

1 Dopamine responses reveal efficient coding 2 of cognitive variables

3 Asma Motiwala^{1,2*}, Sofia Soares^{1,3}, Bassam V. Atallah¹,

4 Joseph J. Paton^{1,4*}, Christian K. Machens^{1,4*}

5 **Abstract:**

6 Reward expectations based on internal knowledge of the external environment are a core
7 component of adaptive behavior. However, internal knowledge may be inaccurate or
8 incomplete due to errors in sensory measurements. Some features of the environment
9 may also be encoded inaccurately to minimise representational costs associated with their
10 processing. We investigate how reward expectations are affected by differences in internal
11 representations by studying rodents' behaviour and dopaminergic activity while they make
12 time based decisions. Several possible representations allow a reinforcement learning
13 agent to model animals' choices during the task. However, only a small subset of highly
14 compressed representations simultaneously reproduce, both, animals' behaviour and
15 dopaminergic activity. Strikingly, these representations predict an unusual distribution of
16 response times that closely matches animals' behaviour. These results can inform how
17 constraints of representational efficiency may be expressed in encoding representations of
18 dynamic cognitive variables used for reward based computations.

¹ Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal

² Current address: Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh PA, USA

³ Current address: Harvard Medical School, Boston MA, USA

⁴ Denotes equal contribution

* Correspondence:

amotiwala@cmu.edu, joe.paton@neuro.fchampalimaud.org, christian.machens@neuro.fchampalimaud.org

19 **Introduction:**

20 The theory of reinforcement learning (RL) provides a large and growing set of algorithms by
21 which animals may learn to interact with their environment using reward feedback. A key
22 component in many RL algorithms is a reward prediction error (RPE) signal that drives
23 learning via the algorithm of temporal-difference (TD) learning (Dayan & Sejnowski, 1994;
24 Sutton, 1988). Correlates of such TD RPEs have been found in the phasic activity of
25 dopaminergic neurons in the midbrain (Bayer & Glimcher, 2005; Fiorillo et al., 2003; Schultz
26 et al., 1997), and electrical and optogenetic manipulations of midbrain dopamine neurons
27 have demonstrated that dopamine neuron activity can function to teach animals about the
28 value of actions (Reynolds et al., 2001; Stauffer et al., 2014; Steinberg et al., 2013). These
29 data have provided compelling evidence that neural systems function similarly to TD RL
30 algorithms. Indeed, a large body of research on dopaminergic signalling supports the
31 hypothesis that reward-based decision-making implemented in neural circuits is well
32 described by the framework of RL (see Niv & Langdon, 2016; Watabe-Uchida et al., 2017 for
33 reviews).

34 A key problem in explaining dopaminergic activity (DA) in terms of RPEs is that RPEs
35 depend on animals' expectations that are computed from internal representations of any
36 given environment. However, often, the nature of internal representations used to guide
37 reward based behaviour can not be directly characterised. Understanding how animals
38 construct internal representations of the environment to guide adaptive behavior is, in
39 general, a key outstanding goal of cognitive and systems neuroscience. Within the RL
40 framework, the nature of internal representations places constraints on both reward
41 expectations and RPE signals that may be encoded in neural circuits (Daw et al., 2006;
42 Ludvig et al., 2008; Suri & Schultz, 1998). Thus, examining activity of midbrain DA neurons
43 in terms of RPEs during carefully controlled tasks can be a powerful means for discovering
44 the principles that describe internal representations used by animals to guide cognition and
45 behavior (Botvinick, 2008; Gershman, Norman, & Niv, 2015; Russek, Momennejad, Botvinick,
46 Gershman, & Daw, 2017).

47 As an example of such a task, we studied animals making decisions based on internal
48 estimates of elapsed time. Previous work has shown that population activity in cortical and
49 striatal circuits in time-based tasks show rich sequential activity (Gouvêa et al., 2015; Mello
50 et al., 2015; Remington et al., 2018; J. Wang et al., 2018). We constructed RL agents that
51 encode internal representations consistent with these observed patterns of activity and
52 trained them on an interval discrimination task on which animals were also trained. We find that
53 examine how changing different aspects of the representations used can yield different
54 predictions about RPEs and their relation to behavior on a trial-by-trial basis. We find that
55 only agents with internal representations that were inaccurate in encoding the task along a
56 particular dimension showed RPEs that match the profile of dopaminergic activity recorded
57 in mice, and its relation to behavior. Moreover, TD learning using this compressed

58 representation predicted procrastination of choices for a subset of stimulus estimates that
59 closely matched animals' behaviour.

60 Representational efficiency has been extensively studied in sensory systems (Atick &
61 Redlich, 1992; Lewicki, 2002; Olshausen & Field, 1996; Rieke, Bodnar, & Bialek, 1995), and
62 has also been shown to be subject to behavioural salience (Machens et al., 2005; Reinagel
63 & Zador, 1999; Salinas, 2006). Based on these results, it has been proposed that constraints
64 of representational efficiency are very likely to affect animals' reward expectations as well
65 (Botvinick, Weinstein, Solway, & Barto, 2015). However, what redundancies in variables
66 needed for reward based computations are being exploited to achieve efficient
67 representations and how such representations affect reward expectations is still an open
68 question. Our results provide empirical support for the strategy where representational
69 efficiency is achieved such that only the overall number of rewards obtained is preserved
70 (or temporal-difference reward prediction errors are minimised), a finding with wide
71 reaching implications for the more general problem of understanding the neural
72 mechanisms underlying cognition.

73 **Results**

74 We analysed behaviour and dopaminergic activity of mice performing a time interval
75 discrimination task (Figure 1a). On each trial, animals indicated whether the interval
76 between two tones was longer or shorter than 1.5 seconds. Animals reported their
77 decisions for 'long' or 'short' intervals in one of two choice ports. For the longest and
78 shortest intervals, animals almost always chose the correct port, but as intervals
79 approached the decision boundary, choices became more variable as captured by animals'
80 psychometric functions (Figure 1b).

81 Previous work has shown that animals' estimates of elapsed time vary from trial to trial.
82 Moreover, neural correlates of such variability have been found in the population activity of
83 striatal circuits (Gouvêa et al., 2015), and the activity of midbrain dopaminergic neurons in
84 the SNC (Soares et al., 2016). However, the structure of internal representations that would
85 be required to explain dopaminergic RPEs in relation to behavior during this task is
86 unknown. To address this, we built a number of RL models that vary in the internal
87 representations of the task environment they use to compute reward expectations. We
88 compared both behavior and RPE's produced by those models to the behavior of mice and
89 activity from genetically identified dopaminergic neurons in the substantia nigra pars
90 compacta (SNC) using fiber photometry (see Soares et al., 2016).

91 **Reward expectations are modulated by internal and external states**

92 Reward prediction errors of the form used in TD-learning can arise due to discrepancies
93 between the probability, amount, or timing of expected and actual rewards, or if an
94 unpredictable change in the environment leads to a change in expected future rewards, e.g.,
95 by observing an unpredictable reward-predicting cue. During the interval discrimination
96 task the timing of trial onset was unpredictable (Soares et al., 2016). Hence the cue at
97 interval/trial onset, which predicts a potentially forthcoming reward, should thereby cause
98 changes in animals' reward expectations and concomitant RPEs. Consistent with this
99 reasoning, we found that the tone marking interval/trial onset elicits a phasic DA response
100 (Figure 2a). Since the tone at interval onset was identical for all trials, the phasic DA
101 response was not modulated by stimulus identity. We see that the first peak in the average
102 DA response, after the grey tick on the x-axis of figure 2a, is not modulated by interval
103 duration.

104 After interval onset, the task required animals to maintain an ongoing estimate of elapsed
105 time to guide their decisions. This internal estimate may be used not only to guide
106 decisions, but also to encode time-varying expectations of future rewards. During the
107 interval, expectations of future rewards should reflect average rewards expected from all
108 intervals that are still possible. At interval offset, however, animals' reward expectations
109 should change and reflect an estimate of average rewards only from the estimated interval
110 duration. Hence, when interval offset is presented, the change in reward expectations
111 should cause RPEs. Since reward expectations, both before and after interval offset,
112 depend on interval duration we expected DA responses at interval offset to also vary as a
113 function of the duration of the interval. Indeed, we found that the magnitude of average
114 dopamine response at interval offset was modulated by interval duration (Figure 2a). More
115 specifically, two trends stood out. First, DA responses are larger for intervals further away
116 from the decision boundary than for those close to the boundary. Second, the overall
117 magnitude of responses is lower for 'long' intervals compared to 'short' intervals. Moreover,
118 trial-to-trial variability in magnitude of DA responses also has a systematic relationship with
119 animals' reported judgments. For each interval duration presented, if trials are split based
120 on the magnitude of DA response at interval offset into low and high magnitude trials, the
121 psychometric function of trials that correspond to higher response magnitude is shifted
122 right relative to that corresponding to trials with lower response magnitude at interval
123 offset (Figure 2b). In other words, trial-to-trial variability in magnitude of DA response for
124 each stimulus is predictive of the 'bias' in duration judgments. We will now investigate
125 these trends in more detail.

126 At interval offset, since animals have not yet received any reward feedback, differences in
127 RPEs and DA responses must be based only on internal variables. Previous work has

128 shown that, when the timing of a sensory cue in the a task is variable, animals do estimate
129 the hazard rate of the cue, i.e., the probability of the cue occurring at a given time given that
130 it has not occurred yet (Janssen & Shadlen, 2005). Animals have been shown to encode
131 their own choice accuracy as a function of stimuli presented, i.e., animals' estimate their
132 own ability to correctly classify different stimuli (Kepcs et al., 2008; Kiani & Shadlen, 2009).
133 Separate studies have also shown that DA activity reflects changes in reward expectations
134 based on the hazard rate of cues and rewards (Fiorillo et al., 2008; Pasquereau & Turner,
135 2014; Starkweather et al., 2017), as well as by animals' choice accuracy (Lak et al., 2017).
136 Hence, we expect animals' reward expectations in the interval discrimination task to be
137 influenced by hazard rate of interval offset as well as choice accuracy associated with each
138 interval. To understand their joint influence, we first consider separately how choice
139 accuracy and the hazard rate of interval offset might influence reward expectations and the
140 consequent RPEs in the interval discrimination task.

141 **Choice accuracy may modulate RPE**

142 Due to trial-to-trial variability in estimates of elapsed time, animals correctly categorize
143 intervals close to the decision boundary less often than intervals far away from the
144 boundary (Figure 1b). If animals keep track of the resulting choice accuracy as a function
145 of interval duration, then they will expect less reward close to the boundary and more
146 reward far away from it. If animals do not have any time-varying reward expectations
147 during the interval, RPEs at interval offset will be modulated only by differences in reward
148 expectation due to differences in choice accuracy as shown in Figure 2c (for more details
149 see Supp. Fig. 1a-d). In other words, RPEs should be lower for estimates of interval
150 duration close to the boundary than those further away. If we assume that animals' reward
151 expectations during the task are driven only by estimates of choice accuracy, then we
152 should expect average DA activity to be modulated as shown in Figure 2d.

153 Moreover, animals' errors in estimating elapsed time should also influence RPEs on a trial
154 by trial basis. When animals over- or underestimate elapsed time, their internal estimates of
155 reward expectations likewise evolve faster or slower in time (as shown in Fig. 2e). As a
156 consequence, their internal estimate of choice accuracy and probability with which they will
157 choose 'long' or 'short' will shrink and stretch with elapsed time in the interval. For any
158 given interval duration, we should also find that individual trials with high RPE correspond
159 to trials on which animals' estimates of interval duration are further away from the
160 boundary and hence are associated with high choice accuracy and low choice variability. In
161 turn, trials with low RPE correspond to trials with low choice accuracy and hence high
162 choice variability. Consequently, if we group trials based on the magnitude of RPEs at
163 interval offset and plot the psychometric functions for the two groups of trials, the trials
164 with higher RPEs will have a psychometric function with a steeper slope than those for low
165 RPE trials (Figure 2f, for more details see Supp. Fig. 2a-d).

166 **Predictability of interval offset may modulate RPE**

167 Similarly, we can consider the influence of the hazard rate of interval offset. On each trial,
168 the interval is randomly drawn from one of six intervals, with equal probability. The hazard
169 rate is thus a monotonically increasing function. In other words, the probability of
170 encountering an interval offset at any time during the interval increases with time in the
171 interval. If reward expectations are based only on hazard rate of interval offset, they should
172 also increase monotonically with time in interval. When an interval offset is presented, the
173 change in reward expectations will only reflect the fact that the presentation of the interval
174 offset removes the uncertainty in the timing of the reward. As a consequence, the resulting
175 RPEs at interval offsets later in the interval should be lower than those earlier in the interval
176 (as shown in Fig 2g, for more details see Supp Fig 1e-h). If animals only encode the
177 distribution of interval durations but not the outcome of their own choices, average RPEs
178 elicited at interval offset will be on average lower for longer intervals than shorter ones, and
179 we should expect the modulation of average DA activity shown in Figure 2h.

180 Due to trial to trial variability in estimating elapsed time, animals' estimates of the hazard
181 rate of interval offset and hence reward expectations will also vary from trial to trial (as
182 shown in Fig. 2i). However, in this case, we will find that for any given interval offset, trials
183 with high RPEs correspond to trials on which animals underestimate elapsed time,
184 irrespective of the time at which interval offsets are presented. Consequently, if we group
185 trials based on the magnitude of RPEs for each interval presented, the psychometric
186 functions of the high and low RPE trials will show a horizontal shift, or, in other words, a
187 change in bias (Figure 2j, for more details see Supp. Fig. 2e-h).

188 **Dopamine activity and its relation to choices can not be predicted by directly combining 189 choice accuracy and predictability of interval offset in time**

190 Finally, we consider the case when reward expectations are modulated by both choice
191 accuracy as well as the hazard rate of interval offset. Since we assumed that choices are
192 reported as soon as interval offset is presented, reward expectations at interval offset are
193 the same as in the case when reward expectations are modulated only by choice accuracy.
194 However, during the interval, reward expectations should reflect the fact that, both, the
195 timing of interval offset is unpredictable but also that different interval offsets predict
196 reward with different probabilities based on animals' choice accuracy. Hence RPEs in this
197 case will reflect both choice accuracy as well as the hazard rate of interval offset as shown
198 in Fig. 2k (for more details see Supp. Fig. 1i-l). In this case, we expect that average RPEs at
199 each interval offset may reflect both choice accuracy as well as the hazard rate in a
200 manner that may be similar to that in the data (as shown in Fig. 2l).

201 Again, trial to trial variability in estimates of elapsed time will affect the time evolution of
202 reward expectations (as shown in Fig. 2m) and choice probability. In this case, for any given
203 interval offset, we find that high RPE trials will correspond to trials on which the agent's
204 estimate of the duration is further from the boundary and hence will be associated with
205 higher choice accuracy and low choice variability. Consequently if group trials, for each
206 interval presented, based on the magnitude of RPE on that trial, we see a difference in the
207 slope of the psychometric curve of the two groups of trials (as shown in Fig 2n, for more
208 details see Supp. Fig. 2i-j).

209 In other words, animals' choice accuracy, the hazard rate and the combination of the two
210 predict distinct patterns of RPEs at interval offset. The two key experimentally observed
211 trends--the profile of average DA responses at interval offset and the trial to trial
212 relationship between magnitude of DA for any single interval offset and animals'
213 choices--can not be simultaneously explained by either of these three strategies. Average
214 DA responses are best captured by computing reward expectations that take choice
215 accuracy as well as hazard rate of interval offset into account (Figure 2a is consistent with
216 2l). However, the differences in the psychometric functions for high and low DA is captured
217 by computing reward expectations that only take into account the hazard rate of interval
218 offset (Figure 2b is consistent with 2j).

219 Since our simplified considerations of how RPEs (and thereby DA responses) should be
220 affected by temporal predictability and choice accuracy do not match the data fully, we
221 hypothesised that our assumptions regarding how task variables may be encoded by
222 animals, based on which we computed reward expectations, may not be accurate. To gain
223 a more detailed understanding of how differences in the encoding of task variables as well
224 as animals' own behaviour may influence RPEs, we simulated a reinforcement learning
225 agent that could make choices at any time during the trial and was required to learn from
226 trial and error, just like animals, to take the right action at every timestep to obtain rewards.

227 **RL agents were modeled to keep track of time since task events**

228 Since animals' choices are based on variable internal internal estimates of elapsed time, we
229 modelled the reinforcement learning agent using a partially observable Markov decision
230 process (for details see Methods section 1). We assumed that the agent keeps track of the
231 timing of events in the task within each trial and we allowed the agent to make choices at
232 any time during the trial. More specifically, we assumed that the agent can maintain noisy
233 estimates of elapsed time since interval onset and elapsed time since interval offset. With
234 these two estimates, the agent has all the necessary information to estimate the length of
235 the interval presented as well as the task epoch, which in turn should inform the agent's
236 actions at all other time points in the task. The agent needs to learn from experience to
237 withhold choices during the interval and to report choices based on its estimate of interval
238 duration after interval offset. Figure 3 shows the state space encoded by the agent and

239 how it traverses through the state space on two example trials types. In both examples, the
240 agent encodes elapsed time since interval onset by advancing horizontally in the depicted
241 state space. After interval offset, the agent additionally encodes elapsed time since interval
242 offset and therefore traverses the state space along diagonals. Since time since interval
243 onset will always be larger than time since interval offset, the agent will only visit states
244 that are below the unity line in this state space. For all states encountered, the agent needs
245 to learn the optimal action to take. During the interval it needs to learn to withhold choice
246 and after interval offset the optimal action depends on the x-intercept of these diagonals,
247 i.e., on the difference between its estimates of elapsed time since interval onset and
248 interval offset.

249 The agent learns using TD-learning within an actor-critic architecture (for more details, see
250 Methods). Actor-critic architectures have been commonly used to model dopamine activity
251 as RPEs in tasks where outcomes depend on actions taken by animals (Joel et al., 2002;
252 Khamassi et al., 2005). In this framework, the agent estimates reward expectations from
253 each state (i.e. state-value function) and a state-action mapping (i.e. policy), that instructs
254 the agent which action to take, for all states it encounters. The agent learns to select
255 actions that result in transitions to higher-value states and hence those transitions become
256 more probable than those that lead to states with low value. Importantly, the state value
257 function and policy must both be learned simultaneously and are both defined as functions
258 of the location in state space. Since the agent's internal estimates of time are modeled as
259 continuous variables, there are infinitely many locations in state space the agent could be
260 in. This makes the task of learning value functions for each state directly highly impractical.
261 Hence, we use a function approximation scheme to estimate the value function and policy.
262 Both these functions are approximated using a set of basis functions or feature vectors
263 (Figure 4a shows a schematic of the function approximation scheme used). To keep this
264 approximation as simple as possible, we used non-overlapping tile bases. This is equivalent
265 to discretizing the continuous state space for value approximation.

266 Previous experimental findings have shown that animals exhibit trial-to-trial variability in
267 estimating elapsed time and that the standard deviation of variability in timing estimates
268 increases linearly with time, which is known as the scalar property in timing (Gibbon &
269 Church, 1990). Hence, we constructed the agent's internal representation to also have
270 trial-to-trial variability in estimates of elapsed time that obeys this scalar property (for more
271 details see Methods). The amplitude of the noise was adjusted so as to qualitatively match
272 animals' overall task performance (determined using the psychometric function).

273 **RL agent constructed based only on task requirements cannot reproduce relationship**
274 **between DA response and choices**

275 We first modeled an RL agent that estimates the value function and policy by uniformly
276 tiling the state space along both dimensions of the state space (Figure 4a, 5a). After the
277 agent learns the task, we find that the profile of average RPEs at each interval offset
278 qualitatively captures that of average DA activity (compare Figure 5b with Figure 2a).
279 However, the trial to trial relationship between the magnitude of RPEs and the agent's
280 choices is inconsistent with what we see in the data (compare Figure 5c with Figure 2b).
281 Rather, the psychometric functions of the high RPE and low RPE groups of trials show a
282 change in bias as well as slope, as seen when we directly computed reward expectations
283 based on choice accuracy and predictability of interval offset in time (see Fig 2n and Supp.
284 Fig. 2i-j). In other words, the trial-to-trial relationship of the agent's RPEs with its temporal
285 judgements is influenced by discrimination accuracy as well as hazard rate of interval
286 offset. At first sight, these results suggest that there might be some aspect of dopamine
287 activity that cannot be captured entirely by RPEs during this task. However, since RPEs are
288 calculated from the agent's expectations of future rewards, given by the state-value
289 function (Figure 4a), the results could also suggest that animals are calculating
290 expectations of future rewards in a way that does not match the true underlying structure
291 of the task. Such a mismatch could come about if the representation that the animals are
292 operating on are misrepresenting the statistical structure of the task.

293 To ask how the underlying state representation could be different, we note that the
294 dynamics of the latent variable in the task is not made available to animals and that they
295 need to infer how the task should be represented using only the sparse observations they
296 receive. Previous work has shown that population dynamics in the striatum during the
297 interval encode elapsed time with high fidelity and that trial to trial variability in how activity
298 evolves is predictive of animals' temporal judgements (Gouvêa et al., 2015). Hence, we
299 maintained high-resolution with which time since interval onset was encoded in the model.
300 Other work, in the context of an interval reproduction task, has shown that cortical
301 dynamics encode elapsed time since interval onset and offset in a similar manner
302 (Remington et al., 2018). Based on these findings, we assumed in the model
303 implementation above, that animals would represent elapsed time since interval onset and
304 offset in a similar manner, with high fidelity, during an interval discrimination task as well.
305 However, this assumption may not be well aligned with how animals may be representing
306 the interval discrimination task. Drawing on the principles of efficient coding, we reasoned
307 that in addition to maximising the overall number of rewards obtained during the task,
308 animals may want to minimise the computational resources required to estimate the value
309 function and policy over all possible states. In particular, we hypothesised that animals'
310 may encode time-varying value functions with higher resolution during the interval and but
311 not after the interval. Hence, we asked whether and how encoding elapsed time since
312 interval onset and offset with different resolutions would affect task performance as well
313 as reward expectations learnt during the task.

314 **RL agent with efficient representation can reproduce trial-to-trial relationship between**
315 **DA response and choices**

316 Let us consider the function approximation used to estimate the value function described
317 in Figure 4a. The size of each basis function (or tile) will determine how accurately changes
318 in value from one location to another can be estimated. In turn, the number of basis
319 functions (or tiles) will determine the computational cost of estimating the entire value
320 function. Accordingly, more accuracy incurs more costs. An efficient coding scheme might
321 stipulate that the resolution with which an optimal set of basis functions tile the two
322 dimensions of the state space should depend on the degree to which the readout varies
323 along each of these dimensions (Salinas, 2006). More specifically, value functions along
324 the axis that represents estimates of elapsed time since interval onset may be encoded
325 with high resolution, since doing so is necessary for the agent to accurately report choices.
326 Value functions along the axis that represents estimates of elapsed time since interval
327 offset, on the other hand, may be encoded with a lower resolution, since lack of accuracy
328 here may not adversely affect the animal's ability to make the correct choice (see Figure
329 4c,e). In the extreme case, when the axis representing time since interval offset is encoded
330 with the lowest possible resolution (while still encoding interval offset), the basis functions
331 effectively encode only time since interval onset and whether or not interval offset has
332 occurred (Figure 4e). We will refer to the basis functions as described in Figure 4a as the
333 high resolution or full mapping and the other extreme shown in Figure 4e as the low
334 resolution or representationally efficient mapping.

335 When we train the RL agent using the efficient mapping, we find that it is able to obtain
336 similar numbers of rewards as an agent trained using the full resolution mapping. The
337 efficient model also reproduces the profile of average DA responses at interval offset
338 (compare Figure 5e and Figure 2a). In other words, the compression of the mapping along
339 the second axis did not adversely affect the agent's choice behavior, nor did it change the
340 predictions for average RPEs at interval offset. Surprisingly, however, the efficient
341 representation is also able to reproduce the trial to trial relationship between magnitude of
342 DA and temporal judgements (compare Figure 5f and Figure 2b). This somewhat puzzling
343 result was only obtained for very strong compressions of mappings along the second axis
344 and not for intermediate levels of compression. When we simulated the agent using several
345 intermediate levels of compression in representing elapsed time since interval offset, we
346 obtained results more similar to the unconstrained agent (see Supplementary Figures 1
347 and 2). Accordingly, only a large difference in the resolution with which elapsed time since
348 interval onset and offset are encoded can explain the observed DA responses and their
349 relation to behavior.

350 We would like to note that we have focused primarily on describing how changing the basis
351 functions, without changing the dynamics of the latent variable, can achieve a more coarse
352 approximation of the value function along the second dimension of the latent variable.

353 However, we could have achieved the same result by keeping the basis functions the same
354 and changing the dynamics of the latent variable. Since the nature of value approximation
355 only depends only on the relationship between the latent variable and the basis functions,
356 for simplicity we only explain in detail our implementation that changes the basis functions
357 and not dynamics of the latent variable (for more details see Methods section 4). We would
358 also like to note that, although the efficient mapping that we consider in detail is as shown
359 in Figure 4e, there are indeed multiple ways to specify the dynamics of the latent variable or
360 the mapping to approximate value functions in our 2D state space that would be equivalent
361 to the efficient representation we discuss in terms of number of parameters to be
362 estimated for value approximation. However, none of these alternatives allow us to
363 reproduce the data shown in Figures 2a and 2b simultaneously. Only when the relationship
364 between the latent variable and the mapping is kept the same as in the efficient
365 representation we discussed, can the RL model reproduce the observed data. Some of
366 these alternatives are discussed in Methods section 5.

367 **Reward expectations at interval offset are markedly different under the different
368 mappings**

369 To understand why our proposed efficient mapping results in very different RPEs, we look
370 at the value function learned by the agents using the full vs efficient mappings (as shown in
371 the schematics in Figure 4a and 4e respectively). We note that RPEs at interval offset
372 reflect the difference between the agent's reward expectation (given by the corresponding
373 value function) during the interval and its reward expectation at interval offset, at which
374 point the agent does have an estimate of the interval duration to be classified on that trial.
375 For agents using the full mapping, reward expectations before interval offset reflect the
376 hazard rate of interval offset and choice accuracy, which increase as a function of elapsed
377 time (Figure 6a). After interval offset, the agent has acquired an estimate of the presented
378 interval, and, therefore, its reward expectations only reflect choice accuracy (Figure 6b). At
379 any time, the difference between these two value functions determines the RPE if interval
380 offset was presented at that time (Figure 6c). Consequently, RPEs at interval offset reflect
381 both the hazard rate of interval offset and the agent's choice accuracy.

382 Similarly, we can look at the value function learned using the efficient mapping. As before,
383 we see that reward expectations during the interval increase with the length of the interval
384 (Figure 6d). However, reward expectations after interval offset do not simply reflect the
385 agent's choice accuracy. Instead, they exhibit a strong asymmetry around the decision
386 boundary (Figure 6e). We see that on the long side of the boundary, reward expectations
387 increase much more slowly as a function of distance from the boundary than on the short
388 side of the boundary. Consequently, the resulting RPEs reflect this asymmetry and show a
389 slower rise on the long side of the decision boundary compared to the short side (Figure
390 6f). Before exploring the origin of this asymmetry (discussed in the following section), we

391 will show that it substantially changes the trial to trial relationship between the animals'
392 behaviour and dopamine activity.

393 Let us first consider two near-boundary intervals. For each of these intervals, the agent's
394 estimate of elapsed time will vary from trial to trial as described by the two distributions
395 shown in Figure 7a and Figure 7d. We recall that the agent's decisions are based entirely on
396 its internal estimates of elapsed time: when the estimate is shorter (or longer) than the
397 boundary, the agent will report choice 'short' (or 'long') with higher probability. We can
398 therefore split each of the distributions based on the choice of the agent (Figure 7a,d, red
399 and blue areas). This procedure creates four groups of trials, given by the two
400 near-boundary intervals and the two choices of the agent. Within each group, the variability
401 in time estimates gives rise to associated variability in RPEs. The four resulting
402 distributions of RPEs are shown in Figure 7b,e. Here, the two panels group trials according
403 to the presented interval, and the red and blue RPE distributions in each panel correspond
404 to trials grouped according to the animal's choice. Using these groupings, we can now
405 study how high or low RPE trials relate to behavior. To do so, we first define high (or low)
406 RPE trials for a given interval as all trials with RPEs greater (or smaller) than the median
407 RPE for that interval (indicated by the dashed line). The fraction of long choices falling into
408 the high (or low) RPE trials shown in Figure 7c,f correspond to points at the near boundary
409 intervals in the psychometric functions for shown in Figure 5c (which are for all interval
410 durations).

411 For the RL agent using the full mapping, RPEs on incorrect trials are on average lower than
412 RPEs on correct trials (Figure 7b,e). In turn, if we split all trials based on the magnitude of
413 RPEs, irrespective of the interval, we find that the agent made more mistakes on low RPE
414 trials compared to high RPE trials. Thus, the psychometric curves for these two groups of
415 trials show a larger difference in slope and cross each other around the decision boundary
416 (Figure 7c,f). For the RL agent using the efficient mapping, the picture is very different
417 (Figure 7g-l). Here we find that RPEs are on average lower when the agent reports choices
418 as long, irrespective of the interval (Figure 7h,k). Consequently, the psychometric functions
419 for high and low RPEs show a larger change in bias and that the psychometric curves for
420 these groups of trials do not cross each other near the boundary (Figure 7j,l).

421 **Efficient mapping predicts procrastination of choices for interval durations estimated as
422 long and close to the decision boundary**

423 Finally, we studied the origin of the asymmetry in the value function for the agent using the
424 efficient mapping. We find that the low-resolution along the second axis leads to a
425 systematic ambiguity in some parts of the state space in estimating value and the optimal
426 action for those locations. For example, let us consider a basis function that spans a region
427 in state space that the agent would visit right after the end of a long interval (marked with
428 the gray rectangle in Figure 8a). While the agent can encounter this region directly after the

429 end of a long interval, it could also be encountered if the agent was presented with a short
430 interval, but withheld choice for several time steps (purple trajectory in Figure 8a). Hence,
431 the reward expectation associated with this basis will be estimated by averaging over the
432 trials from both categories of interval durations i.e. when the agent's estimate of the
433 interval presented is longer or shorter than the learnt boundary. As a consequence, the
434 agent would be impeded in learning the correct value of these states as well as the optimal
435 action at these locations. Indeed, this is true for all the post-interval basis functions in the
436 efficient mapping. They encode elapsed time since interval onset and whether or not
437 interval offset had occurred. Accordingly, the basis functions do not allow the agent to
438 disambiguate between trials on which different interval durations were presented if it
439 withholds choice for several time steps.

440 The ambiguity in this efficient mapping can be avoided if the agent reports choices
441 immediately after interval offset, especially for intervals estimated to be shorter than the
442 decision boundary. Once the choice is made, the agent transitions into the inter-trial interval
443 state, and thereby avoids visiting other post-interval states. With this strategy, states that
444 fall into the region indicated by the grey rectangle in Figure 8a are only encountered when
445 the agent estimates the interval to be longer than the decision boundary. In turn, the agent
446 can learn that the correct choice associated with those states is 'long'. Indeed, we find that
447 when agents use the efficient mapping and when they estimate the interval to be shorter
448 than the decision boundary, they report choices with very short response times (Figure 8b).
449 For intervals longer than the decision boundary, however, there is no urgency to respond
450 after interval offset. In this case, if the agent waits after the interval offset, the correct
451 action associated with the post-interval offset states will not change with the passage of
452 time. Hence, delaying choice will not have any detrimental effect on choice behaviour.
453 Curiously, however, the efficient mapping not only allows delaying near boundary long
454 choices, but incentivises it.

455 To understand why, let's consider the value function of an agent using the efficient
456 mapping, but where the agent is forced to report a choice immediately after interval offset.
457 In this case, the value function estimated for the post-interval offset states using the
458 efficient model is the same as that of the states immediately after interval offset using the
459 full-mapping. After interval offset, states further from the boundary have higher value than
460 those close to the boundary. Now, let's say, the agent is permitted to have variable response
461 times. Let's first consider the value of the sequence of states the agent would encounter if
462 it received a 'short' interval and withheld choice after interval offset (shown by the purple
463 trajectory in Supp. Fig. 5a and 5b). In this case, if the agent waits after interval offset, the
464 value of the sequence of states encountered decreases with time (shown by the red arrow
465 in Supp. Fig. 5b). Hence, if the agent withholds choices, it will encounter negative RPEs as
466 elapsed time advances i.e. it moves to states that have lower value than the preceding
467 states. However, if it reports its choice immediately, it will, on average, get zero RPEs since
468 choices lead the agent to transition to the terminal state and obtain rewards which are on

469 average equal to the value of the state just preceding the choice. Since, the policy of the RL
470 agent is to choose actions that lead to states with the highest value, the optimal strategy to
471 report choices immediately. On the other hand, if the agent receives a 'long' interval (shown
472 by the brown trajectory in Supp. Fig. 5a and 5c), especially one close to the decision
473 boundary, we see that the value of the sequence of states after interval offset increases
474 with time (shown by the red arrow in Supp. Fig. 5c). Hence, if the agent withholds choices,
475 it will encounter positive RPEs as elapsed time advances i.e. it moves to states that have
476 higher value than the preceding states. This is what drives procrastination of choices in the
477 model when the presented interval is estimated to be long and close to the boundary. In
478 turn, these transitions between states after interval offset flatten the value function of
479 those states on the long side of the boundary and hence causes the asymmetry we see in
480 the value function when using the efficient mapping. The interaction between the efficient
481 mapping and the policy learned when using it, causes the RL agent to learn reward
482 expectations that generate RPEs similar to the dopamine activity recorded in animals
483 performing the task.

484 In several two-alternative decision making paradigms, animals generally take longer to
485 respond when the decision variable is close to the decision boundary (Roitman & Shadlen,
486 2002). Several tasks in which response times are longer for harder stimuli are tasks which
487 require integration of noisy evidence, where the noise is uncorrelated over time. In these
488 contexts, longer response times allow animals to integrate over more samples of noisy
489 evidence and have a better estimate of the stimulus by averaging out the noise. In other
490 words, longer response times result from increased deliberation when the stimulus
491 category is more ambiguous. However, the response times of the RL agent using the
492 efficient mapping in our task are markedly different, as they predict long responses only for
493 difficult 'long' choices, but not for difficult 'short' choices. In other words, the RL agent
494 generates a highly non-trivial prediction that can be tested against data. The long RTs we
495 see for intervals that are perceived by the agent to be near-boundary 'long' appear to be a
496 result of *procrastination* of difficult 'long' choices. Surprisingly, we find that animals also
497 procrastinated as predicted by the model. The predicted pattern of response times from
498 the model closely resembles that of animals during the task (Figure 8c). We also find that
499 this pattern of response times is not reproduced by the agent when using the full mapping.
500 Moreover, the profile of response times is observed only for highly compressed mappings
501 (Supplementary Figure 4) and not for intermediate levels of compression such as the one
502 shown in Figure 4b

503 Furthermore, if we force the agent to not have variable response times, the profile of
504 psychometric curves of trials grouped by magnitude of RPEs at interval offset in the agent
505 matches those resulting from the full mapping and do not match those in the data. Thus,
506 animals' pattern of response times provides further evidence to suggest that animals may
507 indeed be using a representation similar to that captured by the efficient mapping while
508 solving this task.

509 **Discussion:**

510 Understanding the nature of representations used by animals for value-based decision
511 making is crucial to further our understanding of how neural circuits subserve adaptive
512 behavioral control. Characterising what reward expectations animals learn can inform us
513 about how and what variables they are representing, which in turn can reveal the
514 constraints and strategies with which animals might be inferring statistical regularities in
515 their environments. Here we studied the computations underlying a rigorously controlled
516 time dependent behavior in rodents. We focused on two aspects of experimental data
517 collected during this behavior, the recorded activity of dopamine neurons and its trial to trial
518 relation to animals' choices. Using an RL framework, we investigated how varying internal
519 representations, with which the agent was able to solve the task, varied RPEs encountered
520 by the agent. By comparing such RPEs with recorded DA responses, we were able to infer
521 the nature of internal representations animals might be using during this task.

522 In several sensory systems, the principle of representational efficiency has been used to
523 characterise neural coding. In many of these systems, the nature of the variable that is to
524 be represented, and hence subject to efficiency constraints, is usually well defined.
525 However, in the case of RL, it is unclear which variables used for value based choices might
526 be subject to constraints of representational efficiency in the brain (Botvinick, et. al., 2015).
527 For example, we may want to enforce efficiency constraints in how the structure of the
528 environment is represented (Botvinick, Niv, & Barto, 2009; Wimmer, Daw, & Shohamy, 2012).
529 This approach may be considered to be the closest to that used for efficient coding in
530 sensory systems. In this case, the problem can be stated as that of identifying statistical
531 regularities or redundancies in the environment that can be leveraged to balance
532 representational cost against the accuracy with which the statistics of the environment can
533 be encoded. However, this is not the only approach that can be used for representational
534 efficiency in RL. Representation constraints may be used to directly approximate optimal
535 value functions (Foster & Dayan, 2002) or action spaces (Solway et al., 2014). In each of
536 these cases, one has to define a space within which representations are subject to
537 resource constraints as well as the quantity of interest that needs to be preserved, i.e. a
538 loss function which needs to be optimised. A key challenge in understanding how
539 principles of efficient coding are applicable to the reward system is to identify the space
540 within which representational constraints may be expressed as well as the loss function
541 that may be optimised.

542 The interval discrimination task requires animals to generate and operate upon structured,
543 time-evolving internal estimates to guide decisions. By training a RL agent on this task to
544 generate dynamically evolving patterned behaviour, just as is required of animals, we were
545 able to test how differences in task representation affect behaviour, which in turn affect
546 reward expectations during the task. We found that animals seem to encode the task using

547 a representation that is compromised in accurately capturing the statistical regularities of
548 the task environment. This suggests that although our results are consistent with
549 representational constraints being expressed in the space of how environmental states
550 may be represented, the quantity being preserved is not the accuracy with which the
551 statistics of the environment can be best captured. Nor does this representation allow the
552 agent to well approximate the optimal value function that would be found using an
553 unambiguous representation of the environment. This suggests that neither is the optimal
554 value function the quantity that is being preserved. However, the representation used
555 allows the agent to learn actions that result in equivalent number overall rewards while
556 being more compact than one that would allow an unambiguous representation of all
557 states in the task. Importantly, we find that the behavioural strategy the RL agent uses
558 while using the efficient representation is crucial to prevent ambiguities in the
559 representation from affecting the accuracy of choices and hence the overall number of
560 rewards that can be obtained. Furthermore, only when the behavioural strategy of the agent
561 is allowed to be influenced entirely by maximizing RPEs using the efficient representation is
562 the model able to capture the key features in the data. This suggests that the
563 representations used by the agent may be found by maximising the same quantity used by
564 the agent to select actions i.e. overall number of rewards (or by minising TD reward
565 prediction errors) and that doing so may lead to unexpected interactions between how the
566 environment is represented and what policy is learnt.

567 The recent success of deep networks trained end-to-end with TD-learning at playing
568 various games has provided a demonstration of how effective this form of learning can be
569 (Mnih et al., 2015; Silver et al., 2016). Moreover, previous work has shown that dopamine
570 neurons project widely to a large number of neural circuits in the brain and end to end
571 learning has been shown to reproduce neural activity in PFC in a wide range of tasks (Song
572 et al., 2017; Wang et al., 2018). This success underscores the importance of understanding
573 how representations learnt directly to maximise overall rewards (or minimise reward
574 prediction errors) may be different than those obtained by maximising other quantities
575 such as reconstruction error. In the context of a rigorously controlled task, our work shows
576 how representations that are inaccurate in encoding several aspects of the task but allow
577 the agent to preserve overall rewards obtained while being representationally efficient can
578 lead to behaviour and reward expectations that are qualitatively different than those that
579 would result from using representations that may best summarise the statistics of the
580 environment or features of the optimal value function and policy.

581 In sum, by investigating behaviour and DA activity during a time-based decision making
582 task using RL, we were able to reveal an efficient strategy animals appear to be using to
583 represent task variables. We demonstrate that constraints of representational efficiency
584 affect the nature of reward expectations learnt during this task and that the activity of
585 dopaminergic neurons could only be explained by the model using this efficient
586 representation. Finally, we show how animals' behavioural strategy interacts with the

587 representation used to encode the task in an unexpected way and that this interaction was
588 central for the RL agent to be able to reproduce animals' behaviour and DA activity. These
589 findings provide novel insights into the manner in which efficiency constraints might be
590 expressed in the reward system, and more generally provide insights into the principles
591 underlying natural, intelligent behavior.

592 **Acknowledgements:**

593 We thank Joao Semedo and Alfonso Renart for several helpful discussions and feedback
594 on the manuscript. We also thank Severin Berger for feedback on the manuscript. This
595 work was developed with the support from the research infrastructure Congento,
596 co-financed by Lisboa Regional Operational Programme (Lisboa2020), under the
597 PORTUGAL 2020 Partnership Agreement, through the European Regional Development
598 Fund (ERDF) and Fundação para a Ciência e Tecnologia (Portugal) under the project
599 LISBOA-01-0145-FEDER-022170. The work was funded by an HHMI International Research
600 Scholar Award to J.J.P (#55008745), European Research Council Consolidator grant
601 (#DYCOCIRC - REP-772339-1) to J.J.P, a Bial bursary for scientific research to J.J.P.
602 (#193/2016), internal support from the Champalimaud Foundation. The work was also
603 supported by NIH U01 (#NS094288) to C.K.M. and Fundação para Ciência e Tecnologia
604 (#SFRH/BD/52214/2013) to A.M.

605 **Author contributions:**

606 AM, JP and CM designed the study. AM performed all analyses and simulations. SS, BA
607 and JP designed and performed the behavioral and photometry experiments. AM, JP and
608 CM wrote the manuscript. JP and CM contributed equally to this work.

609 **Declaration of interests:**

610 The authors declare no competing interests.

611 **References:**

612 Bayer, H. M., & Glimcher, P. W. (2005). Midbrain Dopamine Neurons Encode a Quantitative
613 Reward Prediction Error Signal. *Neuron*, 47(1), 129–141.
614 <https://doi.org/10.1016/j.neuron.2005.05.020>

615 Botvinick, M. M. (2008). Hierarchical models of behavior and prefrontal function. *Trends in
616 Cognitive Sciences*, 12(5), 201–208. <https://doi.org/10.1016/j.tics.2008.02.009>

617 Botvinick, M. M., Niv, Y., & Barto, A. G. (2009). Hierarchically organized behavior and its
618 neural foundations: A reinforcement learning perspective. *Cognition*, 113(3),
619 262–280. <https://doi.org/10.1016/j.cognition.2008.08.011>

620 Botvinick, M., Weinstein, A., Solway, A., & Barto, A. (2015). Reinforcement learning, efficient
621 coding, and the statistics of natural tasks. *Current Opinion in Behavioral Sciences*, 5,
622 71–77. <https://doi.org/10.1016/j.cobeha.2015.08.009>

623 Daw, N. D., Courville, A. C., & Touretzky, D. S. (2006). Representation and Timing in Theories
624 of the Dopamine System. *Neural Computation*, 18(7), 1637–1677.
625 <https://doi.org/10.1162/neco.2006.18.7.1637>

626 Dayan, P., & Sejnowski, T. J. (1994). TD(λ) converges with probability 1. *Machine Learning*,
627 14(3), 295–301. <https://doi.org/10.1007/BF00993978>

628 Druckmann, S., & Chklovskii, D. B. (2012). Neuronal Circuits Underlying Persistent
629 Representations Despite Time Varying Activity. *Current Biology*, 22(22), 2095–2103.
630 <https://doi.org/10.1016/j.cub.2012.08.058>

631 Fiorillo, C. D., Newsome, W. T., & Schultz, W. (2008). The temporal precision of reward
632 prediction in dopamine neurons. *Nature Neuroscience*, 11(8), 966–973.
633 <https://doi.org/10.1038/nn.2159>

634 Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete Coding of Reward Probability and
635 Uncertainty by Dopamine Neurons. *Science*, 299(5614), 1898–1902.
636 <https://doi.org/10.1126/science.1077349>

637 Gershman, S. J., Norman, K. A., & Niv, Y. (2015). Discovering latent causes in reinforcement
638 learning. *Current Opinion in Behavioral Sciences*, 5, 43–50.
639 <https://doi.org/10.1016/j.cobeha.2015.07.007>

640 Gibbon, J., & Church, R. M. (1990). Representation of time. *Cognition*, 37(1), 23–54.
641 [https://doi.org/10.1016/0010-0277\(90\)90017-E](https://doi.org/10.1016/0010-0277(90)90017-E)

642 Gouvêa, T. S., Monteiro, T., Motiwala, A., Soares, S., Machens, C., & Paton, J. J. (2015).
643 Striatal dynamics explain duration judgments. *eLife*, 4.
644 <https://doi.org/10.7554/eLife.11386>

645 Janssen, P., & Shadlen, M. N. (2005). A representation of the hazard rate of elapsed time in
646 macaque area LIP. *Nature Neuroscience*, 8(2), 234–241.
647 <https://doi.org/10.1038/nn1386>

648 Joel, D., Niv, Y., & Ruppin, E. (2002). Actor–critic models of the basal ganglia: New
649 anatomical and computational perspectives. *Neural Networks*, 15(4), 535–547.
650 [https://doi.org/10.1016/S0893-6080\(02\)00047-3](https://doi.org/10.1016/S0893-6080(02)00047-3)

651 Kaufman, M. T., Churchland, M. M., Ryu, S. I., & Shenoy, K. V. (2014). Cortical activity in the
652 null space: Permitting preparation without movement. *Nature Neuroscience*, 17(3),
653 440–448. <https://doi.org/10.1038/nn.3643>

654 Kepecs, A., Uchida, N., Zariwala, H. A., & Mainen, Z. F. (2008). Neural correlates,
655 computation and behavioural impact of decision confidence. *Nature*, 455(7210),
656 227–231. <https://doi.org/10.1038/nature07200>

657 Khamassi, M., Lachèze, L., Girard, B., Berthoz, A., & Guillot, A. (2005). Actor–Critic Models of
658 Reinforcement Learning in the Basal Ganglia: From Natural to Artificial Rats.
659 *Adaptive Behavior*, 13(2), 131–148. <https://doi.org/10.1177/105971230501300205>

660 Kiani, R., & Shadlen, M. N. (2009). Representation of Confidence Associated with a Decision

661 by Neurons in the Parietal Cortex. *Science*, 324(5928), 759–764.
662 <https://doi.org/10.1126/science.1169405>

663 Lak, A., Nomoto, K., Keramati, M., Sakagami, M., & Kepecs, A. (2017). Midbrain Dopamine
664 Neurons Signal Belief in Choice Accuracy during a Perceptual Decision. *Current
665 Biology*, 27(6), 821–832. <https://doi.org/10.1016/j.cub.2017.02.026>

666 Ludvig, E. A., Sutton, R. S., & Kehoe, E. J. (2008). Stimulus Representation and the Timing of
667 Reward-Prediction Errors in Models of the Dopamine System. *Neural Computation*,
668 20(12), 3034–3054. <https://doi.org/10.1162/neco.2008.11-07-654>

669 Mello, G. B. M., Soares, S., & Paton, J. J. (2015). A Scalable Population Code for Time in the
670 Striatum. *Current Biology*, 25(9), 1113–1122.
671 <https://doi.org/10.1016/j.cub.2015.02.036>

672 Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
673 Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
674 Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015).
675 Human-level control through deep reinforcement learning. *Nature*, 518(7540),
676 529–533. <https://doi.org/10.1038/nature14236>

677 Niv, Y., & Langdon, A. (2016). Reinforcement learning with Marr. *Current Opinion in
678 Behavioral Sciences*, 11, 67–73. <https://doi.org/10.1016/j.cobeha.2016.04.005>

679 Pasquereau, B., & Turner, R. S. (2014). Dopamine neurons encode errors in predicting
680 movement trigger occurrence. *Journal of Neurophysiology*, 113(4), 1110–1123.
681 <https://doi.org/10.1152/jn.00401.2014>

682 Remington, E. D., Narain, D., Hosseini, E. A., & Jazayeri, M. (2018). Flexible Sensorimotor
683 Computations through Rapid Reconfiguration of Cortical Dynamics. *Neuron*, 98(5),
684 1005-1019.e5. <https://doi.org/10.1016/j.neuron.2018.05.020>

685 Reynolds, J. N. J., Hyland, B. I., & Wickens, J. R. (2001). A cellular mechanism of
686 reward-related learning. *Nature*, 413(6851), 67–70.
687 <https://doi.org/10.1038/35092560>

688 Roitman, J. D., & Shadlen, M. N. (2002). Response of Neurons in the Lateral Intraparietal
689 Area during a Combined Visual Discrimination Reaction Time Task. *Journal of
690 Neuroscience*, 22(21), 9475–9489.
691 <https://doi.org/10.1523/JNEUROSCI.22-21-09475.2002>

692 Russek, E. M., Momennejad, I., Botvinick, M. M., Gershman, S. J., & Daw, N. D. (2017).
693 Predictive representations can link model-based reinforcement learning to
694 model-free mechanisms. *PLOS Computational Biology*, 13(9), e1005768.
695 <https://doi.org/10.1371/journal.pcbi.1005768>

696 Salinas, E. (2006). How Behavioral Constraints May Determine Optimal Sensory
697 Representations. *PLOS Biology*, 4(12), e387.
698 <https://doi.org/10.1371/journal.pbio.0040387>

699 Schultz, W., Dayan, P., & Montague, P. R. (1997). A Neural Substrate of Prediction and
700 Reward. *Science*, 275(5306), 1593–1599.
701 <https://doi.org/10.1126/science.275.5306.1593>

702 Semedo, J. D., Zandvakili, A., Machens, C. K., Yu, B. M., & Kohn, A. (2019). Cortical Areas
703 Interact through a Communication Subspace. *Neuron*, 102(1), 249-259.e4.
704 <https://doi.org/10.1016/j.neuron.2019.01.026>

705 Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser,
706 J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J.,
707 Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., &
708 Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree
709 search. *Nature*, 529(7587), 484–489. <https://doi.org/10.1038/nature16961>

710 Soares, S., Atallah, B. V., & Paton, J. J. (2016). Midbrain dopamine neurons control judgment
711 of time. *Science*, 354(6317), 1273–1277. <https://doi.org/10.1126/science.aaah5234>

712 Song, H. F., Yang, G. R., & Wang, X.-J. (2017). Reward-based training of recurrent neural
713 networks for cognitive and value-based tasks. *eLife*, 6, e21492.
714 <https://doi.org/10.7554/eLife.21492>

715 Starkweather, C. K., Babayan, B. M., Uchida, N., & Gershman, S. J. (2017). Dopamine reward
716 prediction errors reflect hidden-state inference across time. *Nature Neuroscience*,
717 20(4), 581–589. <https://doi.org/10.1038/nn.4520>

718 Stauffer, W. R., Lak, A., & Schultz, W. (2014). Dopamine Reward Prediction Error Responses
719 Reflect Marginal Utility. *Current Biology*, 24(21), 2491–2500.
720 <https://doi.org/10.1016/j.cub.2014.08.064>

721 Steinberg, E. E., Keiflin, R., Boivin, J. R., Witten, I. B., Deisseroth, K., & Janak, P. H. (2013). A
722 causal link between prediction errors, dopamine neurons and learning. *Nature
723 Neuroscience*, 16(7), 966–973. <https://doi.org/10.1038/nn.3413>

724 Suri, R. E., & Schultz, W. (1998). Learning of sequential movements by neural network
725 model with dopamine-like reinforcement signal. *Experimental Brain Research*,
726 121(3), 350–354. <https://doi.org/10.1007/s002210050467>

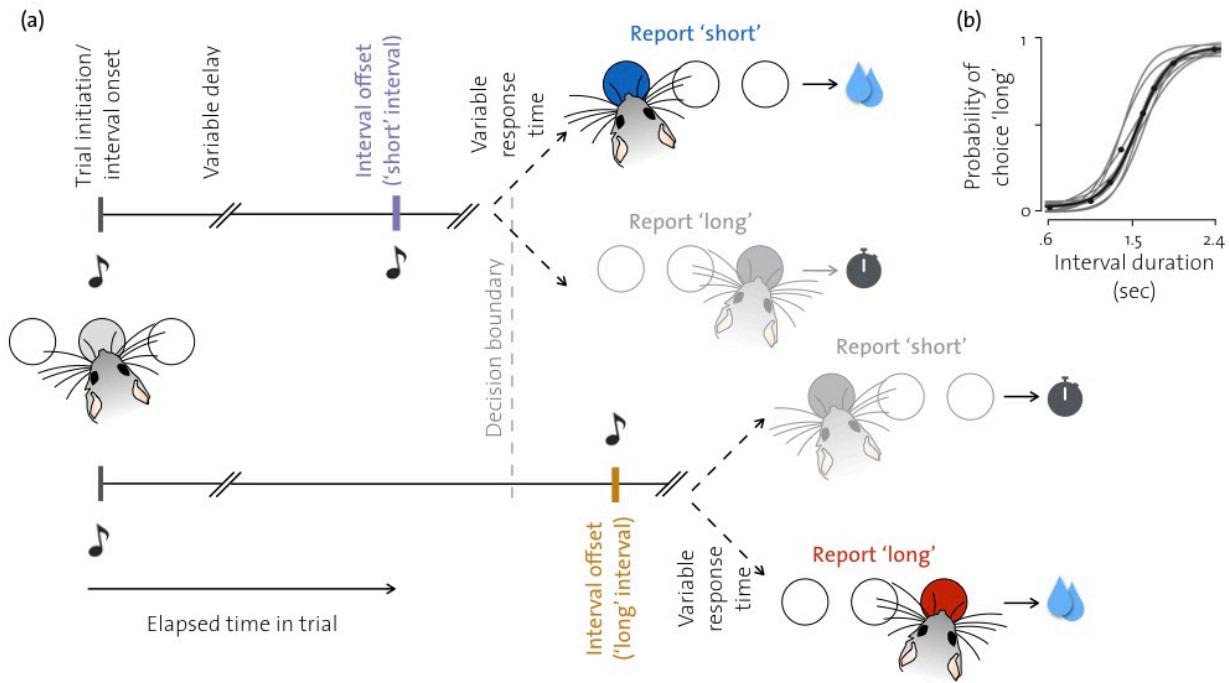
727 Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. *Machine
728 Learning*, 3(1), 9–44. <https://doi.org/10.1007/BF00115009>

729 Wang, J., Narain, D., Hosseini, E. A., & Jazayeri, M. (2018). Flexible timing by temporal
730 scaling of cortical responses. *Nature Neuroscience*, 21(1), 102–110.
731 <https://doi.org/10.1038/s41593-017-0028-6>

732 Wang, J. X., Kurth-Nelson, Z., Kumaran, D., Tirumala, D., Soyer, H., Leibo, J. Z., Hassabis, D.,
733 & Botvinick, M. (2018). Prefrontal cortex as a meta-reinforcement learning system.
734 *Nature Neuroscience*, 21(6), 860–868. <https://doi.org/10.1038/s41593-018-0147-8>

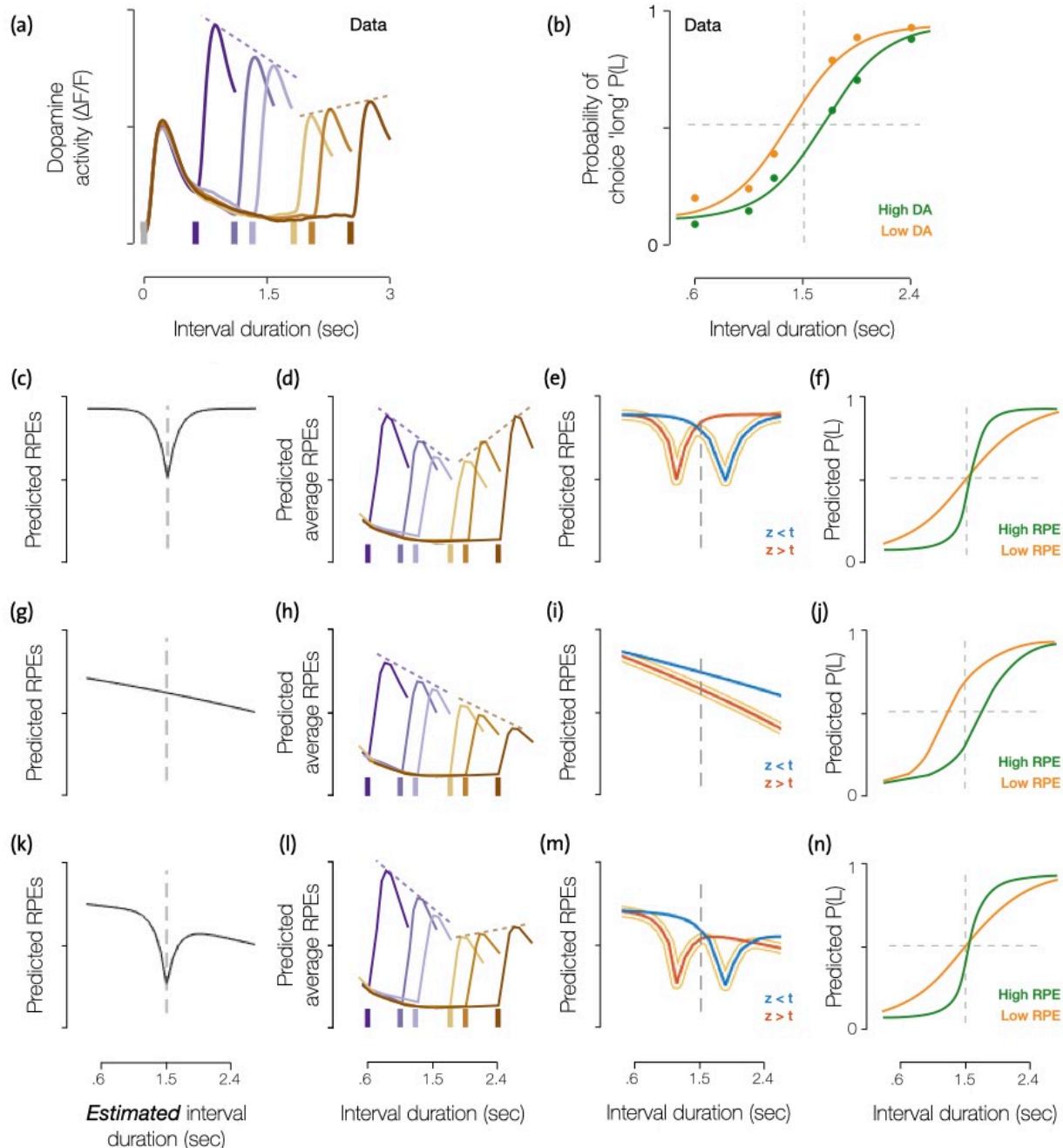
735 Watabe-Uchida, M., Eshel, N., & Uchida, N. (2017). Neural Circuitry of Reward Prediction
736 Error. *Annual Review of Neuroscience*, 40(1), 373–394.
737 <https://doi.org/10.1146/annurev-neuro-072116-031109>

738 Wimmer, G. E., Daw, N. D., & Shohamy, D. (2012). Generalization of value in reinforcement
739 learning by humans. *European Journal of Neuroscience*, 35(7), 1092–1104.
740 <https://doi.org/10.1111/j.1460-9568.2012.08017.x>



741 **Figure 1:**

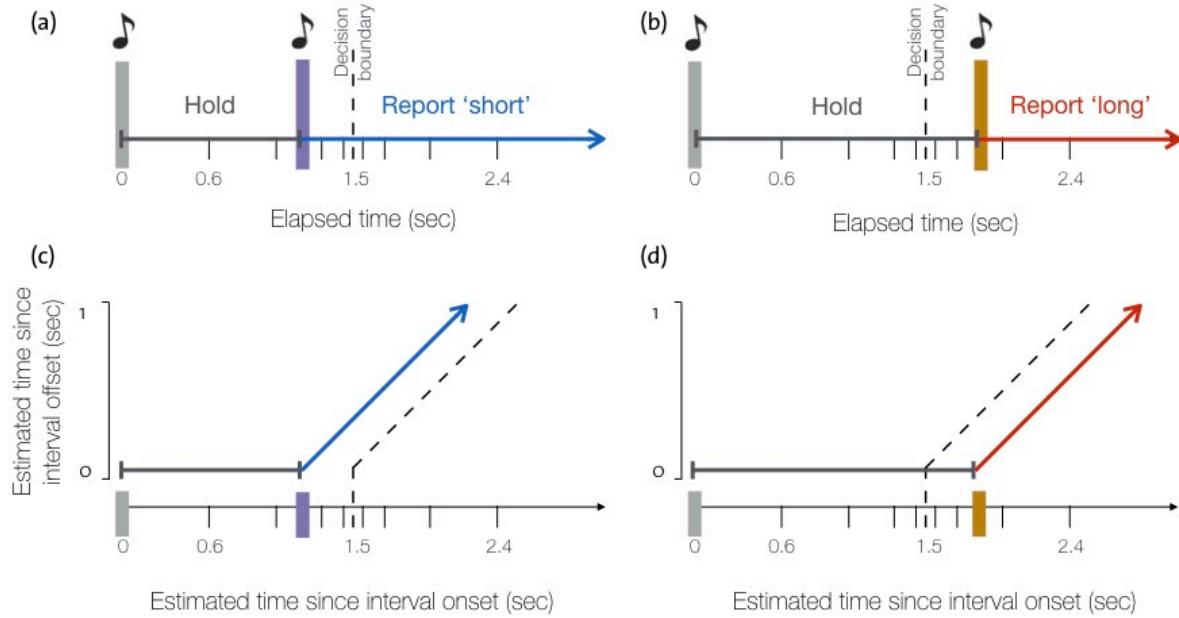
742 **Rodents were trained to classify interval durations.** (a) Schematic illustrating the timeline
743 of the main events during the interval discrimination task. Animals are presented with three
744 ports and are required to initiate each trial in the central port. The central nose poke
745 triggers a tone and after a variable interval a second tone is presented. These intervals can
746 either be longer or shorter than the decision boundary. Animals have to report 'short' or
747 'long' judgements in the two lateral ports based on their estimate of the time elapsed
748 between the two tones. Correct choices result in water reward and incorrect choices result
749 in a time out. (b) Psychometric curves of animals performing the task. Grey lines indicate
750 sigmoid fits to behaviour of individual animals ($n=6$), and black line and dots indicate
751 average over all animals. (Panel (b) adapted from Soares et. al. 2016)



752 **Figure 2:**

753 **Reward prediction errors at interval offset can be modulated by choice accuracy and**
 754 **hazard rate of interval offset. (a)** Average dopamine responses for each of the intervals
 755 presented during the task. The initial peak occurs at interval onset, and the following six
 756 peaks occur at each of the presented interval offsets. The dashed lines highlight the overall
 757 profile of the magnitude of responses at interval offset. **(b)** Psychometric functions for all
 758 trials in which high (green) or low (orange) DA responses were measured at interval offset.
 759 A clear difference in bias emerges from these two groups of trials. (Adapted from Soares
 760 et al 2016.) **(c)** If we assume that animals do not maintain any prediction of the arrival
 761 times of interval offsets, but do encode estimates of choice accuracy for different
 762 estimates of elapsed time, the RPEs we would predict would vary as a function of their

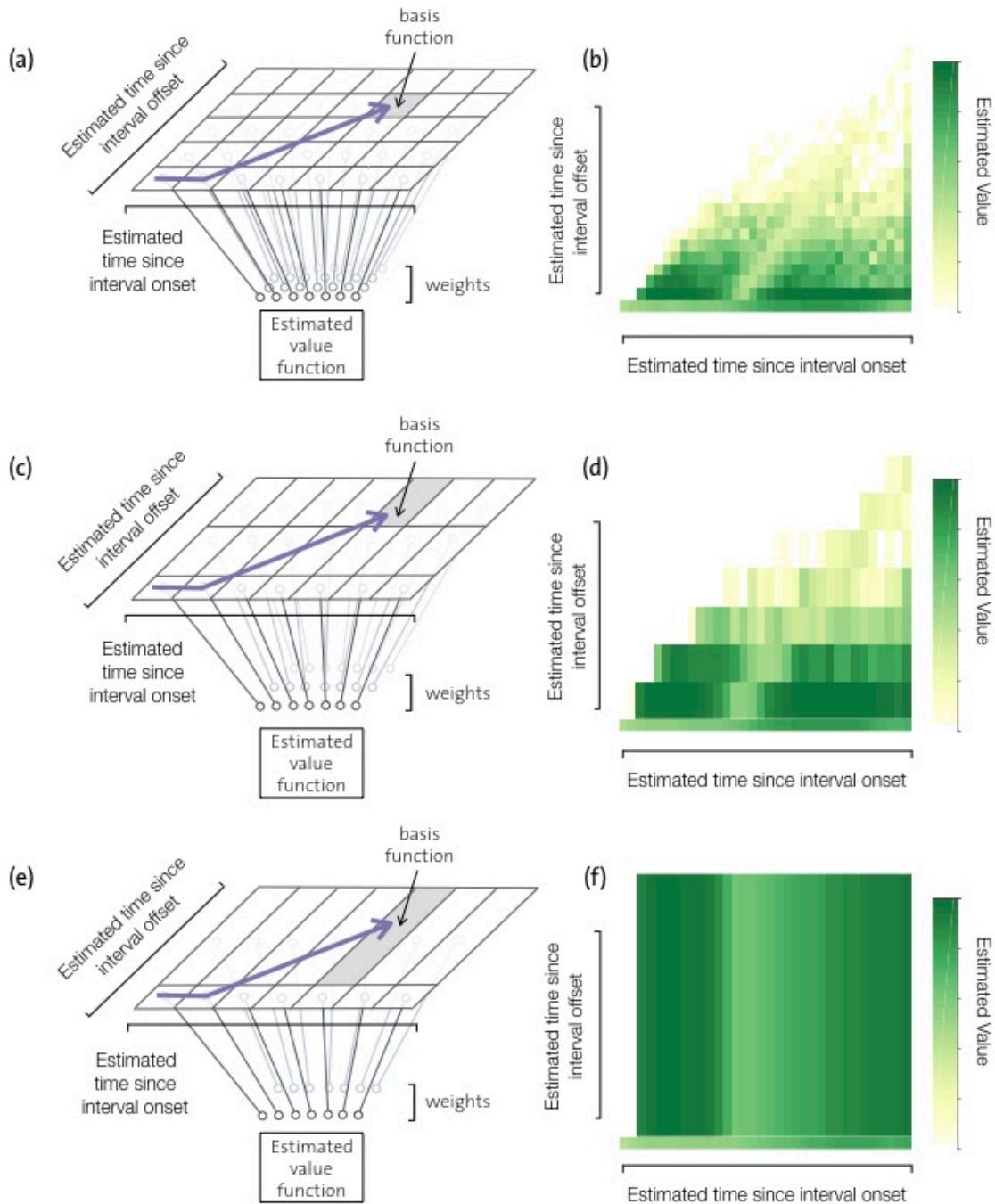
763 internal estimates of elapsed time as shown here (For details see Supp. Fig. 1a-d). **(d)**
764 Hypothetical modulation of average RPEs at the six interval offsets presented in the task if
765 these were based purely on estimates of an agent's choice accuracy. The averages in this
766 case would be over the trial to trial variability in animals' estimates of elapsed time. The
767 dashed lines highlight that, unlike in the data, the overall profile of magnitude of RPE at
768 interval offset would be symmetric around the decision boundary in this case. **(e)** Since
769 animals' reward expectations evolve as a function of their internal estimates of elapsed
770 time, shown here is how their estimates would evolve as a function of real time on two
771 example trial types where the animal may overestimate (red) or underestimate (blue)
772 elapsed time. For any interval, whether interval duration is over or underestimated will
773 systematically influence the magnitude of RPE at interval offset. Hence, for every time step,
774 the curve that corresponds to low RPE is highlighted in yellow. **(f)** For every interval offset
775 presented, if trials are split based on the magnitude of RPE, we would find that high RPE
776 would go along with estimates of interval duration that are further than the boundary than
777 those trials on which RPE is lower. Hence, when trials are split into low and high magnitude
778 RPE trials, the slope of the psychometric curves of the two groups would differ. **(g-j)** Similar
779 to (c-f), but for RPEs that are generated entirely due to temporal predictability of interval
780 offsets. **(k-n)** Similar to (c-f) and (g-j), but for RPEs that would be generated if the agent
781 took into account both choice accuracy and temporal predictability of interval offsets. For
782 more details regarding the shape of the predicted RPEs in (c,g,k), see Sup. Fig. 1 and for
783 more details regarding the predicted relationship between single trial magnitude of RPE
784 and choice shown in (f,j,n) see Supp. Fig. 2.



785 **Figure 3:**

786 **Task variables can be represented unambiguously using a two-dimensional state space.**

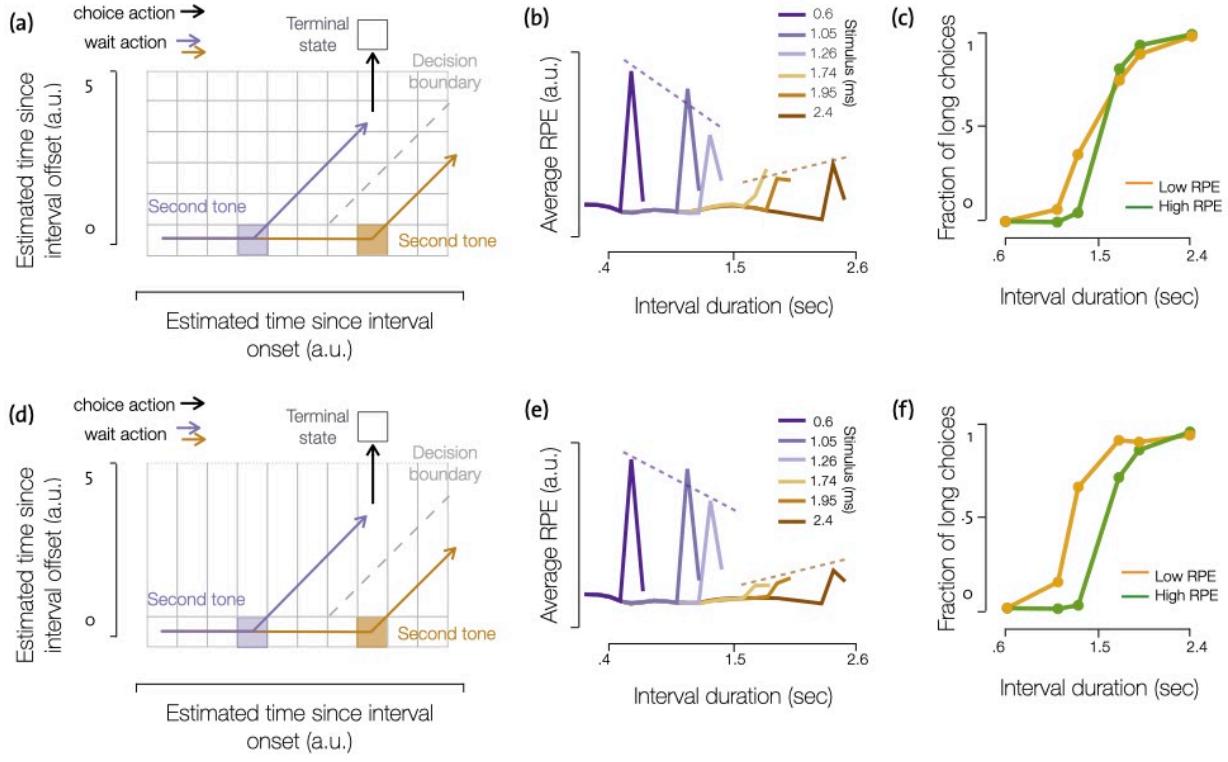
787 **(a)** Timeline of an example trial in which an interval shorter than the decision boundary is
788 presented. The color of the axis indicates the optimal action in that period of the trial (grey
789 = wait, blue = short, red = long). **(b)** Timeline of an example trial in which an interval longer
790 than the decision boundary is presented **(c)** Illustration showing how the example trial in (a)
791 is represented in the agent's state space. The agent's state is given by its internal estimates
792 of time since interval onset (x-axis) and time since interval offset (y-axis). Because of
793 variability in time estimation, these internal estimates are distinct from real time. The
794 trajectory shows how the two-dimensional state variable changes over time and in
795 response to interval onset and offset. The color of the arrows shows the correspondence
796 between the segments of the trajectory in state space and the associated segments on the
797 timeline of the example trial in (a). Each location in the two-dimensional state space
798 provides an unambiguous representation so that the agent can determine the optimal
799 choices using this state representation is shown by the dashed line. **(d)** Illustration showing how
800 the example trial in (b) would be represented in the agent's state space.



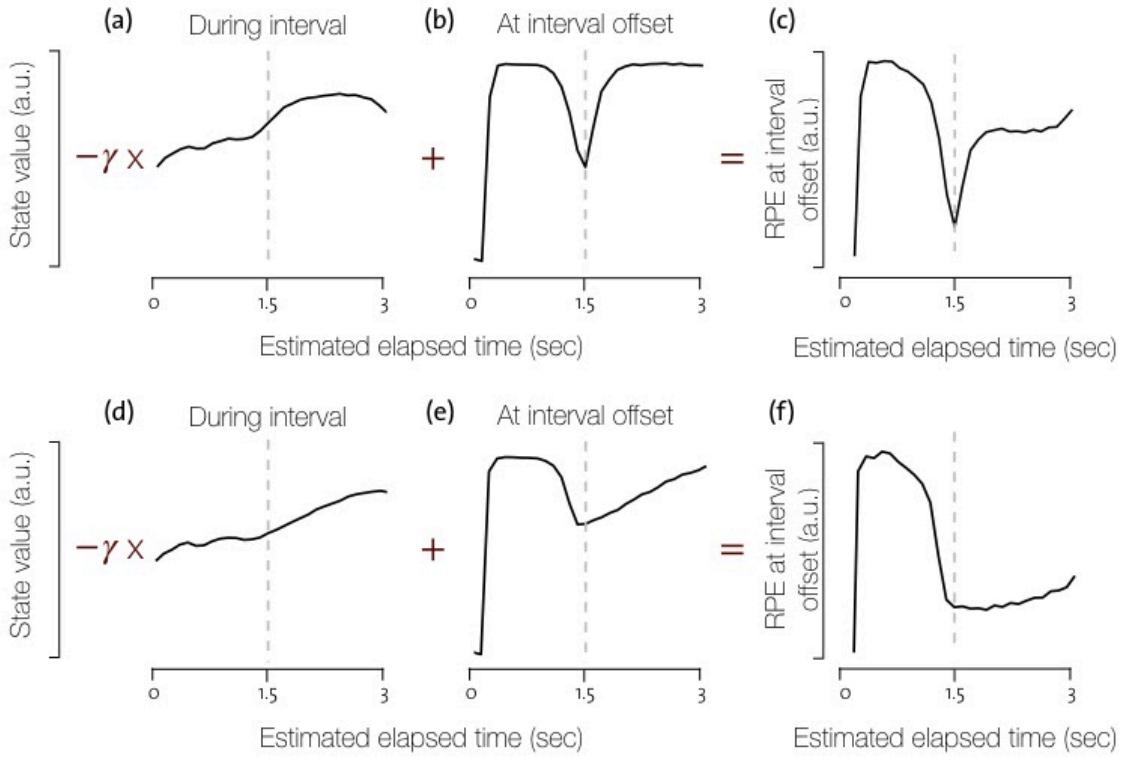
802 **Figure 4:**

803 **Resolution of the basis functions used to approximate value function and policy can be**
 804 **different along different dimensions of state space.** (a) Since the state space is
 805 continuous, we approximate the value function by a linear combination of basis functions
 806 that are non-overlapping tile bases. The agent needs to estimate as many parameters or
 807 weights as there are basis functions. Here the tiling of the basis functions is equally dense
 808 along the two axes shown and hence the number of parameters that need to be estimated
 809 are $\sim N^2$, where N is the number of basis functions tiling each dimension. This arrangement
 810 corresponds to the full mapping used by the model. Shown in purple is an example

811 trajectory through the state space. The basis function that would be active at the last time
812 step of this trajectory is highlighted. **(b)** Estimated values learnt over the state space using
813 the full mapping. **(c)** Basis functions used by the agent can tile the second axis with lower
814 resolution than the first, thereby incurring a lower representational cost than the full
815 mapping. This example corresponds to an intermediate level of compression. **(d)**
816 Estimated value function using the intermediate compressed mapping. **(e)** The basis
817 functions used in the most compressed or efficient mapping tile the second axis with the
818 lowest possible resolution by encoding only whether interval offset has occurred or not.
819 The number of parameters that need to be estimated using this mapping are $\sim 2N$ (as
820 opposed to $\sim N^2$ parameters that need to be estimated for the full model). **(f)** Estimated
821 value function learnt using the most compressed, i.e. efficient representation.

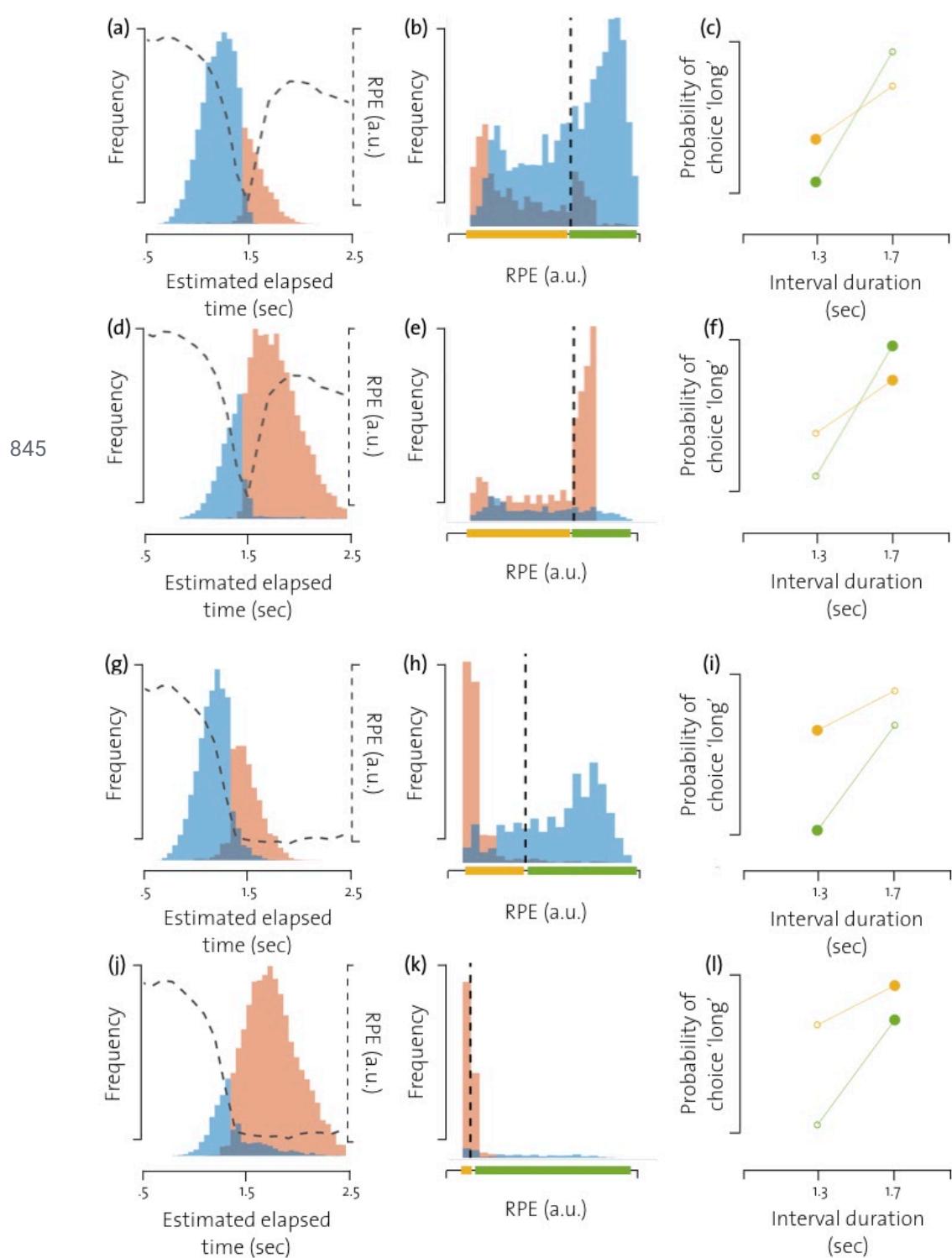


822 **Figure 5:**
823 **Efficient value function approximation can simultaneously reproduce average DA at**
824 **interval offset and trial to trial relationship between DA magnitude and choice.** (a) Value
825 function approximation used in the full mapping. Each basis uniquely determines
826 estimated elapsed time since interval onset and interval offset. (b) Average reward
827 prediction errors (RPE) elicited at interval offset in an agent that uses the full mapping for
828 interval discrimination. Compare with Figure 2a. (c) Psychometric curves of trials grouped
829 based on the magnitude of RPE at each interval offset for an agent using the full mapping.
830 Compare with Figure 2b. (d) Value function approximation used in the efficient mapping.
831 (e) Average reward prediction errors (RPE) elicited at interval offset in an agent that uses
832 the efficient mapping for interval discrimination. Compare with Figure 2a. (f) Psychometric
833 curves of trials grouped based on the magnitude of RPE at each interval offset. Compare
834 with Figure 2b.



835 **Figure 6:**

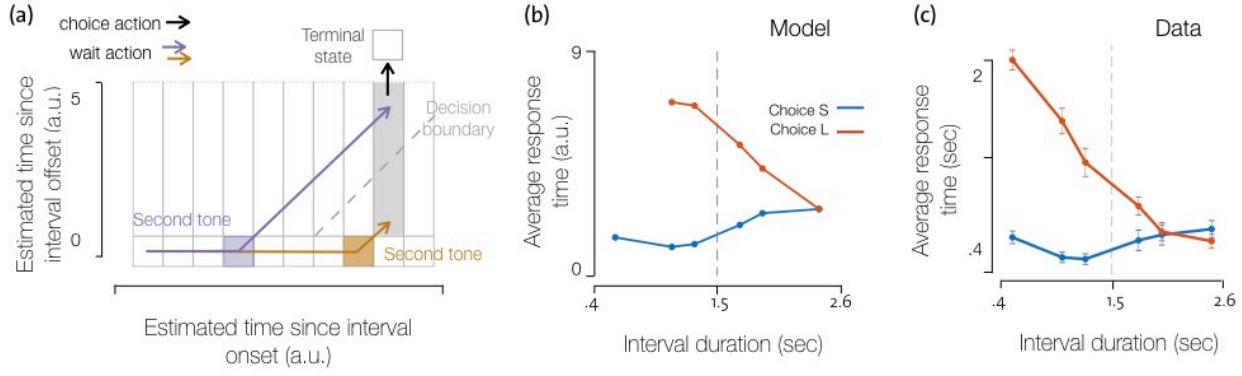
836 **Reward expectations learnt by the RL agent using the full and efficient mappings differ**
837 **most right after the decision boundary. (a-b)** Reward expectation during the interval (a)
838 and after interval offset (b) as a function of internal estimates of elapsed time since interval
839 onset using the full mapping for value estimation. **(c)** Reward prediction error at interval
840 offset as a function of all estimates of elapsed time since the interval onset using the full
841 mapping. **(d-e)** Reward expectation during the interval (d) and after interval offset (e) as a
842 function of internal estimates of elapsed time since interval onset using the compressed
843 mapping for value estimation. **(f)** Reward prediction error at interval offset as a function of
844 all estimates of elapsed time since the interval onset using the compressed mapping.



846 **Figure 7:**

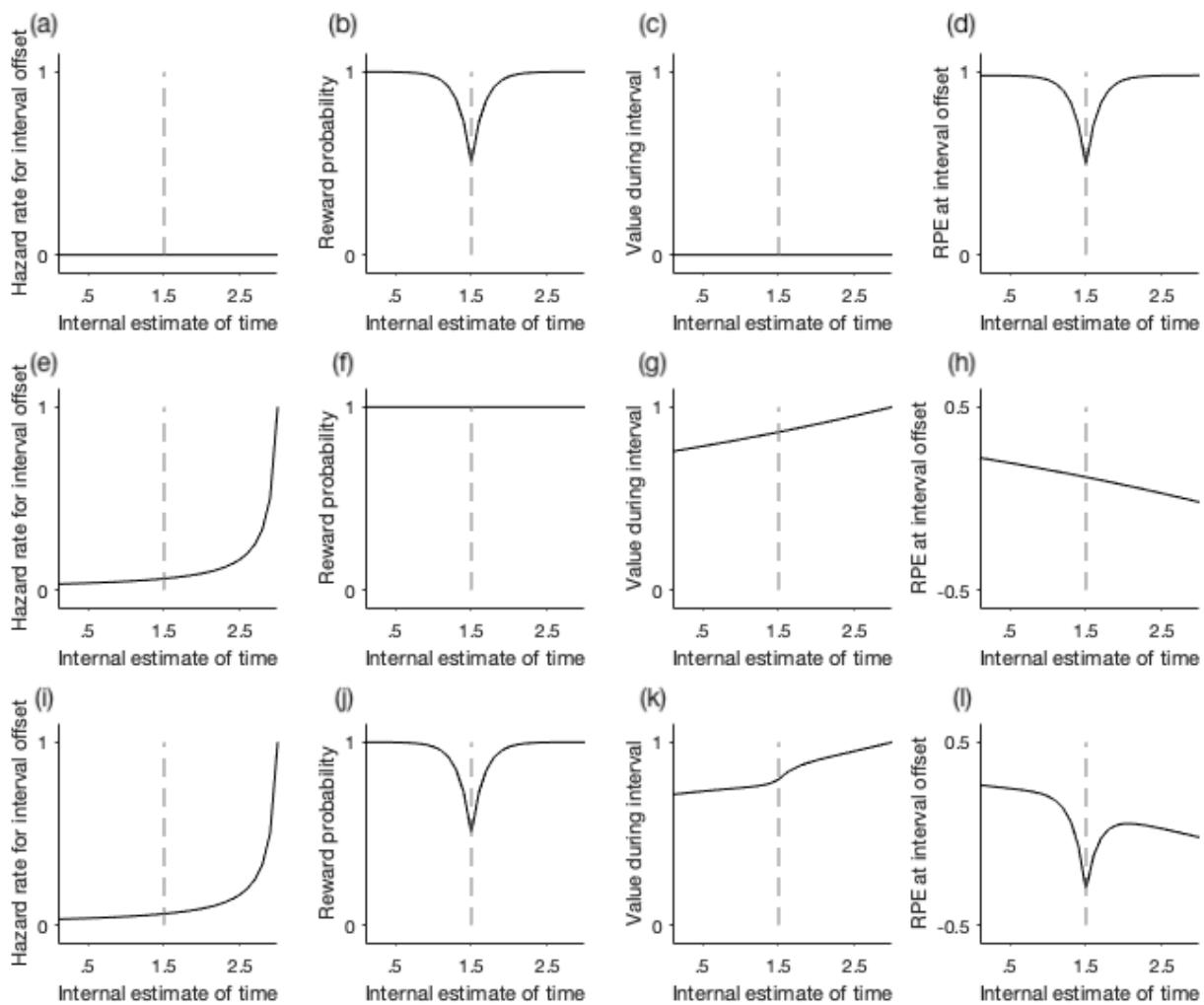
847 **Distributions of RPEs at interval offset show why compression in the mapping causes**
848 **psychometric curves split by RPE magnitude to be different. (a)** Distributions of the
849 agent's internal estimates of elapsed time at interval offset for the 'short' near-boundary
850 interval. The distribution is color-coded according to the agent's choice (blue=short,
851 red=long). The dotted line shows RPEs at interval offsets for the corresponding estimates
852 of elapsed time. **(b)** Distributions of RPEs at interval offset for the 'short' near-boundary

853 interval. The distributions are colored according to the agent's choice on the corresponding
854 trials. The dotted line indicates median-RPE for that interval presentation and divides RPEs
855 into a low-RPE group (yellow bar) and a high-RPE group (green bar). **(c)** Fraction of trials
856 on which the agent chose 'long' on trials with RPEs lower (yellow) or higher (green) than the
857 median RPE for the two near-boundary intervals. Larger dots indicate the fraction of 'long'
858 choices for the 'short' interval. **(d-f)** As in (a-c), but for a long near-boundary interval. **(g-l)**
859 The same as in (a-f), using the efficient mapping.



860 **Figure 8:**

861 **The efficient mapping predicts an unusual profile of response times that closely matches**
862 **animals' behaviour. (a)** Efficient mapping and two example trajectories through the state
863 space. The grey rectangle indicates a post-interval offset basis. Note that this region of the
864 state space can be reached following long intervals (yellow) as well as short intervals
865 (purple) if the agent waits and withholds choice. The basis function is therefore ambiguous
866 in informing the agent which interval duration was presented when the corresponding
867 states are encountered on any given trial. **(b)** Average response times of an RL agent that
868 uses the efficient mapping, conditioned on whether they indicated the interval to be short
869 or long with respect to the decision boundary. **(c)** Animals' average response times after
870 each interval offset split based on choice.



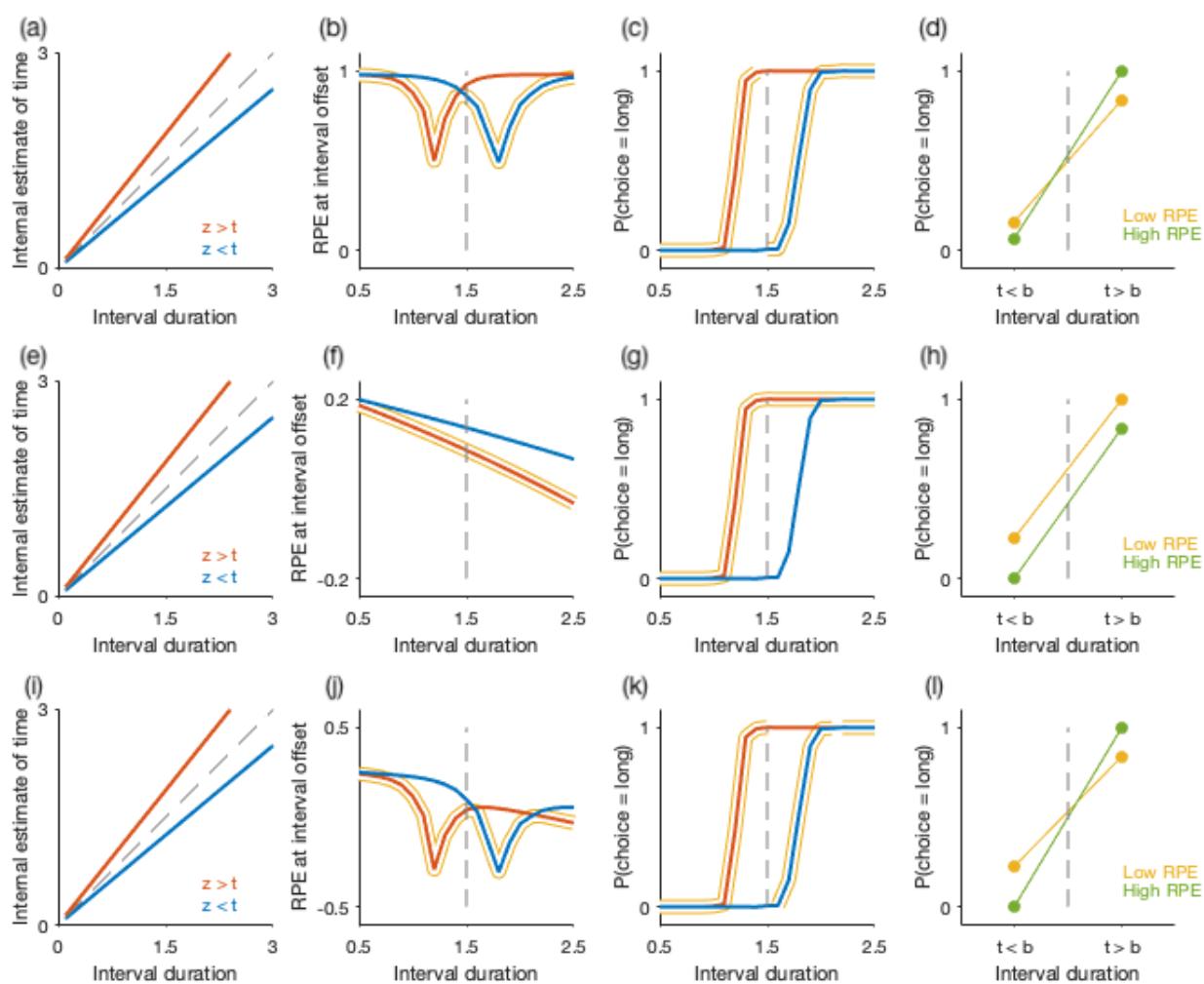
871 **Supplementary figure 1:**

872 **Schematic to illustrate how various task events influence reward expectations.** Let's
 873 assume the duration of intervals presented is uniformly distributed between 0 to 3 sec. and
 874 that choices are reported only at interval offset. In this case, the agent needs to estimate
 875 value functions over two sets of states, one during the interval and the other at interval
 876 offset. Let's assume the reward amount is 1, in this case the value at interval offset $C(z)$ will
 877 be equal to the probability of reporting the correct choice for that interval estimate. During
 878 the interval, the value function is a weighted sum of the value of interval offset at that time
 879 and the value of being in the interval at later times. The weighting factor is given by the
 880 probability of transitioning to each of these states, i.e. $V(z) = p(z' = \text{interval offset} | z).C(z) +$
 881 $\gamma.p(z' \neq \text{interval offset} | z).V(z')$, where z' is the successor state.

882 **(a-d)** If we assume that the agent does not explicitly encode the distribution of interval
 883 durations, but does encode an estimate of choice accuracy at interval offset, the hazard
 884 rate encoded by the agent is zero for all internal estimates of time (shown in panel a), and
 885 its estimate of value during the interval will always be zero (shown in panel c). Its estimate
 886 of value at interval offset is equal to the probability with which it will correctly report interval
 887 duration (shown in panel b) and the resulting RPEs at interval offset will reflect only choice
 888 accuracy (shown in panel d).

889 **(e-h)** Let's now assume that the agent encodes the distribution of interval durations, but
890 does not encode choice accuracy. The probability of detecting interval offset at any
891 estimated time z given that no interval offset was detected for all $z' < z$ is given by the
892 hazard rate of interval offset, $H(z)$. In the case of uniformly distributed interval durations,
893 $H(z)$ is shown in panel e. In this case the value function during the interval is monotonically
894 increasing. If there was no time discounting (i.e. $\gamma = 1$), this value function would be 1 for
895 the entire interval. For time discounted rewards (i.e. $0 < \gamma < 1$), the value function simply
896 reflects the fact that early in the interval the agent expects rewards to be, on average,
897 further in the future and hence more time-discounted than later in the interval (as shown in
898 panel g). Since we assumed here that the agent does not encode choice accuracy, reward
899 expectations from interval offset states are constant (panel f). Consequently, RPEs at
900 interval offset will be monotonically decreasing with elapsed time (as shown in panel h).

901 **(i-l)** Finally, if we assume that the agent encodes, both, choice accuracy as well as the
902 distribution of interval durations, we see that the estimated value at interval offset is the
903 same as when the agent only encodes choice accuracy (shown in panel j). However, the
904 value function during the interval now reflects a combination of choice accuracy and the
905 hazard rate of interval offsets, i.e. $V(z) = H(z).C(z) + \gamma.(1-H(z)).V(z')$ (shown in panel k).
906 Consequently, the RPEs will also reflect, both, choice accuracy as well as the hazard rate of
907 interval offset (as shown in panel l).



908 **Supplementary figure 2:**

909 **Schematic to illustrate how the overall profile of RPEs at interval offset determines**
 910 **differences between psychometric functions for low and high RPEs trials.** Each row
 911 shows how over or underestimating elapsed time (shown in column 1) changes RPEs at
 912 any possible interval duration (column 2), the probability of reporting choice 'long' (column
 913 3) and how magnitude of RPEs relate to the probability of choice 'long' (column 4). The top
 914 row shows the case when reward expectations are estimated only based on choice
 915 accuracy (as shown in Supp Fig 1a-d), the middle row shows the case when reward
 916 expectations only reflect the hazard rate of interval offset (as shown in Supp Fig 1e-h) and
 917 the bottom row shows the case when reward expectations are estimated based on choice
 918 accuracy as well as hazard rate of interval offset (as shown in Supp Fig 1i-l).

919 **(Column 1)** Let's consider two example types of trials (shown in panels a,e,i), one in which
 920 elapsed time is underestimated ($z < t$, shown by the blue line) and the other overestimates
 921 elapsed time ($z > t$, shown by the red line).

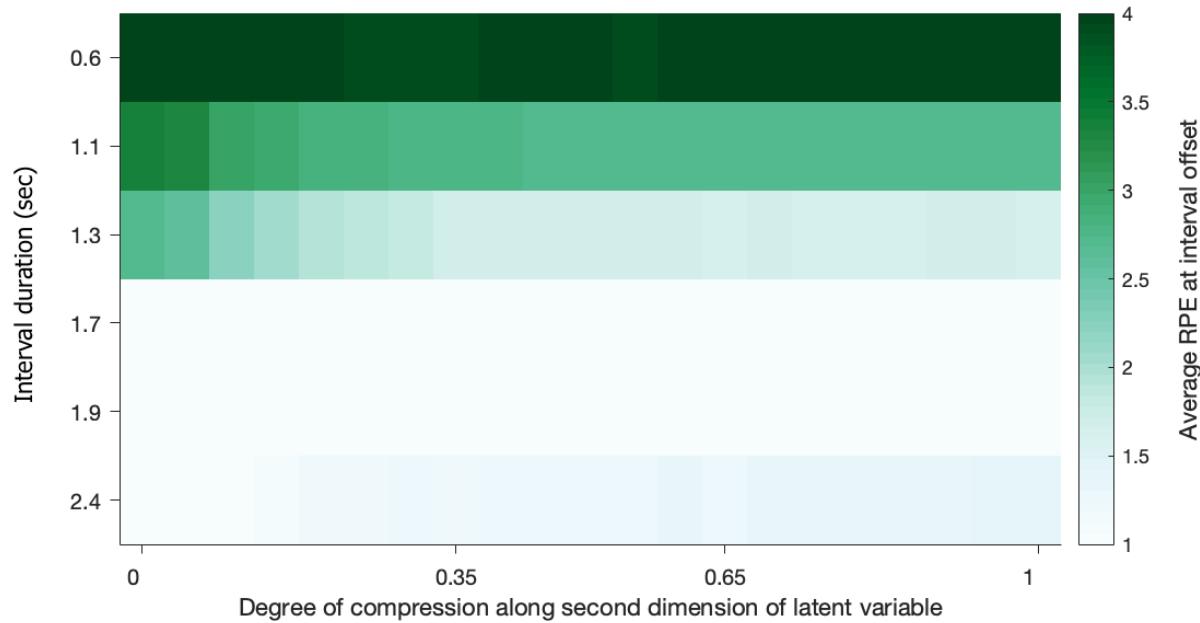
922 **(Column 2)** For these two types of trials, RPEs at interval offsets for all possible interval
 923 durations are shown in the second column (each row corresponds to each of the three
 924 possibilities for how the agent might estimate reward expectations as a function of task
 925 events shown in Supp Fig 1d,h,l). In each panel, for every time step, the trial on which RPE

926 is lower than the other is highlighted in yellow. In panel **(b)**, when RPEs result from reward
927 expectations that only take into account choice accuracy, for all time points before the
928 decision boundary, trials on which elapsed time is overestimated will have lower RPEs than
929 trials on which elapsed time is underestimated. On the other hand, for all time points after
930 the decision boundary, trials on which elapsed time is underestimated will have lower RPEs.
931 In panel **(f)**, when RPEs are driven only due to the hazard rate of interval offset, for all time
932 points trials on which elapsed time is overestimated will have lower RPEs. Finally, in panel
933 **(j)**, when RPEs reflect both choice accuracy and hazard rate of interval offset, RPEs are
934 lower on trials on which elapsed time is overestimated on the short side of the boundary.
935 On the long side of the boundary, close to the boundary, trials on which elapsed time is
936 underestimated have lower RPEs. However, for estimates much longer than the boundary,
937 we see trials on which elapsed time is overestimated have lower RPEs.

938 **(Column 3)** If the agent's choices change as a function of its internal estimates of elapsed
939 time, for the two example trial types shown here, the psychometric function of the agent
940 will also be different. When the agent underestimates elapsed time (blue curve), the
941 psychometric curve will be biased towards 'short' choices (i.e. it will show a rightward
942 shift). Similarly, if the agent overestimates time (red curve), the psychometric curve will be
943 biased towards 'long' choices (i.e. will be shifted left). To establish the relationship between
944 magnitude of RPE at any given estimated time of interval offset and the probability of
945 choices the agent will report, for each of the trial types, all time points at which RPE was
946 lower on that trial type (shown by the yellow highlights in the second column) are also
947 highlighted in yellow. In panel **(c)**, we see that for all time points before the boundary, the
948 probability of choosing long is higher for most segments highlighted yellow. For all time
949 points after the decision boundary, we see that the probability of choosing short is higher
950 for all segments highlighted in yellow. In panel **(g)**, we see that for all interval durations,
951 trials that had lower RPEs have a higher probability of reporting the interval as 'long'. Finally,
952 in panel **(k)**, we see that for all interval durations before the boundary, low RPE trials have a
953 higher probability of reporting choice 'long' and the opposite is true after the decision
954 boundary.

955 **(Column 4)** For each of the panels c,g and k, for all time points on either side of the
956 boundary we ask: what is the average of the psychometric curves highlighted in yellow. **(d)**
957 In panel c, we see that on the short side of the boundary, for most time points the red
958 psychometric curve is highlighted and the average of the highlighted segments of the curve
959 is shown by the solid yellow marker in the top panel in column d. For time points longer
960 than the boundary, we see in panel c that for most time points, the blue curve is highlighted
961 and the average of that segment of the psychometric curve is shown by the yellow marker
962 on the long side of the boundary in panel d. The green points in panel d show the averages
963 of the curves in panel c on either side of the boundary that are not highlighted and
964 correspond to time points at which the RPEs (shown in panel b) are higher. In other words,
965 when RPEs are driven only due to choice accuracy, lower RPE in general are associated
966 with low choice variability and hence, we would predict the psychometric curves for low
967 and high RPE trials, in this case, to show a difference in slope. **(h)** Following the same steps

968 for the middle row (panels e-h), we find that when RPEs are driven only by the hazard rate
969 of interval offset, low RPEs correlate with higher probability of reporting long irrespective of
970 which side of the boundary the interval offset lies. Thus, in this case we would predict a
971 change in bias in psychometric functions for low and high RPE trials. (l) Finally, when RPEs
972 reflect both choice accuracy as well as the hazard rate of interval offset, following the same
973 steps we find that the psychometric curves for low and high RPE trials show a change in
974 slope.

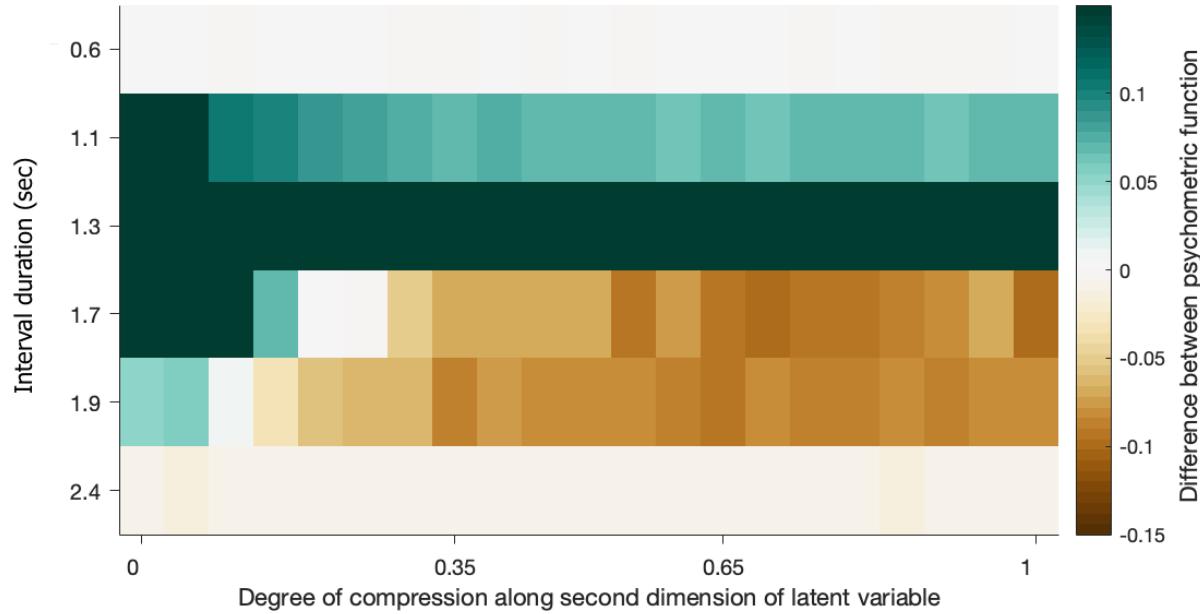


975 **Supplementary figure 3:**

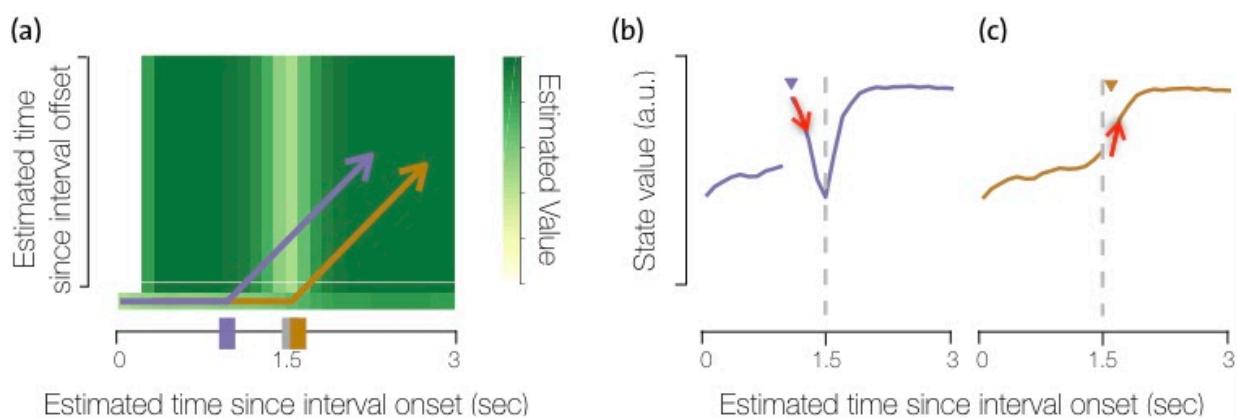
976 **Average reward prediction errors at interval offset for varying degrees of compression in**

977 **mapping.** We see that the profile of average RPEs does not vary considerably for the

978 different degrees of compression in the basis functions used to estimate value functions.

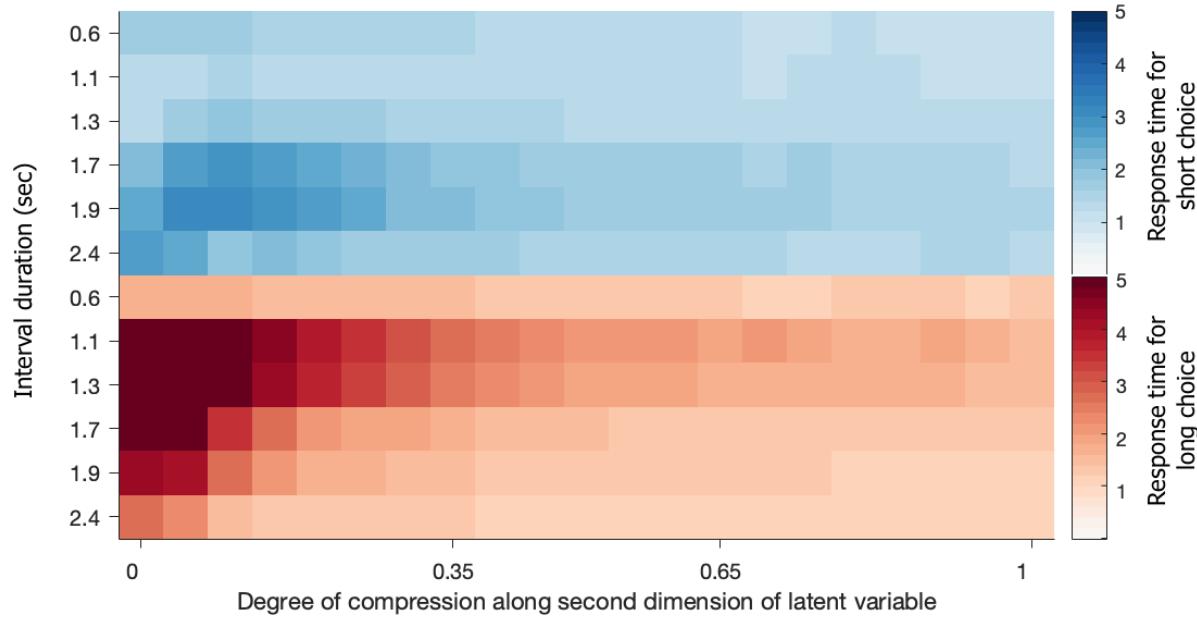


979 **Supplementary figure 4:**
980 **Difference in psychometric functions of trials grouped based on the magnitude of RPEs,**
981 **for varying degrees of compression in mapping.** We see that for the most compressed
982 mapping (DoC = 0), the difference in the psychometric curve has the same sign of all the
983 stimuli presented. This corresponds to a change in bias between the two psychometric
984 functions. On the other hand, for the full mapping (DoC = 1), the difference in the
985 psychometric function changes sign for stimuli on different sides of the boundary. This
986 corresponds to a change in slope between the two psychometric functions. We see that
987 only for mappings that are very close to the most compressed case do the psychometric
988 functions show a difference in bias as is observed in the data.



989 **Supplementary figure 5:**

990 **The efficient mapping incentivises procrastination of choices for long interval estimates**
 991 **close to the decision boundary.** **(a)** The heat map shows the value function learnt using
 992 the efficient mapping when the agent is required to report choices immediately after
 993 interval offset. The purple and yellow lines show example trajectories the agent would take
 994 through the state space if it withheld choice for the entire trial for an example 'short'
 995 (purple) and 'long' (yellow) interval. **(b-c)** The sequence of state values that the agent will
 996 encounter when it follows the purple and yellow trajectories, respectively, shown in (a). The
 997 triangle markers indicate the timesteps at which the agent encountered interval offset
 998 during these trials. Let's denote the interval offset states as z_1 and the subsequent state
 999 that the agent transitions to as z_2 . The red arrows show the transition between z_1 and z_2 for
 1000 the example trajectories shown in (b-c). **(b)** We see that after an estimated 'short' interval,
 1001 withholding choice would result in the value function to decrease and hence incur negative
 1002 RPEs. However, the average reward obtained from reporting a choice immediately would be
 1003 equal to the value of the interval offset state z_1 and will, on average, incur zero RPEs. Hence
 1004 the agent is discouraged from withholding choice when estimating an interval to be 'short'.
 1005 **(c)** On the other hand, for intervals estimated as near-boundary 'long', withholding choices
 1006 results in incurring positive RPEs. If the agent reported a choice immediately, it would on
 1007 average receive rewards equal to the value function at z_1 and incur zero RPEs in doing so.
 1008 Hence the agent is incentivised to withhold choices for long near-boundary interval
 1009 estimates. On these trials, when the agent transitions from z_1 to z_2 by withholding choice
 1010 actions, the value of z_1 will be updated closer to the value of state z_2 based on the TD
 1011 update equation $V(z_1) \leftarrow V(z_1) + \alpha(\gamma V(z_2) - V(z_1))$. Moreover, when the agent reports a choice
 1012 action at z_2 after transitioning from z_1 to z_2 , the average reward it will receive from z_2 will be
 1013 lower than if the interval offset had been presented at z_2 . Trial to trial variability in the latent
 1014 variable z will lead to incorrect estimates of the category ('short' vs 'long') of intervals
 1015 presented closer to the decision boundary (such as z_1) than those further away from it
 1016 (such as z_2). Consequently, trial to trial variability in choices at z_2 will be lower if those
 1017 choices are from trials where the agent's estimate at interval offset is z_2 than if choices at
 1018 z_2 are reported on trials on which agent's estimate at interval offset is either z_2 or z_1 . Thus,
 1019 TD-updates on the long side of the decision boundary lead to a flattening of the value
 1020 function in the efficient model due to procrastination of choices.



1021 **Supplementary figure 6:**

1022 **Average response times grouped based on the agent's choice for varying degrees of**
1023 **compression in mapping.** The agent has short response times for all stimuli when
1024 choosing short. The profile is very similar for all degrees of compression in the mapping
1025 used. However, the profile of average response times when the agent chooses long
1026 changes greatly with the degree of compression in the mapping. Only when using very
1027 compressed mappings do we see response times decrease with interval duration on trials
1028 with 'long' choices as seen in the data.

Methods

1 Here we describe how we modelled reinforcement learning (RL) agents on the interval
2 discrimination task and obtained reward prediction error signals that we compared against
3 observed dopamine activity recorded in animals behaving in a similar task. We will organ-
4 ise the following section into: (1) how we define the state representation for the agent and
5 what is the set of permitted actions the agent can choose from; (2) how, given the state
6 representation, the agent estimates reward expectations and an appropriate mapping be-
7 tween states and actions; (3) parameters with which we simulated our RL agents; (4) an
8 equivalent way in which the compression of the efficient representation could be imple-
9 mented.

10 **1 State representation encodes elapsed time since observed task
11 events**

12 During the interval discrimination task (IDT), animals and agents are provided with a very
13 sparse set of cues or observations. Interval onset and offset are both signalled by identi-
14 cal tones, and animals have to infer from context the start, end and duration of intervals
15 presented to them. Animals also observe whether or not their choices result in rewards or
16 no rewards, based on which they need to learn to make appropriate choices. Hence, the
17 RL agent needs to have an internal representation that allows it to use the above described
18 observations to infer the correct epoch in the task (i.e. to infer at any given time if the agent
19 is in the stimulus interval, after the interval or in the inter-trial-interval) as well as estimate
20 interval duration presented. The interval duration presented on each trial is randomly sam-
21 pled uniformly from a set of six intervals and this reflects the stimulus distribution used
22 in task for the animals. Finally we model all times during inter-trial intervals with a single
23 terminal state i.e. a state that always has zero reward expectations. In other words, we
24 model the task as episodes and each trial is a new episode for the agent.

25 Animals trained on the task are not restrained during the interval and any report of
26 choice during the interval results in a premature termination of the trial, accompanied with
27 no reward and a time-out to keep the trial-rate constant. Hence animals need learn to not
28 only classify the presented interval with the appropriate choice, but they need to learn to
29 withhold reporting any choice until after the end of the interval. Similar to animals, the RL
30 agent is permitted to make one of three actions at any time during the task: report choice
31 *short*, report choice *long* and withhold both choices i.e. *wait*. Like animals, the agent needs
32 to learn not only report which choice to make, but when to make it. The agent need to
33 learn to withhold choices during the interval and report a *short* or *long* choice based on its
34 estimate of interval duration, after interval offset. We model the task such that episodes al-

35 ways begin at interval onset and terminate when the agent reports either of the two choices
36 or until the trial time-out.

37 Specifying a RL agent that encodes reward expectations as a function of internal rep-
38 resentations that evolve both based on internal variables as well as observations from the
39 environment (i.e. task) can be formally described as partially-observed Markov decision
40 process (POMDP). In a POMDP, at any time, the agent combines a likelihood based on
41 the observations it gets from the environment with a prior that it computes from earlier
42 estimates of its internal variables. This results in a posterior estimate or belief over the
43 agent's internal variable using which the agent can then estimate reward expectations.
44 Since POMDPs provide a probabilistic framework with which an agent can combine in-
45 ternal variables and observations from the environment, its resulting beliefs are also in
46 the form of probability distributions. Exactly computing reward expectations as based on
47 distributions of internal states is, in general, an extremely challenging problem. There are
48 several algorithms that use different types of approximations to solve POMDPs, but it is un-
49 clear how computations on POMDPs might be implemented in neural circuits. Our model
50 can be described as one in which the agent does not maintain an explicit distribution over
51 its internal variables, but one in which its internal variables evolve such that the agent's
52 states are samples from the posterior distribution or belief over these states. These inter-
53 nal variables are often referred to as latent variables or states.

54 **1.1 Dynamics of the latent variable**

55 The task requires the latent variable dynamics to have two key features: (1) when receiving
56 no observations from the environment, the latent variable needs to evolve, as time elapses,
57 in a non-repeating manner, such that the latent variable can provide an internal estimate of
58 elapsed time; (2) the latent variable must change as a function of interval onset and offset,
59 as well as agent's actions, such that it reflects the task epoch at any point. Accordingly, the
60 agent encodes a continuous two-dimensional latent variable $\mathbf{z} \in \mathbb{R}^2$, where each dimen-
61 sion represents an estimate of elapsed time since interval onset and offset, respectively.

62 Additionally, we know that animals' estimates of elapsed time vary from trial-to-trial,
63 and that variability in their choices is driven by variability in how far their neural activity
64 evolves during the interval [4]. Hence, we modelled the evolution of the latent variable to
65 also have trial-to-trial variability in its dynamics. There is a large class of stochastic dy-
66 namical systems that can fulfil these requirements. One simple way of fulfilling (1) and
67 (2), and introducing variability into the state representation is to define a linearly accumu-
68 lating two-dimensional stochastic system. When the agent withholds choices (i.e., when
69 the agent waits), the evolution of the latent variable is, thus, governed by two factors: (1)
70 Observations in the task: accumulation along the first dimension only begins after inter-
71 val onset and during the interval the latent variable along the second dimension remains
72 zero. At interval offset, accumulation begins along the second dimension as well; (2) Inter-

73 nal noise: the accumulation along each of the dimensions after interval onset and offset,
 74 respectively, is noisy and has trial to trial variability.

75 More specifically, episodes always begin at interval onset, and the initial state is given
 76 by $\mathbf{z}_0 = [0, 0]^T$. Whenever the agent makes a *choice* (*left* or *right*), the latent variable tran-
 77 sitions to the terminal state $\mathbf{z}_T = [\infty, \infty]^T$, which marks the end of the current episode.
 78 During the interval, dynamics are defined as:

$$\mathbf{z}_{t+1} = \mathbf{z}_t + \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} s \\ 0 \end{bmatrix} \varepsilon_t \quad (1)$$

79 where $\mathbf{z}_0 = [0, 0]^T$, $\varepsilon_t \sim \mathcal{N}(0, 1)$, and s controls the standard deviation of the additive
 80 noise. Previous work has shown that trial to trial variability in estimates of elapsed time
 81 also follow Weber's law and in the time domain, this is referred to as the scalar property,
 82 i.e. the standard deviation of estimates of elapsed time increase linearly with elapsed time
 83 [3]. In order for the latent variable encoded by the RL agent to exhibit scalar variability, we
 84 specify the standard deviation of additive noise to be $s = \sigma\sqrt{t}$, where $\sigma = .25$. Thus, the
 85 standard deviation of the latent variable along the first dimension $z_t^{(1)}$, at time t during the
 86 interval, will be σt . The value of parameter σ was chosen to allow the psychometric function
 87 of choices reported by the RL agent to qualitatively match those of animals trained on this
 88 task.

89 At interval offset (when the tone occurs), we increment the latent variable along the
 90 second dimension with an increment of fixed size to allow the observation of interval offset
 91 to be reliably encoded by the latent variable. Thus, we have:

$$\mathbf{z}_{t^*+1} = \mathbf{z}_{t^*} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} s \\ 0 \end{bmatrix} \varepsilon_t + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad (2)$$

92 where t^* indicates the time step at which interval offset occurred. After which, the latent
 93 variable evolves as follows:

$$\mathbf{z}_{t+1} = \mathbf{z}_t + \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} s \\ s \end{bmatrix} \varepsilon_t, \quad t > t^*. \quad (3)$$

94 2 Learning

95 In the simulated task, the agent receives a large positive reward for correctly reporting the
 96 interval category after interval offset. Incorrect choices after interval offset and any choice
 97 during the interval incur a small negative reward. The goal of an agent is to estimate, for
 98 each state, (i) a state-value function, which is an estimate of expected discounted future
 99 rewards from that state, and (ii) a policy, which is a probabilistic mapping between state
 100 and actions that maximise overall future rewards. We model the agent to learn value func-
 101 tions using TD-learning within an actor-critic architecture since they have been commonly

102 used to model dopamine activity as RPEs. The state-value function is referred to as the
 103 *critic* since it evaluates the value of each state. And the *actor* encodes the policy with which
 104 the agent makes actions during the task.

105 **2.1 State value estimation**

106 When the state of the environment can be observed and is discrete, the expectation of
 107 discounted future rewards, referred to as *value*, is defined for each state the agent can
 108 encounter in its environment, and can be written recursively in terms of value of future
 109 states [9].

$$V^\pi(\mathbf{z}_t) = \mathbb{E} \left[\sum_{k=0}^{T-t-1} \gamma^k r_{t+k+1} | \mathbf{z}_t \right] \quad (4)$$

$$= \mathbb{E} [r_{t+1} + \gamma V(\mathbf{z}_{t+1}) | \mathbf{z}_t] \quad (5)$$

110 where the expectation is with respect to, both, the dynamics of the environment and the
 111 agent's policy π , which the agent samples as it interacts with the environment. However,
 112 since the latent variable in our RL agent is continuous, we cannot innumerate a value for
 113 each possible instance of the latent variable and require an approximation scheme to es-
 114 timate value. Hence, we map the latent variable at any given time \mathbf{z}_t into a D-dimensional
 115 feature space, such that linear combinations of the features can be used to approximate
 116 the value function for all instances of \mathbf{z}_t .

$$\hat{V}(\mathbf{z}_t) = \mathbf{w}^\top \mathbf{x}(\mathbf{z}_t) \quad (6)$$

$$= \sum_{i=1}^D w_i x_i(\mathbf{z}_t) \quad (7)$$

117 where the components of the feature vectors or basis functions $\mathbf{x} = [x_1, \dots, x_D]$ are con-
 118 structed using tile basis. The parameters of the basis functions $\theta_i = \{b_{i,l}, b_{i,u}, c_{i,l}, c_{i,u}\}$ de-
 119 termine the range of \mathbf{z} over which each component of the bases x_i is non-zero, as shown
 120 below:

$$x_i(\mathbf{z}) = \begin{cases} 1 & \text{if } b_{i,l} < z^{(1)} \leq b_{i,u} \quad \text{and} \\ & c_{i,l} < z^{(2)} \leq c_{i,u} \\ 0 & \text{else} \end{cases} \quad (8)$$

121 To estimate \mathbf{w} , that best approximates the state value function, we make updates to
 122 reduce the loss function given by

$$E = \delta_t^2 = (r_{t+1} + \gamma \hat{V}(\mathbf{z}_{t+1}) - \hat{V}(\mathbf{z}_t))^2 \quad (9)$$

123 where δ_t is referred to as the temporal-difference (TD) error. The updates are proportional
 124 to the gradient of this loss function, where we treat the target $(r_{t+1} + \gamma \hat{V}(\mathbf{z}_{t+1}))$ as a con-
 125 stant with respect to the parameters w_i , as shown below:

$$\Delta w_i \propto -\frac{\partial \delta_t^2}{\partial w_i} = \delta_t \frac{\partial \hat{V}(\mathbf{z}_t)}{\partial w_i} = \delta_t x_i(\mathbf{z}_t) \quad (10)$$

126 Hence, we can write the update rule for each component of the weights vector \mathbf{w} as

$$w_i \leftarrow w_i + \alpha \delta_t x_i(\mathbf{z}_t). \quad (11)$$

127 **2.2 Policy learning**

128 The ultimate goal of a RL agent is to learn a policy that maximises its future expected
 129 rewards. To allow our agent to appropriate learn state-actions mappings, we model the
 130 actor to estimate the advantage function for every action $A(\mathbf{z}, a)$ 1.

$$A(\mathbf{z}_t, a_t) = \mathbb{E} \left[\sum_{k=0}^{T-t-1} \gamma^k r_{t+k+1} | \mathbf{z}_t, a_t \right] - V(\mathbf{z}_t) \quad (12)$$

131 where, the first term i.e. the expected cumulative future rewards for a given state-action
 132 pair is referred to as the state-action value function $Q(\mathbf{z}, a)$. Hence, the advantage function,
 133 $A(\mathbf{z}, a) = Q(\mathbf{z}, a) - V(\mathbf{z})$, quantifies the difference or advantage in expected returns of
 134 taking a particular action in a given state as compared to the overall expected returns from
 135 that state. For a given state-action pair, the advantage function can be estimated using
 136 updates based on the TD-error computed by the critic (Equation 9) as shown below:

$$\hat{A}(\mathbf{z}_t, a_t) \leftarrow \hat{A}(\mathbf{z}_t, a_t) + \alpha(\delta_t - \hat{A}(\mathbf{z}_t, a_t)), \quad (13)$$

137 As in the case of the state value function, we approximate $\hat{A}(\mathbf{z}, a)$ as a linear combina-
 138 tion of feature vectors and we update the parameters of this function using the TD-error
 139 as described below:

$$\hat{A}(\mathbf{z}_t, a_t) = \mathbf{m}^\top \mathbf{x}(\mathbf{z}_t) \quad (14)$$

$$= \sum_i m_i(a) x_i(\mathbf{z}_t) \quad (15)$$

140 The update rule to estimate parameters \mathbf{m} , is similarly given by

$$m_i(a) \leftarrow ((1 - \alpha)m_i(a) + \alpha \delta_t x_i(\mathbf{z}_t)) \mathbb{1}(a_t = a) \quad (16)$$

141 Finally, at every step, the actor samples an action from the policy distribution $\pi(\mathbf{z}, a) =$
142 $p(a|\mathbf{z})$, which is given by a soft-max of function of the approximation of the advantage
143 function $\hat{A}(\mathbf{z}, a)$, as shown below:

$$\pi(\mathbf{z}, a) \propto e^{\beta \hat{A}(\mathbf{z}, a)} \quad (17)$$

144 **3 Model parameters**

145 **3.1 Parameters of basis functions for value estimation**

146 The tile bases used in the model implementations are fully described by the range over
147 which they are 1. We keep the width of the basis function along $z^{(1)}$ the same for all versions
148 of the model and we only vary the width of the basis function along $z^{(2)}$. The width of
149 basis function along $z^{(1)}$ was chosen to allow an accurate approximation of value along
150 this axis given the trial to trial variability in estimates of elapsed time. Since the tile bases
151 are non-overlapping, we can describe the parameters of all the basis functions in terms of
152 the boundaries along the two dimensions of \mathbf{z} .

153 Let the boundaries along the first dimension of the latent variable, which encodes elapsed
154 time since interval onset, $z^{(1)}$ be $B = \{0, b_0, b_1, \dots, b_K\}$. The resolution of the value function
155 approximation the same along the first dimension is not varies for different degrees of
156 compression in the mappings. The tiling along this dimension is also kept uniform and the
157 interval between the boundaries is set to be equal to 100 ms. Let the boundaries along the
158 second dimension of the latent variable, which encodes elapsed time since interval offset,
159 $z^{(2)}$ be $C = \{0, c_0, c_1, \dots, c_K\}$. In the full mapping, the parameters of the tile bases along $z^{(1)}$
160 and $z^{(2)}$ are the same. The compression in the mapping only influences the coarseness
161 of the value function along this second axis and hence the set of boundaries in C . Let the
162 compression factor be $\lambda \in [0, 1]$, such that the full mapping corresponds to $\lambda = 1$ and
163 the efficient mapping (the most compressed representation) corresponds to $\lambda = 0$. In this
164 case, $c_i = b_i / (1 - \lambda)$, $\forall i \in \{1, 2, \dots, K\}$.

165 **3.2 Other parameters**

166 The value function estimated by the agent is defined as the estimate of future discounted
167 rewards from any state and we set the temporal discounting parameter $\gamma = .95$.

168 Since the parameters for estimating the state value function as well as the advantage
169 function are learnt incrementally from the agent's interaction with the environment, we
170 needed to specify the learning rate for each of these sets of parameters. We implemented
171 an actor-critic framework and the learning rates were chosen such that the updates of
172 the actor occur on a slower timescale than those of the critic. This is to allow for the
173 critic to have enough updates to evaluate the current policy. We specify the learning rate

174 for the state value function to be $\alpha = 1/n_i$ when the number of visits to the state being
175 updated n_i is less than $N_V = 100$, and $\alpha = 1/N_V$ otherwise. The learning rate for the
176 advantage function is similarly set to be $\alpha = 1/n_i$ when the number of visits to the state
177 being updated n_i is less than $N_A = 1000$. Thus, after the first few visits to any state, the
178 learning rate for the state-value function is much faster than that of the advantage function.
179 In the current work, we are interested in relating value-based behaviour and RPEs after the
180 the agent has fully learnt the task to behaviour and neural activity in over-trained animals
181 on the interval discrimination task. Hence, the learning parameters were chosen without
182 any consideration to model the time-course of learning of animals on this task.

183 After learning has converged, there are two sources of trial-to-trial variability in the
184 agent's behaviour in our implementation: variability in dynamics of the latent variable and
185 variability due to stochasticity in the policy. The parameter for the standard deviation of
186 additive noise was set to be $\sigma = .25$ and the parameter that determines the stochasticity
187 of the policy was chosen to be $\alpha = 3$. Both these parameters were held constant over the
188 entire duration of learning, for all simulations shown.

189 **4 Alternative formulation for the efficient representation consistent 190 with observed dopaminergic activity and animals' behaviour**

191 Our use of term 'representational efficiency' in estimating the value functions can be de-
192 scribed in one of two equivalent ways. First, representational efficiency corresponds to a
193 reduction in the number of non-zero parameters that need to be estimated to approximate
194 the value function over all possible instances the latent variable can take during a given
195 task. Alternatively, representational efficiency can be described in terms of the number
196 of basis functions that will be non zero while representing all possible instances the latent
197 variable can take for the given task. For any linear function approximation scheme such as
198 $\hat{V}(\mathbf{z}_t) = \mathbf{w}^\top \mathbf{x}(\mathbf{z}_t)$, this refers to reducing the dimensionality of \mathbf{w} and \mathbf{x} . This can be done
199 by either changing the dynamics of the latent variable, while maintaining the parameters of
200 the basis functions constant, or by changing the parameters of the basis functions while
201 maintaining the dynamics of the latent variable constant.

202 In the first case, for a fixed set of basis functions, the dynamics of \mathbf{z} can be changed
203 such that $p(\mathbf{z})$ is non-zero in a smaller area of state space. In this case fewer basis func-
204 tions will be needed to estimate the value function over all possible instances of \mathbf{z}_t . Alter-
205 natively, if the dynamics of the latent variable are kept constant, representational efficiency
206 can be achieved by changing the range over which each basis function is non-zero, such
207 that individual basis functions span larger regions of the state space i.e. the space of \mathbf{z} .
208 Moreover, both, the dynamics of the latent variable and well as the parameters of the basis
209 function can be changed simultaneously to achieve compression.

210 The RL agent with the efficient mapping presented in this work can similarly be refor-

211 mulated by specifying modified dynamics of the latent variable as opposed to by the pa-
212 rameters of the basis functions (as described in the main text), or by changing both. The
213 equivalent formulation can be expressed by introducing the compression factor $\lambda \in [0, 1]$
214 in the dynamics of the second latent dimension as follows:

$$\mathbf{z}_{t+1} = \mathbf{z}_t + \Delta t \begin{bmatrix} 1 \\ \lambda \end{bmatrix} + \sqrt{\Delta t} \begin{bmatrix} s \\ \lambda \cdot s \end{bmatrix} \varepsilon_t, \quad t > t^* \quad (18)$$

215 The full or uncompressed representation corresponds to $\lambda = 1$, while the efficient rep-
216 resentation (where the second latent variable does not perform any accumulation) corre-
217 sponds to $\lambda = 0$. Note that changing λ does not have any effect on the state representation
218 during the interval. Rather, after the interval offset, as $\lambda \rightarrow 0$ the state representation loses
219 the ability to resolve the time of interval offset and is only able to encode time since interval
220 onset and whether or not interval offset has been presented or not.

221 In either formulation, as long as the relationship between the latent variable and the
222 basis functions is maintained, our results are invariant to which of the two sets of variables
223 (the dynamics of the latent variable $p(\mathbf{z})$ or the basis functions for value approximation \mathbf{x})
224 are changed to achieve a reduction in parameters to be estimated. Hence, for simplicity, in
225 the main text we focus on describing our results for the formulation in which the dynamics
226 of the latent variable are held constant and the density of the basis functions along the
227 second dimension is reduced.

228 **5 Alternative ways of obtaining efficient representations that do 229 not reproduce dopaminergic activity and animals' behaviour**

230 Similarly, there are multiple ways in which the dynamics of the latent variable and the basis
231 functions can be changed to yield a function approximation that has equivalent number of
232 parameters as the one discussed above, but would not have the same relationship between
233 the latent variable and the basis functions discussed. However, none of these alternatives
234 were able to simultaneously reproduce the average profile of dopamine activity and the trial
235 to trial relationship between magnitude of dopamine response and temporal judgements.
236 These alternatives include:

237 **(1)** Fast reaction times for all estimates of interval offsets: If the policy of the agent is
238 always report choice immediately after interval offset, the latent variable would only span
239 the first couple of basis functions along $z^{(2)}$ and hence would require similar number of
240 parameters as the efficient mapping. In this case, both the latent variable and the bases
241 for value approximation remain the same. However, by only allowing the agent to choose
242 between actions associated with 'short' and 'long' choice at interval offset, the latent vari-
243 able does not ... The reward expectations obtained in this version are the same as when
244 we directly computed reward expectations based on choice accuracy and predictability

245 of interval offset in time (shown in Fig 2n and Supp. Fig. 2i-j). However it is known that
246 animals will forgo some amount and immediacy of rewards to balance physical effort in
247 obtaining rewards [7].

248 **(2)** Latent variable dynamics such that there is no change in the state space after in-
249 terval offset: If the latent variable encoded by the agent does not change with time after
250 interval offset, it can serve as a perfect 'memory' of the estimated time of interval offset.
251 In this case, even though the function approximation is the same as that used in the full
252 model, only a small number of bases are needed to encode all possible instances of the
253 latent variable. The reward expectations learnt using this version for all states during the
254 interval and at interval offset are qualitatively the same as those learnt using the full model.
255 This alternative requires the latent variable dynamics to change very abruptly from sequen-
256 tial to attractor dynamics at interval offset. We can speculate that such an abrupt change
257 in dynamics of the latent variable may be hard to achieve if we assume some smoothness
258 constraints in the dynamics neural circuits can generate [8].

259 **(3)** Latent variable dynamics such that there is no change in the projection of the latent
260 variable on the axis that encodes elapsed time since interval onset after interval offset:
261 Previous work has shown that neural circuits can indeed be configured such that irrelevant
262 activity falls in the null space of the required readout [2][5][6]. This version would leave the
263 function approximation the same as in (1) and would produce the same results and the
264 time evolution of the latent variable during the interval would also remain the same. The
265 key difference here would be in the dynamics of the latent variable after interval offset and
266 can be described as follows:

$$\mathbf{z}_{t+1} = \mathbf{z}_t + \Delta t \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \sqrt{\Delta t} \begin{bmatrix} 0 \\ .s \end{bmatrix} \varepsilon_t, \quad t > t^* \quad (19)$$

267 This formulation allow an unambiguous approximation of the state of the task. In the
268 current task, the observations available to the animal may be too sparse to allow neural
269 circuits to fine tune dynamics after interval offset.

270 **(4)** Mapping in which the post interval basis functions are oriented to be parallel to
271 the directions along which the latent variable evolves after interval offset: This alternative
272 would also require that the basis functions for the mapping are finely tuned based on the
273 dynamics of the latent variable.

274 **6 Resource availability**

275 Further information and requests for resources should be directed to and will be fulfilled
276 by the Lead Contact, Asma Motiwala (amotiwala@cmu.edu).

277 **References**

278 [1] Leemon C Baird. Advantage updating. Technical Report WL-TR-93-1146, Wright-
279 Patterson Air Force Base Ohio: Wright Laboratory, Defense Technical Information Cen-
280 ter, Cameron Station, Alexandria, VA 22304-6145, 1993.

281 [2] Shaul Druckmann and Dmitri B Chklovskii. Neuronal circuits underlying persistent rep-
282 resentations despite time varying activity. *Current Biology*, 22(22):2095–2103, 2012.

283 [3] John Gibbon and Russell M Church. Representation of time. *Cognition*, 37(1-2):23–54,
284 1990.

285 [4] Thiago S Gouvêa, Tiago Monteiro, Asma Motiwala, Sofia Soares, Christian Machens,
286 and Joseph J Paton. Striatal dynamics explain duration judgments. *Elife*, 4:e11386,
287 2015.

288 [5] Matthew T Kaufman, Mark M Churchland, Stephen I Ryu, and Krishna V Shenoy. Corti-
289 cal activity in the null space: permitting preparation without movement. *Nature neuro-
290 science*, 17(3):440–448, 2014.

291 [6] João D Semedo, Amin Zandvakili, Christian K Machens, M Yu Byron, and Adam Kohn.
292 Cortical areas interact through a communication subspace. *Neuron*, 102(1):249–259,
293 2019.

294 [7] Reza Shadmehr, Helen J Huang, and Alaa A Ahmed. A representation of effort in
295 decision-making and motor control. *Current biology*, 26(14):1929–1934, 2016.

296 [8] David Sussillo, Mark M Churchland, Matthew T Kaufman, and Krishna V Shenoy. A
297 neural network that finds a naturalistic solution for the production of muscle activity.
298 *Nature neuroscience*, 18(7):1025–1033, 2015.

299 [9] Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT
300 press, 2018.