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ABSTRACT

Most research on aposematism has focused on chemically defended prey, but

signalling difficulty of capture remains poorly explored. Similarly to classical
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22 Batesian and Mullerian mimicry related to distastefulness, such “evasive
23 aposematism” may also lead to convergence in warning colours, known as
24  evasive mimicry. A prime candidate group for evasive mimicry are Adelpha
25  butterflies, which are agile insects and show remarkable colour pattern
26  convergence. We tested the ability of naive blue tits to learn to avoid and
27 generalise Adelpha wing patterns associated with difficulty of capture, and
28 compared their response to that of birds that learned to associate the same wing
29  patterns with distastefulness. Birds learned to avoid all wing patterns tested, but
30 learning was faster with evasive prey compared with distasteful prey. Birds
31 generalised their learned avoidance from evasive models to imperfect mimics if
32 the mimic shared colours with the model. Despite imperfect mimics gaining
33  protection from bird’s generalisation, perfect mimics always had the best fitness,
34  supporting selection for accurate mimicry. Faster avoidance learning and broader
35 generalisation of evasive prey suggest that being hard to catch may deter
36 predators at least as effectively as distastefulness. Our results provide empirical
37 evidence for a potentially widespread alternative scenario, evasive mimicry, for

38 the evolution of similar aposematic colour patterns.

39 KEYWORDS

40 Adelpha - evasive aposematism - predator learning - distastefulness -
41  convergence - prey defence

42

43  BACKGROUND

44  Many organisms with chemical, morphological or behavioural defences often

45 display a conspicuous signal, such as a colour pattern, that warns predators of
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46  the potential cost of attacks. Possession of such warning signals is known as
47  aposematism (1,2). In many cases, the effectiveness of aposematism depends
48  on the ability of predators to associate the signal with an unpleasant experience
49 related with the stimulus, and to attribute signal properties to different prey
50 individuals (i.e. generalisation) (reviewed in (3)) (4-6), which results in prey
51 avoidance. Aposematic prey are under positive frequency-dependent selection,
52 which can result in selection for convergence of warning signals among co-
53 occurring defended species, known as Mullerian mimicry (7). Aposematism and
54  Mullerian mimicry associated with distastefulness have been extensively studied
55 in many taxa (8-11), but especially in Lepidoptera (12—-16). However, there is
56 increasing evidence that aposematism may also be associated with an alternative
57 defence, namely effective evasiveness (reviewed in (17)). Theoretically,
58 predators should avoid attacking evasive prey since unsuccessful attacks likely
59 represent a significant cost in time and energy to the predator (17-19). In this
60 case, selection exerted by predators is expected to drive convergence in signals
61 thatthey associate with the evasiveness of their prey (20-25), in a process known

62 as escape mimicry or evasive mimicry (hereafter we use the latter term).

63 Previous experiments have shown that bird predators can use visual cues to
64 identify evasive prey (26—28), but more empirical work is needed to test whether
65 outstanding potential examples of evasive mimicry could indeed be the result of
66  selection for such signals related to evasiveness. One such example is the
67 diverse Neotropical butterfly genus Adelpha, where repeated convergence of
68 their apparently conspicuous and contrasting wing patterns among distantly
69 related sympatric species has been interpreted as evidence for mimicry (29-31).

70  Mimicry in Adelpha has been hypothesized to be at least partly driven by chemical
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71 defences in some species (32-34), but there is currently limited, conflicting
72 evidence for distastefulness (22,33,35,36). In contrast to most classic groups of
73 chemically defended butterflies, Adelpha butterflies have short and stout thoraxes
74 and exhibit fast and unpredictable flight (K.W., personal observations) (19), which
75  are favourable traits for butterflies aiming to escape predators (35,37), making

76  the genus a prime candidate for evasive mimicry (38).

77 In this study, we used models of wing patterns of Adelpha butterflies and wild
78  blue tits as naive bird predators to address the following questions: 1. Can birds
79 learn to associate naturally occurring wing patterns with evasiveness of prey? 2.
80 Can such a signal be generalised across putative mimetic species? 3. What type
81 of secondary defence drives faster learning by predators, evasiveness or

82 distastefulness?

83 MATERIALS AND METHODS

84  We used wild blue tits (Cyanistes caeruleus) to examine whether birds can learn
85 to avoid Adelpha colour patterns associated with evasive (escaping) behaviour,
86 and whether birds generalised the learned avoidance across similar, naturally
87 occurring wing patterns. In addition, we conducted parallel experiments with

88 distasteful prey having the same colour pattern but not evasiveness.

89 Experiments were conducted from January to March 2019 at Konnevesi
90 Research Station in Central Finland, which provided the infrastructure, wildlife
91 research and collection permits, and expertise needed to conduct experiments
92  with wild birds in captivity. Blue tits were captured from feeding sites around the
93 station and were maintained in captivity for a maximum of 10 days, during which

94  time they were kept singly in illuminated plywood cages (daily light period of 12 h
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95 30 min) with food and fresh water available ad libitum. After experiments birds

96 were ringed and released into the site of capture.

97 Artificial prey

98 Artificial defended prey (4.1 x 2.5 cm) were constructed by printing images (HP
99 Color Laserjet CP2025, regular printer paper) of different wing colour patterns
100 displayed by the species Adelpha salmoneus, A. cocala, and A. epione (figure 1).
101  These species represent three putatively distinct mimicry rings (29,31) and were
102  chosen because they differ in colour and pattern, to enable us to test if apparently
103  distinct signals may provide protection from predation in evasive mimicry. An
104  entirely dark brown model of a non-defended prey was constructed as a control.
105 To make prey attractive for birds, a piece of almond (reward), was glued to the
106  underside of prey. For distasteful models, almonds were soaked in chloroquine

107  phosphate solution (7%), to give them a bitter taste (following e.qg., (39)).

108  Experimental procedures

109  The experiment took place in experimental aviaries of 49 x 48 x 67 cm illuminated
110 by light bulbs. Each aviary contained a perch and a water bowl. Birds were
111  observed through a one-way glass situated on the front of the aviary. Two plastic
112 prey holders gliding on aluminium profile rails (fixed on both sides of the aviary's
113 floor) allowed simulation of the artificial prey’s escaping (electronic

114  supplementary material, S1 figure 2).

115  Avoidance learning

116  We used 87 birds, trained to attack on artificial butterflies (see the electronic

117  supplementary material, S1 for details of the training procedure), and divided into
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118 3 treatment groups (figure 1). The first two groups were trained to avoid evasive
119 prey and a third group was trained to avoid distasteful prey with the same colour
120 wing band pattern as group 2. Before initiating the experiment, birds were
121 habituated to the experimental aviary for at least an hour. Experiments consisted
122 of a series of trials where two prey were presented simultaneously to the bird.
123  Birds learning evasive model prey had one opportunity of attack per trial, and they
124  were allowed to capture and eat only the control prey, whereas the evasive prey
125 was always rapidly pulled out of reach (i.e., escaping) when attacked. In the
126  treatment group where birds were trained to avoid distasteful prey they were
127  allowed to consume the attacked prey (i.e., distasteful prey and control prey).
128  Training presentations continued for at maximum 80 trials or until the bird
129  attacked an evasive or distasteful prey no more than twice over ten consecutive
130 trials. This learning criterion ensured that all birds reached the same level of

131  learning, which was important for the following generalisation test.

132  Generalisation of learned avoidance to other prey (imperfect mimics)

133  We used only birds that achieved the learning criteria in previous phase (group 1
134 n=23, group 2 n=25 [number of birds that learned is 29 out of 31, but data of four
135  birds that followed a different preliminary protocol for generalisation are not
136 included], group 3 n=18) to test whether and to what extent the previously learned
137  avoidance of warning coloration associated with evasiveness (group 1 and 2) or
138  distastefulness (group 3) was generalised to novel wing colour patterns that
139 shared some features with the learned colour pattern (i.e., either colour or
140  pattern). Those novel colour patterns are referred to as imperfect mimics. Birds

141 were simultaneously presented with four types of prey: a (i) control prey, (ii) the
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142 model they had learned and (iii) two imperfect mimics (figure 1; see electronic

143 supplementary material, S1 for detailed description).

144  Statistical analyses

145  Avoidance learning

146  We examined whether birds from group 1 (n=28) and group 2 (n=31) learned to
147 avoid wing patterns associated with evasiveness, and whether wing colour
148  pattern affected learning speed. We used a mixed-effects Cox regression model
149  (“coxme” package version 2.2.10 in RStudio v.3.5.3; RStudio 2019) where the
150 response variable was the survival probability of the control prey within trials. The
151  wing colour pattern that the bird learned to avoid as the evasive model was added

152  as an explanatory factor, and bird individuals as a random effect.

153  Comparison of avoidance learning between evasive and distasteful prey

154  To compare avoidance learning among birds facing aposematic prey signalling
155  for evasiveness, and birds facing aposematic prey signalling for distastefulness
156  with the same colour pattern (group 2 and 3, respectively; figure 1), we performed
157  another mixed-effect Cox regression model. The response variable was the
158  survival probability of the control prey within trials and the explanatory variable
159  was the type of prey defence (i.e. evasiveness or distastefulness). Bird individual

160 was defined as a random effect.

161  Generalisation of learned avoidance to other prey (imperfect mimics)

162 For each experimental group, to test for differences in attack probabilities

163  between the different types of prey (the control, the model and the two imperfect
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164  mimics, figure 1), we calculated the log-likelihood of observing the number of

165  attacks that were recorded on each prey type across all in the group as follows.
166 logio(L) = Zi[ai logio(Pi)+ (N- aj) logio(1- P))] + K

167 Where i is one of the four prey types; N is the total number of trials; ai is the
168  number of times a butterfly of type i was attacked; Piis the attack rate of butterflies

169  of type i and K is a constant term that disappears in model comparisons.

170  We explored several scenarios where attack rates of different types of prey could
171  be equal or not (see electronic supplementary material, S3 for a list of all those
172 scenarios), and calculated the log-likelihood functions of those scenarios. As an
173  example, a scenario where the attack rate on the control is equal to those on the
174  imperfect mimics and higher than that on the model means that birds do not
175 generalise the learned avoidance to the imperfect mimics; a scenario where the
176  attack rate on the model is equal to those on the imperfect mimics and lower than
177  that on the control means that birds have fully generalised the learned avoidance
178  to the imperfect mimics; and a scenario where the attack rate on the imperfect
179  mimics is lower than that on the control but higher than that on the model means
180 that birds have partially generalised the learned avoidance to the imperfect

181  mimics.

182 Models were selected on the basis of their AICc, which accounts for the number
183  of parameters and the sample size. For each group, the model with the lowest
184  AlICc was considered the best. We considered that models within a 2-unit AlCc

185 interval from the best model could not be rejected.

186 RESULTS
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187  Avoidance learning

188  According to the learning criterion, most birds learned to avoid their evasive prey
189  model: 23 out of 28 birds from group 1 (i.e., orange forewing band) and 29 out of
190 31 birds from group 2 (i.e., transverse orange/white band). Additionally, 18 out of

191 28 birds (group 3) learned to avoid the distasteful prey model.

192 The mixed-effects Cox regression model detected no significant differences
193  (Z=0.05; P=0.96) between birds that learned to avoid different wing patterns of
194 evasive prey (i.e. group 1 and group 2), but showed that birds learned to avoid
195 evasive prey (group 2) significantly faster than distasteful prey with the same wing

196  pattern (group 3) (Z=-3.21; P=0.001) (figure 2).

197  Generalisation of learned avoidance to other prey (imperfect mimics)

198 Bird’s attack frequencies on mimics differed within and among groups (figure 3;
199 electronic supplementary material S2). For group 1 (prey with orange forewing
200 band as evasive model), in the best scenario learned avoidance was fully
201 generalised to the imperfect mimic that shared a colour (orange) with the model,
202  while the other imperfect mimic (white forewing band) was attacked as much as
203 the control (estimated attack rates on the model and the orange/white mimic:
204  0.109; estimated attack rates on the control and the white mimic: 0.391; AICc =
205 45.079, electronic supplementary material S3). Two additional scenarios could
206 be considered as similarly plausible, based on their AICc. One was similar to the
207  previous, except that the orange/white mimic was attacked more often than the
208  model (but still less than the control; estimated attack rate on the model: 0.043;
209  on the orange/white mimic: 0.174; on the control and white mimic: 0.391; AlCc =

210  46.809, electronic supplementary material S3), indicating partial generalisation.
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211 In the other, only the model was attacked less than the control, implying no
212  generalisation (attack rate on the model: 0.043, attack rates on the control and
213 mimics: 0.319; AICc = 45.690, electronic supplementary material S3).

214  Regarding group 2, (orange/white as evasive model), in the best scenario
215 avoidance was fully generalised to both imperfect mimics, which both shared a
216  colour with the model (estimated attack rate on the model and mimics: 0.188,
217 estimated attack rate on the control, 0.435, AICc = 47.732, electronic
218  supplementary material S3). Two additional scenarios were within a 2-unit AICc
219 interval with that of the model. One of those scenarios was similar to the previous,
220 except that generalisation to the mimics was partial (estimated attack rate on the
221 model: 0.080, estimated attack rate on the mimics: 0.261, estimated attack rate
222 on the control: 0.560, AICc = 49.481, electronic supplementary material S3). In
223  the other, generalisation only applied to the orange mimic, which suffered an
224  attack rate similar to that of the model (estimated attack rates on the model and
225 orange mimic: 0.109; estimated attack rates on the control and white mimic:
226  0.391, AICc = 49.415, electronic supplementary material S3).

227 In group 3 (orange/white as distasteful model), a single scenario stood out as
228 best, in which avoidance was fully generalised to the orange mimic only
229 (estimated attack rates on the model and orange mimic: 0.109; estimated attack
230 rates on the control and white mimic: 0.391, AICc = 33.517, electronic

231  supplementary material S3).
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Treatment Pre-training—> Learning — Generalisation
G W W
Model Control A. cocala A. epione Control A salmoneus
A. salmoneus
n=28 n=23
e Gy W W
Model Control A. cocala A. epione Control  A. saimoneus
A. cocala
n=31 n=25
- gy P W
Model Control A. cocala A. epione Control A. salmoneus
A. cocala
n=28 n=18

232

233  Figure 1. Schematic illustration of the experimental design that consisted of 3
234  phases: pre-training, learning and generalisation. A forewing orange-banded prey
235 (A. salmoneus) was presented as a model for group 1, and as an imperfect mimic
236  during generalisation for group 2 and 3. A transverse forewing orange/hindwing
237  white-banded prey (A. cocala) was the model for group 2 and 3, and an imperfect
238  mimic during generalisation for group 1. The forewing white-banded prey (A.
239 epione) was presented as an imperfect mimic during generalisation for all groups.
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259  Figure 3. Comparison among observed attack rates on the model, control and
260 imperfect mimics during generalisation tests. Bars illustrate the attack proportion
261  within groups on different wing colour patterns after birds learned to avoid the
262  model pattern (group 1: n=23, group 2: n=25, group 3: n=18). The grey bar
263  indicates the model.

264

265 DISCUSSION

266 Learning and generalisation of signals associated with an effective

267 escaping ability

268  The idea that some butterflies have evolved signalling of evasiveness as an anti-
269 predator defence has a long history (19,21,40-42). Still, surprisingly few
270  experiments to date have tested the idea (22,26—-28), and nobody has so far
271  tested whether predators can remember and generalise their learned avoidance
272  to other species with signals that are similar to some extent, which is crucial for
273  the evolution of mimicry. Gibson (26,27) and Hancox & Allen (28) presented wild
274  avian predators with artificial prey (i.e. dyed millet seeds, coloured mealworms or
275 pastry models) that disappeared from sight when attacked. After extensive
276  training (approx. 20 days), it was observed that birds reduced their attacks on
277  such hard-to-catch prey. We showed that wild birds, with no experience of
278 Adelpha butterflies, were able to associate both orange and orange/white
279  patterns with evasiveness within a day of training. Unlike previous experiments
280 (26-28), our birds faced a “simpler” prey scenario (39), with a warningly coloured
281  prey that could be easily discriminated from the non-defended prey, which may

282  explain the faster avoidance learning we observed.
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283  Our results also showed that birds were able to generalise their learned
284  avoidance to novel, somewhat similar prey (i.e., that shared either a colour or the
285  pattern with the learned model), even though perfect mimics were always the
286 most strongly avoided. Previous work on distasteful prey found that avian
287  predators primarily focus on colour, rather than pattern (43—-47) or wing shape
288 (48), when learning and generalising aposematic visual signals. Our findings
289 seem to be consistent with these studies, because all three groups of birds
290 generalised their avoidance to evasive prey that presented a colour in common
291  with the formerly learned model, despite harbouring different patterns, and in
292 group 1, where one imperfect mimic shared the pattern but no colour with the
293  model, birds did not generalise to that mimic. Moreover, although we did not
294  formally test whether some colours or patterns are more efficient as a visual cue
295 for learning or generalisation, we sometimes observed an asymmetrical
296 generalisation (e.g., higher attack rate on the white than the orange mimic in
297 group 3). Further experiments comparing models with different colours could

298  shed light on whether some colours are better learned than others.

299  The three Adelpha species we studied are not regarded as strongly co-mimetic,
300 since a number of other species show much more similar (practically identical)
301 colour patterns, concordant geographic variation and broader sympatry (29).
302 Preliminary trials in our experiment suggested that our predator was incapable of
303 distinguishing among the most perfect co-mimics of A. cocala, so we expanded
304 our experiment to include more dissimilar species to examine the significance of
305 mimetic accuracy. Although imperfect mimics gained varying levels of protection,

306 the perfect mimic appeared to mostly be the best protected. Those results
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307 suggest strong selection on mimetic fidelity and could explain the extremely close

308  similarity within some putative Adelpha mimicry rings.

309 Evasiveness versus distastefulness as deterrents to predators

310 Learning about distastefulness is thought to be generally quicker and easier than
311 evasiveness because prey unprofitability can be determined, unambiguously,
312 from a single experience when prey is ingested. By contrast, a prey individual
313 might escape capture because of better escaping ability, or just because of
314 chance (17). There is thus some disagreement about the circumstances under
315  which evasive aposematism and mimicry might occur and the extent to which its
316 evolution might be different from that of aposematism and mimicry based on

317 distastefulness (6).

318 In our experiments, in contrast to expectations (17), birds learned to avoid
319 evasive prey faster than distasteful prey, and learning seemed to be easier as a
320 higher proportion of birds achieved the learning criterion with evasive prey (94%)
321 compared to distasteful prey (63%). The close spatio-temporal association
322  between the unrewarding experience (loss of prey) and the received signal could
323  help predators to learn faster about evasiveness, which might not always be the
324 case for distasteful prey (e.g., delayed emetic effect when ingesting a toxic prey,
325 (49)). There is also the possibility of significant variation in distastefulness even
326  within the population of a single mimicry ring as a result of differences in larval
327 host plants and access to adult resources (50,51), or intra and interspecific
328 variation in a predator’s tolerance to distastefulness (49,52-55). Therefore,

329 signals associated with prey evasiveness may actually provide a more reliable
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330 message to birds about unprofitability than does aposematic signalling related to

331  toxicity.

332  Another potential explanation for faster learning is that the decision to attack
333 presumably reflects a trade-off between costs and benefits. All toxic prey also
334 contain nutrients (56) and many birds handle such prey by removing the most
335 toxic body parts (57) or simply make a strategic decision to eat a certain amount
336 of toxin to simultaneously acquire nutrients (58). When a bird predator is hungry,
337 the cost of eating something distasteful might be lower than the benefits of
338 achieving their nutritional needs from a defended prey (59), and the cost of
339  pursuing a prey that is impossible to catch will be increased. In other words,
340 hungry birds may prefer to pursue a somewhat distasteful prey providing at least

341 limited nutrients rather than an evasive prey providing no nutrients.

342 We also observed dissimilar generalisation patterns between evasive and
343 distasteful treatments, suggesting wider generalisation among colour morphs
344 when the prey defence is evasiveness. Groups 2 (evasive treatment) and 3
345 (distasteful treatment) had the same model (orange/white transverse band). In
346 group 2 (evasive treatment), in two out of three best scenarios birds generalised
347 to some extent their learned avoidance toward the prey sharing any wing colour
348  with the model, and both imperfect mimics were attacked less than the control.
349 By contrast, in group 3 (distasteful treatment), birds only avoided the orange
350 imperfect mimic, as the white imperfect mimic was highly attacked, despite the
351 fact that the white colour was also present in the model. It has been suggested
352  that selection for accurate mimicry can be affected by different factors (6) such

353  as level of prey distastefulness or unpleasantness (56,57). Broad generalisation
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354  to imperfect mimics was observed in previous studies when the model was highly
355 distasteful or unpleasant (see in (60)). Our results, along with those showing
356 faster avoidance learning with evasive prey, suggest that evasiveness is another
357  powerful dimension of defence that affects a predator’s decision whether to attack
358  warningly coloured prey. More experiments with different types of predators and
359 signals are nevertheless needed to examine whether generalisation tends to be
360 broader across mimics where the model is defended by evasiveness rather than

361 distastefulness or toxicity.

362 CONCLUSION

363  Although distastefulness has been considered as a prime adaptive defence
364 mechanism against predation in aposematic butterflies, evasiveness is also likely
365 to be important in a number of other groups. Our results give a strong
366 experimental support for the hypothesis, previously mostly based on field
367 observations, that predators can learn and generalise naturally occurring colour
368  pattern signals that are associated with the escaping ability of prey. We therefore
369 argue that evasive mimicry is a plausible explanation for colour pattern
370 convergence in fast moving prey, such as the Adelpha butterflies that are the

371  subject of this study.
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