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Abstract

Category-specific impairments witnessed in patients with semantic deficits have broadly
dissociated into natural and artificial kinds. However, how the category of food (more specifically,
fruits and vegetables) fits into this distinction has been difficult to interpret, given a pattern of
deficit that has inconsistently mapped onto either kind, despite its intuitive membership to the
natural domain. The present study explores the effects of a manipulation of a visual sensory (i.e.,
color) or functional (i.e., orientation) feature on the consequential semantic processing of fruits
and vegetables (and tools, by comparison), first at the behavioral and then at the neural level. The
categorization of natural (i.e., fruits/vegetables) and artificial (i.e., utensils) entities was
investigated via cross—modal priming. Reaction time analysis indicated a reduction in priming for
color-modified natural entities and orientation-modified artificial entities. Standard event-related
potentials (ERP) analysis was performed, in addition to linear classification. For natural entities, a
N400 effect at central channel sites was observed for the color-modified condition compared
relative to normal and orientation conditions, with this difference confirmed by classification
analysis. Conversely, there was no significant difference between conditions for the artificial
category in either analysis. These findings provide strong evidence that color is an integral property
to the categorization of fruits/vegetables, thus substantiating the claim that feature-based

processing guides as a function of semantic category.
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1. Introduction

The way in which semantic concepts are represented in the brain has been largely informed
by neuropsychological studies with brain-damaged patients (for a review, see Mahon &
Caramazza, 2009) whose selective impairment in object recognition has been broadly
distinguished between natural and artificial (manmade) entities. Notably, however, the category of
food—namely, fruits/vegetables—has dissociated from this canonical natural/artificial distinction,
with a pattern of deficit that has differentially accompanied an impairment either in the processing
of natural entities (i.e., animals; Warrington & Shallice, 1984), artificial entities (i.e., tools; Hillis

& Caramazza, 1991) or has demonstrated isolated impairment (Hart, Berndt, & Caramazza, 1985).

Several theories have been proposed to explain the structural organization of concepts in
the brain. These theories broadly fall into two general groups. Those that follow a correlated
structure principle posit that, while the number of shared versus distinctive features between
objects differs across categories, this conceptual distinction is not instantiated at the level of
functional neuroanatomy. Those that ascribe to a neural structure principle claim instead that
dissociable neural substrates are differentially involved in representing categories (for review, see
Mahon & Caramazza, 2009). Proponents of the correlated structure principle assert that the co-
occurrence of particular feature types, with an interplay between feature distinctiveness versus
sharedness, is what facilitates categorical knowledge and identification (e.g., Conceptual Structure
Account; Tyler & Moss, 2001). By extension, categories that possess high within-category
similarity, such as that of fruits/vegetables, could be rendered more susceptible to deficit
potentially due to a crowding effect of feature overlap that results in low discriminability at the

basic level (Humphreys & Forde, 2001).
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Alternatively, adherents of the neural structure principle emphasize representational
constraints based on the internal neuroanatomical structure of the brain. Some scholars propose a
categorical organization of knowledge (Caramazza and Shelton, 1998; Tranel, Damasio, &
Damasio, 1997; Damasio, 1990;), claiming that evolutionary pressures imposed functionally
dissociable neural circuits dedicated to specific categories (e.g., animals, tools, faces) that have
aided our survival. Others, instead, propose that distributed, modality-specific subsystems
represent the core organizing principle of semantics; and that these subsystems are differentially
important to each category (e.g., Borgo & Shallice, 2003; Warrington & Shallice, 1984). More
specifically, they propose that natural entities rely on sensory properties (e.g., color, shape) and
artificial entities on functional properties (e.g., use and manipulability) for their classification.
Indeed, neurophysiological evidence has revealed an interaction between the processing of
category and feature type; lateral portions of the fusiform gyrus have shown to be more active for
animals (e.g., natural) as compared to manmade tools (e.g., artificial; Chao, Haxby, & Martin,
1999), with these areas linked to distinct feature processing regions associated with color (i.e.,
ventral temporal cortex) versus action-related information (i.e., middle temporal cortex; Martin &

Chao, 2001), respectively.

Attempts towards resolving the conceptual organization of semantics have primarily
focused on a subset of categories, such as animals (i.e., natural) and manmade tools (i.e., artificial),
while the category of fruits/vegetables has been relatively under-investigated, despite its relevance
to our survival and its inconsistent pattern of deficit that can potentially be mapped to both natural

and artificial domains. On the one hand, since fruits/vegetables are (i) ontologically considered to
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91  be natural objects and (ii) necessary to our survival, the features important to their recognition
92  should be similar to those of other natural entities, like animals. Indeed, their core semantics
93  seemingly rely heavily on shape and color information (e.g., a banana is elongated, yellow and
94  relatively small, while a watermelon is round, green and relatively large). On the other hand
95  however, fruits/vegetables also frequently engage motoric systems to properly execute eating,
96  which could render them similar to artificial entities and thus relying on function. The current
97 paper aimed to address the role of feature-based processing in the categorization of
98 fruits/vegetables compared to the well-investigated artificial category of tools.
99
100 Of the sensory attributes theoretically associated with natural entities, color has garnered
101  particular attention. Some patients have demonstrated dissociation between the perception of color
102  and the knowledge of color typicality associated with objects (Miceli et al., 2001; Samson & Pillon,
103 2003; Stasenko, Garcea, Dombovy, & Mahon, 2014). A deficit in identifying the appropriate
104  colors associated with fruits/vegetables has either been observed in the presence of intact low-level
105  visual color processing (Samson and Pillon, 2003), or has not disproportionately affected the
106  fruits/vegetables category compared to other living categories (Miceli et al., 2001). However,
107  others have proposed a ‘fractionation’ of visual information relevant within the natural category,
108  with animals relying more on form and fruits/vegetables on color (Breedin, Saffran, & Coslett,
109  1994; Cree & Mcrae, 2003; Humphreys & Forde, 2001). Indeed, some studies have supported a
110  facilitation of color in the classification and naming of fruits/vegetables (Bramao, Reis, Magnus,
111 & Faisca, 2011; Rossion & Pourtois, 2004), although findings have been equivocal, with some
112 studies either not finding such facilitation (Biederman & Ju, 1988) or showing a greater relative

113 impact for shape information (Scorolli & Borghi, 2015).
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114

115 Recognition of artificial entities has been shown to rely to a large extent on functional
116  information (e.g., manipulability). Tucker & Ellis (1998) presented participants with an orientation
117  classification task of manipulable objects and demonstrated that objects whose handle was aligned
118  with the responding hand elicited quicker reaction times in orientation judgments (i.e., affordance
119  effect; Gibson, 1977). Such sensitivity to affordance has also been observed in priming tasks in
120 which prior exposure to a line congruent with the graspable axis of a subsequently-presented object
121  has facilitated performance (Chainay, Naouri, & Pavec, 2011). At the neural level, the importance
122 of action-related knowledge to the concept of tools has been argued on the basis of dorsal region
123 activation (associated with the “where” pathway; Goodale & Milner, 1992) to the viewing (Chao
124 & Martin, 2000; Mahon et al., 2007) as well as the naming of tool stimuli (Rumiati, Weiss,
125  Shallice, Ottoboni, & Noth, 2004). Also, the motion associated with tools differentially activates
126  regions of the lateral temporal cortex from that of biological motion (Beauchamp and colleagues,
127 2002).

128

129 In sum, there is ongoing debate as to the neural organization of the semantic system, and
130  how conceptual representations are situated in the perceptual and motoric systems. In this context,
131  there are both experimental results (although not entirely uncontroversial) and theoretical
132 argument to support the hypothesis that visual information (and color, in particular) is critical for
133 natural object representation/processing, whereas motor—related information (e.g., orientation) is
134  critical for manmade object representation/processing. However, the extent to which this
135 asymmetry lies at the core of these concepts is hazy. For example, it is unclear to what extent

136  fruits/vegetables would obey the classic natural vs. artificial dichotomy, and how automatically
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137  this asymmetry may arise during semantic processing. These are the issues that we wish to address
138  in this paper.

139

140 We report the results of two cross—modal priming experiments in which object images are
141  used to prime lexical decisions on written words. The core manipulation behind our design is that
142 prime images are either (i) normal, (ii) color—modified, or (iii) orientation—modified
143 representations of the relevant objects. Our hypothesis is as follows: if color and orientation are
144  asymmetrically important for natural (fruits/vegetables) and manmade (tools) objects,
145  respectively, then color-modified primes should render a more severe priming reduction for
146  fruits/vegetables, while orientation-modified primes would shrink priming for tools. Alternatively,
147  if fruits/vegetables share overlap with the artificial category, orientation-modified primes should
148  also yield a priming reduction in this category.

149

150 Importantly, we presented primes for a short duration (100 ms), with an equally short
151  Stimulus-Onset Asynchrony (SOA; 100 ms), in line with previous work tapping on early semantic
152 processing and the distinction between natural and artificial entities (Dell’Acqua & Grainger,
153 1999; Kircher, Sass, & Sachs, 2009). Also, the cross modal design was meant to ensure that any
154  generated effect would be genuinely semantic in nature, engaging access across domains.

155

156 In Experiment 1, we focused on response times—the experiment was entirely behavioural.
157  In Experiment 2, we collected electrophysiological measures via EEG. A widely used index of
158  semantic processing is the N400 component—a negative deflection in the waveform peaking at

159  about 400ms post stimulus onset, which responds to the semantic ‘predictability’ of a stimulus in
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160  a given context (for a review, see Kutas & Federmeier, 2011). This component has commonly
161  been elicited by priming paradigms: greater negativity reflects a reduction in relatedness between
162  primes and targets (Kutas & Federmeier, 2011). N400 effects have been observed for picture-
163  picture priming of real objects (Mcpherson and Holcomb, 1999), and cross-modal priming using
164  both real objects (Kiefer, 2001) and line drawings (Nigam, Hoffman, & Simons, 1992) paired with
165  words. In addition, a graded modulation of the N400 component was reported to reflect a similarly
166  graded modulation of prime-target relatedness (Geukes et al., 2013); this finding is particularly
167  pertinent to the current study, which aims to compare the effect of a prime subjected to visual
168  feature modification on subsequent target processing.

169

170 Extending our hypothesis to the EEG domain, we expect that if color is indeed more crucial
171  for natural (fruits/vegetables) entities, color-modified primes should elicit an N400 for this
172 category. Symmetrically, if orientation is critical for manmade entities (tools), then orientation-
173  modified primes should elicit an N400 in this domain. Such findings would suggest that a
174  modification in a feature critical to a given category is perceived as a semantic violation, thus
175  supporting the claim that such a feature is integrally "woven" into the semantic representation of
176  that category. If, instead, fruits and vegetables also critically depend on function (similarly to
177  tools), we may observe a graded N400 negativity, with the degree of negativity modulated by the
178  importance of that feature.

179

180 Prior EEG research already speaks to the ability of this technique to distinguish between
181  perceptual and semantic sources of activation (Kiefer, 2001). Moscoso del Prado Martin and

182  colleagues (2006) investigated the spatio-temporal activity patterns of color-related versus form-
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183  related words, providing evidence for earlier peak processing of color compared to form. Also,
184  these authors reported that topographies mapped to different underlying neural sources.
185  Furthermore, Amsel and colleagues (2014) utilized a go/no-go semantic decision task to
186  demonstrate that an incongruent attribute of a given object (e.g., purple — lime), when paired
187  together, elicited an N200 component for the no-go condition. This N200 effect was also
188  demonstrated in a similar task for incongruent action-related knowledge referring to graspable
189  objects (Amsel, Urbach, & Kutas, 2013). The authors interpreted these results in support of
190  grounded views of cognition, maintaining that the neural circuitry responsible for perceiving and
191 acting on objects play a role in their conceptual access from long-term memory (Barsalou, 2008).
192 Furthermore, given the high dimensionality of EEG data, exploratory analysis was
193  performed using linear classification. Previous studies have successfully utilized semantic-
194  decoding algorithms (Simanova, Gerven, Oostenveld, & Hagoort, 2010) to disentangle
195  representations at the neural level.

196

197 2. Experiment 1

198  2.1. Methods

199  2.1.1. Participants

200 A total of 60 healthy right-handed (confirmed by the Edinburgh Handedness Inventory;
201  Oldfield, 1971), native Italian speakers with normal or corrected-to-normal vision participated in
202  the experiment (age range: 18-34 years). Participants were recruited via an advertisement posted
203  on a dedicated social-networking site, and were monetarily compensated for their participation.

204  All participants were naive to the purpose of the experiment and provided informed written
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205  consent. The experiment was part of a program that has been approved by the Ethics Committee
206  of SISSA.

207

208  2.1.1. Materials

209 Forty—two Italian words served as critical target stimuli for the experiment. Twenty—one
210  of them represent natural objects (fruits/vegetables; e.g., pomodoro, tomato) and twenty—one
211  represent tools (kitchen utensils; e.g., forchetta, fork). The main lexical features of these 42 words

212  are illustrated in Table 1a.

213
214
Lexical features Natural Artificial
Mean SD Mean SD
Frequency 3.11 0.55 3.07 0.72
Word length (letters) 7.24 1.82 8.1 2.11
Coltheart’s N 12.43 19.8 7.57 6.53
0l1d20 1.8 0.58 1.88 0.74

215  Table 1a. Lexical features for each category. Frequency is given on a zipf scale, which is an
216  improved logarithmic transformation of number of occurrences per million words (van Heuven,
217  Mandera, Keuleers, & Brysbaert, 2014).

218

219
Condition Natural Artificial

Mean SD Mean SD

Brightness 134.12 10.49 133.77 9.86
Spatial frequency 0.0052 0.0022 0.0059 0.0013
Size 0.0006 0.0023 0.0007 0.0032
Discriminability 7.61 18.46 8.13 15

10


https://doi.org/10.1101/2020.05.22.110338
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.22.110338; this version posted May 22, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Familiarity 58.3 28.9 57.15 29.11

220  Table 1b. Visual properties and evaluative ratings of stimuli for each category.
221

222
223

224 Each target word was associated with three different prime images, representing the

225  corresponding object: (i) in its canonical color and position (identity prime); (ii) with a clearly
226  non-standard color (color modified prime); (ii1) with a clearly non—standard position (orientation—
227  modified prime). In the case of objects without a clear canonical base position (e.g., knife; see
228  (Vannucci & Viggiano, 2000), the original image was chosen to be the one with maximum
229  affordability for a right-hand grasp (Tucker & Ellis, 1998). Identity primes were all taken from
230  the FRIDa database (Foroni, Pergola, Argiris, & Rumiati, 2013).

231

232 For the orientation modification, images were rotated 180 degrees in the counterclockwise
233 direction. For the color modification, images were converted to CIELab, which nonlinearly
234 compresses an RGB color image into a three—dimensional coordinate space with the position on
235  one axis representing the red-green opponent channel (a), another the yellow—blue opponent
236  channel (b), and the third the lightness of color, which is the cube root of the relative luminance
237  (Hoffmann, 2003). The advantage of using such a color space is that the lightness contrast can be
238  manipulated independent of a color modification. Furthermore, transformations of images that are
239  high in gray content respond well to manipulations in this color space, meaning that more drastic
240  changes can be achieved as compared to a uni—coordinate modification of hue in the HSL or HSV
241  color space. This was particularly useful for the artificial category, which contained a high number
242 of objects whose principle color was gray. Modifications to both natural and artificial objects were

243  achieved using a custom—written MATLAB® code and made by a fixed proportional change in a—

11
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244  and b—channel value coefficients, the position of each pixel for either axis multiplied by .8 and .2,
245  respectively. This created a purple—blue effect, which we selected among other available options
246  because it rendered a color most naturalistically improbable for our stimuli (e.g., we didn’t have
247  any object among our targets that is prototypically purple or blue). Examples of these prime images
248  can be found in the experimental design schematic of Fig. 1.

249

250 Identity prime images were matched between natural objects and tools for brightness,
251  spatial frequency, and size in addition to evaluative ratings of discriminability and familiarity,
252 which were based on a 100-point scale. These ratings were obtained from the normative ratings of
253  the FRIDa database. To compute brightness, images were converted to grayscale and the average
254  brightness extracted. To compute object size, objects were isolated using a layer mask in an online

255  image editing application (https://pixlr.com/). Pixels representing the object were converted to

256  black, the background was converted to white, and the ratio between the two was calculated.
257  Spatial frequency was calculated by employing a bi-dimensional fast Fourier transform, which
258  converts the image represented as an array of brightness values to its unique representation in the
259  spatial frequency domain. After transformation, individual pixels represent the power of specific
260  spatial frequencies in a given direction (Foroni et al., 2013). Values for each feature were obtained
261  using custom-written MATLAB® codes (Mathworks, Natick, Massachussets, USA). Both color
262  and orientation—modified images underwent the exact same pipeline (for values of all features, see
263  Table 1b).

264

12
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265 The assignment of each word target to the three priming conditions was counterbalanced
266  over participants in a Latin Square design, so that all participants received primes from each
267  condition, but saw each target only once.

268

269 For the purpose of the lexical decisions task, 42 nonwords were generated as further target
270  stimuli. They were created from real words by either vowel inversion or single consonant
271  substitution (e.g., pentalo from the Italian word pentola, pot)—we wanted the task to be
272 challenging, thus engaging participants in deep lexical processing. In order to avoid participants
273  being able to successfully perform the task based on stimuli surface features, words and nonwords
274  were matched for length in letters (Words: M=7.67, SD=2.02; Nonwords: M=7.55, SD=1.75) and
275  orthographic neighborhood size (as measured by OLD20; Words: M=1.84, SD=0.658; Nonwords:
276  M=1.9, SD=0.686). These targets were also associated with prime images, similarly to the word—
277  target stimuli. However, nonword-target stimuli were associated with only one image (e.g.,
278  normal, color, or orientation) and were not subjected to rotation.

279 Images were displayed within a 450—pixel square, against a gray background. All letter
280  strings were presented in size 36 Courier New Font, and displayed in white on the same gray
281  background.

282

283  2.1.3. Procedure

284 Participants were tested in a dimly lit room. Participants were seated approximately 60
285  cm from a monitor with a screen diagonal of 48 cm (resolution: 1280 x 1024 pixels; aspect ration
286  4:3; refresh rate: 75Hz) and instructed to decide whether or not the letter strings appearing on the

287  screen represented existing Italian words. They were also told that the letter strings would be

13
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288  preceded by a fixation cross, but no mention was made of the presence of the prime images. On
289  each trial, a fixation cross (500ms duration) was followed by the presentation of the prime image
290  (100ms duration), which was followed by a blank screen (100ms duration) and then by the target
291  string of letters. Participants were asked to respond by key press to the question "Is it a word or a
292  nonword?" as quickly and accurately as possible (for a schematic representation including
293  examples of condition manipulations, see Fig. 1). Keys associated with word and nonword trials
294  were counterbalanced across participants. Participants were given six practice trials to familiarize

295  themselves with the task, in addition to the first trial being considered as a practice trial.

296
297
298
TIME
100ms Prime
100ms SOA
Color Orientation I Target Is it a word Word Nonword
or nonword? 0 .
A f‘
y
bi
Word Nonword
NS S, - N e
\
299 Ll

14
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300  Fig. 1. Experimental design schematic of trials of normal condition with color and orientation
301  modification conditions for each category shown to the left. Participants were asked to respond
302 by key press to the question “Is it a word or nonword?” Target strings remained on the screen for
303  3000ms or until key press.

304

305
306

307

308 Overall, the experiment included 84 trials (42 words and 42 nonwords), for a total duration
309  of about 6 minutes, with the first trial being omitted from the analyses as practice. Stimuli were
310 presented using E-Prime 2.0 Professional (Psychology Software Tools, Sharpsburg, PA).

311

312 2.1.4. Analysis

313 Data were analyzed using mixed—effect modeling as implemented in the R package /me4
314  (Bates, Maechler, & Dai, 2009).The dependent variable was response time, inverse transformed in
315  order to reduce the typical right skewness shown by RT distributions. We only considered correct
316  responses in these analyses.

317 Fixed factors were target Category (natural object vs. tools), prime Condition (normal vs.
318  color-modified vs. orientation-modified image) and their interaction. This defines the core
319  structure of the experimental design. Participants and target words were also specified as random
320 intercept factors, which took into consideration the theoretically uninteresting variation introduced
321 into the data by these factors. This model was confirmed to be the simplest with maximum
322  explained variance by the likelihood ratio test (Pinheiro & Bates, 2000). Robustness to outliers of
323  the model estimates was checked with model criticism as advocated by Baayen, Davidson, and
324  Bates (2008), that is, models were refitted after removing those data points whose standardized

325  residual error was higher than 2.5 and effects were considered significant only if they resisted this

15


https://doi.org/10.1101/2020.05.22.110338
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.22.110338; this version posted May 22, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

326  procedure). P-values were computed adopting the Satterthwaite approximation for degrees of
327  freedom (Satterthwaite, 1946) as implemented in the ImerTest R package (Kuznetsova,
328  Christensen, & Brockhoff, 2013). In addition, ggplot2 (Wickham, 2009), reshape (Wickham,
329  2007), and visreg (Breheny & Burchett, 2013), were used as part of the R system for statistical
330 computing (Ver. 2.8.1; R Development Core Team, 2013).

331

332 2.2. Results

333 Three participants were excluded from the analyses in having exceeded three standard
334  deviations in either reaction time (1 participant) or accuracy (2 participants) performance. Thus,
335 57 participants (29 female) remained in the final analysis (age: M = 23.67; SD = 3.32). One word
336  was also eliminated from the analysis due to an accuracy of less than 85%. Furthermore, a
337  histogram of individual RTs pooled across all subjects revealed two additional extreme RTs
338  (RT>2500ms), likely to be the result of task inattentiveness, which were thus removed. After
339  removing incorrect trials (n=263; see Supplementary Material Fig. A.1 for accuracies by
340  condition), 4476 data points (2254 word trials) remained in the final analysis. The overall accuracy
341  rate for the task was 94.45%. Means, medians and standard deviations for response times in the
342  six conditions are illustrated in Table 2a.

343

344 Statistical modeling revealed a significant effect of target Category [F(1, 38.93)=7.7,p =
345  .008], prime Condition [F(2, 2842.39) = 6.86, p = .001], and, most importantly, their interaction
346  [F(2,2842.31)=4.47,p=.01]. To explore the interaction, we fitted separate models for natural
347  and artificial target words. For the natural category, color—modified primes generated a significant

348  reduction in priming compared to orientation—-modified (ts¢)=-2.12, p = .034) and normal primes
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349 (ts6)=-3.87, p <.001), which in turn didn’t differ significantly from each other (P =.084). For the
350 artificial items instead, orientation—modified primes penalized priming the most, providing less
351  priming than both color-modified (t;ssy= -2, p = .045) and normal primes (ts6,= -2.88, p = .005),
352 which in turn didn’t differ from each other (P = .38).

353

354 Reaction times were also binned into quartiles to explore the effect across the distribution.
355  F-statistics and p-values for the effect of condition across quartiles, divided by category, is
356 provided in Table 2b. An interesting finding is that, for the natural category, a visualization of the
357  datarevealed a similar pattern of performance across all response time intervals. However, for the
358 artificial category, the main effect of condition emerged at later time intervals, representing a
359  distributional shift. Such a shift in RT distribution could potentially be attributed to retrospective

360 retrieval processes, where the target is semantically matched to the prime (Yap, Balota, & Tan,

361  2013).
362
363
364
Condition Natural Artificial
Mean Median SD Mean Median SD
Normal 672.67 614 221.06 759.79 702.5 258.83
Color 705.41 646 230.66 779.24 719.5 276.92
Orientation 684.98 625 235.51 804.28 735.5 292.36
365

366  Table 2a. Raw RT means, medians, and standard deviations for Condition x Category.
367
368

Quartile Natural Artificial
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F-value Pr(>F) F-value Pr(>F)
Q1 13.52 <.001 1.59 206
Q2 15.46 <.001 4.42 .02
Q3 14.87 <.001 12.7 <.001
Q4 1.45 235 5.69 .004

369
370  Table 2b. F-statistics for anova of models divided by category and quartile.
371

372
373

374  2.3. Discussion

375 We used a cross-modal, lexical decision priming task to test the hypothesis that natural and
376 artificial entities rely on different properties for their semantic processing. We have shown that,
377 indeed, the processing of natural entities is more sensitive to modifications of a sensory property
378  (i.e., color), while that of artificial entities is more sensitive to modifications of a functional
379  property (i.e., orientation).

380 The cross—modality of the effect (primes were object images, while targets were words)
381  further suggests that the effect described here is semantic in nature. Moreover, both words and
382 nonword targets were constructed from real words representing the prime object by a single
383  vowel/consonant change; in this way, both word and nonword targets were semantically related to
384  the prime image. Neely (1977) described a retrospective matching strategy in which checking
385  whether a target is related to a prime may induce priming in the lexical decision task. As nonword
386  targets are typically unrelated to the prime, the prime-target relatedness proportion is lower for
387 nonwords. as the thus reflecting the same prime-target relatedness proportion for each. In the
388  current study, the relatedness proportion between prime and target was 1 for both words and

389  nonwords, meaning that participants could not have employed a retrospective matching strategy
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390 to identify words differentially from nonwords based on a semantic relationship that only target
391  words share with the prime (de Wit & Kinoshita, 2015). This is generally considered as further
392  confirmation that priming derives from access at the conceptual level.

393

394 While color is most integral to the processing of fruits/vegetables and orientation to the
395  processing of tools, there were also reductions in priming for each of the modified conditions with
396  respect to the normal condition. This suggests that, while a certain feature may be of critical
397 importance to a particular category, other features may also play a role in its conceptual
398  representation. Furthermore, this reduction was more evident for fruits/vegetables, which
399  displayed greater susceptibility to priming interference by an orientation transformation than
400 utensils did to a color change. This is not particularly surprising after all; as hypothesized,
401  fruits/vegetables can also be considered graspable entities that invoke motor affordances (although
402  such an effect has been reported to depend on overt responses to graspability, which were not
403  involved in this task; Netelenbos and Gonzalez, 2015).

404

405 3. Experiment 2

406 In Experiment 2, we utilized EEG to test whether the interaction between category and
407  feature type would manifest at the neural level, as indexed by the N400 component. We
408  hypothesized that a modification of a feature integral to the representation of a given category
409  would be processed as a semantic violation, thus eliciting an increase in negativity in the N400
410  time window.

411

412  3.1. Methods
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413  3.1.1. Participants

414 Forty native speakers of Italian (32 after exclusion; see Data section below) partook in the
415  experiment. Participants were healthy, right-handed (confirmed by the Edinburgh Handedness
416  Inventory; Oldfield, 1971) individuals (mean age + standard deviation= 24.33 £ 2.45; range= 19-
417 30 years; 17 females/15 males), recruited via an advertisement posted on a dedicated social-
418 networking site and monetarily compensated (25€) for their participation. All participants had
419  normal or corrected-to-normal visual acuity, no history of neurological or psychiatric illness, and
420  no history of drug or alcohol abuse that might compromise cognitive functioning. All participants
421  were naive to the purpose of the experiment and provided informed written consent. The
422  experiment was part of a program that was approved by the ethics committee of SISSA.

423

424  3.1.2. Materials

425 The materials used in Experiment 2 were identical to those employed in Experiment 1.
426

427  3.1.3. Methods

428 Participants were seated approximately 60 cm from a monitor with a screen diagonal of 48
429  cm (resolution: 1280 x 1024 pixels; aspect ration 4:3; refresh rate: 120Hz). Participants were
430  presented with a lexical decision-priming paradigm identical to the one used in Experiment 1 with
431  one exception- rather than indicating their response by button press, they were asked to silently
432  categorize the string of letters as word or nonword. However, on approximately 25% of trials, a
433  question mark appeared following the target string, prompting a vocalized response. This was done

434  to maintain task engagement while minimizing any motor-related contamination introduced by a
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435  button press (Vliet et al., 2014). Each target string was associated with one question mark to ensure
436  that participants could correctly classify all target strings.

437

438 Overall, one block of the experiment consisted of 84 trials (42 words and 42 nonwords),
439  identical to Experiment 1, and was repeated five times. Stimuli were presented using E-Prime 2.0
440  Professional (Schneider, Eschman, & Zuccolotto, 2012). The experiment was performed in a
441  sound-proof cabin. All electrical devices that were not sources of direct current and could interfere
442  with EEG wave acquisition were turned off before experiment onset.

443

444  3.1.4. EEG Acquisition

445 Continuous EEG was recorded from an array of 128 silver-chloride Biosemi active
446  electrodes mounted on an elastic cap (topographic placement: radial ABC layout system). Two
447  external electrodes were placed on the left and right mastoids (A1, A2) as reference. However, due
448  to high impedance values and signal noise discovered upon manual inspection, mastoids were later
449  discarded and average reference used (i.e., mean of all electrodes). EEG signal was amplified using
450  aBiosemi Active-Two amplifier system (Biosemi, Amsterdam, Netherlands) at a sampling rate of
451 1024 Hz. An electrode located near Cz (common mode sense: CMS) was used as the recording
452  reference. The direct current offset was kept below 25 mV. Data acquisition was made using the

453  software Actiview605-Lores (www.biosemi.com).

454
455  3.1.5. EEG Preprocessing
456 EEGLAB (Delorme & Makeig, 2004) and Fieldtrip

457  (http://www.ru.nl/neuroimaging/fieldtrip)- open source Matlab toolboxes- were used to perform
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458  all preprocessing steps. Off-line data preprocessing included a digital high-pass filter of 0.1 Hz (as
459  recommended by Tanner, Morgan-Short, & Luck, 2015) and a low-pass filter of 100 Hz. Data
460  were down—sampled to 256 Hz and segmented into epochs of 1200 ms, starting 200 ms before
461  prime onset. Before proceeding with data cleaning, incorrect trials were identified and removed.
462  Incorrect classification of a target string resulted in all trials in which that string appeared being
463  removed. Electrodes exceeding a certain z-score threshold (kurtosis = 4; probability = 4; spectrum
464 = 3) were removed from the data (Delorme, Sejnowski, & Makeig, 2007). A subset of electrodes
465  sensitive to ocular movements were withheld from this threshold check and later passed to
466  Independent Component Analysis (ICA). Noisy trials were deleted by visual inspection and data
467  were referenced to the average. ICA using the Infomax algorithm was performed on all data for
468  elimination of artifacts related to ocular and muscular movements. Data were time-locked to the
469  onset of the prime image and baseline (200 ms pre-prime onset) removed. Automatic trial rejection
470  was then performed for a more fine-grained cleaning: £50 dB threshold in the 0-2 Hz frequency
471  range (for capturing residual eye movements) and +25 to -100 dB in the 20-40 Hz (for capturing
472  muscle movements). Finally, missing electrode data were interpolated to the original 128-electrode
473  montage.

474

475  3.1.6. Data

476 Of the initial 40 participants, 32 were retained for the analysis. One participant was
477  eliminated due to high error rate (8.3% trials) and the remaining seven due to excessive noise (>
478  25% of trials were rejected). Error rate was less than 1% (M = 0.7; SD = 1.2) and the average
479  number of trials rejected due to noise was less than 15% (M = 86.67%; SD = 6.6%) for the

480  remaining subjects.
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481

482  3.1.7. Standard ERP Analysis

483 ERPs were computed for epochs extending from 200 ms pre-prime onset to 1000 ms post-
484  target onset. Analysis was performed using threshold-free cluster-enhancement (TFCE), which is
485 a cluster-based technique that embeds permutation-based statistics for significance testing
486  (Mensen & Bern, 2014). The advantage of TFCE over other cluster size/mass techniques is that it
487  uses information about both the intensity and the spatial distribution of the signal to enhance weak,
488  but broadly supported signals to the same numerical values as strong, but highly focal signals,
489  without having to select a cluster-forming threshold a priori (for a more thorough description, see
490 Mensen & Bern, 2014). In addition, this technique outperforms other clustering methods in
491  controlling for Type 1 errors (Pernet, Latinus, Nichols, & Rousselet, 2015). The entire epoch was
492  submitted to TFCE analysis, which resulted in a significance matrix (electrode x time) in which
493  clusters were identified based on the span of significance in both time and space. The cluster of
494  interest was the N400 time window, which was pre-defined as a window spanning from 250-500ms
495  post-target onset (Kutas & Federmeier, 2009).

496

497 The first comparison of interest was between all word and nonword trials, irrespective of
498  prime pairing. This was to ensure that our paradigm indeed elicited the most basic semantic
499  distinction between meaningless and meaningful stimuli as previously demonstrated in the
500 literature (Kutas & Federmeier, 2000). Average waveforms for all word and nonword trials were
501  calculated for each participant and a grand average computed to compare conditions. Thereafter,
502  nonword trials were discarded from further analysis and only word trials considered. Word trials

503  were divided by category into those representing natural versus artificial entities. For each
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504  category, all combinations of conditions were compared (i.e., normal—color, normal—orientation,

505  color—orientation).

506

507  3.1.8. Classification

508 In addition, we performed a searchlight classification on all electrodes in the interval of
509 250 to 500 ms post-target onset, corresponding to the N400 time window (Kutas & Federmeier,
510  2009). We chose linear discriminant analysis (LDA) classification because it employs an algorithm
511  that is able to handle input of more than two classes; LDA utilizes a data reduction technique to
512 divide the feature space based on maximum variance, similar to Principle Component Analysis
513 (PCA), and generates weights to discriminate between classes (Subasi & Gursoy, 2010). LDA
514  classification was performed separately for the natural category (all conditions included) and then
’5 15 artificial category (all conditions included).

516

517 Classification was performed at the individual participant level. For each participant,
518 individual trials, serving as observations, were submitted to the classifier. In cases where
519  conditions contained different numbers of trials, a random subset of trials from the larger condition
520  was sampled to match. Algorithms employed a cross-validation measure and an odd-even partition
521  scheme whereby both even and odd runs served as training and testing sets. A searchlight approach
522 was used to create neighborhoods of channels with each channel serving as ‘origin’ and identifying
523  neighboring sensors within a certain configuration. Neighbors were defined based on a
524  triangulation algorithm in Fieldtrip that allows for the building of triangles of ‘nodes’ that are
525 independent of channel distances. Classification was then performed on each searchlight

526  neighborhood across the entire scalp. Accuracies were generated per comparison, per participant,
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527  which were then thresholded for significance at the group level using Monte Carlo permutation
528  testing with 10000 iterations. Essentially, permutation testing in this context involves subtracting
529  the chance accuracy from the computed accuracies and randomly flipping the sign over iterations.
530  This generates multiple t-statistics over iterations that are then corrected for multiple comparisons
531 using TFCE, which results in a z-score map that can be plotted for significance. Significance was
532  defined as a one-tail probability value of z> 1.64 (p < 0.05).

533

534  3.2. Results

535  3.2.1. ERP results

536 In a first comparison between word and nonword trials, TFCE analysis showed that
537 nonword trials generated greater negativity relative to word trials for 19 unique channels in the left
538  fronto-central region for the time range of 288 — 423 ms (peak channel at 389 ms: C1; T =-6.27;
539  p<0.002). This finding is in line with previous semantic literature that has demonstrated an N400
540 effect for meaningless compared to meaningful stimuli (Kutas & Federmeier, 2000).

541

542 Examining word trials only, for the natural category, TFCE analysis revealed a significant
543  difference between the color and normal condition, such that color trials elicited significantly
544  greater negativity than normal trials for 11 unique channels in the left fronto-central region in the
545  time range of 213 — 387 ms (peak channel at 256 ms: C1; T =6.12; p <0.009). The resulting brain
546  topography and grand mean waveforms for all three conditions can be seen in Fig 2. Next, although
547  an evident difference emerged in the grand mean for selected electrodes between the color and
548  orientation conditions as well, TFCE confirmed that the color condition elicited a greater N400

549  response with respect to the orientation condition. This effect was found for 8 unique channels in

25


https://doi.org/10.1101/2020.05.22.110338
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.22.110338; this version posted May 22, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

550 the central region for the time range of 299 — 381 ms (peak channel at 320 ms: B1; T =-6.07; p <
551  0.001; see Fig. 3). These findings are in line with our hypothesis that a color-modification for
552 fruits/vegetables should yield a semantic violation as indexed by an increase in N400 amplitude.
553  Last, a comparison between orientation and normal conditions revealed one channel that exhibited
554  significantly higher amplitude compared to the normal condition, in the centro-parietal region for

555  the time range 89 — 97 ms (peak channel at 93 ms: Pz; T =-5.88; p <0.05).

556
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562  Fig 2. Left panel: Topographic map of the brain at peak channel significance (~253 ms post-
563  target onset). Topography reflects the difference between the grand average for Color — Normal
564 trials, black dots represent the 11 unique significant electrodes at p < 0.009.

565  Right panel: Mean waveforms across the 11-electrode cluster plotted separately for the normal
566  (red), color (blue), and orientation (green) conditions. Significance reflects the difference

567  between the color and normal condition (orientation is also plotted for visualization of the pattern
568  of effect). Shaded regions along the waveforms indicate standard error of the mean. The shaded
569  yellow bar denotes the N400 time window. The orientation condition elicited a greater positivity
570  in the N400 time window with respect to the normal condition, whereas the color condition

571  elicited the canonical N400.

572

26


https://doi.org/10.1101/2020.05.22.110338
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.22.110338; this version posted May 22, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

573
574
320 ms post-target onset .- . [
| i
I |
N
I |
2 | E
I |
I |
I3} I
Q 14 |
5 I
L
(5] > OM
S| TV
o I
> SE
g |
24 l
I
I
3 : ——Normal
| —Color
I ——Orientation
-4 L - - . - - !
-200 0 200 400 600 800 1000 1200
Time (ms)
575

576  Fig 3. Left panel: Topographic map of the brain at peak channel significance (~320 ms post-

577  target onset). Topography reflects the difference between the grand average for Color —

578  Orientation trials, black dots represent the 8 unique significant electrodes at p < 0.001.

579  Right panel: Mean waveforms across the 8-electrode cluster plotted separately for the normal
580  (red), color (blue), and orientation (green) conditions. Significance reflects the difference

581  between the color and orientation condition (normal is also plotted for visualization of the pattern
582  ofeffect). Shaded regions along the waveforms indicate standard error of the mean. The shaded
583  yellow bar denotes the N400 time window. The color condition, compared to the orientation

584  condition, elicited the canonical N400.

585

586
587

588 For the artificial category, the color compared to normal condition revealed a significant
589  cluster of 4 unique channels displaying greater negativity for the color compared to normal
590  condition (peak channel at 102 ms (post-prime): A26; T =-6.6; p <0.03). This effect was of short
591  duration, spanning 8 milliseconds, and only witnessed in the prime window. A comparison
592  between the orientation and normal condition did not reveal significant channels at any time point

593 (P >.1), nor did the comparison between the orientation and color condition.
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594

595  3.2.1. ERP results

596  3.2.2. Classification results.

597 A statistical z-score map of LDA accuracies can be found in Fig. 4. For the natural
598  category, the LDA classifier successfully discriminated between the three conditions in 7 channels
599  as origin in the searchlight (z-range: 1.7-2.18; p-range: .015—.045). These channels were located
600 in the left fronto-central region and resembled the ERP scalp topography of significant channels
601  for the word-nonword comparison as well as the natural category comparison, albeit to a lesser
602  extent. These results confirm the robustness of the main finding that an exposure to a prime
603  manipulation in a feature relevant to the categorization of the natural category of fruits/vegetables

604  yields an effect in the N400 time window.

605
606
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608  Fig. 4. A statistical z-score map of LDA accuracies for the natural category. Significance was
609  defined as a one-tail probability value of z> 1.64 (p < 0.05) and can be observed in 7 channels
610  that served as searchlight origins (dark red regions) in left fronto-central sites.

611

612
613

614 For the artificial category, although there was no significant difference between conditions
615 when comparing ERP amplitudes, one channel neighborhood was able to significantly
616  discriminate between classes (z= 1.9, p =.029).

617

618 4. Discussion

619 ERP component analysis demonstrated a significant effect in the N400 time window (i.e., 250
620  — 500 ms post-target onset) that was modulated by the manipulation in prime for fruits/vegetables.
621 A comparison of the difference wave [orientation — normal vs. color — normal] revealed a
622  significant negative deflection for the color-modified condition, in line with our predictions and
623  with the results of Experiment 1. Interestingly, it was observed that the magnitude of this difference
624  was driven by a positive deflection of the orientation-modified condition with respect to the normal
625  condition. Given what appeared to be a trend towards a graded nature of a priming effect observed
626  in the behavioral data of Experiment 1, it was hypothesized that an orientation-modification may
627  also elicit an N400 effect, albeit to a significantly lesser extent than color. However, we did not
628  observe such N400 modulation. One likely explanation is that although functional knowledge
629  could still be relevant to the concept of fruits/vegetables, it may have a neural signature that cannot
630 be captured by the N400 component alone (e.g., propagation from an earlier component;
631  Mcpherson and Holcomb, 1999).

632
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633 Quite interestingly, when we employed a multivariate data analysis tool, the LDA classifier
634  was indeed able to accurately distinguish between the three conditions at fronto-central channel
635  sites with a slightly left-lateralized bias; this pattern of results resembled the ERP scalp topography
636  of significant channels for the word-nonword comparison as well as that of the color vs. normal
637  condition comparison. LDA’s ability to discriminate between conditions could be due to the fact
638  that, similarly to PCA, it projects the data into a space that is based on feature extraction of
639  dimensions common to all input, to avoid redundancy and maximizes the difference between
640 classes. However, as this analysis utilizes information at the individual trial level, it may be more
641  sensitive to capturing differences between conditions that do not significantly emerge at the mean
642  level.

643

644 Conversely, ERP component analysis of the artificial category did not reveal a significant
645  difference in the time window of interest. The only finding was a slight shift and reduction in the
646  P100 (P1) component to the color compared to normal condition, which did not survive correction
647  for multiple comparisons. In any case, this reduction could easily be due to low-level perceptual
648  differences in the prime image as the P1 component has shown to be sensitive to external properties
649  of the stimulus like luminance, which can consequently exert an influence on attention (Luck,
650  Woodman, & Vogel, 2000). The fact that there was no observable N400 could be due to a number
651  of reasons. One possibility is that action knowledge relating to manipulability may not be
652  automatically engaged at the conceptual level. Indeed, a recent study by Yu and colleagues (2014)
653  challenged the automaticity of an affordance effect previously reported by Tucker and Ellis,
654  replicating their results only when explicit task instructions were given to imagine interacting with

655  the object. This suggests that relevant motor regions may be activated only under specific
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circumstances such as goal-directed behavior. However, given the pattern of behavioral results
that would oppose this claim, it may be more plausible that factors interfering with capturing the
neural response are, in fact, responsible. For instance, higher values of Coltheart’s N, which is a
measure of orthographic neighborhood size (Coltheart, Davelaar, Jonasson, & Besner, 1977), has
been shown to elicit N400s of smaller amplitude (Holcomb, Grainger, & O’Rourke, 2002). The
artificial category did possess higher values of Coltheart’s N with respect to the natural category,
which could have mitigated an effect. Given the several other constraints that we had on our stimuli
selection (e.g., frequency and length matching, items needed to be easily picturable and have a

characteristic color), it was impossible to work out a better matching on this front.

LDA classification was able to significantly discriminate between conditions in the N400
time window at one right posterior channel site. Interestingly, a recent study by Hauser and
colleages (2015) combined fMRI with EEG to show the scalp topography related to the hand
motor area as defined by ROI analysis and found a similar pattern of activity at right-lateralized
posterior sites. The fact that an effect did not emerge in the ERP amplitudes could most likely
attest to the loss of information when trials are averaged across conditions, necessitating a finer-
grained (multivariate, across time and space) analysis (Murphy, Poesio, Bovolo, Bruzzone, &
Dalponte, 2011). This finding suggests that information in the prime window did exert a
differential effect on the N400 time window, such that meaningful information distinguishing
between conditions was contained at this channel site despite the absence of an effect at the level
of grand mean. However, that only one site could accurately distinguish between classes could
also be the result of color not being as relevant to the artificial category; while some utensils may

also possess a degree of color diagnosticity, there may not have been enough coherence within
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679  the category to allow for a robust decision boundary to be drawn by the classifier.

680

681

682

683 5. General Discussion

684 The objective of the current study was to assess if feature-based properties of
685  fruits/vegetables and tools were integrated with object knowledge at the conceptual level. To this
686  end, we administered a lexical semantic priming paradigm and recorded reaction times and neural
687  responses to investigate the processing of an object when a modification of a feature potentially
688  crucial to its conceptual representation has been presented. Analysis of the reaction time data of
689  Experiment 1 supported the claim that the presentation of sensory or functionally relevant features
690 can differentially enhance or detract from the priming effect depending on the type of category.
691  Such evidence are in line with the sensory-functional hypothesis as first proposed by Warrington
692  and Shallice (1984), whereby (i) concepts are grounded in the sensory and functional subsystems
693  that are relevant to their processing and (ii) these subsystems are differentially important
694  depending on category type. Moreover, the neural data, particularly for fruits/vegetables (FV),
695  corroborates this claim as both standard ERP analysis and multivariate techniques revealed a
696  significant modulation of semantic processing by color-modified primes.

697

698 Fruits/vegetables have proven to be a very interesting, yet still controversial category in
699 the semantic literature. While ontologically considered to be a member of natural kinds,
700  neuropsychological patient studies, in addition to work with healthy individuals, have shown it to

701  be a category that, in some respects, traverses a coarse natural/artificial domain distinction (for a
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702 review, see Capitani, Laiacona, Mahon, & Caramazza, 2003). In a review of posterior cerebral
703  artery patients, Capitani and colleagues (2009) suggested that the underlying neural substrate for
704 the processing of fruits/vegetables may be different than that of animals; specifically, findings
705  from these patients suggest that middle fusiform lesions disproportionately impair plant life
706  (including fruits/vegetables), whereas anterior temporal lesions that are typically the result of
707  herpes simplex encephalitis create a disproportionate deficit for animals. A fractionation between
708  animals and fruits/vegetables has also been proposed at the level of visual information, with the
709  former relying more on form and the latter on color for semantic processing (Breedin et al., 1994;
710  Cree & Mcrae, 2003; Humphreys & Forde, 2001). While studies have supported a facilitation by
711  color of the processing of fruits/vegetables (Bramao et al., 2011; Rossion & Pourtois, 2004), results
712 have been equivocal, with studies either not reporting such facilitation (Biederman & Ju, 1988) or
713  showing a greater impact of other modal information to its processing (Scorolli & Borghi, 2015).
714 The current study demonstrated that, indeed, color is an integral feature to the representation of
715  fruits/vegetables at the conceptual level—response times during lexical-semantic processing of
716  fruits/vegetables were primed substantially less when a target word was preceded by color-
717  modified primes of the same object, and electrophysiology nicely backed up this behavioral pattern
718  of results.

719

720 An interesting, though not fully unexpected, finding was that LDA classification of the
721  waveforms could accurately distinguish between all three conditions of fruits/vegetables, even if
722 ERP (or response times) didn’t reveal significantly strong difference between orientation—
723  modified and normal pictures. This suggests that orientation may also be relevant to the

724  categorization of fruits/vegetables, possibly because these are graspable entities with which we
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725  must interact for our survival. The fact that a significant difference only emerged at the level of
726  classification could be due to the fact that only some fruits/vegetables necessitate an appropriate
727  affordance grasp for their consumption (e.g., a banana may necessitate more manipulation than a
728  grape). It has been shown that fruits/vegetables can also invoke motor affordances in the
729  categorization process, although such an effect has been observed for overt responses to
730  graspability (Netelenbos and Gonzalez, 2015). It has, however, been suggested by Gainotti and
731  colleagues (2010) that the left lateralization of lesions underlying a deficit in the processing of
732 fruits/vegetables in posterior cerebral artery patient profiles (see Capitani et al., 2009) may reflect
733 the reliance on motor knowledge that is necessary for eating actions. Here, we demonstrate that
734  the mere viewing of fruits/vegetables may automatically-activate motor affordance. Although
735  orientation appears relevant to the semantic processing of fruits/vegetables, it is so to a lesser extent
736  than color. This finding lends further support for a sensory-functional theory of semantics over,
737  for instance, a domain-specific approach that should theoretically predict a similar performance
738  across modality as the organizing principle of semantics is assumed to be at the level of category,
739  rather than modality.

740

741 As for the artificial category, reaction time data revealed a significant slowing of lexical-
742 semantic processing when words representing tools were preceded by orientation-modified
743 primes. This finding further confirms the differential importance of modality-specific information
744  to the conceptual representation of an object that necessitates that modality for their processing
745  (Bonner & Grossman, 2012). At the neural level, although a modulation by feature type did not
746  manifest in the standard ERP analysis, LDA classification did reveal a difference in one right-

747  lateralized posterior channel site. Apart from the fact that averaging across conditions could have
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748 led to the abolishing of an effect for which a finer-grained analysis may be necessary (Murphy et
749  al, 2011), it could be that greater variability within the category of tools rendered some exemplars
750  more reliant on motor affordances than others (Chen et al., 2016). In a similar vein, potential
751  wvariability in color diagnosticity, albeit less important to the artificial category, could have been
752  responsible for LDA performance in distinguishing between conditions. While this greater
753  wvariability could have driven successful LDA classification, but not significant effects in
754  component analysis, on the flip side, it could also be the reason why only one channel site could
755  successfully perform this distinction. In one way, this finding does complement the behavioral
756  pattern where, although RTs demonstrated a significant difference between normal and orientation
757  conditions, there were also priming reductions observed for the color condition.

758

759 6. Conclusion

760 In the current study, response times, ERP waves and multivariate techniques applied to the
761  EEG signal converged to indicate a direct involvement of perceptual color processing and, to a
762 lesser degree, orientation processing on conceptual access to fruits/vegetables.

763 Although the inverse pattern of reaction time emerged for the artificial category, this did
764  not manifest in the neural pattern of N400; however, a more fine-grained analysis of the
765  electrophysiological data could accurately distinguish between conditions. Our results, in sum,
766  support modal theories, whereby modality-relevant input is integrated at the conceptual level. As
767  the present study only considered two features that have been prominent in the semantics literature,
768  future studies should consider the role of other modalities (e.g., taste, texture) that may be intrinsic
769  to the conceptual representation of natural and artificial objects.

770
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