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22
23 Abstract
24
25 Category-specific impairments witnessed in patients with semantic deficits have broadly 

26 dissociated into natural and artificial kinds. However, how the category of food (more specifically, 

27 fruits and vegetables) fits into this distinction has been difficult to interpret, given a pattern of 

28 deficit that has inconsistently mapped onto either kind, despite its intuitive membership to the 

29 natural domain. The present study explores the effects of a manipulation of a visual sensory (i.e., 

30 color) or functional (i.e., orientation) feature on the consequential semantic processing of fruits 

31 and vegetables (and tools, by comparison), first at the behavioral and then at the neural level. The 

32 categorization of natural (i.e., fruits/vegetables) and artificial (i.e., utensils) entities was 

33 investigated via cross–modal priming.  Reaction time analysis indicated a reduction in priming for 

34 color-modified natural entities and orientation-modified artificial entities. Standard event-related 

35 potentials (ERP) analysis was performed, in addition to linear classification. For natural entities, a 

36 N400 effect at central channel sites was observed for the color-modified condition compared 

37 relative to normal and orientation conditions, with this difference confirmed by classification 

38 analysis. Conversely, there was no significant difference between conditions for the artificial 

39 category in either analysis. These findings provide strong evidence that color is an integral property 

40 to the categorization of fruits/vegetables, thus substantiating the claim that feature-based 

41 processing guides  as a function of semantic category.

42
43 Keywords: EEG, N400, Classification, Sensory-functional theory, Semantic memory

44
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45 1. Introduction

46 The way in which semantic concepts are represented in the brain has been largely informed 

47 by neuropsychological studies with brain-damaged patients (for a review, see Mahon & 

48 Caramazza, 2009) whose selective impairment in object recognition has been broadly 

49 distinguished between natural and artificial (manmade) entities. Notably, however, the category of 

50 food—namely, fruits/vegetables—has dissociated from this canonical natural/artificial distinction, 

51 with a pattern of deficit that has differentially accompanied an impairment either in the processing 

52 of natural entities (i.e., animals; Warrington & Shallice, 1984), artificial entities (i.e., tools; Hillis 

53 & Caramazza, 1991) or has demonstrated isolated impairment (Hart, Berndt, & Caramazza, 1985). 

54

55 Several theories have been proposed to explain the structural organization of concepts in 

56 the brain. These theories broadly fall into two general groups. Those that follow a correlated 

57 structure principle posit that, while the number of shared versus distinctive features between 

58 objects differs across categories, this conceptual distinction is not instantiated at the level of 

59 functional neuroanatomy. Those that ascribe to a neural structure principle claim instead that 

60 dissociable neural substrates are differentially involved in representing categories (for review, see 

61 Mahon & Caramazza, 2009).  Proponents of the correlated structure principle assert that the co-

62 occurrence of particular feature types, with an interplay between feature distinctiveness versus 

63 sharedness, is what facilitates categorical knowledge and identification (e.g., Conceptual Structure 

64 Account; Tyler & Moss, 2001). By extension, categories that possess high within-category 

65 similarity, such as that of fruits/vegetables, could be rendered more susceptible to deficit 

66 potentially due to a crowding effect of feature overlap that results in low discriminability at the 

67 basic level (Humphreys & Forde, 2001). 
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68

69 Alternatively, adherents of the neural structure principle emphasize representational 

70 constraints based on the internal neuroanatomical structure of the brain. Some scholars propose a 

71 categorical organization of knowledge (Caramazza and Shelton, 1998; Tranel, Damasio, & 

72 Damasio, 1997; Damasio, 1990;), claiming that evolutionary pressures imposed functionally 

73 dissociable neural circuits dedicated to specific categories (e.g., animals, tools, faces) that have 

74 aided our survival. Others, instead, propose that distributed, modality-specific subsystems 

75 represent the core organizing principle of semantics; and that these subsystems are differentially 

76 important to each category (e.g., Borgo & Shallice, 2003; Warrington & Shallice, 1984). More 

77 specifically, they propose that natural entities rely on sensory properties (e.g., color, shape) and 

78 artificial entities on functional properties (e.g., use and manipulability) for their classification. 

79 Indeed, neurophysiological evidence has revealed an interaction between the processing of 

80 category and feature type; lateral portions of the fusiform gyrus have shown to be more active for 

81 animals (e.g., natural) as compared to manmade tools (e.g., artificial; Chao, Haxby, & Martin, 

82 1999), with these areas linked to distinct feature processing regions associated with color (i.e., 

83 ventral temporal cortex) versus action-related information (i.e., middle temporal cortex; Martin & 

84 Chao, 2001), respectively. 

85

86 Attempts towards resolving the conceptual organization of semantics have primarily 

87 focused on a subset of categories, such as animals (i.e., natural) and manmade tools (i.e., artificial), 

88 while the category of fruits/vegetables has been relatively under-investigated, despite its relevance 

89 to our survival and its inconsistent pattern of deficit that can potentially be mapped to both natural 

90 and artificial domains. On the one hand, since fruits/vegetables are (i) ontologically considered to 
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91 be natural objects and (ii)  necessary to our survival, the features important to their recognition 

92 should be similar to those of other natural entities, like animals. Indeed, their core semantics 

93 seemingly rely heavily on shape and color information (e.g., a banana is elongated, yellow and 

94 relatively small, while a watermelon is round, green and relatively large). On the other hand 

95 however, fruits/vegetables also frequently engage motoric systems to properly execute eating, 

96 which could render them similar to artificial entities and thus relying on function. The current 

97 paper aimed to address the role of feature-based processing in the categorization of 

98 fruits/vegetables compared to the well-investigated artificial category of tools.  

99

100 Of the sensory attributes theoretically associated with natural entities, color has garnered 

101 particular attention. Some patients have demonstrated dissociation between the perception of color 

102 and the knowledge of color typicality associated with objects (Miceli et al., 2001; Samson & Pillon, 

103 2003; Stasenko, Garcea, Dombovy, & Mahon, 2014). A deficit in identifying the appropriate 

104 colors associated with fruits/vegetables has either been observed in the presence of intact low-level 

105 visual color processing (Samson and Pillon, 2003), or has not disproportionately affected the 

106 fruits/vegetables category compared to other living categories (Miceli et al., 2001).  However, 

107 others have proposed a ‘fractionation’ of visual information relevant within the natural category, 

108 with animals relying more on form and fruits/vegetables on color (Breedin, Saffran, & Coslett, 

109 1994; Cree & Mcrae, 2003; Humphreys & Forde, 2001). Indeed, some studies have supported a 

110 facilitation of color in the classification and naming of fruits/vegetables (Bramão, Reis, Magnus, 

111 & Faísca, 2011; Rossion & Pourtois, 2004), although findings have been equivocal, with some 

112 studies either not finding such facilitation (Biederman & Ju, 1988) or showing a greater relative 

113 impact for shape information (Scorolli & Borghi, 2015).
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114  

115 Recognition of artificial entities has been shown to rely to a large extent on functional 

116 information (e.g., manipulability). Tucker & Ellis (1998) presented participants with an orientation 

117 classification task of manipulable objects and demonstrated that objects whose handle was aligned 

118 with the responding hand elicited quicker reaction times in orientation judgments (i.e., affordance 

119 effect; Gibson, 1977).  Such sensitivity to affordance has also been observed in priming tasks in 

120 which prior exposure to a line congruent with the graspable axis of a subsequently-presented object 

121 has facilitated performance (Chainay, Naouri, & Pavec, 2011). At the neural level, the importance 

122 of action-related knowledge to the concept of tools has been argued on the basis of dorsal region 

123 activation (associated with the “where” pathway; Goodale & Milner, 1992) to the viewing (Chao 

124 & Martin, 2000; Mahon et al., 2007) as well as the naming of tool stimuli (Rumiati, Weiss, 

125 Shallice, Ottoboni, & Noth, 2004). Also, the motion associated with tools differentially activates 

126 regions of the lateral temporal cortex from that of biological motion (Beauchamp and colleagues, 

127 2002).

128

129 In sum, there is ongoing debate as to the neural organization of the semantic system, and 

130 how conceptual representations are situated in the perceptual and motoric systems. In this context, 

131 there are both experimental results (although not entirely uncontroversial) and theoretical 

132 argument to support the hypothesis that visual information (and color, in particular) is critical for 

133 natural object representation/processing, whereas motor–related information (e.g., orientation) is 

134 critical for manmade object representation/processing. However, the extent to which this 

135 asymmetry lies at the core of these concepts is hazy. For example, it is unclear to what extent 

136 fruits/vegetables would obey the classic natural vs. artificial dichotomy, and how automatically 
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137 this asymmetry may arise during semantic processing. These are the issues that we wish to address 

138 in this paper.

139

140 We report the results of two cross–modal priming experiments in which object images are 

141 used to prime lexical decisions on written words. The core manipulation behind our design is that 

142 prime images are either (i) normal, (ii) color–modified, or (iii) orientation–modified 

143 representations of the relevant objects. Our hypothesis is as follows: if color and orientation are 

144 asymmetrically important for natural (fruits/vegetables) and manmade (tools) objects, 

145 respectively, then color-modified primes should render a more severe priming reduction for 

146 fruits/vegetables, while orientation-modified primes would shrink priming for tools. Alternatively, 

147 if fruits/vegetables share overlap with the artificial category, orientation-modified primes should 

148 also yield a priming reduction in this category. 

149

150 Importantly, we presented primes for a short duration (100 ms), with an equally short 

151 Stimulus-Onset Asynchrony (SOA; 100 ms), in line with previous work tapping on early semantic 

152 processing and the distinction between natural and artificial entities (Dell’Acqua & Grainger, 

153 1999; Kircher, Sass, & Sachs, 2009). Also, the cross modal design was meant to ensure that any 

154 generated effect would be genuinely semantic in nature, engaging access across domains.

155

156 In Experiment 1, we focused on response times—the experiment was entirely behavioural. 

157 In Experiment 2, we collected electrophysiological measures via EEG. A widely used index of 

158 semantic processing is the N400 component—a negative deflection in the waveform peaking at 

159 about 400ms post stimulus onset, which responds to the semantic ‘predictability’ of a stimulus in 
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160 a given context (for a review, see Kutas & Federmeier, 2011). This component has commonly 

161 been elicited by priming paradigms: greater negativity reflects a reduction in relatedness between 

162 primes and targets (Kutas & Federmeier, 2011). N400 effects have been observed for picture-

163 picture priming of real objects (Mcpherson and Holcomb, 1999), and cross-modal priming using 

164 both real objects (Kiefer, 2001) and line drawings (Nigam, Hoffman, & Simons, 1992) paired with 

165 words. In addition, a graded modulation of the N400 component was reported to reflect a similarly 

166 graded modulation of prime-target relatedness (Geukes et al., 2013); this finding is particularly 

167 pertinent to the current study, which aims to compare the effect of a prime subjected to visual 

168 feature modification on subsequent target processing. 

169

170 Extending our hypothesis to the EEG domain, we expect that if color is indeed more crucial 

171 for natural (fruits/vegetables) entities, color-modified primes should elicit an N400 for this 

172 category. Symmetrically, if orientation is critical for manmade entities (tools), then orientation-

173 modified primes should elicit an N400 in this domain. Such findings would suggest that a 

174 modification in a feature critical to a given category is perceived as a semantic violation, thus 

175 supporting the claim that such a feature is integrally "woven" into the semantic representation of 

176 that category. If, instead, fruits and vegetables also critically depend on function (similarly to 

177 tools), we may observe a graded N400 negativity, with the degree of negativity modulated by the 

178 importance of that feature.

179

180 Prior EEG research already speaks to the ability of this technique to distinguish between 

181 perceptual and semantic sources of activation (Kiefer, 2001). Moscoso del Prado Martin and 

182 colleagues (2006) investigated the spatio-temporal activity patterns of color-related versus form-
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183 related words, providing evidence for earlier peak processing of color compared to form. Also, 

184 these authors reported that topographies mapped to different underlying neural sources. 

185 Furthermore, Amsel and colleagues (2014) utilized a go/no-go semantic decision task to 

186 demonstrate that an incongruent attribute of a given object (e.g., purple – lime), when paired 

187 together, elicited an N200 component for the no-go condition. This N200 effect was also 

188 demonstrated in a similar task for incongruent action-related knowledge referring to graspable 

189 objects (Amsel, Urbach, & Kutas, 2013). The authors interpreted these results in support of 

190 grounded views of cognition, maintaining that the neural circuitry responsible for perceiving and 

191 acting on objects play a role in their conceptual access from long-term memory (Barsalou, 2008). 

192 Furthermore, given the high dimensionality of EEG data, exploratory analysis was 

193 performed using linear classification. Previous studies have successfully utilized semantic-

194 decoding algorithms (Simanova, Gerven, Oostenveld, & Hagoort, 2010) to disentangle 

195 representations at the neural level.

196

197 2. Experiment 1

198 2.1. Methods

199 2.1.1. Participants

200 A total of 60 healthy right-handed (confirmed by the Edinburgh Handedness Inventory; 

201 Oldfield, 1971), native Italian speakers with normal or corrected-to-normal vision participated in 

202 the experiment (age range: 18-34 years). Participants were recruited via an advertisement posted 

203 on a dedicated social-networking site, and were monetarily compensated for their participation. 

204 All participants were naive to the purpose of the experiment and provided informed written 
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205 consent. The experiment was part of a program that has been approved by the Ethics Committee 

206 of SISSA.

207  

208 2.1.1. Materials

209 Forty–two Italian words served as critical target stimuli for the experiment. Twenty–one 

210 of them represent natural objects (fruits/vegetables; e.g., pomodoro, tomato) and twenty–one 

211 represent tools (kitchen utensils; e.g., forchetta, fork). The main lexical features of these 42 words 

212 are illustrated in Table 1a. 

213 --------------------------
214 _

Lexical features Natural Artificial

Mean SD Mean SD

Frequency 3.11 0.55 3.07 0.72

Word length (letters) 7.24 1.82 8.1 2.11

Coltheart’s N 12.43 19.8 7.57 6.53

Old20 1.8 0.58 1.88 0.74

215 Table 1a. Lexical features for each category. Frequency is given on a zipf scale, which is an 
216 improved logarithmic transformation of number of occurrences per million words (van Heuven, 
217 Mandera, Keuleers, & Brysbaert, 2014).
218
219

Condition Natural Artificial

Mean SD Mean SD

Brightness 134.12 10.49 133.77 9.86

Spatial frequency 0.0052  0.0022 0.0059 0.0013

Size 0.0006  0.0023 0.0007 0.0032

Discriminability 7.61 18.46 8.13 15
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Familiarity 58.3 28.9 57.15 29.11

220 Table 1b. Visual properties and evaluative ratings of stimuli for each category.
221
222 --------------------------
223
224 Each target word was associated with three different prime images, representing the 

225 corresponding object: (i) in its canonical color and position (identity prime); (ii) with a clearly 

226 non–standard color (color modified prime); (iii) with a clearly non–standard position (orientation–

227 modified prime). In the case of objects without a clear canonical base position (e.g., knife; see 

228 (Vannucci & Viggiano, 2000), the original image was chosen to be the one with maximum 

229 affordability for a right–hand grasp (Tucker & Ellis, 1998). Identity primes were all taken from 

230 the FRIDa database (Foroni, Pergola, Argiris, & Rumiati, 2013).

231

232 For the orientation modification, images were rotated 180 degrees in the counterclockwise 

233 direction. For the color modification, images were converted to CIELab, which nonlinearly 

234 compresses an RGB color image into a three–dimensional coordinate space with the position on 

235 one axis representing the red-green opponent channel (a), another the yellow–blue opponent 

236 channel (b), and the third the lightness of color, which is the cube root of the relative luminance  

237 (Hoffmann, 2003). The advantage of using such a color space is that the lightness contrast can be 

238 manipulated independent of a color modification. Furthermore, transformations of images that are 

239 high in gray content respond well to manipulations in this color space, meaning that more drastic 

240 changes can be achieved as compared to a uni–coordinate modification of hue in the HSL or HSV 

241 color space. This was particularly useful for the artificial category, which contained a high number 

242 of objects whose principle color was gray.  Modifications to both natural and artificial objects were 

243 achieved using a custom–written MATLAB® code and made by a fixed proportional change in a– 
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244 and b–channel value coefficients, the position of each pixel for either axis multiplied by .8 and .2, 

245 respectively. This created a purple–blue effect, which we selected among other available options 

246 because it rendered a color most naturalistically improbable for our stimuli (e.g., we didn’t have 

247 any object among our targets that is prototypically purple or blue). Examples of these prime images 

248 can be found in the experimental design schematic of Fig. 1. 

249

250 Identity prime images were matched between natural objects and tools for brightness, 

251 spatial frequency, and size in addition to evaluative ratings of discriminability and familiarity, 

252 which were based on a 100-point scale. These ratings were obtained from the normative ratings of 

253 the FRIDa database. To compute brightness, images were converted to grayscale and the average 

254 brightness extracted. To compute object size, objects were isolated using a layer mask in an online 

255 image editing application (https://pixlr.com/). Pixels representing the object were converted to 

256 black, the background was converted to white, and the ratio between the two was calculated. 

257 Spatial frequency was calculated by employing a bi-dimensional fast Fourier transform, which 

258 converts the image represented as an array of brightness values to its unique representation in the 

259 spatial frequency domain. After transformation, individual pixels represent the power of specific 

260 spatial frequencies in a given direction (Foroni et al., 2013). Values for each feature were obtained 

261 using custom-written MATLAB® codes (Mathworks, Natick, Massachussets, USA). Both color 

262 and orientation–modified images underwent the exact same pipeline (for values of all features, see 

263 Table 1b).

264
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265 The assignment of each word target to the three priming conditions was counterbalanced 

266 over participants in a Latin Square design, so that all participants received primes from each 

267 condition, but saw each target only once.

268

269 For the purpose of the lexical decisions task, 42 nonwords were generated as further target 

270 stimuli. They were created from real words by either vowel inversion or single consonant 

271 substitution (e.g., pentalo from the Italian word pentola, pot)—we wanted the task to be 

272 challenging, thus engaging participants in deep lexical processing. In order to avoid participants 

273 being able to successfully perform the task based on stimuli surface features, words and nonwords 

274 were matched for length in letters (Words: M=7.67, SD=2.02; Nonwords: M=7.55, SD=1.75) and 

275 orthographic neighborhood size (as measured by OLD20; Words: M=1.84, SD=0.658; Nonwords: 

276 M=1.9, SD=0.686). These targets were also associated with prime images, similarly to the word–

277 target stimuli. However, nonword-target stimuli were associated with only one image (e.g., 

278 normal, color, or orientation) and were not subjected to rotation.

279 Images were displayed within a 450–pixel square, against a gray background. All letter 

280 strings were presented in size 36 Courier New Font, and displayed in white on the same gray 

281 background. 

282

283 2.1.3. Procedure

284 Participants were tested in a dimly lit room. Participants were seated approximately 60 

285 cm from a monitor with a screen diagonal of 48 cm (resolution: 1280 x 1024 pixels; aspect ration 

286 4:3; refresh rate: 75Hz) and instructed to decide whether or not the letter strings appearing on the 

287 screen represented existing Italian words. They were also told that the letter strings would be 
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288 preceded by a fixation cross, but no mention was made of the presence of the prime images. On 

289 each trial, a fixation cross (500ms duration) was followed by the presentation of the prime image 

290 (100ms duration), which was followed by a blank screen (100ms duration) and then by the target 

291 string of letters.  Participants were asked to respond by key press to the question "Is it a word or a 

292 nonword?" as quickly and accurately as possible (for a schematic representation including 

293 examples of condition manipulations, see Fig. 1). Keys associated with word and nonword trials 

294 were counterbalanced across participants. Participants were given six practice trials to familiarize 

295 themselves with the task, in addition to the first trial being considered as a practice trial. 

296

297 --------------------------
298

299

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.22.110338doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110338
http://creativecommons.org/licenses/by/4.0/


15

300 Fig. 1. Experimental design schematic of trials of normal condition with color and orientation 
301 modification conditions for each category shown to the left.  Participants were asked to respond 
302 by key press to the question “Is it a word or nonword?” Target strings remained on the screen for 
303 3000ms or until key press. 
304
305 --------------------------
306

307

308 Overall, the experiment included 84 trials (42 words and 42 nonwords), for a total duration 

309 of about 6 minutes, with the first trial being omitted from the analyses as practice. Stimuli were 

310 presented using E-Prime 2.0 Professional (Psychology Software Tools, Sharpsburg, PA).

311

312 2.1.4. Analysis

313 Data were analyzed using mixed–effect modeling as implemented in the R package lme4 

314 (Bates, Maechler, & Dai, 2009).The dependent variable was response time, inverse transformed in 

315 order to reduce the typical right skewness shown by RT distributions. We only considered correct 

316 responses in these analyses. 

317 Fixed factors were target Category (natural object vs. tools), prime Condition (normal vs. 

318 color-modified vs. orientation-modified image) and their interaction. This defines the core 

319 structure of the experimental design. Participants and target words were also specified as random 

320 intercept factors, which took into consideration the theoretically uninteresting variation introduced 

321 into the data by these factors. This model was confirmed to be the simplest with maximum 

322 explained variance by the likelihood ratio test (Pinheiro & Bates, 2000). Robustness to outliers of 

323 the model estimates was checked with model criticism as advocated by Baayen, Davidson, and 

324 Bates (2008), that is, models were refitted after removing those data points whose standardized 

325 residual error was higher than 2.5 and effects were considered significant only if they resisted this 
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326 procedure). P-values were computed adopting the Satterthwaite approximation for degrees of 

327 freedom (Satterthwaite, 1946) as implemented in the lmerTest R package (Kuznetsova, 

328 Christensen, & Brockhoff, 2013). In addition, ggplot2 (Wickham, 2009), reshape (Wickham, 

329 2007), and visreg (Breheny & Burchett, 2013), were used as part of the R system for statistical 

330 computing (Ver. 2.8.1; R Development Core Team, 2013).

331

332 2.2. Results

333 Three participants were excluded from the analyses in having exceeded three standard 

334 deviations in either reaction time (1 participant) or accuracy (2 participants) performance. Thus, 

335 57 participants (29 female) remained in the final analysis (age: M = 23.67; SD = 3.32). One word 

336 was also eliminated from the analysis due to an accuracy of less than 85%. Furthermore, a 

337 histogram of individual RTs pooled across all subjects revealed two additional extreme RTs 

338 (RT>2500ms), likely to be the result of task inattentiveness, which were thus removed. After 

339 removing incorrect trials (n=263; see Supplementary Material Fig. A.1 for accuracies by 

340 condition), 4476 data points (2254 word trials) remained in the final analysis. The overall accuracy 

341 rate for the task was 94.45%. Means, medians and standard deviations for response times in the 

342 six conditions are illustrated in Table 2a. 

343

344 Statistical modeling revealed a significant effect of target Category [F(1, 38.93) = 7.7, p = 

345 .008], prime Condition [F(2, 2842.39) = 6.86, p = .001], and, most importantly, their interaction 

346 [F(2, 2842.31) = 4.47, p = .01].  To explore the interaction, we fitted separate models for natural 

347 and artificial target words. For the natural category, color–modified primes generated a significant 

348 reduction in priming compared to orientation–modified (t(56) = -2.12, p = .034) and normal primes 
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349 (t(56) = -3.87, p < .001), which in turn didn’t differ significantly from each other (P = .084). For the 

350 artificial items instead, orientation–modified primes penalized priming the most, providing less 

351 priming than both color–modified (t(56) = -2, p = .045)  and normal primes (t(56) = -2.88, p = .005), 

352 which in turn didn’t differ from each other (P = .38).

353

354 Reaction times were also binned into quartiles to explore the effect across the distribution. 

355 F-statistics and p-values for the effect of condition across quartiles, divided by category, is 

356 provided in Table 2b.  An interesting finding is that, for the natural category, a visualization of the 

357 data revealed a similar pattern of performance across all response time intervals. However, for the 

358 artificial category, the main effect of condition emerged at later time intervals, representing a 

359 distributional shift. Such a shift in RT distribution could potentially be attributed to retrospective 

360 retrieval processes, where the target is semantically matched to the prime (Yap, Balota, & Tan, 

361 2013). 

362 --------------------------
363

364
Condition Natural Artificial

Mean Median SD Mean Median SD

Normal 672.67 614 221.06 759.79 702.5 258.83

Color 705.41 646 230.66 779.24 719.5 276.92

Orientation 684.98 625 235.51 804.28 735.5 292.36
365
366 Table 2a. Raw RT means, medians, and standard deviations for Condition x Category. 
367
368

Quartile Natural Artificial
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F-value Pr(>F) F-value Pr(>F)

Q1 13.52 <.001 1.59 .206

Q2 15.46 <.001 4.42 .02

Q3 14.87 <.001 12.7 <.001

Q4 1.45 .235 5.69 .004
369
370 Table 2b. F-statistics for anova of models divided by category and quartile. 
371
372 --------------------------
373

374 2.3. Discussion

375 We used a cross-modal, lexical decision priming task to test the hypothesis that natural and 

376 artificial entities rely on different properties for their semantic processing. We have shown that, 

377 indeed, the processing of natural entities is more sensitive to modifications of a sensory property 

378 (i.e., color), while that of artificial entities is more sensitive to modifications of a functional 

379 property (i.e., orientation). 

380 The cross–modality of the effect (primes were object images, while targets were words) 

381 further suggests that the effect described here is semantic in nature. Moreover, both words and 

382 nonword targets were constructed from real words representing the prime object by a single 

383 vowel/consonant change; in this way, both word and nonword targets were semantically related to 

384 the prime image. Neely (1977) described a retrospective matching strategy in which checking 

385 whether a target is related to a prime may induce priming in the lexical decision task. As nonword 

386 targets are typically unrelated to the prime, the prime-target relatedness proportion is lower for 

387 nonwords. as the thus reflecting the same prime-target relatedness proportion for each. In the 

388 current study, the relatedness proportion between prime and target was 1 for both words and 

389 nonwords, meaning that participants could not have employed a retrospective matching strategy 
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390 to identify words differentially from nonwords based on a semantic relationship that only target 

391 words share with the prime (de Wit & Kinoshita, 2015). This is generally considered as further 

392 confirmation that priming derives from access at the conceptual level.

393

394 While color is most integral to the processing of fruits/vegetables and orientation to the 

395 processing of tools, there were also reductions in priming for each of the modified conditions with 

396 respect to the normal condition. This suggests that, while a certain feature may be of critical 

397 importance to a particular category, other features may also play a role in its conceptual 

398 representation. Furthermore, this reduction was more evident for fruits/vegetables, which 

399 displayed greater susceptibility to priming interference by an orientation transformation than 

400 utensils did to a color change. This is not particularly surprising after all; as hypothesized, 

401 fruits/vegetables can also be considered graspable entities that invoke motor affordances (although 

402 such an effect has been reported to depend on overt responses to graspability, which were not 

403 involved in this task; Netelenbos and Gonzalez, 2015).

404

405 3. Experiment 2

406 In Experiment 2, we utilized EEG to test whether the interaction between category and 

407 feature type would manifest at the neural level, as indexed by the N400 component. We 

408 hypothesized that a modification of a feature integral to the representation of a given category 

409 would be processed as a semantic violation, thus eliciting an increase in negativity in the N400 

410 time window. 

411

412 3.1. Methods
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413 3.1.1. Participants

414 Forty native speakers of Italian (32 after exclusion; see Data section below) partook in the 

415 experiment. Participants were healthy, right-handed (confirmed by the Edinburgh Handedness 

416 Inventory; Oldfield, 1971) individuals (mean age ± standard deviation= 24.33 ± 2.45; range= 19-

417 30 years; 17 females/15 males), recruited via an advertisement posted on a dedicated social-

418 networking site and monetarily compensated (25€) for their participation. All participants had 

419 normal or corrected-to-normal visual acuity, no history of neurological or psychiatric illness, and 

420 no history of drug or alcohol abuse that might compromise cognitive functioning. All participants 

421 were naive to the purpose of the experiment and provided informed written consent. The 

422 experiment was part of a program that was approved by the ethics committee of SISSA.

423

424 3.1.2. Materials

425 The materials used in Experiment 2 were identical to those employed in Experiment 1.

426

427 3.1.3. Methods

428 Participants were seated approximately 60 cm from a monitor with a screen diagonal of 48 

429 cm (resolution: 1280 x 1024 pixels; aspect ration 4:3; refresh rate: 120Hz). Participants were 

430 presented with a lexical decision-priming paradigm identical to the one used in Experiment 1 with 

431 one exception- rather than indicating their response by button press, they were asked to silently 

432 categorize the string of letters as word or nonword. However, on approximately 25% of trials, a 

433 question mark appeared following the target string, prompting a vocalized response. This was done 

434 to maintain task engagement while minimizing any motor-related contamination introduced by a 
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435 button press (Vliet et al., 2014). Each target string was associated with one question mark to ensure 

436 that participants could correctly classify all target strings.

437

438 Overall, one block of the experiment consisted of 84 trials (42 words and 42 nonwords), 

439 identical to Experiment 1, and was repeated five times. Stimuli were presented using E-Prime 2.0 

440 Professional (Schneider, Eschman, & Zuccolotto, 2012).  The experiment was performed in a 

441 sound-proof cabin. All electrical devices that were not sources of direct current and could interfere 

442 with EEG wave acquisition were turned off before experiment onset.

443

444 3.1.4. EEG Acquisition

445 Continuous EEG was recorded from an array of 128 silver-chloride Biosemi active 

446 electrodes mounted on an elastic cap (topographic placement: radial ABC layout system). Two 

447 external electrodes were placed on the left and right mastoids (A1, A2) as reference. However, due 

448 to high impedance values and signal noise discovered upon manual inspection, mastoids were later 

449 discarded and average reference used (i.e., mean of all electrodes). EEG signal was amplified using 

450 a Biosemi Active-Two amplifier system (Biosemi, Amsterdam, Netherlands) at a sampling rate of 

451 1024 Hz. An electrode located near Cz (common mode sense: CMS) was used as the recording 

452 reference. The direct current offset was kept below 25 mV. Data acquisition was made using the 

453 software Actiview605-Lores (www.biosemi.com).

454

455 3.1.5. EEG Preprocessing

456 EEGLAB (Delorme & Makeig, 2004) and Fieldtrip 

457 (http://www.ru.nl/neuroimaging/fieldtrip)- open source Matlab toolboxes- were used to perform 
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458 all preprocessing steps. Off-line data preprocessing included a digital high-pass filter of 0.1 Hz (as 

459 recommended by Tanner, Morgan-Short, & Luck, 2015) and a low-pass filter of 100 Hz. Data 

460 were down–sampled to 256 Hz and segmented into epochs of 1200 ms, starting 200 ms before 

461 prime onset. Before proceeding with data cleaning, incorrect trials were identified and removed. 

462 Incorrect classification of a target string resulted in all trials in which that string appeared being 

463 removed. Electrodes exceeding a certain z-score threshold (kurtosis = 4; probability = 4; spectrum 

464 = 3) were removed from the data (Delorme, Sejnowski, & Makeig, 2007). A subset of electrodes 

465 sensitive to ocular movements were withheld from this threshold check and later passed to 

466 Independent Component Analysis (ICA). Noisy trials were deleted by visual inspection and data 

467 were referenced to the average. ICA using the Infomax algorithm was performed on all data for 

468 elimination of artifacts related to ocular and muscular movements. Data were time-locked to the 

469 onset of the prime image and baseline (200 ms pre-prime onset) removed. Automatic trial rejection 

470 was then performed for a more fine-grained cleaning: ±50 dB threshold in the 0-2 Hz frequency 

471 range (for capturing residual eye movements) and +25 to -100 dB in the 20-40 Hz (for capturing 

472 muscle movements). Finally, missing electrode data were interpolated to the original 128-electrode 

473 montage. 

474

475 3.1.6. Data 

476 Of the initial 40 participants, 32 were retained for the analysis. One participant was 

477 eliminated due to high error rate (8.3% trials) and the remaining seven due to excessive noise (> 

478 25% of trials were rejected). Error rate was less than 1% (M = 0.7; SD = 1.2) and the average 

479 number of trials rejected due to noise was less than 15% (M = 86.67%; SD = 6.6%) for the 

480 remaining subjects. 
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481

482 3.1.7. Standard ERP Analysis 

483 ERPs were computed for epochs extending from 200 ms pre-prime onset to 1000 ms post-

484 target onset. Analysis was performed using threshold-free cluster-enhancement (TFCE), which is 

485 a cluster-based technique that embeds permutation-based statistics for significance testing 

486 (Mensen & Bern, 2014). The advantage of TFCE over other cluster size/mass techniques is that it 

487 uses information about both the intensity and the spatial distribution of the signal to enhance weak, 

488 but broadly supported signals to the same numerical values as strong, but highly focal signals, 

489 without having to select a cluster-forming threshold a priori (for a more thorough description, see 

490 Mensen & Bern, 2014). In addition, this technique outperforms other clustering methods in 

491 controlling for Type 1 errors (Pernet, Latinus, Nichols, & Rousselet, 2015). The entire epoch was 

492 submitted to TFCE analysis, which resulted in a significance matrix (electrode x time) in which 

493 clusters were identified based on the span of significance in both time and space. The cluster of 

494 interest was the N400 time window, which was pre-defined as a window spanning from 250-500ms 

495 post-target onset (Kutas & Federmeier, 2009).

496

497 The first comparison of interest was between all word and nonword trials, irrespective of 

498 prime pairing. This was to ensure that our paradigm indeed elicited the most basic semantic 

499 distinction between meaningless and meaningful stimuli as previously demonstrated in the 

500 literature (Kutas & Federmeier, 2000). Average waveforms for all word and nonword trials were 

501 calculated for each participant and a grand average computed to compare conditions. Thereafter, 

502 nonword trials were discarded from further analysis and only word trials considered. Word trials 

503 were divided by category into those representing natural versus artificial entities. For each 
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504 category, all combinations of conditions were compared (i.e., normalcolor, normalorientation, 

505 colororientation).

506

507 3.1.8. Classification

508 In addition, we performed a searchlight classification on all electrodes in the interval of 

509 250 to 500 ms post-target onset, corresponding to the N400 time window (Kutas & Federmeier, 

510 2009). We chose linear discriminant analysis (LDA) classification because it employs an algorithm 

511 that is able to handle input of more than two classes; LDA utilizes a data reduction technique to 

512 divide the feature space based on maximum variance, similar to Principle Component Analysis 

513 (PCA), and generates weights to discriminate between classes (Subasi & Gursoy, 2010). LDA 

514 classification was performed separately for the natural category (all conditions included) and then 

515 artificial category (all conditions included). 

516

517 Classification was performed at the individual participant level. For each participant, 

518 individual trials, serving as observations, were submitted to the classifier. In cases where 

519 conditions contained different numbers of trials, a random subset of trials from the larger condition 

520 was sampled to match. Algorithms employed a cross-validation measure and an odd-even partition 

521 scheme whereby both even and odd runs served as training and testing sets. A searchlight approach 

522 was used to create neighborhoods of channels with each channel serving as ‘origin’ and identifying 

523 neighboring sensors within a certain configuration. Neighbors were defined based on a 

524 triangulation algorithm in Fieldtrip that allows for the building of triangles of ‘nodes’ that are 

525 independent of channel distances. Classification was then performed on each searchlight 

526 neighborhood across the entire scalp. Accuracies were generated per comparison, per participant, 
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527 which were then thresholded for significance at the group level using Monte Carlo permutation 

528 testing with 10000 iterations. Essentially, permutation testing in this context involves subtracting 

529 the chance accuracy from the computed accuracies and randomly flipping the sign over iterations. 

530 This generates multiple t-statistics over iterations that are then corrected for multiple comparisons 

531 using TFCE, which results in a z-score map that can be plotted for significance. Significance was 

532 defined as a one-tail probability value of z > 1.64 (p < 0.05).

533

534 3.2. Results

535 3.2.1. ERP results

536 In a first comparison between word and nonword trials, TFCE analysis showed that 

537 nonword trials generated greater negativity relative to word trials for 19 unique channels in the left 

538 fronto-central region for the time range of 288 – 423 ms (peak channel at 389 ms: C1; T = -6.27; 

539 p < 0.002). This finding is in line with previous semantic literature that has demonstrated an N400 

540 effect for meaningless compared to meaningful stimuli (Kutas & Federmeier, 2000). 

541

542 Examining word trials only, for the natural category, TFCE analysis revealed a significant 

543 difference between the color and normal condition, such that color trials elicited significantly 

544 greater negativity than normal trials for 11 unique channels in the left fronto-central region in the 

545 time range of 213 – 387 ms (peak channel at 256 ms: C1; T = 6.12; p < 0.009). The resulting brain 

546 topography and grand mean waveforms for all three conditions can be seen in Fig 2. Next, although 

547 an evident difference emerged in the grand mean for selected electrodes between the color and 

548 orientation conditions as well, TFCE confirmed that the color condition elicited a greater N400 

549 response with respect to the orientation condition. This effect was found for 8 unique channels in 
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550 the central region for the time range of 299 – 381 ms (peak channel at 320 ms: B1; T = -6.07; p < 

551 0.001; see Fig. 3). These findings are in line with our hypothesis that a color-modification for 

552 fruits/vegetables should yield a semantic violation as indexed by an increase in N400 amplitude. 

553 Last, a comparison between orientation and normal conditions revealed one channel that exhibited 

554 significantly higher amplitude compared to the normal condition, in the centro-parietal region for 

555 the time range 89 – 97 ms (peak channel at 93 ms:  Pz; T = -5.88; p < 0.05).

556
557 --------------------------
558
559

560
561

562 Fig 2. Left panel: Topographic map of the brain at peak channel significance (~253 ms post-
563 target onset). Topography reflects the difference between the grand average for Color – Normal 
564 trials, black dots represent the 11 unique significant electrodes at p < 0.009. 
565 Right panel: Mean waveforms across the 11-electrode cluster plotted separately for the normal 
566 (red), color (blue), and orientation (green) conditions. Significance reflects the difference 
567 between the color and normal condition (orientation is also plotted for visualization of the pattern 
568 of effect). Shaded regions along the waveforms indicate standard error of the mean. The shaded 
569 yellow bar denotes the N400 time window. The orientation condition elicited a greater positivity 
570 in the N400 time window with respect to the normal condition, whereas the color condition 
571 elicited the canonical N400.
572
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573 --------------------------
574

575

576 Fig 3. Left panel: Topographic map of the brain at peak channel significance (~320 ms post-
577 target onset). Topography reflects the difference between the grand average for Color – 
578 Orientation trials, black dots represent the 8 unique significant electrodes at p < 0.001. 
579 Right panel: Mean waveforms across the 8-electrode cluster plotted separately for the normal 
580 (red), color (blue), and orientation (green) conditions. Significance reflects the difference 
581 between the color and orientation condition (normal is also plotted for visualization of the pattern 
582 of effect). Shaded regions along the waveforms indicate standard error of the mean. The shaded 
583 yellow bar denotes the N400 time window. The color condition, compared to the orientation 
584 condition, elicited the canonical N400.
585

586 --------------------------
587

588 For the artificial category, the color compared to normal condition revealed a significant 

589 cluster of 4 unique channels displaying greater negativity for the color compared to normal 

590 condition (peak channel at 102 ms (post-prime):  A26; T = -6.6; p < 0.03). This effect was of short 

591 duration, spanning 8 milliseconds, and only witnessed in the prime window. A comparison 

592 between the orientation and normal condition did not reveal significant channels at any time point 

593 (P > .1), nor did the comparison between the orientation and color condition. 
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594

595 3.2.1. ERP results

596 3.2.2. Classification results. 

597 A statistical z-score map of LDA accuracies can be found in Fig. 4. For the natural 

598 category, the LDA classifier successfully discriminated between the three conditions in 7 channels 

599 as origin in the searchlight (z-range:  1.7–2.18; p-range: .015–.045). These channels were located 

600 in the left fronto-central region and resembled the ERP scalp topography of significant channels 

601 for the word-nonword comparison as well as the natural category comparison, albeit to a lesser 

602 extent. These results confirm the robustness of the main finding that an exposure to a prime 

603 manipulation in a feature relevant to the categorization of the natural category of fruits/vegetables 

604 yields an effect in the N400 time window. 

605 --------------------------
606

607
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608 Fig. 4. A statistical z-score map of LDA accuracies for the natural category. Significance was 
609 defined as a one-tail probability value of z > 1.64 (p < 0.05) and can be observed in 7 channels 
610 that served as searchlight origins (dark red regions) in left fronto-central sites. 
611
612 --------------------------
613

614 For the artificial category, although there was no significant difference between conditions 

615 when comparing ERP amplitudes, one channel neighborhood was able to significantly 

616 discriminate between classes (z = 1.9, p = .029).

617

618 4. Discussion

619 ERP component analysis demonstrated a significant effect in the N400 time window (i.e., 250 

620 – 500 ms post-target onset) that was modulated by the manipulation in prime for fruits/vegetables. 

621 A comparison of the difference wave [orientation – normal vs. color – normal] revealed a 

622 significant negative deflection for the color-modified condition, in line with our predictions and 

623 with the results of Experiment 1. Interestingly, it was observed that the magnitude of this difference 

624 was driven by a positive deflection of the orientation-modified condition with respect to the normal 

625 condition. Given what appeared to be a trend towards a graded nature of a priming effect observed 

626 in the behavioral data of Experiment 1, it was hypothesized that an orientation-modification may 

627 also elicit an N400 effect, albeit to a significantly lesser extent than color. However, we did not 

628 observe such N400 modulation. One likely explanation is that although functional knowledge 

629 could still be relevant to the concept of fruits/vegetables, it may have a neural signature that cannot 

630 be captured by the N400 component alone (e.g., propagation from an earlier component; 

631 Mcpherson and Holcomb, 1999). 

632
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633 Quite interestingly, when we employed a multivariate data analysis tool, the LDA classifier 

634 was indeed able to accurately distinguish between the three conditions at fronto-central channel 

635 sites with a slightly left-lateralized bias; this pattern of results resembled the ERP scalp topography 

636 of significant channels for the word-nonword comparison as well as that of the color vs. normal 

637 condition comparison. LDA’s ability to discriminate between conditions could be due to the fact 

638 that, similarly to PCA, it projects the data into a space that is based on feature extraction of 

639 dimensions common to all input, to avoid redundancy and maximizes the difference between 

640 classes. However, as this analysis utilizes information at the individual trial level, it may be more 

641 sensitive to capturing differences between conditions that do not significantly emerge at the mean 

642 level.   

643

644 Conversely, ERP component analysis of the artificial category did not reveal a significant 

645 difference in the time window of interest. The only finding was a slight shift and reduction in the 

646 P100 (P1) component to the color compared to normal condition, which did not survive correction 

647 for multiple comparisons. In any case, this reduction could easily be due to low-level perceptual 

648 differences in the prime image as the P1 component has shown to be sensitive to external properties 

649 of the stimulus like luminance, which can consequently exert an influence on attention (Luck, 

650 Woodman, & Vogel, 2000). The fact that there was no observable N400 could be due to a number 

651 of reasons. One possibility is that action knowledge relating to manipulability may not be 

652 automatically engaged at the conceptual level. Indeed, a recent study by Yu and colleagues (2014) 

653 challenged the automaticity of an affordance effect previously reported by Tucker and Ellis, 

654 replicating their results only when explicit task instructions were given to imagine interacting with 

655 the object. This suggests that relevant motor regions may be activated only under specific 
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656 circumstances such as goal-directed behavior. However, given the pattern of behavioral results 

657 that would oppose this claim, it may be more plausible that factors interfering with capturing the 

658 neural response are, in fact, responsible. For instance, higher values of Coltheart’s N, which is a 

659 measure of orthographic neighborhood size (Coltheart, Davelaar, Jonasson, & Besner, 1977), has 

660 been shown to elicit N400s of smaller amplitude (Holcomb, Grainger, & O’Rourke, 2002). The 

661 artificial category did possess higher values of Coltheart’s N with respect to the natural category, 

662 which could have mitigated an effect. Given the several other constraints that we had on our stimuli 

663 selection (e.g., frequency and length matching, items needed to be easily picturable and have a 

664 characteristic color), it was impossible to work out a better matching on this front.

665

666 LDA classification was able to significantly discriminate between conditions in the N400 

667 time window at one right posterior channel site. Interestingly, a recent study by Hauser and 

668 colleages (2015) combined fMRI with EEG to show the scalp topography related to the hand 

669 motor area as defined by ROI analysis and found a similar pattern of activity at right-lateralized 

670 posterior sites. The fact that an effect did not emerge in the ERP amplitudes could most likely 

671 attest to the loss of information when trials are averaged across conditions, necessitating a finer-

672 grained (multivariate, across time and space) analysis (Murphy, Poesio, Bovolo, Bruzzone, & 

673 Dalponte, 2011). This finding suggests that information in the prime window did exert a 

674 differential effect on the N400 time window, such that meaningful information distinguishing 

675 between conditions was contained at this channel site despite the absence of an effect at the level 

676 of grand mean. However, that only one site could accurately distinguish between classes could 

677 also be the result of color not being as relevant to the artificial category; while some utensils may 

678 also possess a degree of color diagnosticity, there may not have been enough coherence within 
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679 the category to allow for a robust decision boundary to be drawn by the classifier. 

680

681

682

683 5. General Discussion

684 The objective of the current study was to assess if feature-based properties of 

685 fruits/vegetables and tools were integrated with object knowledge at the conceptual level. To this 

686 end, we administered a lexical semantic priming paradigm and recorded reaction times and neural 

687 responses to investigate the processing of an object when a modification of a feature potentially 

688 crucial to its conceptual representation has been presented. Analysis of the reaction time data of 

689 Experiment 1 supported the claim that the presentation of sensory or functionally relevant features 

690 can differentially enhance or detract from the priming effect depending on the type of category. 

691 Such evidence are in line with the sensory-functional hypothesis as first proposed by Warrington 

692 and Shallice (1984), whereby (i) concepts are grounded in the sensory and functional subsystems 

693 that are relevant to their processing and (ii) these subsystems are differentially important 

694 depending on category type. Moreover, the neural data, particularly for fruits/vegetables (FV), 

695 corroborates this claim as both standard ERP analysis and multivariate techniques revealed a 

696 significant modulation of semantic processing by color-modified primes.

697

698 Fruits/vegetables have proven to be a very interesting, yet still controversial category in 

699 the semantic literature. While ontologically considered to be a member of natural kinds, 

700 neuropsychological patient studies, in addition to work with healthy individuals, have shown it to 

701 be a category that, in some respects, traverses a coarse natural/artificial domain distinction (for a 
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702 review, see Capitani, Laiacona, Mahon, & Caramazza, 2003). In a review of posterior cerebral 

703 artery patients, Capitani and colleagues (2009) suggested that the underlying neural substrate for 

704 the processing of fruits/vegetables may be different than that of animals; specifically, findings 

705 from these patients suggest that middle fusiform lesions disproportionately impair plant life 

706 (including fruits/vegetables), whereas anterior temporal lesions that are typically the result of 

707 herpes simplex encephalitis create a disproportionate deficit for animals. A fractionation between 

708 animals and fruits/vegetables has also been proposed at the level of visual information, with the 

709 former relying more on form and the latter on color for semantic processing (Breedin et al., 1994; 

710 Cree & Mcrae, 2003; Humphreys & Forde, 2001). While studies have supported a facilitation by 

711 color of the processing of fruits/vegetables (Bramão et al., 2011; Rossion & Pourtois, 2004), results 

712 have been equivocal, with studies either not reporting such facilitation (Biederman & Ju, 1988) or 

713 showing a greater impact of other modal information to its processing (Scorolli & Borghi, 2015). 

714 The current study demonstrated that, indeed, color is an integral feature to the representation of 

715 fruits/vegetables at the conceptual level—response times during lexical-semantic processing of 

716 fruits/vegetables were primed substantially less when a target word was preceded by color-

717 modified primes of the same object, and electrophysiology nicely backed up this behavioral pattern 

718 of results.

719

720 An interesting, though not fully unexpected, finding was that LDA classification of the 

721 waveforms could accurately distinguish between all three conditions of fruits/vegetables, even if 

722 ERP (or response times) didn’t reveal significantly strong difference between orientation–

723 modified and normal pictures. This suggests that orientation may also be relevant to the 

724 categorization of fruits/vegetables, possibly because these are graspable entities with which we 
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725 must interact for our survival. The fact that a significant difference only emerged at the level of 

726 classification could be due to the fact that only some fruits/vegetables necessitate an appropriate 

727 affordance grasp for their consumption (e.g., a banana may necessitate more manipulation than a 

728 grape). It has been shown that fruits/vegetables can also invoke motor affordances in the 

729 categorization process, although such an effect has been observed for overt responses to 

730 graspability (Netelenbos and Gonzalez, 2015). It has, however, been suggested by Gainotti and 

731 colleagues (2010) that the left lateralization of lesions underlying a deficit in the processing of 

732 fruits/vegetables in posterior cerebral artery patient profiles (see Capitani et al., 2009) may reflect 

733 the reliance on motor knowledge that is necessary for eating actions. Here, we demonstrate that 

734 the mere viewing of fruits/vegetables may automatically-activate motor affordance. Although 

735 orientation appears relevant to the semantic processing of fruits/vegetables, it is so to a lesser extent 

736 than color. This finding lends further support for a sensory-functional theory of semantics over, 

737 for instance, a domain-specific approach that should theoretically predict a similar performance 

738 across modality as the organizing principle of semantics is assumed to be at the level of category, 

739 rather than modality.

740

741 As for the artificial category, reaction time data revealed a significant slowing of lexical-

742 semantic processing when words representing tools were preceded by orientation-modified 

743 primes. This finding further confirms the differential importance of modality-specific information 

744 to the conceptual representation of an object that necessitates that modality for their processing 

745 (Bonner & Grossman, 2012).  At the neural level, although a modulation by feature type did not 

746 manifest in the standard ERP analysis, LDA classification did reveal a difference in one right-

747 lateralized posterior channel site. Apart from the fact that averaging across conditions could have 
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748 led to the abolishing of an effect for which a finer-grained analysis may be necessary (Murphy et 

749 al., 2011), it could be that greater variability within the category of tools rendered some exemplars 

750 more reliant on motor affordances than others (Chen et al., 2016). In a similar vein, potential 

751 variability in color diagnosticity, albeit less important to the artificial category, could have been 

752 responsible for LDA performance in distinguishing between conditions. While this greater 

753 variability could have driven successful LDA classification, but not significant effects in 

754 component analysis, on the flip side, it could also be the reason why only one channel site could 

755 successfully perform this distinction.  In one way, this finding does complement the behavioral 

756 pattern where, although RTs demonstrated a significant difference between normal and orientation 

757 conditions, there were also priming reductions observed for the color condition. 

758

759 6. Conclusion

760 In the current study, response times, ERP waves and multivariate techniques applied to the 

761 EEG signal converged to indicate a direct involvement of perceptual color processing and, to a 

762 lesser degree, orientation processing on conceptual access to fruits/vegetables. 

763 Although the inverse pattern of reaction time emerged for the artificial category, this did 

764 not manifest in the neural pattern of N400; however, a more fine-grained analysis of the 

765 electrophysiological data could accurately distinguish between conditions. Our results, in sum, 

766 support modal theories, whereby modality-relevant input is integrated at the conceptual level. As 

767 the present study only considered two features that have been prominent in the semantics literature, 

768 future studies should consider the role of other modalities (e.g., taste, texture) that may be intrinsic 

769 to the conceptual representation of natural and artificial objects.

770
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