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ABSTRACT

Our understanding of the beads-on-a-string arrangement of nucleosomes has been built largely on high-
resolution sequence-agnostic imaging methods and sequence-resolved bulk biochemical techniques. To bridge
the divide between these approaches, we present the single-molecule adenine methylated oligonucleosome
sequencing assay (SAMOSA). SAMOSA is a high-throughput single-molecule sequencing method that
combines adenine methyltransferase footprinting and single-molecule real-time DNA sequencing to natively
and nondestructively measure nucleosome positions on individual chromatin fibres. SAMOSA data allows
unbiased classification of single-molecular 'states' of nucleosome occupancy on individual chromatin fibres.
We leverage this to estimate nucleosome regularity and spacing on single chromatin fibres genome-wide, at
predicted transcription factor binding motifs, and across both active and silent human epigenomic domains.
Our analyses suggest that chromatin is comprised of a diverse array of both regular and irregular single-
molecular oligonucleosome patterns that differ subtly in their relative abundance across epigenomic domains.
This irregularity is particularly striking in constitutive heterochromatin, which has typically been viewed as a
conformationally static entity. Our proof-of-concept study provides a powerful new methodology for studying
nucleosome organization at a previously intractable resolution, and offers up new avenues for modeling and
visualizing higher-order chromatin structure.

1-sentence summary: High-throughput single-molecule real-time footprinting of chromatin arrays reveals
heterogeneous patterns of oligonucleosome occupancy.
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INTRODUCTION

The nucleosome is the atomic unit of chromatin. Nucleosomes passively and actively template the
majority of nuclear interactions essential to life by determining target site access for transcription factors',
bookmarking active and repressed chromosomal compartments via post-translational modifications?, and
safeguarding the genome from mutational agents®. Our earliest views of the beads-on-a-string arrangement of
chromatin derived from classical electron micrographs of chromatin fibres*, which have since been followed
by both light® and electron microscopy®’ studies of in vitro-assembled and in vivo chromatin. In parallel,
complementary biochemical methods using nucleolytic cleavage have successfully mapped the subunit
architecture of chromatin structure at high resolution. These cleavage-based approaches can be stratified into
those that focus primarily on chromatin accessibility® (i.e. measuring ‘competent’ active chromatin®), and those
that survey nucleosomal structure uniformly across active and inactive genomic compartments. Understanding
links between chromatin and gene regulation requires sensitive methods in all three of these broad categories:
in this study we advance our capabilities in the third, focusing on a novel method to map oligonucleosomal
structures genome-wide.

Nucleolytic methods for studying nucleosome positioning have historically used cleavage reagents
(e.g. dimethyl sulphate'®, hydroxyl radicals'!, nucleases'?) followed by gel electrophoresis and / or Southern
blotting to map the abundance, accessibility, and nucleosome repeat lengths (NRLs) of chromatin fibers!?.
More recently, these methods have been coupled to high-throughput short-read sequencing!4, enabling
genome-wide measurement of average nucleosome positions. While powerful, all of these methods share key
limitations: measurement of individual protein-DNA interactions inherently requires destruction of the
chromatin fibre and averaging of signal across many short molecules. These limitations extend even to single-
molecule methyltransferase-based approaches!>-!7, which have their own biases (e.g. CpG / GpC bias; presence
of endogenous m>dC in mammals; DNA damage due to bisulphite conversion), and are still subject to the
short- length biases of Illumina sequencers. While single-cell'®!® and long-read single-molecule?® genomic
approaches have captured some of this lost contextual information, single-cell data are generally sparse and
single-molecule Array-seq data must be averaged over multiple molecules. Ultimately, these limitations have
hindered our understanding of how combinations of ‘oligonucleosomal patterns’ (i.e. discrete states of
nucleosome positioning and regularity on single DNA molecules) give rise to active and silent chromosomal
domains.

The advent of third-generation (i.e. high-throughput, long-read) sequencing offers a potential solution
to many of these issues?'. Here, we demonstrate Single-molecule Adenine Methylated Oligonucleosome
Sequencing Assay (SAMOSA), a method that combines adenine methyltransferase footprinting of
nucleosomes with base modification detection on the PacBio single-molecule real time sequencer?? to measure
nucleosome positions on single chromatin templates. We first present proof-of-concept of SAMOSA using
gold-standard in vitro assembled chromatin fibres, demonstrating that our approach captures single-molecule
nucleosome positioning at high-resolution. We next apply SAMOSA to oligonucleosomes derived from K562
cells to profile single-molecule nucleosome positioning genome-wide. Our data enables unbiased classification
of oligonucleosomal patterns across both euchromatic and heterochromatic domains. These patterns are
influenced by multiple epigenomic phenomena, including the presence of predicted transcription factor
binding motifs and post-translational histone modifications. Consistent with estimates from previous studies,
our approach reveals enrichment for long, regular chromatin arrays in actively elongating chromatin, and
highly accessible, disordered arrays at active promoters and enhancers. Surprisingly, we also observe a large
amount of heterogeneity within constitutive heterochromatin domains, with both mappable H3K9me3-
decorated regions and human major satellite sequences harboring a mixture of irregular and short-repeat-length
oliognucleosome types. Our study provides a proof-of-concept framework for studying chromatin at single-
molecule resolution while suggesting a highly dynamic nucleosome-DNA interface across chromatin sub-
compartments.

RESULTS
Single-molecule real-time sequencing of adenine-methylated chromatin captures nucleosome footprints
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Existing methyltransferase accessibility assays either rely on bisulfite conversion'>"!” or use the Oxford
Nanopore platform to detect DNA modifications?3-?°. We hypothesized that high-accuracy PacBio single-
molecule real-time sequencing could detect m°dA deposited on chromatin templates to natively measure
nucleosome positioning. To test this hypothesis, we used the nonspecific adenine methyltransferase EcoGII%
to footprint nonanucleosomal chromatin arrays generated through salt-gradient dialysis (Supplementary
Figure 1), using template DNA containing 9 tandem repetitive copies of the Widom 601 nucleosome
positioning sequence?’ separated by ~46 basepairs (bp) of linker sequence followed by ~450 bp of sequence
without any known intrinsic affinity for nucleosomes. After purifying DNA, polishing resulting ends, and
ligating on barcoded SMRTBell adaptors, we subjected libraries to sequencing on PacBio Sequel or Sequel 11
flow cells, using unmethylated DNA and methylated naked DNA as controls (Figure 1A). After filtering low
quality reads, we analyzed a total of 33,594 single molecules across all three conditions. Across both platforms,
we observed higher average interpulse duration (IPD) in samples exposed to methyltransferase, consistent with
a rolling circle polymerase ‘pausing’ at methylated adenine residues in template DNA (Supplementary
Figure 2). Further inspection of footprinted chromatin samples sequenced on either platform revealed strong
specificity for altered IPD values only at thymines falling outside Widom 601 repeat sequences, in contrast
with fully methylated naked template and unmethylated controls (Supplementary Figure 3A,B). These results
suggest that the PacBio platform can natively detect ectopic m®dA added to chromatinized templates.

We next developed a computational approach to assign a posterior probability describing the likelihood
that an A/T basepair is methylated given IPD signals found within the same molecule (i.e. ‘modification
probability’). We then paired this approach with a simple peak-calling strategy to approximate nucleosomal
dyad positions. To benchmark this pipeline, we first calculated the distance between called nucleosome dyads
and expected 601 dyad positions (Figure 1B). Observed dyads were highly concordant with expected positions
(median + median absolute deviation [MAD] =4 + 2.97 bp), consistent with our data accurately capturing the
expected 601 dyad. We next calculated the expected distances between nucleosomes given our dyad callset
(i.e. a computationally-defined nucleosome repeat length [NRL]; Figure 1C). Compared with the expected
repeat length of 193 bp, our calculated results were similarly accurate at both two-dyad resolution (pairwise
distance between adjacent dyads; median + MAD = 193 + 7.40 bp) and averaged single-molecule resolution
(median + MAD = 192 + 1.30 bp). Both of these measurements were qualitatively uniform across all
molecules, independent of the positions of individual nucleosomes along individual array molecules
(Supplementary Figure 4). Finally, we directly visualized the modification probabilities of individual
sequenced chromatin molecules and observed that modification patterns occurred in expected linker sequences
(Figure 1D), and not in unmethylated or fully methylated control samples (Supplementary Figure SA,B).
These results demonstrate that EcoGII footprinting is specific for unprotected DNA and that kinetic deviations
observed in the data are not simply the result of primary sequence biases in the template itself. We hereafter
refer to this approach as the Single-molecule Adenine Methylated Oligonucleosome Sequencing Assay
(SAMOSA).

SAMOSA captures regular nucleosome-DNA interactions in vivo through nuclease-cleavage and
adenine-methylation simultaneously

Having shown that SAMOSA can footprint in vitro assembled chromatin fibres, we sought to apply
our approach to oligonucleosomal fragments from living cells. Multiple prior studies have suggested that a
light micrococcal nuclease (MNase) digest followed by disruption of the nuclear envelope and overnight
dialysis can be used to gently liberate oligonucleosomes into solution without dramatically perturbing
nucleosomal structure?®3°, After lightly digesting and solubilizing oligonucleosomes from human K562 nuclei,
we methylated chromatin with EcoGII and sequenced methylated molecules on the Sequel II platform (n =
1,855,316 molecules total; Figure 2A). As controls, we also shallowly sequenced deproteinated K562
oligonucleosomal DNA, and deproteinated oligonucleosomal DNA methylated with the EcoGII enzyme.

In vivo SAMOSA has several advantages compared to existing MNase- or methyltransferase-based
genomic approaches. Our approach combines MNase-derived cuts flanking each fragment with
methyltransferase footprinting of nucleosomes. MNase cuts mark the boundary of genomic ‘barrier’ elements
like nucleosomes; accordingly, fragment length distributions from in vivo SAMOSA data display patterns
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emblematic of bulk nucleosomal array regularity (Figure 2B). Modification patterns of sequenced molecules
then capture nucleosome-positioning information at single-molecule resolution; this is evident in single-
molecule averages of modification probability in chromatin samples with respect to fully methylated and
unmethylated controls (Figure 2C). While previous approaches for studying nucleosome regularity may
capture each of the former information types, this method is, to our knowledge, the first “multi-omic” single-
molecule assay that simultaneously captures the positioning of protein-DNA interactions through nucleolytic
cleavage, and (through DNA methylation) the positioning of proximal protein-DNA interactions on the same
single-molecule.

Our approach also differs from recent long-read?3?43! surveys of the epigenome in that our experiments
capture both active and repressed epigenomic domains. Comparing coverage enrichment of specific
ChromHMM?? labels in our dataset to shotgun PacBio sequencing of a human genome, ENCODE K562 DNase
I coverage®®, and published K562 MNase-seq coverage**, we observe notably increased representation of
heterochromatic regions of the genome with respect to DNase I data (Supplementary Figure 6), albeit with
different biases not seen in shotgun sequencing (likely owing to a combination of our solubilization protocol
and MNase fragmentation). Finally, our approach relies on PacBio sequencing, which at the moment has
demonstrably higher accuracy?®’ than Nanopore based approaches, and does not use the bisulfite conversion
required by Illumina-based methods to detect modifications.

SAMOSA enables unbiased classification of chromatin fibres on the basis of regularity and nucleosome
repeat length

The relative abundance and diversity of oligonucleosome patterns across the human genome remains
unknown. Given the single-molecule nature of SAMOSA, we speculated that our data could be paired with a
state-of-the-art community detection algorithm to systematically cluster footprinted molecules on the basis of
single-molecule nucleosome regularity and NRL (i.e. ‘oligonucleosome patterns’). To ease detection of signal
regularity on single molecules, we computed autocorrelograms for each molecule in our dataset > 500 bp in
length, and subjected resulting values to unsupervised Leiden clustering®. Cluster sizes varied considerably,
but were consistent across both replicates, with each cluster containing 6.54% (Cluster 4) - 20.1% (Cluster 1)
of all molecules (Figure 3A). The resulting seven clusters (Supplementary Figure 7A) capture the spectrum
of oligonucleosome patterning genome-wide, stratifying the genome by both NRL and array regularity.
Accounting for the coverage biases presented above, the measurements shown in Figure 3A provide a rough
estimate of the equilibrium composition of the genome with respect to these patterns.

The diversity in nucleosome regularity and repeat length across these clusters is visually apparent when
inspecting average modification probabilities of the 5° 1000 bp of each cluster (Figure 3B). To better annotate
each of these clusters, we characterized each with respect to methylation extent and distributions of computed
single-molecule NRLs. We first inspected the average modification probabilities of each molecule across
clusters, finding that these averages were largely invariant (Supplementary Figure 7B). This suggests that
our clustering approach does not simply classify oligonucleosomes based on the amount of methylation on
each molecule. We next estimated within-cluster heterogeneity in single-molecule NRLs using a simple peak-
calling approach. We scanned each autocorrelogram for secondary peaks, and annotated the location of each
peak to compute an estimated NRL. We then visualized these distributions as violin plots for each cluster
(Figure 3C). Our data broadly fall into two categories: irregular clusters made up of molecules spanning
multiple NRLs and lacking a strong regular periodicity, and highly regular clusters with defined single-
molecule NRLs ranging from ~172 bp (i.e. chromatosome plus 5 bp DNA) to >200 bp. Based on the median
NRLs and regularities inferred from these analyses, we named these clusters irregular-short (IRS), irregular-
long (IRL), irregular-170 (IR170), regular repeat length 172 (NRL172), regular repeat length 187A and B
(NRL187A/B), and regular repeat length 192 (NRL192). The difference between irregular and regular clusters
is clear when closely inspecting histograms of NRL calls from selected clusters (Figure 3D; Supplementary
Figure 7C), as well as the modification patterns on individual molecules (Figure 3E). Our analyses also varied
with respect to the fraction of molecules per cluster where a secondary peak could be detected (0.50% - 38.2%
of molecules across specific clusters; Supplementary Figure 7D). Failure to detect a peak within a single-
molecule autocorrelogram could be due to multiple factors, including technical biases (e.g. random
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undermethylated molecules). We observed, however, that more ‘missing” NRL estimates occurred in irregular
clusters, suggesting that at least a fraction of failed peak calls occurred due to lack of intrinsic regularity along
individual footprinted molecules. These analyses together demonstrate that SAMOSA data can be clustered in
an unbiased manner, thus enabling estimates of the equilibrium composition of the genome with respect to
oligonucleosome regularity and repeat length.

SAMOSA captures the transient nucleosome occupancy of transcription factor binding motifs

We next explored the extent to which our data captures chromatin structure at predicted K562
transcription factor (TF) binding sites®’. Both endo- and exo-nucleolytic MNase cleavage activities are
obstructed by genomic protein-DNA contacts; resulting fragment-ends thus capture both nucleosomal- and
TF-DNA interactions®®°. Inspection of cleavage patterns about 6 different transcription factor binding sites
(CTCF, NRF1, NRSF / REST, PU.1, c-MYC, GATA1) (Figure 4A-F) revealed signal resembling traditional
MNase-seq data, with fragment ends accumulating immediately proximal to predicted transcription factor
binding motifs, and, in the case of some TFs (i.e. CTCF, REST, PU.1), showed characteristic patterns of phased
nucleosomes. Further analysis of m°dA signal in sequenced molecules harboring motifs with at least 500
nucleotides of flanking DNA revealed examples of methyltransferase accessibility coincident with TF motifs
(e.g. CTCF, NRFI1, ¢-MYC), but also cases where single-molecule averages demonstrated weak or no
differential signal when compared to equal numbers of molecules drawn from random genomic regions
matched for GC-percentage and repeat content (e.g. GATAL; Figure 4G-L). Importantly, our methylation data
do not appear to capture TF ‘footprints’ as seen in DNase I, hydroxyl radical, or MNase cleavage data—this
could be due to turnover of transcription factors during our solubilization process, or owed to sterics, as EcoGII
and other bacterial methyltransferases are roughly twice the molecular weight of S. aureus micrococcal
nuclease?.

In theory, single-molecule footprinting data should distinguish nucleosome-bound and nucleosome-
free states for molecules containing TF binding sites. These accessibility patterns should be specific to
transcription factor binding motifs (i.e. not present in control molecules matched for GC / repeat content). To
test whether our assay captured such signal, we clustered all molecules shown in Figures 4G-L (including
control molecules) using Leiden clustering, using modification probabilities extracted in a 500 bp window
surrounding the predicted motif site / control site. In total we defined thirteen discrete states of template
accessibility across all surveyed molecules (Figure 4M; cluster sizes shown in Supplementary Figure 8). We
interpreted these states on the basis of methyltransferase accessibility as: methyltransferase resistant motifs
(MR); nucleosome-occluded motifs (NO1-8); stochastically-accessible motifs (wherein motif accessibility is
slightly elevated near the DNA entry / exit point of a footprinted nucleosome; SA1-2); accessible motifs (A);
and hyper-accessible motifs (HA). Notably, the patterns within these clusters were evident at single-molecule
resolution (Figure 4N). We speculate that the broad distribution of these states across both TF binding sites
and controls represent distributions of nucleosome ‘registers’ surrounding typical transcription factor binding
motifs (i.e. states MR; NO-1-8). A fraction of these registers (i.e. states SA1/2) may stochastically permit
transcription factor binding (perhaps through transient unwrapping of the nucleosome*’), enabling formation
of a new nucleosome register (i.e. state ‘A’), and subsequent generation of a highly accessible state (‘HA’;
model illustrated in Figure 40). The relative fraction of molecules in an ‘SA’ state could conceivably be
modulated by TF intrinsic properties (e.g. ability to bind partially nucleosome-wrapped DNA*!), or extrinsic
factors (e.g. local concentration of ATP-dependent chromatin remodeling enzymes*?). Indeed, most
transcription factors (excepting PU.1 and GATA1—the latter of which may productively bind nucleosomal
DNA*) were significantly enriched for specific states as defined above, and all control regions were markedly
depleted for molecules harboring the accessible ‘A’ and ‘HA’ states, hinting at the biological relevance of
these patterns (Supplementary Figure 9). Still, future experimental follow-up coupling our protocol with
perturbed biological systems and deeper sequencing are necessary to quantitatively interrogate this model.

Heterogeneous oligonucleosome patterns comprise human epigenomic domains
Short-read and long-read sequencing of nucleolytic fragments in mammals have suggested that NRLs
vary across epigenomic domains, with euchromatin harboring shorter NRLs on average and heterochromatic
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domains harboring longer NRLs**46, but the relative heterogeneity of these domains remains unknown. We
speculated that SAMOSA data could be used to estimate single-molecule oligonucleosome pattern
heterogeneity across epigenomic domains. We revisited the seven oligonucleosome patterns defined above,
and examined the distribution of patterns across collections of single molecules falling within ENCODE-
defined H3K4me3, H3K4mel, H3K36me3, H3K27me3, and H3K9me3-decorated chromatin domains. To
control for the impact of GC-content on these analyses, we also included GC- / repeat-content matched control
molecules for each epigenomic mark surveyed. Furthermore, to take advantage of the long-read and relatively
unbiased nature of our data, we also incorporated molecules deriving from typically unmappable human alpha,
beta, and gamma satellite DNA sampled directly from raw CCS reads.

We visualized the relative heterogeneity of these domains and controls in two ways: using histograms
of computed single-molecule NRL estimates (Figure 5A), and by using stacked bar graphs to visualize cluster
membership (Figure 5B). A striking finding of our analyses was that each epigenomic domain surveyed was
comprised of a highly heterogeneous mixture of oligonucleosome patterns. In most cases, these patterns
differed only subtly from control molecules with respect to regularity and NRL. In specific cases, we observed
small effect shifts in the estimated median NRLs for specific domains—for example, a shift of ~5 bp (180 bp
vs. 185 bp) in H3K9me3 chromatin with respect to random molecules, and a shift of ~4 bp (182 bp vs 186 bp)
for H3K36me3. These shifts were also evident in the fraction of molecules with successful peak calls:
H3K4me3 decorated chromatin, for example, had markedly fewer (78.0% vs 88.6%) successful calls compared
to control molecules, a finding consistent with the expected irregularity of active promoter oligonucleosomes.
We note that all of these measured parameters would be unattainable using any existing biochemical method,
and that these preliminary findings argue against the abundance of homogeneous oligonucleosome structures
in either heterochromatic or euchromatic nuclear regions.

On first glance, our data appear to run counter to previous observations demonstrating that epigenomic
domains can be delineated by differences in bulk nucleosome positioning as measured by nuclease digestion.
One possible explanation for this is that epigenomic domains subtly, but significantly, vary in their relative
composition of distinct oligonucleosome patterns, and the resulting average of these differences is the signal
captured in MNase-Southern and other cleavage-based measurements. We tested this hypothesis by
constructing a series of statistical tests to determine whether each of the seven defined oligonucleosome
patterns were significantly enriched or depleted across chromatin domains and matched control regions
(Figure 5D). Our results suggest that chromatin domains are demarcated by their relative usage of specific
oligonucleosome patterns. Consistent with expectations, active chromatin marked by H3K4me3 and H3K4me1
are punctuated by a mixture of irregular oligonucleosome patterns (namely, clusters IRL and IR170). For
transcription elongation associated H3K36me3 decorated chromatin, both short-read mapping in human and
long-read bulk array regularity mapping in D. melanogaster have both suggested relatively short, regular
nucleosome repeat lengths?>#*. Our data partially corroborate this finding in human K562 cells: H3K36me3-
domains are punctuated by irregular IRS oligoncleosome patterns (Fisher’s Exact Odds Ratio [O.R.] =1.13;
g = 1.71E-50) and regular, short NRL172 patterns (O.R. = 1.39; ¢ = 3.69E-170).

The more uniform coverage of our assay also allows us to assess compositional biases in
heterochromatic domains. Short-read-based human studies and classical MNase mapping of constituve
heterochromatin have suggested that H3K9me3-decorated chromatin harbor i.) long nucleosome repeat lengths
on average, and ii.) are highly regular. These estimates are susceptible to artifacts, as heterochromatic
nucleosomes are expected to be both strongly phased and weakly positioned. Our data partially disagree with
prior estimates—across both H3K9me3 and Satellite molecules we observe enrichment for irregular IRS
nucleosome conformers (Satellite O.R. = 1.13; ¢ = 5.71E-11; H3K9me3 O.R. = 1.35; ¢ = 3.95E-23). Still,
these enriched conformers were accompanied by enrichment for regular NRL172 oligonucleosome patterns
for both states (Satellite O.R. = 1.61; g = 5.25E-80; H3K9me3 O.R. = 1.23; ¢ = 3.86E-6). These analyses
demonstrate that prior NRL estimates by short-read sequencing may have been confounded by in vivo
heterogeneity in nucleosome positions, that heterochromatic nucleosome conformations can be both irregular
and diverse, and finally, highlight the value of SAMOSA for accurately studying nucleosome structure in
heterochromatin.
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Taken as a whole, our data suggest two fundamental properties of human epigenomic domains: first,
epigenomic domains are comprised of a diverse array of oligonucleosome patterns varying substantially in
intrinsic regularity and average distance between regularly spaced nucleosomes; second: epigenomic domains
are demarcated by their usage of these oligonucleosome patterns. We find that all epigenomic states are
characterized by a diverse mixture of oligonucleosomal conformers—many conformational states are neither
significantly depleted nor enriched with respect to all molecules surveyed, further hinting at the diverse
composition of chromatin domains genome-wide.

DISCUSSION

Here, we present the Single-molecule Adenine Methylated Oligonucleosome Sequencing Assay
(SAMOSA), a method for resolving nucleosome-DNA interactions using the EcoGII adenine
methyltransferase and PacBio single-molecule real-time sequencing. Our approach has multiple advantages
over existing methyltransferase-based sequencing approaches: first, by using a relatively nonspecific
methyltransferase, we avoid the primary sequence biases associated with GpC / CpG methyltransferase
footprinting methods; second, by natively detecting modifications using the single-molecule real time
sequencer, we reduce enzymatic sequence bias and avoid sample damage associated with sodium bisulphite
conversion; third, by employing a light MNase-digest and solubilizing long oligonucleosomal fragments, we
more uniformly capture both active and silent chromatin and simultaneously measure methyltransferase
accessibility and MNase cleavage on single molecules; finally, and most importantly, our approach unlocks
the study of protein-DNA interactions at length-scales previously unallowed by Illumina sequencing.

Our study does have limitations. While the current SAMOSA protocol enriches fragments ranging from
~500 bp - ~2 kb in size, high-quality PacBio CCS sequencing is compatible with fragments ranging from 10 —
15 kbp. We anticipate that with further optimization, SAMOSA will be applicable to longer arrays, enabling
kilobase-domain-scale study of single-molecule oligonucleosome patterning. Our approach also requires
solubilization of oligonucleosomal fragments, and is thus unlikely to capture protein-DNA interactions weaker
or more transient than the stable nucleosome-DNA interaction. Third, our approach does not bias signal
towards regions of open chromatin (as in short-read DNase / ATAC-seq or long-read SMAC-seq?®), and thus
addresses a different set of gene regulatory questions compared to those published assays. Fourth, our proof-
of-concept was performed in unsynchronized K562 cells, and thus we cannot yet addres the contribution of a
biological process like the cell cycle to the observed heterogeneity. Finally, as a proof-of-concept our approach
falls short of generating a high-coverage reference map of the K562 epigenome; as sequencing costs for PacBio
decrease and sequence-enrichment technologies (e.g. CRISPR-based enrichment*’; SMRT-ChIP*®) for the
platform mature, SAMOSA may routinely be used to generate reference datasets with hundred-to-thousand-
fold single-molecular coverage of genomic sites of interest.

Our data confirms that the human epigenome is made up of a diverse array of oligonucleosome patterns,
including highly regular arrays of varying nucleosome repeat lengths, and irregular arrays where nucleosomes
are positioned without a detectable periodic signature®. Our results broadly agree with a recent approach
employing electron tomography to map the in situ structure of mammalian nuclei, which found chromatin to
be highly heterogeneous at the length scale of multi-nucleosome interactions, and failed to detect evidence of
a 30 nm fibre or other homogeneous higher-order compaction states’. At the sequencing depth presented here,
these oligonucleosome patterns significantly, if subtly, vary across different epigenomic domains.
Surprisingly, we find that both mappable (H3K9me3 ChIP-seq peaks) and unmappable (human satellite
sequence) constitutive heterochromatin are enriched for irregular oligonucleosome patterns in addition to
expected regular arrays—the presence of these irregular fibres may have been previously missed due to an
understandable reliance on bulk averaged methods (e.g. MNase-Southern) for studying constitutive
heterochromatin. Indeed, it is tempting to speculate that this irregularity may be linked to the dynamic
restructuring of heterochromatic nucleosomes by factors like HP1°°, which may promote phase-separation of
heterochromatin. Future studies combining SAMOSA with cellular perturbation of heterochromatin-
associated factors could directly address this.

More generally, future work employing our technique must focus on questioning the biological
significance of this global heterogeneity: for example, is the fraction of stochastically accessible transcription
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factor binding sites (i.e. motif ‘site exposure’ frequency**>!) important for TF-DNA binding in nucleosome-
occluded genomic regions? What is the interplay between transcription factor ‘pioneering’ and stochastic site
accessibility? What are the global roles of ATP-dependent chromatin remodeling enzymes (i.e. SWI/SNF;
ISWI; INO80; CHD) in maintaining these patterns genome-wide®?? Our approach also unlocks a set of
conceptual questions regarding the nature of chromatin secondary structure. Significant genome-wide efforts
have revealed that metazoan epigenomes are punctuated by regions of concerted histone modification and
subnuclear positioning®’3, but approaches for studying the distribution of oligonucleosomal patterns
associated within these same regions are lacking. Given recent work suggesting that NRLs can specify the
ability of nucleosomal arrays to phase separate>, it is likely that SAMOSA and similar assays may provide an
important bridge between in vitro biochemical observations of chromatin and in vivo genome-wide ‘catalogs’
of oligonucleosome patterning.

SAMOSA adds to the growing list of technologies that use high-throughput single-molecule
sequencing to explore the epigenome??232431 We foresee the broad applicability of this and similar approaches
to dissect gene regulatory processes at previously intractable length-scales. Our approach and associated
analytical pipelines demonstrate the versatility of high-throughput single-molecule sequencing—namely the
ability to cluster single-molecules in an unsupervised manner to uncover molecular states previously missed
by short-read approaches. Our analytical approach bears many similarities to methods used in single-cell
analysis, and indeed many of the technologies and concepts typically used for single-cell genomics™> (e.g.
clustering; trajectory analysis) will likely have value when applied to single-molecule epigenomic assays. Our
approach also represents the first of what we anticipate will be many ‘multi-omic’ single-molecule assays; as
third-generation sequencing technologies advance, it will likely become possible to encode multiple
biochemical signals on the same single-molecules, thus enabling causal inference of the logic and ordering of
biochemical modifications on single chromatin templates.

METHODS

Preparation of nonanucleosome arrays via Salt Gradient Dialysis

The nonanucleosome DNA in a plasmid was purified by Gigaprep (Qiagen) and the insert was digested out
with EcoRV, ApaLl, Xhol and Stul. The insert was subsequently purified using a Sephacryl S1000 super fine
gel flitration (GE Healthcare). Histones were purified and octamer was assembled as previously described>®.
To assemble the arrays, the nonanucleosome DNA was mixed with octamer and supplementing dimer, then
dialyzed from high salt to low salt>’. EcoRI sites engineered in the linker DNA between the nucleosomes, and
digestion by EcoRI was used to assess the quality of nucleosome assembly.

SAMOSA on nonanucleosomal chromatin arrays

For the chromatin arrays, 1.5 ug of assembled array was utilized as input for methylation reactions with the
non-specific adenine EcoGII methyltransferase (New England Biolabs, high concentration stock; 2.5E4U /
mL). For the naked DNA controls, 2 ug of DNA was utilized as input for methylation reactions. Methylation
reactions were performed in a 100 uL reaction with Methylation Reaction buffer (1X CutSmart Buffer,1 mM
S-adenosyl-methionine (SAM, New England Biolabs)) and incubated with 2.5 ulL EcoGII at 37°C for 30
minutes. SAM was replenished to 6.25 mM after 15 minutes. Unmethylated controls were similarly
supplemented with Methylation Reaction buffer, minus EcoGII and replenishing SAM, and the following
purification conditions. To purify DNA, the samples were all subsequently incubated with 10ul Proteinase K
(20mg/mL) and 10uL 10% SDS at 65°C for a minimum of 2 hours up to overnight. To extract the DNA, equal
parts volume of Phenol-Chloroform was added and mixed vigorously by shaking, spun (max speed, 2 min).
The aqueous portion was carefully removed and 0.1x volumes of 3M NaOAc, 3uL of GlycoBlue and 3x
volumes of 100% EtOH were added, mixed gently by inversion, and incubated overnight at -20°C. Samples
were then spun (max speed, 4°C, 30 min), washed with 500uL. 70% EtOH, air dried and resuspended in 50uL.
EB. Sample concentration was measured by Qubit High Sensitivity DNA Assay.

Preparation of in vitro SAMOSA SMRT Libraries
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The purified DNA from nonanucleosome array and DNA samples were used in entirety as input for PacBio
SMRTbell® library preparation (~1.5-2 ug). Preparation of libraries included DNA damage repair, end repair,
SMRTbell® ligation, and Exonuclease according to manufacturer’s instruction. After Exonuclease Cleanup
and a double 0.8x Ampure PB Cleanup, sample concentration was measured by Qubit High Sensitivity DNA
Assay (1 uL each). To assess for library quality, samples (1 uL each) were run on an Agilent Bioanalyzer DNA
chip. Libraries were sequenced on either Sequel I or Sequel II flow cells (UC Berkeley QB3 Genomics). Sequel
IT runs were performed using v2.0 sequencing chemistry and 30 hour movies.

Cell lines and cell culture

K562 cells (ATCC) were grown in standard media containing RPMI 1640 (Gibco) supplemented with 10%
Fetal Bovine Serum (Gemini, Lot#A98G00K) and 1% Penicillin-Streptomycin (Gibco). Cell lines were
regularly tested for mycoplasma contamination and confirmed negative with PCR (NEB NebNext Q5 High
Fidelity 2X Master Mix).

Isolation of nuclei, MNase digest, and overnight dialysis

100E6 K562 cells were collected by centrifugation (300xg, 5 min), washed in ice cold 1X PBS, and
resuspended in 1 mL Nuclear Isolation Buffer (20mM HEPES, 10mM KCI, ImM MgCla, 0.1% Triton X-100,
20% Glycerol, and 1X Protease Inhibitor (Roche)) per 5-10 e6 cells by gently pipetting 5x with a wide-bore
tip to release nuclei. The suspension was incubated on ice for 5 minutes, and nuclei were pelleted (600xg, 4°C,
5 min), washed with Buffer M (15mM Tris-HCI pH 8.0, 15 mM NaCl, 60mM KCI, 0.5mM Spermidine), and
spun once again. Nuclei were resuspended in 37°C pre-warmed Buffer M supplemented with 1mM CaCl. and
distributed into two 1mL aliquots. For digestion, micrococcal nuclease from Staphylococcus aureus (Sigma,
reconstituted in ddH»O, stock at 0.2U/ul) was added at 1U per SOE6 nuclei, and nuclei were digested for 1
min. at 37°C. EGTA was added to 2mM immediately after 1 minute to stop the digestion and incubated on ice.
For nuclear lysis and liberation of chromatin fibres, MNase-digested nuclei were collected (600xg, 4°C, 5
minutes) and resuspended in ImL per SOE6 nuclei of Tep20 Buffer (10mM Tris-HCI pH 7.5, 0.1mM EGTA,
20mM NaCl, and 1X Protease Inhibitor (Roche) added immediately before use) supplemented with 300ug/mL
of Lysolethicin (L-a-Lysophosphatidylcholine from bovine brain, Sigma, stock at Smg/mL) and incubated at
4°C overnight. To remove nuclear debris the next day, dialyzed samples were spun (12,000xg, 4°C, 5 minutes)
and the soluble chromatin fibres present in the supernatant were collected. Sample concentration was measured
by Nanodrop.

SAMOSA on K562-derived oligonucleosomes

Dialyzed chromatin was utilized as input (1.5 ug) for methylation reactions with the non-specific adenine
EcoGII methyltransferase (New England Biolabs, high concentration stock 2.5e4U/mL). Reactions were
performed in a 200ul reaction with 1X CutSmart Buffer and 1mM S-adenosyl-methionine (SAM, New
England Biolabs) and incubated with 2.5ulL enzyme at 37°C for 30 minutes. SAM was replenished to 6.25mM
after 15 minutes. Non-methylation controls were similarly supplemented with Methylation Reaction buffer,
minus EcoGII and replenishing SAM, and purified by the following conditions. To purify all DNA samples,
reactions were incubated with 10uL of RNaseA at room temperature for 10 minutes, followed by 20ul
Proteinase K (20mg/mL) and 20ulL 10% SDS at 65°C for a minimum of 2 hours up to overnight. To extract
the DNA, equal parts volume of Phenol-Chloroform was added and mixed vigorously by shaking, spun (max
speed, 2 min). The aqueous portion was carefully removed and 0.1x volumes of 3M NaOAc, 3ul of GlycoBlue
and 3x volumes of 100% EtOH were added, mixed gently by inversion, and incubated overnight at -20°C.
Samples were then spun (max speed, 4°C, 30 min), washed with 500uL. 70% EtOH, air dried and resuspended
in 50ull EB. Sample concentration was measured by Qubit High Sensitivity DNA Assay. Naked DNA Positive
methylation controls were collected from aforementioned non-methylated controls post-purification (25uL,
~500ng), methylated with EcoGII as previously stated, and purified again by the following conditions.

Preparation of in vivo SAMOSA SMRT libraries
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Purified DNA from MNase-digested K562 chromatin oligonucleosomes (methylated, non-methylated control,
purified then methylated) were briefly spun in a Covaris G-Tube (3380xg, 1 min) in efforts to shear gDNA
uniformly to 10kB prior PacBio library preparation. The input concentration was approximately 575ng for
methylated and non-methylated samples, and approximately 320ng for purified then methylated samples.
Samples were concentrated with 0.45x of AMPure PB beads according to manufacturer’s instructions. The
entire sample volume was utilized as input for subsequent steps in library preparation, which included DNA
damage repair, end repair, SMRTbell ligation, and Exonuclease cleanup according to manufacturer’s
instructions. For SMRTbell ligations, unique PacBio SMRT-bell adaptors (100uM stock) were annealed to a
20uM working stock in 10mM Tris-HCI pH 7.5 and 100mM NaCl in a thermocycler (85°C 5 min, RT 30sec,
4°C hold) and stored at -20°C for long-term storage. After exonuclease cleanup and double Ampure PB
cleanups (0.45X), the sample concentrations were measured by Qubit High Sensitivity DNA Assay (1uL each).
To assess for size distribution and library quality, samples (1 uL each) were run on an Agilent Bioanalyzer
DNA chip. Libraries were sequenced on Sequel II flow cells (UC Berkeley QB3 Genomics Core). In vivo data
were collected over two 30 h Sequel II movie runs; the first with a 2 h pre-extension time and the second with
a 0.7 h pre-extension time.

Data analysis

All raw data will be made available at GEO Accession XXXXXX; processed data is available at Zenodo
(dx.doi.org/10.5281/zenodo.3834706). All scripts and notebooks for reproducing analyses in the paper are
available at https://github.com/RamanilLab/SAMOSA.

We apply our method to two use cases in the paper, and they differ in the computational workflow to analyze
them. The first is for sequencing samples where every DNA molecule should have the same sequence, which
is the case for our in vitro validation experiments presented in Figure 1. The second use case is for samples
from cells containing varied sequences of DNA molecules. We will refer to the first as homogeneous samples,
and the second as genomic samples. The workflow for genomic samples will be presented first in each sections,
and the deviations for homogeneous samples detailed at the end.

Sequencing read processing
Sequencing reads were processed using software from Pacific Biosciences. The following describes the
workflow for genomic samples:

1. Demultiplex reads

Reads were demultiplexed using lima. The flag "--same’ was passed as libraries were generated with the same
barcode on both ends. This produces a BAM file for the subreads of each sample.

2. Generate Circular Consensus Sequences (CCS)

CCS were generated for each sample using ccs>®. Default parameters were used other than setting the number
of threads with *-j". This produces a BAM file of CCS.

3. Align CCS to the reference genome

Alignment was done using pbmm2*, and run on each CCS file, resulting in BAM files containing the CCS
and alignment information.

4. Generate missing indices

Our analysis code requires pacbio index files (.pbi) for each BAM file. ‘pbmm2" does not generate index files,
so missing indices were generated using “pbindex .

For homogeneous samples, replace step 3 with this alternate step 3

5. Align subreads to the reference genome

pbmm?2 was run on each subreads BAM file (the output of step 1) to align subreads to the reference sequence,
producing a BAM file of aligned subreads.

Sample Reference Preparation
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Our script for analyzing samples relies on a CSV file input that contains information about each sample,
including the locations of the relevant BAM files and a path to the reference genome. The CSV needs a header
with the following columns:
index: Integer indices for each sample. We write the table using ‘pandas’ ".to _csv' function, with parameters
‘index=True, index label="index"
cell: A unique name for the SMRT cell on which the sample was sequenced
sampleName: The name of the sample
unalignedSubreadsFile: This will be the file produced by step 1 above. This should be an absolute path to the
file.
cesFile: This is the file produced by step 2 above
alignedSubreadskFile: This is the file produced by the alternate step 3 above. It is required for homogeneous
samples but can be left blank for genomic samples.
alignedCcsFile: This is the file produced by step 3 above. It is required for genomic samples but can be left
blank for homogeneous samples.
reference: The file of the reference genome or reference sequence for the sample

Extracting IPD measurements and calling methylation

The script extractIPD.py accesses the BAM files, reads the IPD values at each base and uses a gaussian mixture
model to generate posterior probabilities of each adenine being methylated. extractIPD takes two positional
arguments. The first is a path to the above sample reference CSV file. The second is a specification for which
sample to run on. This can be either an integer index value, in which case extractlPD will run on the
corresponding row. Alternatively it can be a string containing the cell and sampleName, separated by a period.
Either way extractIPD will run on the specified sample using the paths to the BAM files contained within the
CSV.

extractIPD produces the following three output files when run on genomic samples:
processed/onlyT/{cell} {sampleName} onlyT zmwinfo.pickle: This file is a 'pandas’ dataframe stored as
a pickle, and can be read with the ‘pandas.read pickle’ function. This dataframe contains various information
about each individual ZMW.

processed/onlyT/{cell} {sampleName} onlyT.pickle: This file contains the normalized IPD value at every
thymine. The data is stored as a dictionary object. The keys are the ZMW hole numbers (stored in the column
'zmw' in the zmwinfo dataframe), and the values are numpy arrays. The arrays are 1D with length equal to the
length of the CCS for that molecule. At bases that are A/T, there will be a normalized IPD value. Each G/C
base and a few A/T bases for which an IPD value couldn't be measured will contain NaN.
processed/binarized/{cell} {sampleName} bingmm.pickle: This file contains the posterior probability of
each adenine being methylated. The data format is identical to the onlyT.pickle file above, except the numpy
array contains values between 0 and 1, where the higher values indicate a higher confidence that the adenine
is methylated.

When run on homogeneous samples the following output files are alternately produced:
processed/onlyT/{cell} {sampleName} onlyT.npy: This numpy array has a column for every base in the
reference sequence, and a row for each DNA molecule that passes the filtering threshold. A normalized IPD
value is stored for each adenine that could be measured at A/T bases, other bases are NaN.
processed/binarized/{cell} {sampleName} bingmm.npy: This numpy array is the same shape as the
_onlyT.npy file above. The values are posterior probabilities for an adenine being methylated, ranging from 0
to 1.

Dyad calling on in vitro methylated chromatin arrays
Nucleosome positions were predicted in nonanucleosomal array data by taking a 133 bp wide rolling mean
across the molecule, and finding each local minimum peak at least 147 bp apart from each other.
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In vivo analyses

We smooth the posterior probabilities calculated in the paper to account for regions with low local A/T content
and generally denoise the single-molecule signal. For in vitro analyses, we smooth the calculated posterior
probabilities using a 5 bp rolling mean. For all in vivo analyses in the paper that involve calculation of single-
molecule autocorrelograms, averaging over multiple templates, and visualizing individual molecules, we
smooth posteriors with a 33 bp rolling mean. For all autocorrelation calculations we ignore regions where
compared lengths would be unequal; this has the effect of rendering the returned autocorrelogram exactly 0.5
* the input length.

Averages of the modification signal across the first 1 kb of K562 oligonucleosomes

We took all molecules at least 500 nt in length and concatenated all of the resulting matrices from each of the
four separate samples / runs, and then plotted the NaN-sensitive mean over the matrix as a function of distance
along the molecule.

ChromHMM Coverage Enrichment Analysis

We downloaded K562 ChromHMM labels from the UCSC Genome Browser, lifted over coordinates to hg38
using the liftOver tool, and then used bedtools multicov to compute the read coverage for each ChromHMM
BED entry. We then read this file in as a pandas dataframe. We next use this dataframe to estimate the relative
enrichment / depletion of each label in each dataset. The datasets we use in addition to our in-house SAMOSA
data, we use aligned ENCODE?’ DNasel-seq data (ENCFF156LGK), in-house aligned K562 MNase-seq data®*
and  publicly-released  whole-genome  shotgun  sequencing CCS  data from  PacBio
(https://downloads.pacbcloud.com/public/dataset/HG002 SV _and SNV CCS/consensusreads/). We
estimated enrichment by evaluating normalizing the number of reads mapping to each ChromHMM labeled
genomic bin, dividing this value by the total number of bins with that ChromHMM label, and taking the natural
log. We then plotted this data in heatmap form using ggplot2.

Clustering analysis of all chromatin molecules >=500 bp in length

We used Leiden clustering cluster all molecules in our dataset passing our lower length cutoff. Resolution and
n_neighbors were manually adjusted to avoid generating large numbers of very small clusters (i.e. < 100
molecules). All parameters used for plotting figures in the paper are recapitulated in the Jupyter notebook. Our
clustering strategy was as follows: first, we smoothed raw signal matrices with a 33 bp NaN-sensitive running
mean. We next computed the autocorrelation function for each molecule in the matrix, using the full length of
the molecule up to 1000 bp. We then used Scanpy® to perform Leiden clustering on the resulting matrix. We
visualized the resulting cluster averages with respect to the average autocorrelation function, and with respect
to averaged modification probabilities for each cluster. For a subset of clusters we also randomly sampled 500
- 5000 molecules to directly visualize in the paper.

Computing single-molecule autocorrelograms and estimating NRLs on single molecules

We computed single-molecule autocorrelograms and discovered peaks on these autocorrelograms as follows:
for each molecule, we used the scipy®! find peaks function to in the computed autocorrelogram and annotated
the location of that peak. We also kept track of the molecules where find peaks could not detect a peak using
the given parameters, which we optimized manually by modifying peak height / width to detect peaks on the
averaged autocorrelograms. In our hands, these parameters robustly detect peaks between 180-190 bp in auto-
correlgram averages, consistent with the expected bulk NRL in K562 cells (analyses by A Rendeiro;
zenodo.org/record/3820875). For each collection of single-molecule autocorrelogram peaks we computed the
median, the median absolute deviation, and visualized the distribution of peak locations as a histogram.

Transcription factor binding motif analyses and enrichment tests

K562 transcription factor binding sites were predicted as in Ramani et a/*°. Briefly, we downloaded IDR-

filtered ENCODE ChIP-seq peaks for CTCF, NRF1, REST, c-MYC, PU.1, and GATA1, and then used FIMO®
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to predict TF binding sites within these peaks using CISTROME PWM definitions for each transcription factor.
For MNase-cleavage analyses, we plotted the abundance of MNase cuts (2 per molecule) with respect to TF
binding sites and plotted these as number of cleavages per molecules sequenced. To examine modification
probabilities around TF binding sites, we wrote a custom script (zmw_selector.py) to find the ZMWs that
overlap with features of interest (e.g. transcription factor binding sites). We extracted all ZMWs where a
portion of the read alignment falls within 1 kb of a given feature, and annotated the position of the alignment
starts, ends, and strand with respect to the feature. We then used these coordinates and strand information to
extract all modification signal falling within a 500 bp window centered at each TF binding site. For control
sites, we used the gkmSVM package®? to find GC- / repeat-content matched genomic regions for each peakset.
We constructed a series of enrichment tests (Fisher's Exact) to determine odds ratios / p-values to find specific
cluster label--transcription factor pairs that were enriched with respect to the total set of all labeled molecules.
Finally, we used the Storey g-value package® to correct for the number of Fisher's exact tests performed.

Enrichment Tests for Chromatin States

We used a custom python script (zmw_selector bed.py) or directly scanned for satellite-containing CCS reads
(see below) to extract molecules that fall within ENCODE-defined chromatin states / pertain to human major
satellite sequences. We then used a Python dictionary linking ZMW IDs to indices along the total matrix of
molecules to link Cluster IDs and chromatin states. Finally, we constructed a series of enrichment tests (Fisher's
Exact) to determine odds ratios / p-values to find specific cluster label-chromatin state pairs that were enriched
with respect to the total set of all labeled molecules. We then used the Storey g-value package to correct for
the number of Fisher's exact tests performed. Control molecules were drawn as above, using the gkmSVM
package to find GC / repeat-content matched genomic regions for each peakset.

Selection of satellite-containing reads

Circular consensus reads with minimum length of 1-kb bearing satellites were identified using BLAST
searching against a database containing DFAM® consensus sequences for alpha (DF0000014.4, DF0000015.4,
DF0000029.4), beta (DF0000075.4, DF0000076.4, DF0000077.4, DF0000078.4, DF0000079.4), and gamma
(DF0000148.4, DF0000150.4, DF0000152.4) satellites using blastn with default parameters. Satellite
containing reads were further filtered such that they contained at minimum two hits to satellite consensus
sequences and matches spanned at least 50% of the consensus sequence.
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Figure 1: Overview of the single-molecule adenine methylated oligonucleosome sequencing assay

4 (SAMOSA). A.)) In the SAMOSA assay, chromatin is methylated using the nonspecific EcoGII

5 methyltransferase, DNA 1is purified, and then subjected to sequencing on the PacBio platform. Modified

6  adenine residues are natively detected during SMRT sequencing due to polymerase pausing, leading to an

7  altered interpulse duration at modified residues. B.) SAMOSA data can be used to accurately infer nucleosome

8  dyad positions given a strong positioning sequence. Shown are the distributions of called dyad positions with

9  respect to the known Widom 601 dyad. Called dyads fall within a few nucleotides of the expected dyad position

10 (median + median absolute deviation [MAD] =4 + 2.97 bp). C.) SAMOSA data accurately recapitulates the

11 known nucleosome repeat lengths (NRL) of in vitro assembled chromatin fibres. Called NRLs are strongly

12 concordant with the expected 193 repeat length (pairwise distance between adjacent dyads median + MAD =

13 193 £+ 7.40 bp; single-molecule averaged repeat length median £+ MAD = 192 + 1.30 bp). D.) Expected

14 nucleosome footprints in SAMOSA data can be visually detected with single-molecule resolution (n = 500

15  sampled footprinted chromatin molecules).
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Figure 2: In vivo SAMOSA captures oligonucleosome structure by combining MNase digestion of
chromatin with adenine methylation footprinting. A.) An overview of the in vivo SAMOSA protocol:
oligonucleosomes are gently solubilized from nuclei using micrococcal nuclease and fusogenic lipid treatment.
Resulting oligonucleosomes are footprinted using the EcoGII enzyme and sequencing on the PacBio platform.
Each sequencing molecules captures two orthogonal biological signals: MNase cuts that capture ‘barrier’
protein-DNA interactions, and m°dA methylation protein-DNA footprints. B.) Fragment length distributions
for in vivo SAMOSA data reveal expected oligonucleosomal laddering (bin size = 5 bp). C.) Averaged
modification probabilities from SAMOSA experiments demonstrate the ability to mark nucleosome-DNA
interactions directly via methylation. Modification patterns seen in the chromatin sample are not seen in

unmethylated oligonucleosomal DNA or fully methylated K562 oligonucleosomal DNA.
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Figure 3: SAMOSA reveals distribution of oligonucleosome patterns genome-wide. A.) Stacked bar chart

representation of the contribution of each cluster to overall signal across two replicate experiments in K562

cells. B.) Average modification probability as a function of sequene for each of the seven defined clusters.

Left: Manually annoted cluster names based on NRL estimates computed by calling peaks on single-molecule

autocorrelograms; Right: Median and median absolute deviation for single-molecule NRL estimates

determined for each cluster. C.) Violin plot representation of the distributions of single-molecule NRL

estimates for each cluster. Clusters can be separated into three ‘irregular’ and four ‘regular’ groups of

oligonucleosomes. D.) Histogram of single-molecule NRL estimates for Clusters 1, 4, and 7, along with E.)

5,000 randomly sampled molecules from each cluster.
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Figure 4: SAMOSA captures bulk and single-molecule evidence of transcription factor-DNA interaction

simultaneously via two orthogonal molecular signals. A.-F.) SAMOSA MNase-cut signal averaged over

predicted CTCF, NRF1, REST, PU.1, c-MYC, and GATA1 binding motifs in the K562 epigenome. All binding

sites were predicted from ENCODE ChIP-seq data. G-L.) m®dA signal for the same transcription factors,

averaged over molecules containing predicted binding sites and at least 250 bases flanking DNA on either side

of the predicted motif. Methylation patterns at predicted sites were compared against average profiles taken

from randomly drawn molecules from GC%- and repeat-content-matched regions of the genome (calculated

for each ENCODE ChIP-seq peak set). M.) Results of clustering motif-containing molecules using the Leiden
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community detection algorithm. Clusters were manually annotated as containing molecules that were:
‘methylation resistant’ (MR), nucleosome occupied (NO1-8), stochastically accessible (SA1-2), accessible
(A), or hyper-accessible (HA). N.) Heatmap representation of single-molecule accessibility profiles for clusters
NO7, NO8 , and A (500 randomly sampled molecules per cluster). O.) Our data may be explained by the
Widom ‘site exposure’ model in vivo. Transcription factor binding motifs are stochastically exposed as
nucleosomes toggle between multiple ‘registers’ as seen in Figure 3M (states NO and SA). Transcription

factor binding perhaps enforces a favorable nucleosome register (state A), which can then seed hyper-

accessible states / further TF-DNA interactions (state HA).
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Figure 3: Human epigenomic states are punctuated by specific oligionucleosome patterns. A.) Histogram

representations of the estimated single-molecule NRLs for five different epigenomic domains compared to

control sets of molecules matched for GC and repeat content. /nset: Numbers of molecules plotted, median

NRL estimates with associated median absolute deviations, and the percent of molecules where a peak could

not be detected. B.) Stacked bar chart representation of the relative composition of each epigenomic domain

with respect to the seven clusters defined in Figure 3. C. Heterochromatin: constitutive heterochromatin; F.

Heterochromatin: facultative heterochromatin. C.) Heatmap of enrichment test results to determine

nucleosome conformers that are enriched or depleted for each chromatin state. Tests qualitatively appearing

to be chromatin-state specific are highlighted with a black box. Significant tests following multiple hypothesis

correction marked with a black dot. Fisher’s Exact Test was used for all comparisons.
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HIGH-RESOLUTION SUPPLEMENTARY FIGURES
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Supplementary Figure 1: Quality control of in vitro nucleosome arrays assembled through salt-gradient

dialysis. Nonanucleosomal arrays were assembled in duplicate as previously and checked for assembly extent

via restriction enzyme digest. In both cases, the smallest digestion products corresponded to a protected

mononucleosomal fragment, suggesting that there is minimal underassembly of the resulting arrays.

20


https://doi.org/10.1101/2020.05.20.105379
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.20.105379; this version posted May 22, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Sequel Sequel Il
0.08 Sample
|:| Naked DNA
D Naked DNA + EcoGlI
0.06 D Chromatin + EcoGll
=
0.04 - i
=
o
0.02 -
2 0.00
w
C
(]
O 04
0.3 1 [9)
(=
QO
=
&
0.2- g
3
=
8
0.11
0.01
0 50 100 150 0 50 100 150
Mean IPD

Supplementary Figure 2: Mean raw and quantile normalized interpulse durations for in vitro SAMOSA
experiments. /n vitro SAMOSA experiments demonstrate intermediate single-molecule average interpulse
durations compared to unmethylated array DNA and fully methylated deproteinated array DNA. Data are
similarly separated on the Sequel and Sequel II platforms and quantile normalization further aids in separating

chromatin from control samples, particularly on the Sequel II platform.
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Supplementary Figure 3: Adenine methylation by the EcoGII enzyme is specific to accessible adenines
and is protected against by the nucleosome. A.) Violin plots of the distribution of average, quantile
normalized IPD values for each nucleotide on controls (unmethylated / fully methylated naked DNA) and
chromatin separated by nucleotides falling within the Widom 601 nucleosome positioning sequence or linker

DNA. In the chromatin context, only adenine nucleotides falling within the linker are modified, consistent with
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protection of bases by nucleosomes positioned by the Widom 601 sequence. B.) As in A, but for data from the

Sequel II platform.
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Supplementary Figure 4: Average linker methylation and individually called dyad positions are

qualitatively similar across the length of the nonanucleosomal array molecule. Histograms of called dyad

positions for each occurrence of a Widom 601 repeat unit (orange shading), averaged over all sequenced

chromatin molecules are shown in brown. Mean methylation calls for each linker sequence (sequence outside

orange shading) are shown in purple.
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Supplementary Figure 5: Unmethylated and fully methylated array DNA does not display the same
periodic patterning of modified bases seen in methylated chromatin. A.) Smoothed modification
probabilities for 500 molecules of unmethylated array DNA. B.) Smoothed modification probabilities for 500
molecules of fully methylated naked array DNA. In both cases, data are smoothed using a 5 bp rolling mean

on the calculated modification probabilities at template A nucleotides.
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Supplementary Figure 6: Coverage enrichment of SAMOSA versus other data types at ChromHMM
annotated genomic regions. SAMOSA coverage is less biased for open / active chromatin than short-read
assays of chromatin accessibility, and is more comparable to short-read MNase-seq assays. SAMOSA
coverage is more biased than shotgun PacBio sequencing of the human genome, likely due to the combined

use of MNase as a cleavage reagent and the chromatin solubilization protocol used.
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Supplementary Figure 7: Further characterization of clustered footprinted molecules. A.) Average
autocorrelograms for the seven Leiden clusters. B.) Violin plots of the single-molecule average modification
probabilities for each cluster. Clusters do not substantially differ with respect to modification probability,
suggesting that clustering is not simply driven by methylation extent. C.) As in Figure 3C; NRL distribution
estimates for each of the seven clusters. D.) Autocorrelogram peak-calling fails in a fraction of reads in each

cluster; this fraction appears to be negatively associated with the ‘regularity’ of the cluster.
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Supplementary Figure 8: Cluster sizes and numbers of motif-containing molecules for each
transcription factor chosen for study. A.) Leiden cluster sizes for cluster shown in Figure 4. B.) Counts of
molecules harboring respective transcription factor binding sites. For each transcription factor, we sampled an

equal number of randomly drawn molecules taken from regions GC- / repeat-content matched against TF

ChIP-seq peaks.
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Supplementary Figure 9: Cluster enrichment for each transcription factor studied. We performed
Fisher’s exact tests to determine relative enrichment and depletion of each cluster for each transcription factor
surveyed in Figure 4. Cluster ‘A’ is consistently depleted across control molecules but enriched across
molecules containing bona fide transcription factor binding motifs, suggesting that the clusters identified in
this study are biologically relevant. Fishers Exact test odds ratios are plotted in heatmap form and all
enrichment tests that are statistically significant under a false discovery rate of 10% (g < 0.1) are marked with

a black dot.
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