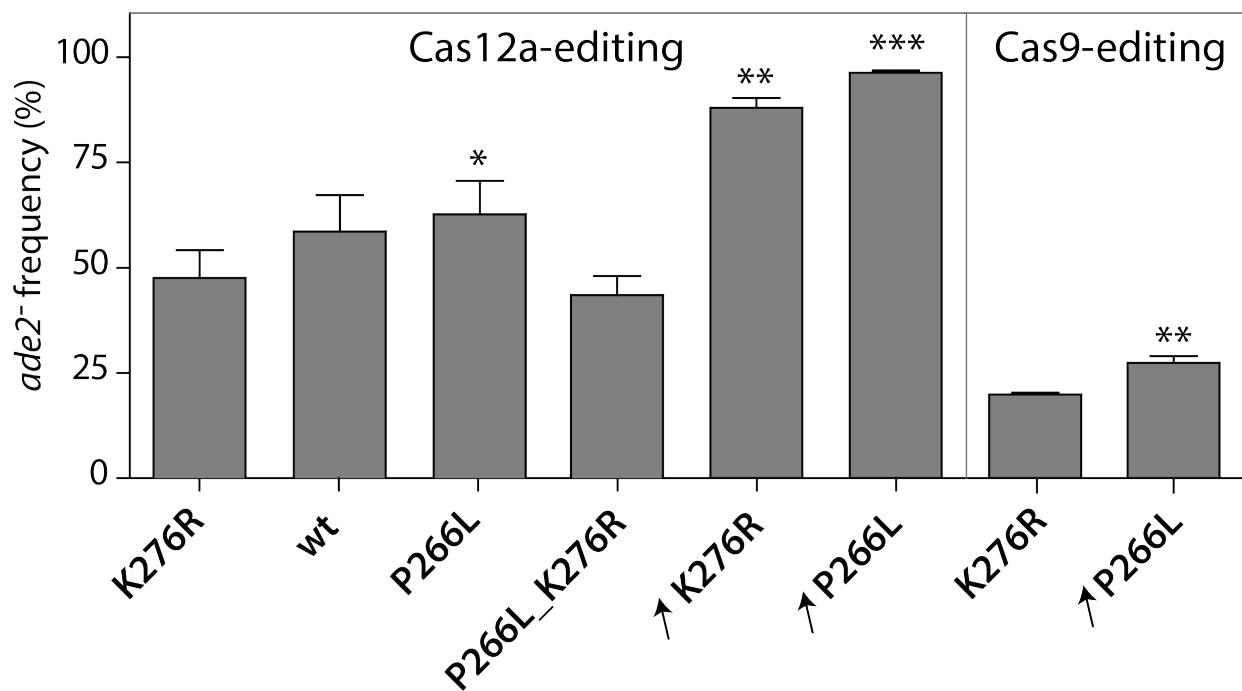
603


604 Figure 3 – Growth rates
605
606


607
608

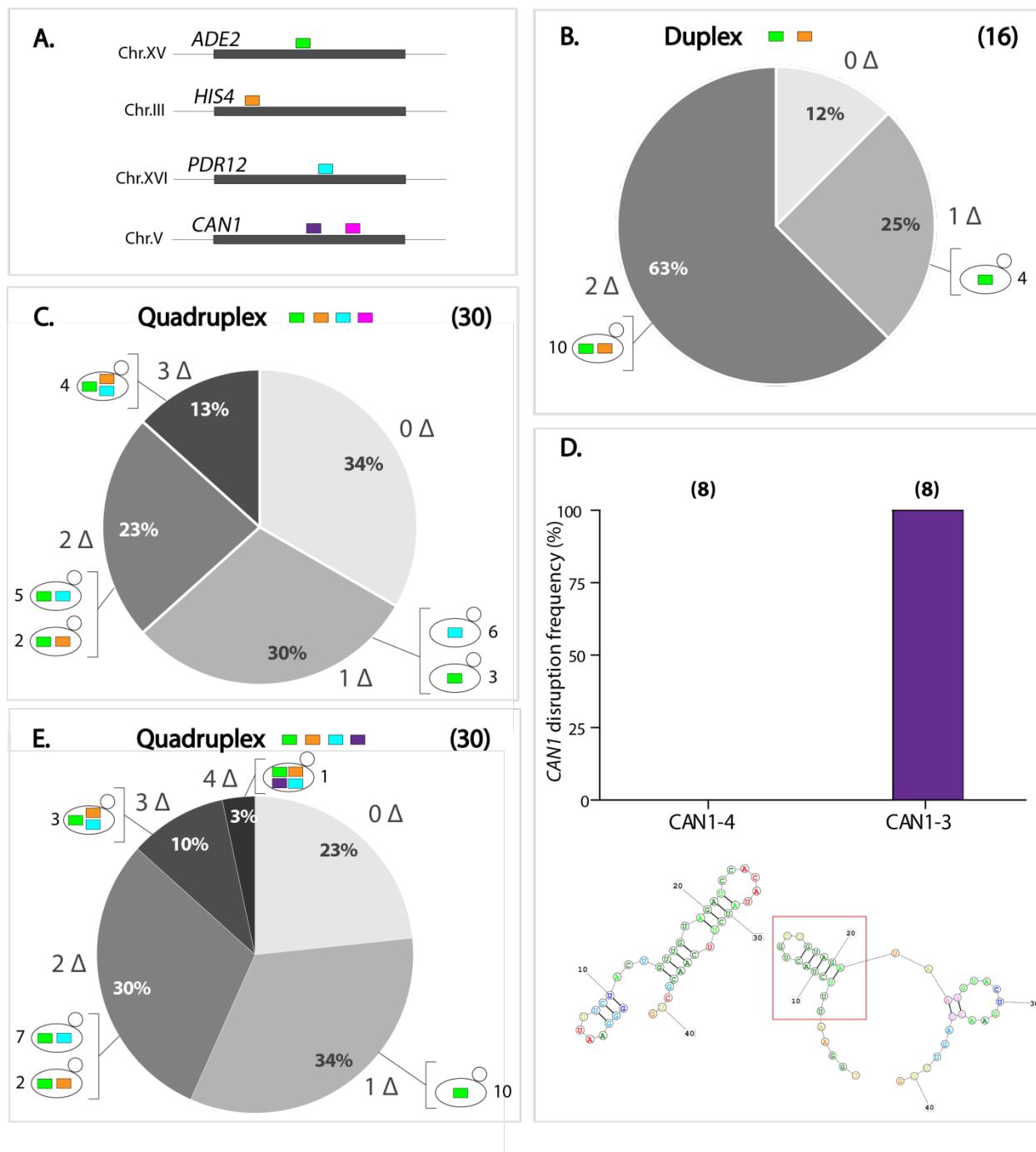
609 Figure 4 – gDNA design

A.



B.

610


611 Figure 5 – T7RNAP variants

612

613 Figure 6 – Multiplexing using gEL DNA

614

615

616

617 **References**

- 618 1. DiCarlo, J.E., Norville, J.E., Mali, P., Rios, X., Aach, J. and Church, G.M. (2013) Genome
619 engineering in *Saccharomyces cerevisiae* using CRISPR-Cas systems. *Nucleic Acids Res*, **41**,
620 4336-4343.
- 621 2. Gao, Y. and Zhao, Y. (2014) Self-processing of ribozyme-flanked RNAs into guide RNAs in
622 vitro and in vivo for CRISPR-mediated genome editing. *J Integr Plant Biol*, **56**, 343-349.
- 623 3. Bao, Z., Xiao, H., Liang, J., Zhang, L., Xiong, X., Sun, N., Si, T. and Zhao, H. (2015) Homology-
624 integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in
625 *Saccharomyces cerevisiae*. *ACS Synth Biol*, **4**, 585-594.
- 626 4. Mans, R., van Rossum, H.M., Wijsman, M., Backx, A., Kuijpers, N.G., van den Broek, M.,
627 Daran-Lapujade, P., Pronk, J.T., van Maris, A.J. and Daran, J.M. (2015) CRISPR/Cas9: a
628 molecular Swiss army knife for simultaneous introduction of multiple genetic
629 modifications in *Saccharomyces cerevisiae*. *FEMS Yeast Res*, **15**.
- 630 5. Swiat, M.A., Dashko, S., den Ridder, M., Wijsman, M., van der Oost, J., Daran, J.M. and
631 Daran-Lapujade, P. (2017) FnCpf1: a novel and efficient genome editing tool for
632 *Saccharomyces cerevisiae*. *Nucleic Acids Res*, **45**, 12585-12598.
- 633 6. Verwaal, R., Buiting-Wiessenhaan, N., Dalhuijsen, S. and Roubos, J.A. (2018) CRISPR/Cpf1
634 enables fast and simple genome editing of *Saccharomyces cerevisiae*. *Yeast*, **35**, 201-211.
- 635 7. Adiego-Perez, B., Randazzo, P., Daran, J.M., Verwaal, R., Roubos, J.A., Daran-Lapujade, P.
636 and van der Oost, J. (2019) Multiplex genome editing of microorganisms using CRISPR-
637 Cas. *FEMS Microbiol Lett*, **366**.
- 638 8. Ryan, O.W., Skerker, J.M., Maurer, M.J., Li, X., Tsai, J.C., Poddar, S., Lee, M.E., DeLoache,
639 W., Dueber, J.E., Arkin, A.P. *et al.* (2014) Selection of chromosomal DNA libraries using a
640 multiplex CRISPR system. *Elife*, **3**.
- 641 9. Horwitz, A.A., Walter, J.M., Schubert, M.G., Kung, S.H., Hawkins, K., Platt, D.M., Hernday,
642 A.D., Mahatdejkul-Meadows, T., Szeto, W., Chandran, S.S. *et al.* (2015) Efficient
643 Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via
644 CRISPR-Cas. *Cell Syst*, **1**, 88-96.
- 645 10. Jakociunas, T., Bonde, I., Herrgård, M., Harrison, S.J., Kristensen, M., Pedersen, L.E.,
646 Jensen, M.K. and Keasling, J.D. (2015) Multiplex metabolic pathway engineering using
647 CRISPR/Cas9 in *Saccharomyces cerevisiae*. *Metabolic Engineering*, **28**, 213-222.
- 648 11. Walter, J.M., Chandran, S.S. and Horwitz, A.A. (2016) CRISPR-Cas-Assisted Multiplexing
649 (CAM): Simple Same-Day Multi-Locus Engineering in Yeast. *J Cell Physiol*, **231**, 2563-2569.
- 650 12. Li, Z.-H., Wang, F.-Q. and Wei, D.-Z. (2018) Self-cloning CRISPR/Cpf1 facilitated genome
651 editing in *Saccharomyces cerevisiae*. *Bioresources and Bioprocessing*, **5**, 36.
- 652 13. Generoso, W.C., Gottardi, M., Oreb, M. and Boles, E. (2016) Simplified CRISPR-Cas
653 genome editing for *Saccharomyces cerevisiae*. *J Microbiol Methods*, **127**, 203-205.
- 654 14. Ferreira, R., Skrekas, C., Nielsen, J. and David, F. (2018) Multiplexed CRISPR/Cas9 Genome
655 Editing and Gene Regulation Using Csy4 in *Saccharomyces cerevisiae*. *Acs Synthetic
656 Biology*, **7**, 10-15.
- 657 15. Li, Z.H., Liu, M., Lyu, X.M., Wang, F.Q. and Wei, D.Z. (2018) CRISPR/Cpf1 facilitated large
658 fragment deletion in *Saccharomyces cerevisiae*. *J Basic Microb*, **58**, 1100-1104.

659 16. Zhang, Y., Wang, J., Wang, Z., Zhang, Y., Shi, S., Nielsen, J. and Liu, Z. (2019) A gRNA-tRNA
660 array for CRISPR-Cas9 based rapid multiplexed genome editing in *Saccharomyces*
661 *cerevisiae*. *Nat Commun*, **10**, 1053.

662 17. Ryan, O.W. and Cate, J.H. (2014) Multiplex engineering of industrial yeast genomes using
663 CRISPRm. *Methods Enzymol*, **546**, 473-489.

664 18. Easmin, F., Hassan, N., Sasano, Y., Ekino, K., Taguchi, H. and Harashima, S. (2019) gRNA-
665 transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing.
666 *J Biosci Bioeng*.

667 19. Morse, N.J., Wagner, J.M., Reed, K.B., Gopal, M.R., Lauffer, L.H. and Alper, H.S. (2018) T7
668 Polymerase Expression of Guide RNAs in vivo Allows Exportable CRISPR-Cas9 Editing in
669 Multiple Yeast Hosts. *ACS Synth Biol*, **7**, 1075-1084.

670 20. Entian, K.D. and Kotter, P. (2007) Yeast genetic strain and plasmid collections. *Method*
671 *Microbiol*, **36**, 629-666.

672 21. Verduyn, C., Postma, E., Scheffers, W.A. and Van Dijken, J.P. (1992) Effect of benzoic acid
673 on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration
674 and alcoholic fermentation. *Yeast*, **8**, 501-517.

675 22. Milne, N., Luttik, M.A.H., Cueto Rojas, H.F., Wahl, A., van Maris, A.J.A., Pronk, J.T. and
676 Daran, J.M. (2015) Functional expression of a heterologous nickel-dependent, ATP-
677 independent urease in *Saccharomyces cerevisiae*. *Metab Eng*, **30**, 130-140.

678 23. Solis-Escalante, D., Kuijpers, N.G., Bongaerts, N., Bolat, I., Bosman, L., Pronk, J.T., Daran,
679 J.M. and Daran-Lapujade, P. (2013) amdSYM, a new dominant recyclable marker cassette
680 for *Saccharomyces cerevisiae*. *FEMS Yeast Res*, **13**, 126-139.

681 24. Hassing, E.J., de Groot, P.A., Marquenie, V.R., Pronk, J.T. and Daran, J.G. (2019)
682 Connecting central carbon and aromatic amino acid metabolisms to improve de novo 2-
683 phenylethanol production in *Saccharomyces cerevisiae*. *Metab Eng*, **56**, 165-180.

684 25. Lee, M.E., DeLoache, W.C., Cervantes, B. and Dueber, J.E. (2015) A Highly Characterized
685 Yeast Toolkit for Modular, Multipart Assembly. *Acs Synthetic Biology*, **4**, 975-986.

686 26. de Kok, S., Nijkamp, J.F., Oud, B., Roque, F.C., de Ridder, D., Daran, J.M., Pronk, J.T. and
687 van Maris, A.J. (2012) Laboratory evolution of new lactate transporter genes in a
688 jen1Delta mutant of *Saccharomyces cerevisiae* and their identification as ADY2 alleles by
689 whole-genome resequencing and transcriptome analysis. *FEMS Yeast Res*, **12**, 359-374.

690 27. Gietz, R.D. and Schiestl, R.H. (2007) High-efficiency yeast transformation using the LiAc/SS
691 carrier DNA/PEG method. *Nat Protoc*, **2**, 31-34.

692 28. Mikkelsen, M.D., Buron, L.D., Salomonsen, B., Olsen, C.E., Hansen, B.G., Mortensen, U.H.
693 and Halkier, B.A. (2012) Microbial production of indolylglucosinolate through engineering
694 of a multi-gene pathway in a versatile yeast expression platform. *Metabolic Engineering*,
695 **14**, 104-111.

696 29. Baldi, N., Dykstra, J.C., Luttik, M.A.H., Pabst, M., Wu, L., Benjamin, K.R., Vente, A., Pronk,
697 J.T. and Mans, R. (2019) Functional expression of a bacterial alpha-ketoglutarate
698 dehydrogenase in the cytosol of *Saccharomyces cerevisiae*. *Metab Eng*, **56**, 190-197.

699 30. Dower, K. and Rosbash, M. (2002) T7 RNA polymerase-directed transcripts are processed
700 in yeast and link 3' end formation to mRNA nuclear export. *RNA*, **8**, 686-697.

701 31. Flagfeldt, D., Siewers, V., Huang, L. and J, N. (2009) Characterization of chromosomal
702 integration sites for heterologous gene expression in *Saccharomyces cerevisiae*. *Yeast*, **26**,
703 545–551.

704 32. Meijnen, J.P., Randazzo, P., Foulquie-Moreno, M.R., van den Brink, J., Vandecruys, P.,
705 Stojiljkovic, M., Dumortier, F., Zalar, P., Boekhout, T., Gunde-Cimerman, N. *et al.* (2016)
706 Polygenic analysis and targeted improvement of the complex trait of high acetic acid
707 tolerance in the yeast *Saccharomyces cerevisiae*. *Biotechnol Biofuels*, **9**, 5.

708 33. Bellaousov, S., Reuter, J.S., Seetin, M.G. and Mathews, D.H. (2013) RNAstructure: Web
709 servers for RNA secondary structure prediction and analysis. *Nucleic Acids Res*, **41**, W471-
710 474.

711 34. Tang, G.Q., Bandwar, R.P. and Patel, S.S. (2005) Extended upstream A-T sequence
712 increases T7 promoter strength. *J Biol Chem*, **280**, 40707-40713.

713 35. Imburgio, D., Rong, M., Ma, K. and McAllister, W.T. (2000) Studies of promoter
714 recognition and start site selection by T7 RNA polymerase using a comprehensive
715 collection of promoter variants. *Biochemistry*, **39**, 10419-10430.

716 36. Dorfman, B.Z. (1969) The isolation of adenylosuccinate synthetase mutants in yeast by
717 selection for constitutive behavior in pigmented strains. *Genetics*, **61**, 377-389.

718 37. Creutzburg, S.C.A., Wu, W.Y., Mohanraju, P., Swartjes, T., Alkan, F., Gorodkin, J., Staals,
719 R.H.J. and der Oost, J.V. (2020) Good guide, bad guide: spacer sequence-dependent
720 cleavage efficiency of Cas12a. *Nucleic Acids Res*.

721 38. Guillerez, J., Lopez, P., Proux, F., Launay, H. and Dreyfus, M. (2005) A mutation in T7 RNA
722 polymerase that facilitates promoter clearance. *PNAS*, **102**, 5958–5963.

723 39. Yoo, J. and Kang, C. (2000) Bacteriophage SP6 RNA polymerase mutants with altered
724 termination efficiency and elongation processivity. *Biomol Eng*, **16**, 191-197.

725 40. Jorgensen, E.D., Durbin, R.K., Risman, S.S. and McAllister, W.T. (1991) Specific contacts
726 between the bacteriophage T3, T7, and SP6 RNA polymerases and their promoters. *J Biol
727 Chem*, **266**, 645-651.

728 41. Rong, M., Castagna, R. and McAllister, W.T. (1999) Cloning and purification of
729 bacteriophage K11 RNA polymerase. *Biotechniques*, **27**, 690, 692, 694.

730 42. Leonetti, J.P., Mechti, N., Degols, G., Gagnor, C. and Lebleu, B. (1991) Intracellular
731 distribution of microinjected antisense oligonucleotides. *Proc Natl Acad Sci U S A*, **88**,
732 2702-2706.

733 43. Fisher, T.L., Terhorst, T., Cao, X. and Wagner, R.W. (1993) Intracellular disposition and
734 metabolism of fluorescently-labeled unmodified and modified oligonucleotides
735 microinjected into mammalian cells. *Nucleic Acids Res*, **21**, 3857-3865.

736 44. Swarts, D.C., van der Oost, J. and Jinek, M. (2017) Structural Basis for Guide RNA
737 Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a. *Mol Cell*, **66**, 221-233
738 e224.

739 45. Liao, C., Slotkowski, R.A., Achmedov, T. and Beisel, C.L. (2019) The *Francisella novicida*
740 Cas12a is sensitive to the structure downstream of the terminal repeat in CRISPR arrays.
741 *RNA Biol*, **16**, 404-412.

742 46. Juergens, H., Varela, J.A., de Vries, A.R.G., Perli, T., Gast, V.J.M., Gyurchev, N.Y., Rajkumar,
743 A.S., Mans, R., Pronk, J.T., Morrissey, J.P. *et al.* (2018) Genome editing in *Kluyveromyces*

744 and Ogataea yeasts using a broad-host-range Cas9/gRNA co-expression plasmid. *Fems*
745 *Yeast Research*, **18**.

746 47. Gorter de Vries, A.R., de Groot, P.A., van den Broek, M. and Daran, J.G. (2017) CRISPR-
747 Cas9 mediated gene deletions in lager yeast *Saccharomyces pastorianus*. *Microb Cell Fact*,
748 **16**, 222.

749 48. Wagner, J.C., Platt, R.J., Goldfless, S.J., Zhang, F. and Niles, J.C. (2014) Efficient CRISPR-
750 Cas9-mediated genome editing in *Plasmodium falciparum*. *Nat Methods*, **11**, 915-918.

751 49. Lee, K., Conboy, M., Park, H.M., Jiang, F., Kim, H.J., Dewitt, M.A., Mackley, V.A., Chang, K.,
752 Rao, A., Skinner, C. *et al.* (2017) Nanoparticle delivery of Cas9 ribonucleoprotein and
753 donor DNA in vivo induces homology-directed DNA repair. *Nat Biomed Eng*, **1**, 889-901.

754